Groundwater Data Analysis

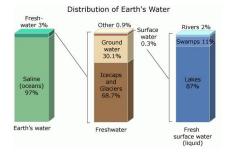
Lalit Kumar

(10305073)

Guide: Prof. Milind Sohoni

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Oct 25, 2011


Guide: Prof. Milind Sohoni

Groundwater Data Analysis

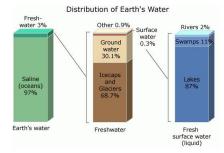
Oct 25, 2011 1 / 23

- Motivation
- Objective
- Terminology
- Case Studies
- GSDA Data Set
- Discrepancy
- Single Well Year Long Model

• Water, second most important thing for survival.

Source: http://ga.water.usgs.gov/edu/waterdistribution.html

Guide: Prof. Milind Sohoni


Groundwater Data Analysis

Oct 25, 2011 3 / 23

-

• • • • • • • • • • • •

• Water, second most important thing for survival.

Source: http://ga.water.usgs.gov/edu/waterdistribution.html

• So, groundwater is important.

- Increasing population, industries : more demands
- Groundwater feeling the pressure.
- Wells in India: 1960(<100,000), 2006(12 million)
- Water table going down.

- Increasing population, industries : more demands
- Groundwater feeling the pressure.
- Wells in India: 1960(<100,000), 2006(12 million)
- Water table going down.
- Need to monitor, plan and regulate its use.
- Future needs can be handled.

Some Terms

- Watershed : Water flows to same point.
- Aquifer : Layer underneath the ground which allows storage and movement of water through it.
- Hydraulic conductivity: Ease with which water can move in soil.

• Study groundwater behavior for Thane district.

Build mathematical models.

2 Understanding water budget.

Seedback for 163 wadis.

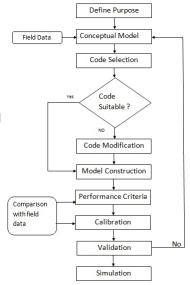
- Start with simple single well model.
- To show groundwater variation in a year.
- Help in predicting the water level.
- Could be used as input in planning for drinking water schemes .
- Extend them to district and regional level.
- Make the model more inclusive.

- 163 wadis : Severe water crisis.
- Currently being tanker fed.
- Need to investiagte what's wrong ?

- 163 wadis : Severe water crisis.
- Currently being tanker fed.
- Need to investiagte what's wrong ?
 - Groundwater is an important factor.
 - Tribal people : Social factor may have been involved.
 - Higher elevation (hills): Water not reaching.

- 163 wadis : Severe water crisis.
- Currently being tanker fed.
- Need to investiagte what's wrong ?
 - Groundwater is an important factor.
 - Tribal people : Social factor may have been involved.
 - Higher elevation (hills): Water not reaching.
- Study groundwater for these wadis
- Provide the feedback

- Water bugdet : Yearly document for each district.
- Describes water requirement and the resources to meet them.
- Objective is to this document.
 - What all input are needed for its preparation?
 - What are the output of this document.
 - How is the output used in planning.


- Denmark: 99% water supply based on groundwater.
- Problems: Pressure on groundwater, its pollution.
- Review present status and future needs of groundwater resources.
- Geological Survey of Denmark(GEUS): Nationl Hydrological Model(NHM).
- Covers 43000 *Km*²
- NHM Goal : Accurate assesment of groundwater.

• Prior:Surface or ground water modelling.

- Done for areas \geq 50000Km²
- Intergrated models :area \leq 4000Km²
- Problems with integrated model
 - Would require large data
 - Aggregate behaviour same.
 - But underlying process may be not be same.
- Describes input, peformance criteria and validation and not the details of modelling.

Case Study

- Conceptual Model.
 - Geology: Area and topography
 - Hydrology process included
- Performance Criteria
 - Observed data used as targets.
 - Deviation of simulated from observed
 - Run-off for river gauging station.
 - Variation in dischharge.
- Validation
 - split-sample
 - proxy-basin

- ∢ ∃ ▶

Oct 25, 2011 12 / 23

- Groundwater Survey and Development Agency.
- Water Supply Sanitation Department.
- Established in 1972.
- 3 Tier hierarchical Organization
 - Head office: Pune
 - 6 Regional offices
 - District offices

- Periodic groundwater monitoring.
- Drinking water supply to rural areas
- Drilling of borewells/tubewells.
- Artificial groundwater recharge.
- Provide assistance to NGO's and other organization
- Communicate the environmental and economic value of groundwater .

- Observation wells data.
- Tahsil level rainfall data.
- Watershed maps.
- Aquifer boundary maps.
- Soil properties.
- Available : Observation well data for Thane

Thane District

- Geographical area : 9337 sq. Km
- Population(2001): 81 Lakhs, Rural(23 Lakhs)
- Tahsils : 15
- Villages : 1728
- Average Rainfall : 2600mm

Groundwater Data Analysis

• Observation Wells : Dedicated wells for groundwater monitoring

- Choice of observation well ?
- Watersheds :
 - Runoff(10-20%)
 - Recharge(20-40%)
 - Storage (>50%)
- Thane: 34 Watersheds, but no storage part
- Hardrock area

Observation Wells in Thane

- Thane: 120.
- Spread in 115 villages.
- Dug Wells
 - Count : 92
 - Sampling started from 1975.
 - Jan, Mar, May , Oct.
 - Usually 7m -10m deep.
- Bore Wells
 - Count : 28
 - Sampling started from 2000.
 - Sampled throughout the year.
 - Depth is about 15m-30m.

Observation Wells Data : Thane

- Received data for 120 observation wells in excel sheet format.
- 11682 tuples, 476 indicated dry wells.
- Indicated the water level over the sampled period.

Tahsil	Village	Watershed	Site_Type	wls_date	wls	depth	Site_id
Bhiwandi	Akoli	WF-27	Dugwell	1991-01-31	3.5	5.5	W192915073024001
Bhiwandi	Akoli	WF-27	Dugwell	1991-03-31	3.7	5.5	W192915073024001
Murbad	Inde	WF-35	Dugwell	2004-05-30	3.3	7.8	W191700073333001
Murbad	Inde	WF-35	Dugwell	2004-09-30	1.7	7.8	W191700073333001
Bhiwandi	Padgha	WF-31	Borewell	2002-10-08	3.46	30	W192143073103001

Observation Wells Data: Thane

- Basic Cleanup
 - Duplicate entries: 366
 - Negative entries: 12
 - Water depth more than well depth : 2
 - Remaining tuples: 11302
- Other Variations: Geological, rainfall, noise, human interference
- Flagging Done: Unexpected Varaition, gap in observations.

Village	Site_Type	Wls_Date	Wls	Depth	Flag
Khodala	Dug Well	2000-04-06	5	5.8	0
Khodala	Dug Well	2000-05-25	2.6	5.8	1

- Previous approach of flagging was not good.
 - Hard deadline of monsoon.
 - Gap between observation was not taken into consideration.
 - Flagging in monsoon without rainfall consideration.
- New Approach for flagging
 - Flag bewteen Oct-May.
 - Water depth should striclty increase(water goes down) as no rain in this period.
 - Flag where it increases. 471 entries.
- Check against rainfall .
- Got daily rainfall data for period 1986-2007 from GISE lab, IIT Bombay.

Observation Wells data: Discrepancy Checking

- Rainfall data for points show in red.
- Checked 373 discrepancy out of 471 against rainfall(conservative).
- 102 had non-zero rain and 271 had zero rain.
- Out of 271 neglect those with increase $\leq 0.2m$.
- Still 189 discrepancies remain.

Guide: Prof. Milind Sohoni

Image: Image:

-

990