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rived at the answer. State your arguments clearly, in logical sequence. You will not receive credit
for giving an answer without sufficient explanation.

Submission. You can either write down your answer by hand or type it in. Be sure to mention
your roll number. Upload to Moodle as a pdf file.



Week 12

In a game of RBC between players 1 and 2, let It denote the information set (equivalently, the
board set) maintained by Player 1 after Player 2 has just completed its t-th regular move (hence it
is now Player 1’s turn to perform a recon move). Let It+ be the information set of Player 1 after it
plays its recon move r, and let It++ be the information set of Player 1 after it subsequently plays
its regular move m. Thereafter Player 2 makes its recon and regular moves, and Player 1 updates
to information set It+1 (and this sequence cycles).

Explain how It+ is obtained from It, how It++ is obtained from It+, and how It+1 is obtained
from It++. Also describe relations between the sizes of It, It+, I

t
++, and It+1 under common cir-

cumstances (ignoring corner cases such as illegal moves). [4 marks]

Solution.

• When the information set is It, a recon move r is played to obtain It+. It+ is a subset of It

containing all boards I ∈ It that are consistent with the results of r. Naturally, we have
|It+| ≤ |It|.

• When Player 1 plays a regular move m, for each board I ∈ It+, the resulting “afterstate” I ′,
obtained by playing m on I, is put into It++. It++ does not contain any states other than
these afterstates. If no two states in It+ lead to the same afterstate by playing m, we will
have |It++| = |It+|.
Now, it might occasionally happen that the move m selected by Player 1 is not the one played
by the engine, since m might be impossible to play on the true underlying board. Instead the
engine may play move m̄, which could be different from m. Moreover, the context is typically
such that if m̄ ̸= m, the player obtains some form of feedback (such as “illegal move”, or
“piece capture at a given position”). This feedback may help prune It+ to a smaller set, on
which the preceding argument should be invoked with m̄ in place of m. In such cases, we are
likely to encounter |It++| ≤ |It+|.

• In principle, Player 2 can play any possible move m′ from the afterstate reached after Player
1’s move m (or m̄). Hence, for every afterstate I ∈ It++, we generate an entire set Next(I)
of possible next states (from Player 1’s perspective) that can be reached from I using some
move m′ by Player 2. Thereafter we set It+1 = ∪I∈It++

Next(I). Consequently we have

|It+1| ≥ |It++|.
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Week 11

In the paper listed below (also briefly mentioned in the week’s lecture), Silver and Veness describe
the POMCP algorithm for POMDPs.

Monte-Carlo Planning in Large POMDPs
David Silver and Joel Veness.
Advances in Neural Information Processing Systems 23, 2164–2172, Curran
Associates, 2010.

a. What is the main difference between POMCP on the one hand, and traditional POMDP
planning algorithms such as value iteration and policy iteration on the other? On a related
note, describe the properties of tasks on which POMCP would be a better choice than the
traditional algorithms, and vice versa. [2 marks]

b. Provide a summary of POMCP, indicating the main steps that it performs. [2 marks]

Solution.

a. POMCP is an algorithm for decision time planning in POMDPs, much in the spirit of the
UCT algorithm for MDPs. By contrast, value iteration and policy iteration are planning
algorithms that are run off-line to compute (approximately) optimal policies for POMDPs,
which can be looked up very efficiently when deployed for action selection. POMCP could be
a good choice when, indeed, the agent has sufficient time for planning its action at each step.

b. Like any POMDP algorithm, POMCP has to (1) select an action from the current belief
state, and (2) depending on the observation received, update to the next belief state. POMCP
performs (1) by running a version of the UCT algorithm, which samples states from the current
belief state and performs roll-outs from them. Interestingly, the belief state is maintained as
a set of particles (states), and the belief update in (2) is implemented using these particles.
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Week 10

Question. Answer the following questions based on the week’s lecture.

a. Consider the POMDP described on Slide 2 of the lecture, for which we work out a belief
update on Slide 9. Suppose the initial belief state is b0 = (12 ,

1
4 , 0,

1
4), the agent takes action

L, and consequently observes no-goal. Compute b1. [3 marks]

b. What is the practical difficulty in performing policy iteration on POMDPs? [1 mark]

Solution.

a.

b1(1) ∝ b0(1)× 0.9 + b0(2)× 0.9 + b0(3)× 0 + b0(4)× 0 =
9

20
+

9

40
=

27

40
.

b1(2) ∝ b0(1)× 0.1 + b0(2)× 0 + b0(3)× 0 + b0(4)× 0 =
1

20
.

b1(3) ∝ 0.

b1(4) ∝ b0(1)× 0 + b0(2)× 0 + b0(3)× 0 + b0(4)× 0.1 =
1

40
.

Consequently we get b1 = ( 9
10 ,

1
15 , 0,

1
30).

b. The idea behind policy iteration is that with every iteration, we obtain a dominating policy.
In MDPs, a policy can be represented as a table that specifies an action for each state. In
POMDPs, policies instead map belief states to actions, and hence need a different repre-
sentation, such as a finite state controller whose “states” correspond to regions of the belief
space (much larger in number than the number of states). When proceeding from policy π
to dominating policy π′, the size of the underlying representation invariably increases (and
quite significantly). Hence, in practice, improving policies cannot be computed beyond 5–10
iterations.
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Week 9

Question. Answer the following questions based on the paper by Jain et al. on the use of PPR
Martingale confidence sequences for PAC mode estimation.

a. What is the main difference between the PAC mode estimation problem and the PAC subset
selection problem in bandits (covered in Week 8)? [1 mark]

b. The SPRT rule applied to the blockchain application makes use of fmax, which is an upper
bound on the true Byzantine fraction f . Now suppose that you are given fmax and the
assurance it upper-bounds f , can you use this information to improve the PPR-1v1 stopping
rule (which in its original form is independent of fmax)? You will obtain partial marks for
qualitative reasoning; to obtain full marks work all the way to a concrete stopping rule based
on PPR Martingale confidence sequences that uses fmax. [3 marks]

c. Jain et al. introduce a rule called “PPR-MD” in addition to PPR-1vr and PPR-1v1. What
are the two main shortcomings of PPR-MD when compared with PPR-1v1? [2 marks]

Solution.

a. In mode estimation, the algorithm is a stopping rule: it only has to decide when to stop (and
δ-correctly declare the mode). In bandit subset selection, the algorithm must not only decide
when to stop (and δ-correctly declare the optimal arm), it has the additional job of deciding
which arms to sample (based on the history).

b. In PPR-1v1, by default we take a uniform prior over [0, 1] on the mean of the unknown
Bernoulli variable. Given the additional information that the mean is lower-bounded by
1− fmax, we can gain some advantage by assuming an alternative prior that is uniform over
the region F = Flow ∪ Fhigh, where Flow = [0, fmax] and Fhigh = [1 − fmax, 1]. For x ∈ F , we
therefore have

π0(x) =
1

2fmax
,

with the update from time step t to t+1 depending on the class of the t-th sample, as below.

πt+1
x ∝

{
πt(x) · x class of t-th sample = 1

πt(x) · (1− x) class of t-th sample = 0,

where there are s occurrences of class 1 and f occurrences of class 0. It follows that

πt(x) =

1
2fmax

xs(1− x)f∫
y∈F

1
2fmax

ys(1− y)fdy

=
Beta(x; s+ 1, f + 1)

1− BetaCDF(1− fmax; s+ 1, f + 1) + BetaCDF(fmax; s+ 1, f + 1)
,

and consequently the PPR for x ∈ F is

PPRt(x) =
π0(x)

πt(x)
=

1− BetaCDF(1− fmax; s+ 1, f + 1) + BetaCDF(fmax; s+ 1, f + 1)

2fmaxBeta(x; s+ 1, f + 1)
.
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Moreover, with the knowledge that the true mean must lie in F , our confidence set only needs
to be {x ∈ F : PPR(x) < 1

δ}. We can stop as soon as the confident set stops intersecting
either Flow (hence declaring 1 as the mode) or it stops intersecting Fhigh (hence declaring 0
as the mode).

c. The PPR-MD stopping rule requires the solution of an optimisation problem, which is much
more computationally expensive than PPR-1v1 and PPR-1vr. Moreover, the authors have
shown that PPR-1v1 necessarily terminates no later than PPR-MD on every sample trajec-
tory. In short, PPR-1v1 is preferable to PPR-MD both in terms of computational complexity
and sample complexity.
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Week 8

Question. This question requires you to modify LUCB to solve a different problem from subset
selection. Suppose, as usual, that your algorithm interacts with a multi-armed bandit instance in
which the rewards are all Bernoulli. The arms’ means are p1, p2, . . . , pn, satisfying p1 > p2 > · · · >
pn, where n ≥ 3 is an odd number. . Your algorithm must sample the arms to identify the median
arm: that is, arm m

def
= n+1

2 , correctly with probability at least 1− δ.
The idea is that you should use upper and lower confidence bounds on the means of each

arm, just like the Hoeffding’s Inequality-based ones applied in LUCB. However, you should revise
both the stopping rule and the sampling strategy so as to identify the median arm correctly with
probability at least 1 − δ, while obtaining an upper bound on the sample complexity that scales
with the “hardness” of the bandit instance. You do not need to provide rigorous proofs—rough
sketches that refer to steps of the LUCB proof will suffice.

Provide the intuition behind your stopping rule, explaining how it ensures δ-correctness at ter-
mination. For the sampling strategy you propose, what hardness quantity H do you think will
emerge? [5 marks]

Solution. We can draw exactly the same lower and upper confidence bounds on the means of each
arm as done in LUCB. As shown for LUCB, the probability that any true mean ever exceeds its
LCB or UCB (in the appropriate direction) is at most δ. Now, at time t, let the sets At, Bt, and
Ct partition the set of arms A such that

1. |At| = m− 1, |Bt| = 1, |Ct| = m− 1, and

2. for (a, b, c) ∈ At ×Bt × Ct, p̂ta ≥ p̂tb ≥ p̂tc.

We stop and return the single element b ∈ Bt when b’s UCB falls below the least LCB from At,
and b’s LCB exceeds the highest UCB from Ct. From the δ-correctness of the confidence bounds,
it would follow that the true mean of b is exceeded by the true means of all m− 1 arms in At, and
the true mean of b exceeds the true means of all m−1 arms in Bt, hence making b the median arm.

As for the sampling strategy, the most natural approach would be to sample, at each step t, the
arm in At with the least LCB, arm b ∈ Bt, and the arm in Ct with the highest UCB. The hardness
quantity resulting from such a strategy would vary as H =

∑m−1
i=1

1
(pi−pm)2

+
∑n

i=m+1
1

(pm−pi)2
.
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Week 7

Question. Both questions below relate to the structure of the policy space for MDPs. Concretely
consider an MDP M = (S,A, T,R, γ), with notations and assumptions as usual. Let |S| = n ≥ 2
and |A| = k ≥ 2.

a. For each policy π for M , let the value of π be the scalar V (π)
def
=
∑

s∈S V π(s). Let Π be the
set of all (kn) deterministic policies for M .

Assume that no two distinct policies in Π have the same value—hence policies in Π are
totally-ordered based on their values. Let π⋆ ∈ Π denote the optimal policy (which clearly
has the highest value) and let π2 ∈ Π be the policy in Π with the second highest value. In
other words, every policy in Π \ ({π⋆} ∪ {π2}) has a lower value than that of π2.

You are given M and π⋆ as input. Provide a procedure to compute π2 using poly(n, k)
arithmetic operations. Establish the correctness of your procedure. [3 marks]

b. In this part, you are asked to prove a generalisation of the policy improvement theorem
presented in CS 747, in particular generalising it from deterministic to stochastic policies.
Note that the set of all stochastic policies contains the set of deterministic policies Π.

Let π and π′ be distinct, stochastic policies for M , which satisfy the following condition: for
s ∈ S, a ∈ A,

Qπ(s, a) > V π(s) =⇒ π′(s, a) ≥ π(s, a),

Qπ(s, a) ≤ V π(s) =⇒ π′(s, a) ≤ π(s, a).

Prove that if π is not an optimal policy, then π′ ≻ π. You may state and use results already
proven in CS 747. [3 marks]

Solution.

a. Our solution is built upon the claim that π2 differs from π⋆ in exactly one state.

To see why, consider any non-optimal policy π. Since π will have one or more improvable
states, and switching any subset of improvable states to improving actions guarantees policy
improvement, we can obtain a dominating policy π′ by switching to an improving action in
exactly one improvable state of π. Thus, if π is a non-optimal policy, there exists a dominating
policy π′ that differs from π in exactly one state.

Now, suppose π2, which is non-optimal, differs from π⋆ in two or more states. By the argument
provided above, we can obtain a policy π′

2 that dominates π2, and differs from it in exactly
one state. Since π⋆ differs from π2 in more than one state, and π′

2 differs from π2 in exactly
one state, it is clear that π′

2 ̸= π⋆. However, the existence of such a π′
2, whose value must lie

between those of π2 and π⋆, contradicts the fact that π2 has the second highest value among
all policies. Hence, we are assured that π2 can differ from π⋆ in exactly one state.

If we are given π⋆, we can evaluate all n(k − 1) “one-action-different” neighbours of π⋆

and identify the one with the highest value—it is going to be π2. Since policy evaluation
and the computation of policy values all need poly(n, k) arithmetic operations, our overall
computation is also poly(n, k).
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b. The following working establishes that Bπ′
(V π) ⪰ V π: for each s ∈ S, it shows that

Bπ′
(V π)(s)− V π(s) is a sum of non-negative terms. For s ∈ S:

Bπ′
(V π)(s)− V π(s) =

∑
a∈A

π′(s, a)
∑
s′∈S

T (s, a, s′){R(s, a, s′) + γV π(s′)} − V π(s)

=
∑
a∈A

π′(s, a)Qπ(s, a)− V π(s)

=
∑
a∈A

π′(s, a)(Qπ(s, a)− V π(s))

=
∑
a∈A

(
π′(s, a)− π(s, a)

)
(Qπ(s, a)− V π(s)) +

∑
a∈A

π(s, a)Qπ(s, a)−
∑
a∈A

π(s, a)V π(s)

=
∑
a∈A

(
π′(s, a)− π(s, a)

)
(Qπ(s, a)− V π(s)) + V π(s)− V π(s)

=
∑
a∈A

(
π′(s, a)− π(s, a)

)
(Qπ(s, a)− V π(s)) .

By repeatedly applying Bπ′
, we gather that V π′ ⪰ V π: that is, π′ ⪰ π. To show π′ ≻ π, we

require an additional assumption that was not made explicit in the question—we need that
for some improvable state s, π′(s) > π(s) (the question assures only ≥, which is inadequate).
With this assumption, we have that Bπ′

(V π) ≻ V π, which leads to π′ ≻ π.
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Week 6

Question. One of the central principles in human computation is the wisdom of the crowd : that
by suitably aggregating individuals’ responses, we can obtain results that are more accurate or
useful than the average response. Answer questions a and b after going through the three papers
listed below.

Whose Vote Should Count More: Optimal Integration of Labels from Labelers
of Unknown Expertise
Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier
Movellan.
Advances in Neural Information Processing Systems 22, 2035–2043, Curran
Associates, 2009.

Intuitive Biases in Choice versus Estimation: Implications for the Wisdom of
Crowds
Joseph P. Simmons, Leif D. Nelson, Jeff Galak, and Shane Frederick.
Journal of Consumer Research, 38(1):1–15, 2011.

Studying the “Wisdom of Crowds” at Scale
Camelia Simoiu, Chiraag Sumanth, Alok Mysore, and Sharad Goel.
In Proceedings of the Seventh AAAI Conference on Human Computation and
Crowdsourcing (HCOMP-19), pp. 171–179, AAAI Press, 2019.

a. What is the specific aspect in harnessing the wisdom of the crowd that Whitehill et al.
address? What is their methodological contribution? [2 marks]

b. The papers by Simmons et al. and Simoiu et al. both provide at least one result contrary to
the wisdom-of-the-crowd principle, wherein a reasonable aggregation of individuals’ responses
results in an inferior outcome. Briefly describe a negative result from each paper. [2 marks]

Solution.

a. Whitehill et al. propose a relatively sophisticated approach for aggregating the labels pro-
vided by human labelers for an image labeling task. Whereas a näıve aggregation strategy
would be to consider the median or some other simple statistic as the label for each image,
Whitehill et al. propose a graphical model that can ultimately provide more accurate labels.
The graphical model simultaneously assigns probabilities to image labels, the proficiency of
individual labelers, and the difficulty level of each image. Driven by the data, the model can
therefore up-weight the labels of expert labelers, for example—thereby increasing the overall
labeling accuracy.

b. Simmons et al. document the presence of systematic bias in a betting market for games: even
when provided knowledge of the “true” odds, people tend to bet disproportionately for the
favourites. Simoiu et al. provide a stark illustration of social influence hindering the wisdom
of the crowds. They observe that when the “consensus” of previous responses is given as
an input to new responders, often wrong answers get reinforced rather than corrected, hence
resulting in an overall drop in accuracy.
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Week 5

Question. The following article presents an empirical comparison of Sarsa (a TD learning algo-
rithm) and NEAT (an evolutionary algorithm).

Critical factors in the empirical performance of temporal difference and
evolutionary methods for reinforcement learning
Shimon Whiteson, Matthew E. Taylor, Peter Stone.
Autonomous Agents and Multi-Agent Systems, 21(1):1–35, 2010.

To perform their study, the authors examine how different properties of the task at hand influ-
ence the performance of each algorithm. What are the two main task properties they study? How
is the effect of each of these properties determined (that is, what are the supporting experiments),
and what are the findings? Do you agree with the conclusions? [4 marks]

Solution. The authors consider the effect of two task properties—the amount of state aliasing and
the amount of stochasticity—in determining the performance of the two learning algorithms. The
authors synthetically create variants of tasks so as to isolate the effect of task properties: thus, for
example, if T is the original task, a new task T ′ is created by introducing state aliasing into T (or
removing state aliasing from T ). Evaluating the relative performance of the methods on T and T ′

then sheds light on the effect of state aliasing.
The authors pick T from among Mountain Car and Keepaway, and for each choice of T , construct

variants T ′ and T ′′ that differ from T along one of the task properties studied. The authors find
evidence that Sarsa is affected more by state noise and less by stochasticity (or action noise)
compared to NEAT. Since Sarsa relies more heavily than NEAT on the assumption that state
transitions are Markovian, it is to be expected that Sarsa’s performance degrades relatively more
rapidly due to state aliasing (which invalidates the Markov assumption) and less due to action noise
(which does not affect the Markovian assumption). On the other hand, action noise increases the
variance in fitness evaluations, thereby increasing the chances that less fit parents will get selected
under NEAT to propagate genes to future generations.
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Week 3

Question.

a. In both papers you have read this week—for playing Atari games (Mnih et al., 2015) and for
the game of Go (Silver et al., 2016)—the underlying neural network passes the input through
convolutional layers. Why are convolutional neural networks a good choice for both these
applications? [2 marks]

b. Whereas the agents trained by Mnih et al. (2015) are eventually able to exceed human-level
performance on the vast majority of Atari games, they do not do so on a handful of games.
See Figure 3 in their paper: one of the unsuccessful games for the agent is Ms. Pac-Man.
Why do you think the DQN algorithm proposed by Mnih et al. is unable to perform well on
Ms. Pac-Man? [1 mark]

c. What is the main difference between the result achieved by Silver et al. (2016) and that
described in the paper below by Schaeffer et al. (2007) (other than the obvious one that they
are about different games)? [1 mark]

Checkers is Solved
Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen.
Science, 317: 1518–1522, 2007.

Solution.

a. In both applications, the input is an image (or sequence of images). Convolutional layers in a
neural network (typically the first few) apply “filters” on contiguous patches of the input, and
are effective at identifying spatially-coherent patterns, such as some type of object in an Atari
game, or a cluster of black stones in Go. One may expect that the features abstracted out
through convolution convey information that is directly useful for decision making, such as
whether the agent is due for a collision in the Atari game, or whether a move would lead to a
capture in Go. It is remarkable that the entire mapping from input to actions, which involves
the convolutional operators themselves, is learned end-to-end using RL in both applications.

b. For playing Ms. Pac-Man successfully, it would appear necessary to plan strategies such as
“reaching a food pill” or “escaping through a hole”—and execute such plans by stringing
together the appropriate low-level actions (moving north, south, east, and wast). However,
the neural network used for learning by Mnih et al. is a simple feed-forward mapping from
the input images to the low-level actions. Without any constructs in place to encode and
persist long-term actions (such as a memory with historical actions), and without explicit
decision-time planning (to simulate the future), it is hard for the agent to learn/execute
effective temporally-extended action sequences. Most of the other Atari games included in
the tests can be tackled effectively with the direct associative mappings encoded by the neural
network.

c. Schaeffer et al. provide a minimax-optimal strategy from the starting position for the game
of Checkers, along with a proof of minimax-optimality. As the product of largescale compu-
tation, they furnish a strategy π1 that guarantees at least a draw for the first player, and
also a strategy π2 for the second player that forces a draw against π1. By contrast, AlphaGo
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and variants, while they may be considered “very good” or even “unbeatable” by human
standards, currently have no proof of optimality. In other words, we do not know if there is
a program that can defeat AlphaGo. Given the size of its game tree, it seems impractical at
the moment to construct a provable minimax-optimal strategy for Go.
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Week 2

Question. The textbook by Poole and Mackworth (2017) has a brief mention of pattern databases.
Read the introduction (Section 1) in this article by Felner et al. (2007) to get a better understand-
ing of pattern databases.

Compressed Pattern Databases
Ariel Felner, Richard E. Korf, Ram Meshulam, Robert Holte.
Journal of Artificial Intelligence Research, 30: 213–247, 2007.

a. What are pattern databases? What is their connection with admissible heuristics? [2 marks]

b. What particular challenge related to pattern databases is addressed by Felner et al.? How is
the challenge addressed? [2 marks]

Solution.

a. It is desirable for heuristics to be admissible, since they guarantee (say in conjunction with
a search algorithm such as A⋆) that an optimal solution will be found. However, the time
taken for the search depends on the actual value given by the heuristic to different nodes:
the higher the value, the more efficient the search procedure. Now, it is non-trivial in general
to come up with heuristics that give large values to nodes, while simultaneously satisfying
the admissibility constraint of the values being upper-bounded by the optimal cost to goal.
Pattern databases are a solution to this problem. To obtain heuristic value h(n) for node n,
a less-constrained variant (a simplification) of the original search task is solved starting from
n, and the optimal cost to goal from n on this simpler task is taken as h(n). Since the new
task is simpler, it is guaranteed that the cost to goal on the original task will not be less than
h(n). Often, multiple nodes for the original task will map to a single node for the simpler
task, so it suffices to maintain a table mapping node n to heuristic value h(n) for a small set
of nodes. This table is called a pattern database.

b. Pattern databases can often become so large as to not fit in memory. Consequently, using
them while searching can become computationally expensive. Felner et al. propose several
techniques to compress pattern databases so they can be stored in memory and hence accessed
quickly. The authors report speed-up of the search procedure by several orders of magnitude
on a variety of search tasks.
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