CS 747 (Autumn 2023)
Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

6.30 p.m. — 8.30 p.m., September 20, 2023, LA 201 and LA 202

Note. This exam has 4 questions, given on the pages following this one. Provide justifica-
tions/calculations/steps along with each answer to illustrate how you arrived at the answer.
You will not receive credit for giving an answer without sufficient explanation.

Steps for submission.

1.

2.

Bring your phone in a pouch or bag, and keep it on the table you are using.

Before the exam begins, turn on “flight mode” on the phone, so it cannot communicate.
Do not touch the phone while you are writing the exam.

When you are finished writing, put your pen away and stand up.

Remain standing while retrieving your phone, scanning your paper, turning off “flight
mode”, then uploading the scanned pdf to Moodle.

You will get 15 extra minutes after the test end time for scanning and uploading (you
can do it earlier if you have finished). If you are unable to scan and upload your paper,
you will be given a slot later to do so.

Before leaving, you must turn in your answer paper to the invigilators in the room.

. We will only evaluate submissions for which the scanned copy matches the physical

answer paper that has been turned in.



Question 1. We consider Z, the set of all n-armed bandit instances, n > 2, in which arms
from the set A = {1,2,...,n} all yield Bernoulli rewards. Each bandit instance I € T is
thus a vector (p1(1),p2(1),...,pn(1)), where p,(I) for a € A is the probability that arm a in
instance [/ yields a 1-reward.

Let £ be the set of all algorithms, (including both deterministic and randomised al-
gorithms) that operate on instances in Z. When an algorithm L € L interacts with an
instance I € I, suppose that it produces a history h that contains s,(h) l-rewards (or suc-
cesses) and f,(h) O-rewards (or failures) for each arm a € A. For example, the history
1,0,1,1,2,0,3,1,2,0 (read as an “arm, reward” sequence) on a 3-armed bandit instance has
one success and one failure for arm 1, two failures for arm 2, and one success for arm 3.

In both the questions below, assume that A is a fixed history, with associated success-
and failure-counts s,(h) and f,(h), respectively, for a € A. For I € Z, L € L, let q;1(h)
denote the probability that algorithm L acting on bandit instance I produces history h.

la. Provide an expression for max g, r(h)|in terms of I and h. [2 marks]
€

1b. Provide an expression for Max max gr, r(h)|in terms of h. [3 marks]
S S

Give sufficient justification for both your answers.

Question 2. Consider the usual bandit setup studied in class: n-armed bandits, n > 2, in
which each arm yields Bernoulli rewards. We know that there are algorithms that can yield
sub-linear regret (in terms of the horizon) on such bandit instances, and in fact which are
asymptotically optimal with respect to Lai and Robbins’s lower bound (the ratio of their
expected cumulative regret to the lower bound approaches 1 as the horizon goes to infinity).

In this question, we consider a family of algorithms £(b), which are parameterised by
an integer b > 1. Every algorithm L € L(b) is constrained as follows. When L selects
an arm to pull, it must pull that arm consecutively b times, before getting to decide its
next choice of arm afresh. Thus, for example, if b = 3, the indices of the arms pulled, in
sequence, could be (i) 2,2,2,1,1,1,3,3,3,3,3,3,..., (ii)1,1,1,4,4,4,2,2,2,1,1,1,..., etc.
Sequences that would not be possible would include, among others, (i) 2,1,2,1,3,3,...,
and (i) 1,1,1,4,4,4,2,2,1,.... Observe that the unrestricted family of algorithms we have
considered in class is £(1).

Consider arbitrary b > 1. Is there an algorithm L* € £(b) that achieves sub-linear regret
in terms of the horizon on all bandit instances? Is there an algorithm L™ € L£(b) that
achieves asymptotically optimal regret with respect to Lai and Robbins’s lower bound on
all bandit instances? If you claim “yes” for either question, describe L* and/or L** and
prove your claim. If your answer is “no” to either question, prove why sub-linear and/or
asympotically optimal regret is not possible with b > 1. For convenience you can assume
that the horizon is a multiple of b, and also that the algorithm knows the horizon. You can
quote any results stated in class without proving them. [5 marks]



Question 3. This question requires you to compute the optimal value function of an MDP
(S, A, T, R) (notations as usual) when rewards are aggregated under the “finite horizon
reward” assumption, with no discounting applied. For s € S, ¢t > 1, let V*(s,t) denote
the maximum expected sum of rewards that the agent can obtain in ¢ steps if starting from
state s, and taking actions so as to maximise this expected sum. Thus ¢ is the “steps to go”
from s while defining V*(s, t).

3a. Write down a recursive formula to calculate V*(s,t), along with the relevant base case.
[1 mark]

3b. Consider the MDP shown below, which has a set of states S = {s1, s2, s3}, and a
set of actions A = {ay, as}. In the figure, transitions of action a; are shown as solid
lines, while those of ay are shown as dashed lines. Only transitions with non-zero
probabilities are shown, and annotated with “probability, reward”.

Fill out the table below with the values of V*(s, t) for this MDP, for s € S, t € {1, 2, 3}.
[4 marks]

s |[t=3|t=2]t=1]




Question 4. Consider MDP (S, A, T, R,~), with notations as usual, and in which values
are taken as the expectation of an infinite sum of rewards discounted by v < 1 (the default
assumption in class).

Let V* : S — R be the optimal value function of this MDP, and let V : S — R be an
e-approximation of V* for some € > 0. More precisely, V satisfies ||V — V*||o < €.

Now, let 7 : S — A be a greedy policy with respect to V, in the sense that

7(s) = argmax Z T(s,a,s){R(s,a,s") +~yV(s)}

a€4 s'eS

for s € S, with ties broken arbitrarily in the “argmax”. We already know that if ¢ = 0, then
V = V* and 7 is an optimal policy. This question investigates by how much 7 can possibly
deviate from optimality as a function of e.

As usual, let V™ : S — R denote the value function of 7. Take a moment to understand
the distinction between V and V7. In general, these functions can be different.

Your task is to show that there exist positive numbers C', m,n such that

VT = V| < Cem (L) |
L—n
Provide a step-by-step proof of your claim, with sufficient explanation. You might find
the Bellman operator for 7 (that is, B™) and/or the Bellman optimality operator (that is,
B*) useful for this exercise, although you do not necessarily have to use either of them. You
will receive full credit for any solution that is correct. [5 marks]



Solutions

la. Suppose h = a®, 7% a',rt, ... a=1 r=t. Then
t—1
qL(h) = H]P{L pulls arm a‘|a®, 7%, a', 7', ... @' v }P{I gives reward 7' for arm a'}.

=0

L can be chosen such that it precisely pulls a’ (given the preceding history that is a prefix
of h) for each 0 <+i <t — 1, and puts no probability on any other arm. Hence

t—1

maxar, r(h) = 11[?{[ gives reward r* for arm a'}

_ H 1[7’ i=1] 1 . pai(I))l[ri:O}
— H )3 (1 — po(I))T=™),

a€A

with the convention that z° = 1 for z € [0, 1].

1b. Let g(a) = pa(1))*s™ (1 — pa(1))7+™ denote the contributing factor for arm a € A in the
product above. Maximising maxqr, r(h) over I amounts to maximising g(a) for each arm a.
€

For arm a € A, if s,(h) = 0 or f,(h) = 0, then g(a) can be made 1 by taking I such
that p,(I) = 0 or p,(I) = 1, respectively (any choice is okay for p,(1) if s,(h) and f,(h) are
both 0). If s,(h) and f,(h) are both positive, then clearly g(a) is not maximised at either
pa(I) = 0 or p,(I) = 1; we will find the maximiser of g(a) by finding p,(I) € (0,1) that
maximises In(g(a)) = s.(h) Inpa(I) + fo(h)In(1 — pa(I)). Consider the function

a(x) = sq(h)Inz + fo(h)In(1 — x)
for z € (0,1). We have
sa(h) __fa(h)

o(x) = P and o' (z) = — 2 G-

The unique solution to o/(z) = 0 is a* = #(hfl(h); also f”(z*) < 0. We conclude that

= % is the unique maximiser of «(-). Plugging in this observation, we have

et - 1 (i) (ot'hm)

a€A



2. We already know that there exist asymptotically optimal algorithms for b = 1: for
example, KL-UCB and Thompson Sampling. Let us take any of these algorithms as L**(1).
For b > 1, we construct L**(b) by using L**(1) as a blackbox, such that L**(b) is also
asymptotically optimal.

It is instructive to first visualise the construction of L**(b) through a thought experiment.
Suppose that siblings X and Y live at home. The sister X has taken CS 747 and knows some
optimal algorithms L**(1). Although the brother Y does not know much about bandits,
he can still be counted upon to follow simple rules. The bandit interaction is as follows.
Whenever an arm is to be pulled, a telephone call must be placed from the siblings’ home
to an office. On the call, the caller specifies the arm a to pull; the office responds with b
corresponding rewards drawn i.i.d. from the reward distribution of a. As you can see, the
home is the agent, and the office is the environment. What is the role played each sibling
within their home? X is in charge of implementing L**(1), and Y is in charge of placing
phone calls to the office. When X decides to pull a particular arm a, she conveys this to Y,
who supplies her the reward. In turn, Y places calls and gets rewards from the office.

The very first time X places a request for any arm a, Y gets b i.i.d. rewards for a by
calling the office, and writes these down in his notebook. However, Y still provides X only
the first reward from this sequence (which is sufficient for X make her next choice), while
retaining the remaining b — 1 in his notebook. When X makes another request for the same
arm a (possibly much later), Y consults his notebook to pass on the second reward that was
received for a. At any point of time, Y’s notebook has anything between 0 and b — 1 unused
rewards for each arm. If for a particular arm that X requests, there are no rewards left in
the notebook, Y places a fresh phone call the the office and gets b new rewards, from which
one is again conveyed back to X.

Observe that this arrangement enables X to implement any L**(1) algorithm. At any
stage, Y’s notebook has at most n(b — 1) additional pulls that have been sought but not
yet passed on to X. As the number of pulls increases, this “buffer” in Y’s notebook vanishes
as a fraction of the number of pulls. Since L**(1) is asymptotically optimal, so is L**(b),
implemented by the “home” agent. Below is a formal description of L**(b).

L*‘k(b)

For arm a € A:
rewardQueue, = [ ].
h® =0.
Fort=0,1,...:
at ~ L**(1)(h").
If rewardQueue,: is empty:
Repeat b times:
Pull arm a’; let r be the reward.
push(r, rewardQueue,).
rt = pop(rewardQueue,).
h**1 « h'.append(a’, rt).

Let LBr(I) denote Lai and Robbins’s lower bound on the expected cumulative regret on
instance I for horizon T'; recall that it grows as Q(log(7")). With our usual notation, we

6



observe

R (L7(0), 1) _ Br(L™(1), 1) + (b= 1) > 0eaP” —Pa).

LBp(I) — LBp(I) ’
CRe(L70).0) _ o Be(ET() D) (0= 1) aea®” — pa)

< —_—eee. = = .
M TIB (D) S AT LB () LB.(1) bro=1

3a. The general recursion, for ¢t > 2, is, for s € S:
* o / / x(o 1
V*(s,t) —rgeajclzagT(s,a,s){R(s,a,s)+V (s",t—1)}.

One may use the same recursion for t = 1 by defining V*(s,0) = 0 for s € S, or alternatively
by treating ¢ = 1, as base case: for s € S,

* o / /
V*(s,1) = max %T(s, a,s' )R(s,a,s").

3b.

17
1(4 +4),1(0 + E)}

(=), =(1+4)+ =2+ —)

11,1 1 17 11
272 2 6

Here is the consolidated table.
s |[t=3]t=2]t=1]
sy || 79/18 | 17/6 | 5/4
S9 8 11/2 4
sy || 11/2 4 3/2




4. There are multiple ways to accomplish this proof. First we present the key result. Then
we present two possible ways to proceed from the key result to the final claim.

Key result. Our core step is to lower-bound B7(V*)(s) — V*(s) for s € S. First, using the
fact that V*(s') > V(s') — € for s’ € S, we observe below that

BT(V*)(s) =) T(s,7(s), s ){R(s,7(s), s') +7V*(s')}

>N " T(s,7(s), S ){R(s,7(s),8") +1(V(s') — )}
= T(s,7(s),s){R(s,7(s),5') + 7V (s)} — 7e. (1)

Let 7 be any optimal policy for (S, A, T, R,). Since 7 is greedy with respect to V, we have

> T(s,7(s), ) R(s, 7(s),s) +V(s)} = Y T(s,7*(s), s ){R(s,7*(s),8) + 7V (s)}.

s'esS s'eS
(2)

Now we use the fact that V(s') > V*(s') — e for s’ € S, and also that V™ = V*, to get

S T(s,7(5), R (5,7 (5), 8) + AV ()} = 3 T(s, 7 (s), ) {Rs, 7(), o) + 3(VA(s') — )}

s'eS s'eS

— V() — e, 3)
Combining (1), (2), and (3) yields
BT(V*)(s) = V*(s) — 2ve. (4)

(4) is the key result in this proof. There are at least two ways to proceed from here in
order to prove our final result.

Method 1. Suppose for X : S — Rand Y : S — R that for s € S, X(s) > Y (s) + ¢ for
some ¢ € R. Then we observe that for every m: S — A

B(X)(s) = B"(Y)(s) =7 )_ T(s,m(s), s ){X(s) = Y(s)} > 7e. ()
s'eS

Indeed we have proven (5) in class for ¢ = 0. Repeatedly applying (5) using 7 as our policy,
to (4), we get the sequence

BT(V*)(s) = V*(s) — 27e,
(BT)*(V*)(s) = BT(V*)(s) — 27%,
(BT)*(V*)(s) = (BT(V)*(s) — 297,



for s € S, which implies

lim (B)(V¥)(s) = V7(s) 2 V*(s) = 29e(1+7+77 +...) = V*(s) - f}; (6)

On the other hand, since V* is the optimal value function, it follows for that for s € S,
V7(s) < V*(s). (7)
(6) and (7) together prove our claim (taking C'=2,m = 1,n = 1); in particular, that

_ 2 2
VT —VH| < 2« 2
I—v 1-—9v

Method 2. Since V* is the optimal value function, we observe from the policy improvement
theorem that for every policy 7 : S — A, V* = B™(V*). We apply this observation to the
policy 7: for s € S, B

BT (V*)(s) < V¥(s). (8)

In turn, (4) and (8) together imply
IBT(V*) = V¥lo < 27e. (9)

Since BT is a contraction mapping in the (R", ||||») Banach space with contraction factor ~,
we have

I(BT)*(V*) = BT (V") < AIIBT(VF) = V¥l < 29%,

and by proceeding similarly,
1(BT)' (V*) = (BT) 1 (VH)lloo < 29[IBT(VF) = V¥l < 27'e

for integers [ > 1. We conclude that for each integer [ > 1,
IBT (V) = Voo = 1D (BT (V) = (BT V)l
i=1
l
<D B (V) = (B V)
i=1

l
< Z 2v'e.
i=1

Taking the limit as [ — oo on both sides, we get

2ve
1—7’

lim [[(BY) (V) = V)l = VT = Ve <

which is the same conclusion as from Method 1.



