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Abstract

In this paper we study the orbit closure problem for a reductive group
G ⊆ GL(X) acting on a finite dimensional vector space V over C. We assume
that the center of GL(X) lies within G and acts on V through a fixed non-trivial
character. We study points y, z ∈ V where (i) z is obtained as the leading term
of the action of a 1-parameter subgroup λ(t) ⊆ G on y, and (ii) y and z have
large distinctive stabilizers K,H ⊆ G. Let O(z) (resp. O(y)) denote the G-
orbits of z (resp. y), and O(z) (resp. O(y)) their closures, then (i) implies that
z ∈ O(y). We address the question: under what conditions can (i) and (ii) be
simultaneously satisfied, i.e, there exists a 1-PS λ ⊆ G for which z is observed
as a limit of y.

Using λ, we develop a leading term analysis which applies to V as well as to
G = Lie(G) the Lie algebra of G and its subalgebras K and H, the Lie algebras
of K and H respectively. Through this we construct the Lie algebra K̂ ⊆ H
which connects y and z through their Lie algebras. We develop the properties
of K̂ and relate it to the action of H on N = V/TzO(z), the normal slice to the
orbit O(z).

We examine the case of alignment when a semisimple element belongs to
both H and K, and the conditions for the same. We illustrate some conse-
quences of alignment and relate it to existing work in the case of the determinant
and permanent. Next, we examine the possibility of intermediate G-varieties

W which lie between the orbit closures of z and y, i.e. O(z) ( W ( O(y).
These have a direct bearing on representation theoretic as well as geometric
properties which connect z and y.

The paper hopes to contribute to the Geometric Complexity Theory ap-
proach of addressing problems in computational complexity in theoretical com-
puter science.

1 Introduction

Let X be a vector space over C of dimension n and let G ⊆ GL(X) be a reductive
algebraic group over C. Furthermore, if Z = {tI|t ∈ C∗}, the center of GL(X) of
non-zero multiples of the identity matrix I, then we assume that Z is a subgroup of
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G. Let V be a finite dimensional G-module via a rational map ρ : G → GL(V ). For
a g ∈ G and v ∈ V , let ρ(g) · v, or simply gv denote the action of g on v via ρ. We
assume that Z acts through a fixed non-trivial character on V . In other words, there
is an integer c 6= 0 such that for any v ∈ V , we have tI · v = ρ(tI)v = tcv.

Let y ∈ V and O(y) denote the G-orbit of y. Since Z acts non-trivially, the closure
O(y) is also a cone and its ideal Iy ⊆ C[V ] is a homogeneous ideal. Let λ : C∗ → G
be a one-parameter subgroup (1-PS) such that

λ(t)y =

D∑

i=d

tiyi = tdz + teye + . . . tDyD (1)

where z = yd and ye are non-zero vectors and d < e < . . . < D. We call z the leading
term of y under λ and ye as the tangent of approach.

The motivation of this paper is to study the following question. Given special
elements z, y ∈ V with large and distinctive stabilizers H,K ⊆ G, to determine,
using just the stabilizer data, if z can arise as a leading term of y under a 1-PS
λ(t) ⊆ G. By dividing by td (which is also achieved by applying a suitable multiple
of the identity), it is clear that the leading term z lies within O(y), the closure of the
G-orbit of y ∈ V .

1.1 Our Contributions

Let us set up some of the background notation.
Let G denote the Lie algebra of G. The central objects are Gy = K, the Lie algebra

of the stabilizer K of y and Gz = H, that of the stabilizer H of z. Let O(z) and O(y)
denote the G-orbits of z and y respectively. Let O(z), O(y) denote their closures,
Iz, Iy ⊆ C[V ] their ideals and Az, Ay their coordinate rings. Let TzO(z) = G · z,
denote the tangent space of the orbit O(z) at the point z. Let N be the H-module
V/(TzO(z)) which represents a “normal” slice at z to the tangent space TzO(z).

Finally, the 1-PS λ(t) allows a grading of V by weights under the usual action,
and G under the adjoint action. We thus have V = ⊕iVi with λ(t)vi = tivi for any
vi ∈ Vi. We also have G = ⊕jGj. For any non-zero v =

∑
i vi, let the leading term

v̂ be the non-zero term va of smallest degree. Similarly, for a non-zero g ∈ G with
g =

∑
j gj , let ĝ denote the non-zero term gb of smallest degree. Thus, in the above

notation, we have ŷ = z.
We prove:

Theorem 1.1 Let K̂ be the vector space generated by {k̂|k ∈ K}, the collection of
leading terms of K. Then K̂ is a Lie subalegbra of H and dim(K̂) = dim(K). Mo-
roever, K̂ ⊆ Hye, the Lie algebra stabilizer within H of ye ∈ N .

K̂ is also the limit of λ(t)Kλ(t)−1, the stabilizer of y(t) = λ(t)y. The above theorem
brings out the role of ye, the tangent of approach as an element of N , a normal section
to the orbit O(z) at z. The injection K̂ ⊆ H sets up a direct Lie algebraic connection
between y and its limit z through their stabilizers.
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Even though K may be semisimple, K̂ demonstrates a variety of possibilities,
depending on the alignment between λ(t) and K. Let P (λ) be the parabolic subgroup
of G corresponding to λ (see Definition 2.16). Let P (λ) = L(λ)U(λ) be the Levi
decomposition of P (λ). Let P(λ),L(λ),U(λ) be their Lie algebras. Finally, let ℓ ∈ G

be the toric element such that tℓ = λ(t). We prove:

Theorem 1.2 Let y, z, λ and ℓ be as above. Then at least one of the following holds:

(A) Let K′ = K̂ ⊕Cℓ, then K′ ⊆ H is a Lie algebra of rank 1, i.e., the dimension of
any maximal torus in K′ is 1.

or

(B) There is a semisimple element k ∈ K and a (unipotent) element u ∈ U(λ) such
that the conjugate ku ∈ H.

We call such an element ku ∈ H ∩Ku as a alignment between z and yu.

Alignment, i.e., the presence of a common semisimple element in H and K (or its
conjugate) has important consequences for the determinant vs. permanent problem
as well as co-dimension one orbits on the boundary of the orbit of the determinant.

Let X be an n × n-matrix of indeterminates and V = Symn(X∗). Consider
y = detn(X) with stabilizer Kn ⊆ GLn2 . It is well known [Mat60] that the boundary
of the determinant orbit is a finite union of G-varieties of codimension 1, that is,
O(y) − O(y) = ∪iWi where Wi is a G-variety of of dimension one less than that of
O(y).

Corollary 1.3 If Wi equals O(Qi) for some form Qi ∈ V which is obtained as a limit
of a 1-PS λi acting on detn(X), then either the stabilizer Hi of Qi is of rank 1, or
there is an alignment between Qi and detn (or its conjugate).

The special case of n = 3 is analysed and the extent of alignment between Qi’s
and det3 is illustrated.

We also consider the case when Y ∼= Cm2+1, is the space of m×m matrices along
with an auxiliary variable Ynn. Suppose φ : Y → X is such that the pullback of
detn(X) is the padded permanent Y n−m

nn permm(Y ). We show that any alignment
provides explicit combinatorial information on the structure of φ.

Proposition 1.4 Suppose φ : Y → X as above has an alignment then there is a rect-
angular decomposition R = {R1, . . . , Rr} of the index set of Y and S = {S1, . . . , Ss}
of that of X and a relation Φ ⊆ R× S such that: φ(YRi

) ⊆ ⊕Sj∈Φ(Ri)XSj
.

For both cases above, we show that the absence of an alignment poses exceptional
conditions on λ.

The second part deals with developing the connection between K and H through
intermediate G-varieties, defined below:
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Definition 1.5 We say that the closed variety W is an intermediate variety between
O(y) and O(z) if W is G-stable and O(y) ⊇ W ⊇ O(z). We say W is strict if
O(y) ) W ) O(z).

We provide two recipes to construct intermediate varieties O(y) ⊇ W ⊇ O(z).
In the first case, we attempt to construct the smallest G-variety W such that there

is an x ∈ W and a 1-PS µ(t) ⊆ G such that z is the leading term of x under the
action of µ and ye is the tangent of approach. In other words, there is a 1-PS path
lying entirely within W which approaches z with ye as the tangent.

Towards this, we construct the associated graded ring for the ideal Iz ⊆ C[V ] as
R = ⊕Ri, where Ri = I iz/I

i+1
z . Note that R ∼= C[V ] as G-modules and dim(R) =

dim(C[V ]) as algebras over C. For an ideal I ⊆ C[V ], let I ⊆ R be the graded ideal
corresponding to I.

For any w ∈ O(z) and v ∈ TwO(z), we define Dk
w,v : Ikz /I

k+1
z → C where for any

f ∈ Ikz /I
k+1
z and representative f ∈ Ikz , D

k
w,v(f) is the coefficient of tk in f(w + tv).

Thus Dk
w,v are generalized derivations at the point w in the direction v.

We then have the following theorem:

Theorem 1.6 Let

Jk = {f ∈ Ikz /I
k+1
z |Dk

gz,gye
(f) = 0 for all g ∈ G}

Then:

1. Jz,ye = ⊕k≥1Jk is a G-stable ideal of R. Moreover, Iz ⊇ Jz,ye ⊇ Iy.

2. The dimension of Jz,ye is dim(G)− dim(Hye).

We know in general that K̂ ⊆ Hye . By the above theorem, if dim(K) < dim(Hye),
then, in the normal cone Spec(R), there is indeed an intermediate variety between
O(z) and O(y).

Conjecture 1.7 If dim(K) < dim(Hye), then there is a strictly intermediate variety

O(z) ( W ( O(y) of dimension dim(G)− dim(Hye).

In the second construction, we fix λ and look at limits of elements y′ ∈ O(y) which
are of the same degree as z. Let πd : V → Vd be the projection onto the weight space.
Then, we define:

Yd = {y′ ∈ O(y) such that z′ = ŷ′ is of degree d}

and Zd = πd(Yd), the set of leading terms of elements in Yd. Thus Zd is the space of
co-limits of z and obtained from elements of O(y) using λ. It is easy to see:

Lemma 1.8 Let O(Zd) = {gz′|z′ ∈ Zd and g ∈ G} and O(Zd) be its closure. Then
O(Zd) is an intermediate variety.
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The question is if the strict condition O(z) ( O(Zd) holds. We check this by
comparing the tangent spaces of degree d, viz., TzZd and (TzO(z))d = G0z

Definition 1.9 Let y, λ and d be fixed as above. A element g ∈ G is called a d-
stabilizer iff g =

∑
i gi is such that (gy)a = 0 for all a < d. Let Gy,d ⊆ G be the

collection of d-stabilizers of y.

In other words, Gy,d is the collection of “Lie elements” g ∈ G such that gy ⊆ Yd.

Proposition 1.10 Let k = dim(H) − dim(K). Suppose that y and z are smooth
within Yd and Zd respectively. Then there is a subspace F ⊆ Gy,d of dimension at
most k such that Gy,d = P(λ) +K+F . Moreover, let TWz = πd({g · y|g ∈ F}) be the
leading terms of F · y, then TzZd =TWz + G0z.

If y is in the null cone of V for the G-action and λ is the “optimal” 1-PS then
Gy,d = P(λ), see [Hes79], Lemma 4.6. Thus F measures the deviation of λ from the

optimal 1-PS which drives y to 0. If λ were optimal then O(z) = O(Zd).

1.2 Background

The problem of analysing the stabilizers K of y and H of the limit z, arises in
showing lower bounds in algebraic complexity theory, for example the permanent vs.
determinant question, see [MS01], Conjecture 4.3, for details. That the question of
orbit closures for such special y and z can be settled by using purely the stabilizer data
is the central thesis of Geometric Complexity Theory (GCT), see [MS08] and others
([BLMW11], [Lan15]). This paper hopes to contribute to the theory by providing Lie
algebraic techniques for the same.

An earlier approach, proposed in [MS01] was to use the Peter-Weyl condition
as follows. For the H,K as above, the G-modules which appear in Ay (or Az) are
determined by the Peter-Weyl condition, i.e., these are G-modules Vµ such that V ∗

µ

has a K (resp. H fixed vector). The existence of a 1-PS as above would mean
that z ∈ O(y) and we would have a G-equivariant surjection Ay → Az. Thus, the
proof of the nonexistence of a suitable 1-PS is obtained by the presence of certain G-
modules in Az as obstructions, thereby offering a combinatorial recipe for the problem.
However, for the H,K in question, the mere absence or presence of certain G-modules
as obstructions was shown to be inadequate to prove the required exponential lower
bounds, see [BIP19]. As pointed by them and other authors, a more refined analysis
of occurrences and multiplicities of G-modules in Ay, Az, [DIP20], [IK20] may yield
the required obstructions.

Besides GCT, there have been other algebraic approaches to lower bounds in
algebraic complexity theory, and in particular to the determinant and permanent
problem. See, for example, [MR04], for a quadratic lower bound which uses the
curvature data for the zero sets of determinant and permanent as hypesurfaces. The
more traditional approach to lower bounds problems has been to study properties
of polynomials computed by circuit families with restrictions placed on their size
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and/or depth of these circuits. Here combinatorial and algebraic techniques are used
and these approaches have met with fair success, see the recent survey by [Sap21]. In
[DDS22] the authors study the closure of forms computed by algebraic ΣkΠΣ-circuits
with the top Σ-gate having constant fanin k. They show that forms in the closure of
this circuit class have polynomial determinantal complexity, see [Dut23].

Coming to this paper, in [ASS22] we developed Lie algebraic techniques to study
when z ∈ O(y) is obtained as the limit of a general 1-parameter family (1-PF) γ(t) ⊆
G. The central objects of study in [ASS22] are the Lie algebras H of H , K of K and
G of G. We gave explicit formulas for the action of G on an appropriately chosen slice
at z, and called this a local model at z. This was then used to construct the limiting
Lie algebra K̂ ⊆ H of K and to analyse its properties.

The first part of this paper arose as an attempted simplification of the construction
of K̂ and its properties as discussed in [ASS22] when the 1-PF is actually a 1-PS. No
familiarity with that paper is assumed.

2 Stabilizer Limits

We recall the setting from Section 1. G ⊆ GL(X) is a reductive algebraic group
over C where X is a vector space over C of dimension n. The center Z of GL(X)
is a subgroup of G. V is a finite dimensional G-module with the center Z acting as
a nontrivial character on V . We have y ∈ V with stabilizer K and z ∈ O(y) with
stabilizer H . The ideals of O(y) and O(z) within C[V ] are Iy and Iz respectively.

Let G = Lie(G) be the Lie algebra of G. Note that G is a subalgebra of gl(X) =
gln(C), the Lie algebra of n×n matrices over C. We recall the following basic lemma:

Lemma 2.1 For the above data, we have:

1. G acts on G by conjugation and this is called the adjoint action: adj(g) · g =
ggg−1.

2. For the action ρ : G → GL(V ), there is a Lie algebra action ρ1 : G → End(V )
such that for any g ∈ G and g ∈ G:

ρ(g)ρ1(g)ρ(g)
−1 = ρ1(adj(g) · g) = ρ1(ggg

−1)

For any v ∈ V and g ∈ G (resp. g ∈ G), gv (resp. gv) will denote the action
g (resp. g) on the element v via ρ1 (resp. ρ). For any v ∈ V , the stabilizer of
v will refer to either Gv := {g ∈ G|gv = v}, the subgroup of G fixing v, or to
Gv := {g ∈ G|gv = 0}, the Lie subalgebra of G sending v to zero.

2.1 Leading term modules and algebras

The situation we are interested in is when y, z are special elements of V as above and
λ : C∗ → G is a 1-parameter subgroup (1-PS) such that:

λ(t)y = y(t) = ydt
d + yet

e + . . . yDt
D
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where yd = z 6= 0. We remind the reader that in the expression on the right side
above, the exponents of t are increasing from left to right. The vector z is the limit
of y under λ.

Now λ gives us a grading of V as well as of the Lie algebra G of G. We state this
as a lemma without proof.

Lemma 2.2 Under the action of λ, we have a Z grading V = ⊕iVi such that for any
v, we have v =

∑
i vi with

λ(t)v =
∑

i

tivi

Similarly, we have a Z-grading G = ⊕jGj
1 such that for any g ∈ G, we have g =

∑
j gj

and:
λ(t)g =

∑

j

tjgj

Finally, if gv = w =
∑

i wi, then wi =
∑

j givi−j.

The degree of a non-zero element vi ∈ Vi (resp. gj ∈ Gj) is the number i (resp. j).

Definition 2.3 For any non-zero v ∈ V as in the above lemma, we define the leading
term as va 6= 0 of smallest degree, and denote it by v̂. The degree deg(v) is defined
as the integer a. Similarly, for any g 6= 0 as above, the leading term of g is defined
as gb 6= 0 of smallest degree, and is denoted by ĝ. Its degree is defined as b. As a
convention, we define deg(0V ) = deg(0G) = ∞.

In our motivating example z is the leading term of y. Of importance is also the
coefficient of second lowest power of t in the expression, ye, which we call the tangent
of approach.

Lemma 2.4 (A) Let v, v′ ∈ V and deg(v) < deg(v′) then deg(v + v′) = deg(v). If

deg(v) = deg(v′) then either (i) deg(v + v′) = deg(v) and ̂(v + v′) = v̂ + v̂′ or (ii)
deg(v + v′) > deg(v). (B) For g, g′ ∈ G, either (i) deg([g, g′]) = deg(g) + deg(g′)

and then [ĝ, ĝ′] = [̂g, g′], or deg([g, g′]) > deg(g) + deg(g′) and then [ĝ, ĝ′] = 0 .
Finally, if g ∈ G and v ∈ V are arbitrary elements then either ĝv̂ = 0 or deg(g(v)) =
deg(v) + deg(g)

Proof: (A) follows from the linearity of the action of λ, i.e., (v+ v′)(t) = v(t)+ v′(t).
For (B), for the first claim, note that for the adjoint action of G on G, we have
λ(t)[g, g′] = [λ(t)g, λ(t)g′], or in other words, [g, g′](t) = [g(t), g′(t)]. Thus if g(t) =∑

i≥a git
i and g′(t) =

∑
j≥b g

′
jt

j , then we have:

[g, g′](t) = [g(t), g′(t)]
= (gat

a + . . .)(g′bt
b + . . .)

= [ga, g
′
b]t

a+b + . . .

= [ĝ, ĝ′]ta+b + . . .

1Note the unfortunate use of the notation Gy and Gj for the stabilizer of y and also the degree
j-component of G. When j is an integer it will always mean the latter.
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The two cases are determined by whether [ĝ, ĝ′] = 0 or not. For the second claim, let
deg(v) = a and deg(g) = b. We see that:

ρ(λ(t))(ρ1(g)(v)) = ρ(λ(t))ρ1(g)ρ(λ(t)
−1)ρ(λ(t))(v))

= g(t)v(t)
= ta+bgbva + higher degree terms
= ta+bĝv̂ + higher degree terms

Again, which of the two conditions holds depends on whether ĝv̂ = 0 or not. This
proves the second claim. �

Lemma 2.5 Let M ⊆ V be a subspace. Define M̂ as the subspace generated by the
set {m̂|m ∈ M}. Then M̂ is a finite dimensional subspace of V and dimC(M) =

dimC(M̂). Similarly, for any subspace L ⊆ G, L̂ is a finite dimensional subspace of
G and has the same dimension as L.

Proof: Define Mi = {m ∈ M |deg(m) ≥ i}, i.e., Mi := M ∩ (⊕j≥iVj). Then Mi is a
finite dimensional subspace of M and Mi ⊇ Mi+1. Let D = {deg(m)|m ∈ M} be the
set of all degrees which are seen. Let D = {i1, . . . , ik, . . .}. Then D is also the set of
indices where Mij ) Mij+1. Since M is finite-dimensional, we see that D is finite, say
D = {i1, . . . , ik}.

Let dj = dim(Mij ) − dim(Mij+1) and Bj = {mj,1, . . . , mj,dj} ⊆ M be linearly
independent elements of M such that Mij = Mij+1+C ·Bj (where C ·Bj is the linear
space generated by the elements of Bj).

Let B = ∪k
j=1Bj. Our first claim is that (i) the elements of B are linearly inde-

pendent. As a contradiction, suppose that
∑

i αibi = 0 for some non-zero αi, with
bi ∈ B. Let s be the minimum of the degrees of bi’s in this linear combination. Then
restricting this linear combination to those bi’s of degree s gives us a non-trivial lin-
ear dependence on Ms/Ms+1. This is a contradiction to the choice of independent
elements in B spanning Ms. This proves (i).

Next, we claim that (ii) B is a basis for M . Suppose not, let m ∈ M − C · B
be of maximum degree among all such m. If d = deg(m), then d = ij for some
j. Then subtracting a suitable linear combination of the elements of Bj, i.e., m

′ =
m−

∑
r αrmij ,r will give us an element m′ of a higher degree and an element outside

C · B. But this contradicts the choice of m. This proves (ii).
Finally, (iii) we claim that B̂ is a basis for M̂ . Clearly, all leading terms of M̂ have

degrees from the set D. For any m̂ of degree d = ij , we know that there is an element
m′′ =

∑
r αrmij ,r of M such that m′ = m−m′′ is either of a higher degree or is zero.

In either case, we have m̂ =
∑

r αrm̂ij ,r. Coming to the linear independence of B̂,

note that B̂ = ∪̇jB̂j, where each B̂j is a subset of different graded components Vj.

Thus any linear dependence must be purely within B̂j . But that would force a linear

dependence on Bj. This proves (iii) and the assertion about M̂ . The L̂ assertion is
similarly proved. �

With this definition, we have the following lemmas.
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Lemma 2.6 Let K be a Lie subalgebra of G and N ⊆ V a K-module. Then (i) K̂ is
a graded Lie subalgebra of G, and dimC(K̂) = dimC(K), (ii) N̂ ⊆ V is a K̂-module
with dimCN̂ = dimCN .

Proof: Let us first prove that K̂ is a Lie subalgebra. For that, it is adequate to
show that [k1, k2] ∈ K̂ for any leading terms k1, k2 ∈ K̂. Given such elements, there

are elements k′1, k
′
2 ∈ K such that ki = k̂′i. Let the degrees of the leading terms be d1

and d2. Consider the element k′ = [k′1, k
′
2] ∈ K. Note that k′(t) = [k′1(t), k

′
2(t)], and

hence, by Lemma 2.4, either (a) the leading term of k′ is of degree d1 + d2, in which
case, we have k = [k1, k2] is the leading term of k′, and so is an element of K̂, or (b),
the leading term is of a higher degree, in which case [k1, k2] = 0. This proves that K̂
is a Lie subalgebra. That K̂ is graded is clear since it is generated by leading terms,
which are homogeneous. Finally, dimC(K̂) = dimC(K) follows from lemma 2.5.

Let us now prove that N̂ is a K̂-module. For that, take any leading term k ∈ K̂
and n ∈ N̂ . Let k′ ∈ K and n′ ∈ N be such that k̂′ = k and n̂′ = n. We see that
(k′n′)(t) = k′(t)n′(t), whence again, either kn = 0 or it equals (̂k′n′) ∈ N̂ . Again, by
lemma 2.5, dimC(N) = dimC(N̂) . This proves the lemma. �

Lemma 2.7 Let v be an arbitrary element of V and g ∈ G is such that g · v = 0.

Then ĝ · v̂ = 0. In other words (̂Gv) ⊆ Gv̂.

Proof: Suppose that v is of degree a and va = v̂. Similarly, suppose that g ∈ Gv, the
stabilizer of v, is of degree b and gb = ĝ. Then gv = 0 implies g(t)v(t) = 0 as well.
This implies that terms of all degree in the product are zero, in particular, that of
degree a+ b, viz. gavb = 0 and thus ĝ ∈ Gv̂. This proves the assertion. �

Remark 2.8 Let ModK(V ) (resp. ModK̂(V )) be the collection of K (resp. K̂) sub-

modules of W . Then lemmas 2.6 and lemma 2.7 set up a map ModK(V )
λ
→ ModK̂(V ),

where the K-module N goes to the K̂-module N̂ , which is of the same dimension.
Moreover, if N has a K-fixed point then N̂ has a K̂-fixed point.

We illustrate Lemma 2.6 with two examples. The first example illustrates the
computation of the leading term algebra K̂ from K and its dependence of K̂ on the
alignment of K with respect to the 1-parameter subgroup.

Example 2.9 Let us consider G = GL4(C) and the 1-parameter subgroup λ(t) below.
The action of λ on a typical element M ∈ G is given below, where each Mij is a 2×2-
matrix. Note that the degrees which occur are −1, 0 and 1, thus we have the spaces
G−1,G0 and G1, of matrices with leading terms of degree −1, 0 and 1 respectively.

λ(t) =




1 0 0 0
0 1 0 0
0 0 t 0
0 0 0 t


 , λ(t)Mλ(t)−1 =

[
M11 t−1M12

tM21 M22

]

Let K be as shown below and let us construct K̂. Let Ki = Gj≥i ∩ K. We then have
dim(K−1) = 4, dim(K0) = 4 and dim(K1) = 0. Thus, we get a basis B = B0 of K of
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dimension 4. Moreover, since each element of B0 is homogeneous, we have B̂0 = B0

and K̂ = K.

K =




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 λ(t) =




1 0 0 0
0 1 0 0
0 0 t 0
0 0 0 t




The leading term Lie algebra K̂ of K depends intimately on λ(t) and may change
dramatically under conjugation. Let A be as shown below and K′ = AKA−1. This
gives us K′ as shown below. Let us compute K̂′.

A =




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 K′ =




a b c d− a
c d 0 −c
0 0 a b
0 0 c d




As before, let K′
i = K′ ∩ Gj≥i and note that dim(K′

−1) = 4. Now K′
0 consists of

all elements k ∈ K′ which have no term of degree −1. This forces d = a and c = 0,
making dim(K′

0) = 2.Finally dim(K′
1) = 0. Thus K̂′ is what is given below, with

r, s, t, u ∈ C. Note that while K̂ is reductive, K̂′ is a solvable Lie algebra.

K̂′ =




u t s r
0 u 0 −s
0 0 u t
0 0 0 u




Example 2.10 This example illustrates the consequences of Lemma 2.7. Consider a
set of indeterminates {x, y, z} and X = C·{x, y, z}. Let GL3 acts on X in the natural
way, and let V = Sym4(X). Consider f = (x2+y2+z2)2 ∈ V . The stabilizer algebra
Gf is 3-dimensional and is given below. Consider next the 1-PS λ(t) ⊆ GL(X) given

by λ(x) = x, λ(y) = y and λ(z) = tz, as shown below. We have g = f̂ is the leading
term of ((x2 + y2 + t2z2)2) and is (x2 + y2)2. The stabilizer Gg is 4-dimensional and
is shown below (with a, b, c, d ∈ C). Note that the last column of Gg is given by the
operator ∇ = (bx+ cy + dz) ∂

∂z
which certainly stabilizes g.

Gf =




0 a b
−a 0 c
−b −c 0


 λ(t) =




1 0 0
0 1 0
0 0 t


 Gg =




0 a b
−a 0 c
0 0 d




Let us compute Ĝf as leading terms of Gf (t) below:

λ(t)Gfλ(t)
−1 =




0 a t−1b
−a 0 t−1c
−tb −tc 0




Reasoning as we did in the previous example, Ĝf is the 3-dimensional Lie algebra of
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matrices (with a, b, c ∈ C) shown below.




0 a b
−a 0 c
0 0 0


 ⊆ Gg

Thus the ”leading term” operation applied to Gf , the stabilizer of f , inserts Ĝf into
the stabilizer Gg of the limit g.

Proposition 2.11 Recall that K = Gy and H = Gz are stabilizer groups of y and z
resp. and K = Gy and H = Gz, their stabilizer Lie algebras.

1. Let TzO(z) = G · z, be the tangent space of the orbit O(z) = G · z at the point
z. Then V/(TzO(z)) is an H-module. We call this the ⋆-action.

2. Let Hye be the stabilizer of ye ∈ V/Tz(O(z)) for the above action. Then the

subalgebra K̂ ⊆ Hye, the stabilizer of the image of the tangent of approach in
V/Tz(O(z)).

Proof: Since H = Gz, it fixes the tangent space Tz(O(z)). The space V/(Tz(O(z)) is
the quotient of H-modules and hence is itself an H-module. Thus (1) is clear.

Next, let k ∈ K be arbitrary. Then ky = 0 implies k(t)y(t) = 0. If k(t) =
kat

a + ka+1 + . . . and y(t) = ydt
d + yet

e + . . ., then we have:

(kat
a + ka+1t

a+1 + . . .)(ydt
d + yet

e + . . .) = 0

Examining the terms of degree a + d, a + d + 1, . . . , a + e − 1, a + e in this product,
we have:

ka+iyd = 0 for i = 0, . . . e− d− 1
kaye + ka+e−dyd = 0

This tells us that ka+i ∈ H for i = 0, . . . , e − d − 1. Since ka ∈ H and kaye ∈ Gyd,
we have ka · ye = 0 and thus ka = k̂ ∈ Hye . Since elements of the type k̂, with k ∈ K

generate K̂, we have proved (2). �

Example 2.12 We continue with example 2.10 to illustrate the proposition just
proved. The limit of (x2 + y2 + z2)2 under the given 1-PS is g = (x2 + y2)2 and the
tangent of approach is ye = (x2 + y2)z2. The tangent space to the orbit of g contains
the form (x2 + y2)(2bxz + 2cyz) for arbitrary b, c ∈ C. This can be seen by applying
the following differential operator to (x2 + y2)2.




0 0 0
0 0 0
b c 0




A generic element of Ĝf corresponds to the differential form

ay
∂

∂x
− ax

∂

∂y
+ bx

∂

∂z
+ cy

∂

∂z
.
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Applying this to ye gives us (x2 + y2)(2bxz + 2cyz). Now this is zero in V/Tg(O(g)),
since (x2 + y2)(2bxz + 2cyz) ∈ Tg(O(g)) as we have just seen. So ye is stabilized by

Ĝf . In fact, the full stabilizer of ye is Ĝf .

Remark 2.13 We use the notation of the motivating example - y ∈ V picks up z as
the limit of a 1-PS λ. Let N be a complement to TzO(z) within V . We denote by N ,
the H-module (and therefore H-module) V/TzO(z).

2.2 Alignment

In this subsection, we look at elements which are in both H and K or in H and a
conjugate of K . Such common elements will indicate common nested subspaces in
the two stabilizers. We define:

Definition 2.14 For y, z and λ as above, a semisimple element k ∈ H∩Kg, for some
g ∈ G is called an alignment.

Recall that the center Z = {tI|t ∈ C∗} acts non-trivially on V . Whence, for our
1-PS λ(t), there is a 1-PS λ′(t) = taλ(t) such that:

λ′(t)y = yd + yet
e−d + . . .+ yDt

D−d

with yd = z as before. Thus z is stabilized by λ′(t) and thus λ′(t) ⊆ H .
We begin with a few definitions.

Definition 2.15 Define ℓ ∈ G as the element such that tℓ = λ′(t).

Note that ℓ · vi = (i− d)vi for all vi ∈ Vi.

Definition 2.16 Let P (λ) be defined as below:

P (λ) = {g ∈ G| lim
t→0

λ(t)gλ(t)−1 exists}

and let U(λ) be its unipotent radical. Let L(λ) be elements of G which commute
with λ(t). Then L(λ) is also a specially identified reductive complement to U(λ). Let
P(λ),L(λ) and U(λ) be the Lie algebras of P (λ), L(λ) and U(λ). 2

Note that P(λ) = ⊕a≥0Ga, L(λ) = G0 and U(λ) = ⊕a>0Ga,[Kem78, Section 2].
We now begin with examining further the connection between K andH through K

and K̂. More specifically, we examine which elements of K (or its conjugate) descend
into H .

Lemma 2.17 With y, z, λ as above, (i) if R ⊆ K commutes with λ, then R ⊆ H.
Furthermore, Lie(R) ⊆ K̂ ⊆ Hye ⊆ H, (ii) if g ∈ L(λ) ∩ K then g ∈ K̂ ⊆ Hye ⊆ H.

2Note that P (λ) = P (λ′) and so on.
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Proof: If σ ∈ K commutes with λ, then we have σλ(t)y = λ(t)σy = λ(t)y. Whence
σ stabilizes each degree component of λ(t)y, and therefore z and ye as well. Part (i)
follows. For (ii) note that, by its very definition, every element of L(λ) commutes
with λ. �

Proposition 2.18 Let y, z, λ be as above. Suppose that k ∈ P(λ)∩K is a semi-simple
element, then there is a unipotent element u ∈ U(λ) such that:

1. ku = uku−1 ∈ L(λ), i.e., it commutes with ℓ and λ, and it stabilizes yu = u · y.

2. Moreover z is the leading term of yu, i.e.,

λ(t)yu = tdz + higher degree terms (2)

Thus, z = ŷu and ku ∈ H ∩ Gyu .

In other words, ku is an alignment between z and yu.

Proof: Note that P (λ) = L(λ)U(λ) = U(λ)L(λ) is a Levi factorization, with L(λ) as
a reductive complement. Since k is a semisimple element of P(λ) there is a maximal
torus T ′ of P(λ) containing k. Since maximal tori in P (λ) are U(λ)-conjugate, T ′ is
conjugate to the maximal torus in L(λ). So there is a u ∈ U(λ) so that ku = uku−1 ∈
L(λ). Moreover, it is straightforward that ku stabilizes yu = u · y. This proves (1).

Suppose y has the weight decomposition:

y = z + ye + w (3)

where ye ∈ Ve and w ∈ ⊕i>eVi. On applying u to Eq. 3 we have:

u · y = u · z + u · ye + uw

Since u is unipotent, for all j, we have u ·(⊕i≥jVi) ⊆ ⊕i≥jVi. Thus we have the graded
expression:

u · y = z + y′d+1 + w′

with y′d+1 ∈ Vd+1 and w′ ∈ ⊕i>d+1Vi. Thus, z continues to be the leading term of yu.
In other words, we have:

λ(t)(yu) = tdz + td+1y′d+1 + higher degree terms

Now ku commutes with λ, ku stabilizes yu and z = ŷu with stabilizer H. It follows
from the previous lemma that ku ∈ Ĝyu ⊆ H. Thus ku is the required alignment. �

Thus, conjugates of semisimple elements k ∈ K ∩ P(λ) are also elements of H.
Note that O(yu) = O(y). The next proposition handles the general case about the
intersection P(λ) ∩ K.

Remark 2.19 Let G− = ⊕i<0Gi, be the complement of P(λ) and Π− : G → G−

be the projection. The condition that K̂ ∩ P(λ) 6= 0 is tantamount to saying that
dim(Π−(K)) < dim(K), i.e., λ is not generically placed with respect to K.

13



Proposition 2.20 Let y, z, λ and ℓ be as above. Then at least one of the following
holds:

(A) Let K′ = K̂ ⊕ Cℓ, then K′ is a Lie algebra of rank 1, i.e., the dimension of any
maximal torus in K′ is 1.

or

(B) there is a unipotent element u ∈ U(λ) and a semisimple element k ∈ Ku such
that k ∈ H. In other words, there is an alignment between z and yu.

Proof: Note that K′ = K̂ ⊕ Cℓ is indeed a Lie algebra since [ℓ, K̂] ⊆ K̂.
Case 1: Suppose that dim(Π−(K)) = dim(K). If this happens, then K̂ ⊆ G− and K̂
is nilpotent. Even more, K′ = K̂⊕Cℓ is a Levi decomposition of K′. Thus (A) holds.
Case 2: On the other hand, if dim(Π−(K)) < dim(K), then K ∩ P(λ) 6= 0.

2a There is a semisimple element k ∈ P(λ) ∩ K. Then, by Prop. 2.18, there is
indeed a u ∈ U(λ) such that ku ∈ H, and (B) hold.

2b We are left with the case that there are no semisimple elements in P(λ) ∩ K.
Suppose now that the rank of K̂ ⊕ ℓ > 1. Then, there is an element k ∈ K such
that k̂ is semisimple and [ℓ, k̂] = 0. This implies that the leading term of k is of
degree zero and therefore k ∈ P(λ) ∩ K. Thus k = k̂+ k+, where k+ ∈ U(λ).

Note that P(λ) ∩ K is the Lie algebra of an algebraic subgroup of GL(X). So
the Jordon-Chevalley decomposition holds for all elements k ∈ P(λ) ∩ K, see
[Bor91, Chapter 1, Section 4]. Hence, k may be written uniquely as a sum of a
semisimple element ks and a nilpotent element kn, k = ks + kn, with [ks, kn] = 0,
and ks, kn ∈ P(λ) ∩ K. Since there are no semisimple elements in P(λ) ∩ K, we
must have k = kn. Since k is now a nilpotent matrix, we have kk = 0 for some
k > 0. This implies that k̂k = 0 as well. That contradicts the assumption that
k̂ is semisimple.

This proves the proposition. �

2.3 Alignment: The boundary of the general determinant

detn and det3

In this and the next section we study forms of interest in GCT and ask whether the
results developed connect with existing work. We show that this is the case when
there is alignment. We separately address the case when there is no alignment.

LetX = (Xij) be an n×n-matrix of indeterminates and V = Symn(X∗). Consider
y = detn(X) with stabilizer Kn ⊆ GLn2 . It is well known that since the stabilizer
of detn is reductive, O(y) − O(y) = ∪iWi, is the union of closed G-varieties of co-
dimension 1, , see for example [BLMW11, 4.2].

We then have the corollary:
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Corollary 2.21 Suppose that Wi = O(Qi), for a form Qi ∈ O(detn) obtained as a
limit of a 1-PS λi, then either the stabilizer Hi of Qi is of rank 1, or there is an
alignment between Qi and a conjugate of detn.

Proof: let Hi be the stabilizer of Qi. Then since dim(Hi) = dim(Kn) + 1, we have
Hi = K′ = K̂n ⊕ Cℓ. By Prop. 2.20, either Hi must be of rank 1 or there must be a
semisimple k ∈ Kn whose conjugate ku ∈ Hi. This proves the assertion. �

Corollary 2.22 Suppose that there is indeed an alignment, then R = (Hi)0∩Ku
n 6= 0,

and thus there is a common subgroup R ⊆ Hi ∩Ku
n of atleast rank 1 which stabilizes

both Q as well as (detn)
u.

Remark 2.23 The above result provides a recipe for constructing and testing possible
boundary forms Qs which are aligned with detn. The steps are:

1. Pick a subgroup R ⊆ Kn which decomposes X = ⊕r
i=1Xr.

2. Pick a coarsening X = ⊕s
i=1Yi of the partition above. Pick e1, . . . , es suitably

and construct λ(t) such that λ(t)(Yi) = teiYi.

3. Compute the leading term Q = d̂etn
λ
. Compute the dimension of GQ. If this

equals dim(Kn) + 1, then GQ = K̂n ⊕ Cℓ and Q is a boundary form.

We illustrate the above recipe for the 3 × 3-determinant. These calculations are
inspired by the work in [HL16].

Let X = {x1, . . . , x9} and V = Sym3(X) be the space of homogeneous forms of
degree 3 acted upon by GL(X). The 3× 3-determinant, det3(X) is a special element
as given below:

det3(X) = det






x1 x2 x3

x4 x5 x6

x7 x8 x9






The stabilizer K3 ⊆ GL(X) of det3(X) is given by transformations (i) X →
AXB−1, where A,B ∈ GL3 with det(AB−1) = 1, and (ii) X → XT . The dimension
of K is 16. Sitting within K3 are two groups R1 = {X → AXA−1|A ∈ GL3} and
R2 = {X → AXAT |A ∈ SL3}.

Hüttenhain and Lairez [HL16] have proved that the boundary of the GL(9)-orbit
of det3 has two irreducible components. Moreover, these are the orbit closures of two
forms Q1 and Q2 given below.

Q1(X) = det






x1 x2 x3

x4 x5 x6

x7 x8 −x5 − x1






Q2(X) = 2(x4x
2
1 + x5x

2
2 + x6x

2
3 + x7x1x2 + x8x2x3 + x9x1x3)

It is easy to check that Q1 and Q2 arise from R1 and R2 using Remark 2.23.

Proposition 2.24 With above notation, we have:
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1. The space X under R1 decomposes as X = X0 ⊕ cI, the space of trace-zero
matrices, and multiples of the identity. Under R2, we have X = Xa ⊕ Xs,
where Xa is the space of antisymmetric matrices and Xs, that of symmetric
matrices.

2. Let λ1 be such that λ1(x0) = x0 for all x0 ∈ X0, while λ1(I) = tI. Similarly, let

λ2(xa) = xa and λ2(xs) = txs for all xa ∈ Xa and xs ∈ Xs. Then d̂et3
1
= Q1

and d̂et3
2
= Q2 upto conjugates.

Let us now describe the stabilizers of the forms Q1 and Q2 above for n = 3.

Lemma 2.25 The stabilizer of Hi of Qi within gl(X) has dimension 17. Moreover,

it may be expressed as Hi = ℓi ⊕ K̂i, where tℓ
i

= λi(t) and K̂i is the leading term
algebra of K under λi(t). Moreover, (Hi)ye, the stabilizer of the tangent of approach

equals K̂i. Finally, Lie(Ri) ⊆ Hi.

The proofs of Propositon 2.24 and Lemma 2.25 are computations.
What if Q has no alignment? Is λ special in this case too? This is partly answered

by the following proposition.

Proposition 2.26 Let T ⊆ GL(X) be a maximal torus containing λ. Let detn =∑
α aαX

α be the expression for the determinant in this basis. For any monomial
index α, let ξ(α) denote its T -weight. Define ΞT (detn) = {ξ(α)|aα6=0} as the support
of detn for this T . Similarly, define ΞT (Q) as the support of the leading term Q.
Then, in the absence of an alignment (i) the dimension of the R-vector space formed
by ΞT (detn) is n2 while that formed by ΞT (Q) is n2 − 1. Moreover, 〈ℓ, χ〉 ≥ 0 for all
χ ∈ ΞT (detn) but 〈ℓ, β〉 = 0 for all β ∈ ΞT (Q).

It is easy to see that if T ∩ Kn 6= {I}, the identity, then dim(ΞT (detn)) < n2. See
Section 4.1 for details.

If a boundary form Q is obtained by a suitable λ then a conjugate λ′ is available in
any maximal torus T ⊆ GL(X). Then, the requirement of Prop. 2.26 severely limits
the space of suitable λ′ within this chosen maximal torus T to a finite and discrete
set of possibilities.

2.4 Alignment, weight spaces and the permanent vs. deter-

minant case

Let us consider the case when X ∼= Cr+s,W ∼= Cr and f ∈ Symn(X∗) and g ∈
Symn(W ∗) be special forms with stabilizers GL(X)f = K and GL(W )f0 = HW . Let
φ : W → X be an invertible linear map such that the pull back of f equals g, or in
other words, g = f ◦ φ. Let Y = φ(W ) and Z be a suitable complement of Y ⊆ X .
Let us also identify W with Y and therefore HW with HY . Then, we can construct a
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λ(t) ⊆ GL(X) such that we have the weight space decomposition X = X0 ⊕X1 with
X0 = Y and X1 = Z. We then have:

λ(t−1)f = t0f0 + . . .+ tmfm

with f0 as the leading term and f0|Y = g. The group GL(X)f0 = H has the following
form:

H =

{[
a b
0 d

]
|a ∈ GL(Z), b ∈ Hom(Z, Y ), d ∈ HY

}

Let us suppose that there is an alignment between f0 and f , i.e., a semisimple element
k ∈ H ∩ Ku as in Prop. 2.20.

Proposition 2.27 Suppose that k above has rational eigenvalues, then there is a
φ′ : W → X, a non-trivial 1-PS µX ⊆ K and a 1-PS µW ⊆ HW such that:

1. µX ◦ φ′ = φ′ ◦ µW .

2. f ◦ φ′ = g.

3. If X = ⊕iXi and W = ⊕Wi is the weight space decomposition of X and W
under µX and µW , respectively, then Wi = (φ′)−1(Xi), and thus φ′(Wi) ⊆ Xi.

Proof: Let k ∈ H ∩ Ku be a semisimple alignment and let µX(a) = ak ⊆ GL(X).
Then, since k commutes with λ, the 1-PS µX must preserve both Y and Z. Let µY

be the restriction of µ to Y and define µW = φ−1 ◦ µY ◦ φ. Finally, let φ′ = u ◦ φ. It
is easy to check (1) and (2). (3) follows from (1). �

Let us apply this to the case where X is a vector space of dimension n2 with
coordinate functions X = (Xij)i,j=1,...,m. Let V = Symn(X∗) with f(X) = detn(X).
Let W be a space of dimension m2+1 with coordinate functions W = (Wij)i,j=1,...,m∪
Wnn. Let gm,n = W n−m

nn permm(W ), the padded permanent.
Suppose we have a φ : W → X such that f ◦ φ = g and the corresponding λ and

the partition X = Y ⊕ Z with Y = φ(W ), such that:

λ(t)f = t0f0 + t1 + f1 + . . .+ tmfm

such that f0◦φ = gm,n. Prop. 2.27 allows us to connect the weight spaces of stabilizer
elements of the padded permanent with that of the determinant.

Towards this, we define:

Definition 2.28 Let A = ({1, . . . , m}×{1, . . . , m})∪({n}×{n}) and B = {1, . . . , n}×
{1, . . . , n} be sets of array indices. For a subset R ⊆ A, let WR = {w ∈ W |Wi,j(w) =
0 for all (i, j) 6∈ R}. Thus, WR is the subspace of all vectors whose support is in the
set R. Similarly, for S ⊆ B, we define XS. A rectangular partition R = {R1, . . . , Rr}
of A is where each R is of the form Ii × Jj, where (Ii) and (Jj) are two partitions of
the row set and, respectively, the column set of A. Each rectangular partition R gives
us a decomposition of W = ⊕R∈RWR. Similarly, we define a rectangular partition
S = {S1, . . . , Ss} of B and the partition X = ⊕S∈SXS.
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Proposition 2.29 Let λ(t) be as above and suppose that there is a rational alignment
between f = detn and f0 = Y n−m

nn permn(Y ). Then there is:

1. a map φ′′ : W → X such that gm,n = detn ◦ φ′′

2. a rectangular partition R = {R1, . . . , Rr} of A, and a rectangular partition
S = {S1, . . . , Ss} of B,

3. a correspondence Φ ⊆ R× S, such that φ′′(WRi
) ⊆ ⊕Sj∈Φ(Ri)XSj

.

Proof: By Prop. 2.27, we have the 1-PS µX and µY and a φ′ : W → X such that
µW ⊆ HW and µX ⊆ K. However, µX may not lie in the image of the standard torus
Dn ×Dn within Kn, the stabilizer of detn. However, we may find a k ∈ Kn such that
µk
X does indeed lie within this torus. Define φ′′ = k ◦ φ′. The 1-PS µk

X gives us the
rectangular partition S of B and the weight space decomposition of X .

We also have the decomposition of W = ⊕iWi by the weights of µW . Now the
connected part ofHW , the stabilizer of the padded permanent is a sub-torus of (C∗)m×
(C∗)m × C∗, where the action of (α) × (β) × γ is given by Wij → αiβjWij and
Wnn → γWnn. Thus the 1-PS µW ⊆ HW indeed gives us a rectangular partition
A and a weight space decomposition R of A. For a given weight, say d, we define
Φd = {(R, S) ∈ R × S|wtµW

(WR) = wtµX
(XS) = d} and Φ = ∪dΦd. The condition

that φ′′Wd ⊆ Xd then implies (3). �

Remark 2.30 The above proposition shows that a rational alignment k leads to spe-
cific information about the function φ and the support within the matrix X for every
coordinate wij ∈ W .

In general, Prop. 2.27 also indicates the importance of weight-spaces for 1-PS
within stabilizers of forms and the coupling achieved when there is alignment. This is
true even when the leading term is not of degree 0. For example, in the case of det3,
the form Q1 is a leading term of degree 0 and the alignment between the weight spaces
is evident. This is seen even for Q2, which is not a leading term of degree 0.

For both, the permanent as well as the determinant, these rectangular spaces are
also linear subspaces within their respective hypersurfaces. Such subspaces are of
interest as the following proposition illustrates.

Proposition 2.31 Let Hm ⊆ Cm2

be the hypersurface of permm. Suppose that there
is a function k(m) and a sequence of points (xm) for every m such that xm ∈ Hm,
and the guarantee that dimension of any linear subspace W ⊆ Hm containing xm is

bounded by k(m). Then, if xn−m
nn permm = d̂etn

λ
, for some λ(t) ⊆ GLn2(C), then

n > m2 − k(m)− 1.

Proof: Let λ and Y ⊆ X = Cn2

be as above so that a suitable conjugate detgn of detn,
when restricted to Y gives us the padded permanent xn−m

nn permm. Now, xm ∈ Y be
as above. Since detgn(xn) = xn−m

nn permm(xm) = 0, there is a linear subspace Z ⊆ X
containing xm of dimension n2−n such that detgm(z) = 0 for all z ∈ Z. LetW = Z∩Y .
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Then xn−m
nn permm(xm) vanishes on W . By the hypothesis, we have dim(W ) ≤ k(m).

But we also have dim(W ) ≥ (n2 − n) + (m2 + 1)− n2. Combining the two, we get:

m2 − 1− n ≤ k(m)

Thus n≥m2 − k(m)− 1. �

Remark 2.32 The presence of alignment and its use in proving lower bounds was
explored in [LR17]. They propose a stronger form where, for every (or a large fraction)
of elements h ∈ HY , we have an element g ∈ K which preserves Y and matches h.
They obtain exponential lower bounds for m in terms of n for such φ. The rectangular
partitions are seen in their implementation of perm3 via det7, (with x77 = 1) is as
given in [Gre11] and is reproduced below:




0 0 0 0 x31 −x32 x33

x11 1 0 0 0 0 0
x12 0 1 0 0 0 0
x13 0 0 1 0 0 0
0 −x22 x21 0 1 0 0
0 −x23 0 x21 0 1 0
0 0 −x23 x22 0 0 1




The partitions are, of course, I = {1}{2}{3}{7} and J = {1, 2, 3}{7} for the perma-
nent and I = J = {1}{2, 3, 4}{5, 6, 7} for the determinant.

The lower bound in Prop. 2.31 has already been shown by [MR04] using the
Hessian of a generic point on the hypersurface of the determinant, and a special point
xn ∈ Hn as above. Our result requires us to compute k(n). It has been mentioned
here for its connection with weight spaces of stabilizer elements.

Finally, what about the case when there is no alignment?

Definition 2.33 Let Z0 = {d̂etgn
λ

|g ∈ GL(X)} be the collection of leading terms
obtained by applying the special 1-PS λ to all elements of the GL(X)-orbit O(detn),
and let Z0 be its closure. We call these the co-limits of f0 = gm,n(Y ).

We then have:

Proposition 2.34 For any semisimple element s ∈ Kn, there is a u ∈ U(λ), the

unipotent radical of H, and a u ∈ U(λ) such that suu stabilizes f ′
0 = d̂etun ∈ Z0.

Moreover, there is an irreducible component Z i of Z0 containing both f0and f ′
0.

The structure of Z0 is discussed in Section 4.2. We also conjecture, 4.28, that the
GL(Y )-stability of f0, the padded permanent, and the uniqueness of the form within
Symn(Y ∗) for its stabilizer, point to a necessary alignment between f0 and detn.
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2.5 A computation

By Prop. 2.18, semisimple elements in P(λ) ∩ K lead us to the presence of their
conjugates within H. This offers a significant insight into the alignment between K
and H. But what if no such elements exist? If T is a maximal torus of K, what if
T ∩ P(λ) = 0? The degree conditions of lemma 2.4 lead to us to define the integers:

δ(g, g′) = deg([g, g′])− deg(g)− deg(g′)

For any g, g′ ∈ G, we have δ(g, g′) ≥ 0 and the dichotomy that either (i) δ(g, g′) = 0,
or (ii) [ĝ, ĝ′] = 0. These lead to significant combinatorial constraints which we now
illustrate.

Assume that there is a subalgebra L ⊆ K where L ∼= slr for some r > 0. This
happens for example when y is the determinant polynomial. Let Tr be an identified
maximal torus and suppose that deg(t) < 0 for all t ∈ Tr. We can then find a basis C
such that Ĉ generates T̂r ⊆ G−. Let C = {Ki|i = 1, . . . , r − 1} be such a basis. Note
that such bases exist in an open set of T r−1

r .
In terms of this basis we then have X = {Xij|1 ≤ i 6= j ≤ r} ⊆ L, the collection

of root vectors. Together C ∪ X form a basis for L. In terms of this basis, there are
the standard Lie bracket relations, some of which are presented below:

[Ki, Kj ] = 0 (a)
[Xij, Xkl] = 0 when j 6= k (b)
[Ki, Xjk] = c′Xjk (c)
[Xij , Xjk] = cXik when i 6= k (d)

[Xij, Xji] = Kij =
∑j−1

k=i Kk when i < j (e)

(4)

for some c ∈ R, c 6= 0 and c′ ∈ R, possibly zero.
For all i, j, let dij = deg(Xij) = deg(X̂ij) and kij = deg(Kij) = deg(K̂ij) and note

that kij < 0.

Let us now analyse L̂C ⊆ L̂, the subalgebra generated by the leading terms X̂ ∪ Ĉ
of the chosen basis. Note that that while T̂r ⊆ L̂C irrespective of the basis C, the
algebra L̂C is determined by the choice of C and need not equal L̂.

Conditions (a) and (b) give us [K̂i, K̂j] = 0 and [X̂ij, X̂kl] = 0 when j 6= k. Looking
at (c), we have [Ki, Xjk] = c′Xjk and comparing degrees, we see that the total degrees

on the left and right do not match, i.e., djk + ki 6= djk and hence [K̂i, X̂jk] = 0. In

other words [T̂r, L̂C] = 0 and T̂r is in the center of L̂C.
For any triple r, s, t, with r 6= s and s 6= t, let δrst = drt − drs − dst corresponding

to the equation [Xrs, Xst] = cXst (with c 6= 0). We then have δrst ≥ 0. Now consider
a triple i, j, k of distinct numbers, we have:

[Xij , Xji] = Kik

[Xij, Xjk] = Xik
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This gives is the degree conditions:

dij + dji + δiji = kik
dij + djk + δijk = dik

Eliminating dij and rearranging, we get:

dji + dik − djk + δiji = kik + δijk

In other words:
δjik + δiji = kik + δijk

Since kik < 0, this forces the condition δijk > 0, or in other words [X̂ij , X̂jk] = 0!

What about [X̂ij , X̂ji]? Since [Xij, Xji] = Kij , we either have [X̂ij , X̂ji] = 0 or

[X̂ij , X̂ji] = K̂ij. Thus for all i, j, k, l, we have [X̂ij, X̂kl] ∈ Ĉ · C. Thus L̂C/T̂r is

abelian. So L̂C is an abelian extension of T̂r.

3 The normal cone

In this section, we examine the role of ye, the tangent of approach to the point
z and O(z), and define suitable G-varieties W ⊇ O(z) which allow approaching z
along the tangent ye while staying within W . This analysis considers a more general
1-parameter family (1-PF) γ(t) ⊆ G for taking limits. This allows us to handle
elements z ∈ O(y) which do not arise as leading terms of 1-PS.

3.1 Generalities

Definition 3.1 C[[t]] will denote the ring of formal power series, and C((t)) the ring
of Laurent series, the quotient field of C[[t]]. A 1-parameter family (or simply 1-PF)
γ is a family of group elements γ(t) = (gij(t)), where each gij(t) ∈ C((t)).

Remark 3.2 By Theorem 1.4 [Kem78], 1-PF above are adequate to detect closure in
the Zariski topology. In other words, if z ∈ O(y), the Zariski closure, then there is a
1-PF γ(t), where γ(t) is a matrix in G with power series entries, such that

y(t) = γ(t)y = y0 +
∑

i≥1

yit
i

with z = y0.

Lemma 3.3 Let γ be a 1-PF and let v ∈ V and v 6= 0. Let v(t) = ρ(γ(t))(v), then
there is an a ∈ Z such that:

v(t) =
∑

i≥a

vit
i
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with vi ∈ V for all i and va 6= 0. Similarly, for g ∈ G, g 6= 0 and g(t) = adj(γ(t))(g),
then there is a b ∈ Z such that:

g(t) =
∑

i≥b

git
i

with gi ∈ G for all i and gb 6= 0.

Remark 3.4 Note that, unlike the case of a 1-PS, we may not have a decomposition
of the ambient space V as well as the Lie algebra G.

Proof: Suppose that dim(V ) = s. From the rationality of the representation ρ,
and for a chosen basis B of V , ρ(γ(t))(B) = A(t)B, where B is 1 × s and A(t) is an
s × s-matrix with entries in C((t)). If v = cB, then γ(t) · v = v(t) = cA(t)B. Thus,
there is a row-vector c(t) such that v(t) = c(t)B. Unpacking c(t) by degrees gives us
v(t) =

∑
i≥a(ciB)t

i, where ci ∈ C1×s are row vectors. Using these as the coefficients
for B proves that v(t) =

∑
i≥a vit

i.
Coming to the second statement, let B = {g1, . . . , gr} now be a basis for G. Each

matrix gi ∈ G ⊆ gln may be expressed as a column vector ci ∈ Cn2

. By the same
calculation as above we have γ(t) · g = g(t) is a matrix in gln with entries in the
Laurent series C((t)), and therefore as a column vector c(t) too. Let A(t) be the
n2 × (r+1)-matrix [c1, . . . , cr, c(t)]. Clearly, since γ(t) ⊆ G, we have γ(t) · g ∈ G, and
the rank of this matrix (with entries in C((t))) is r. Therefore g(t) is expressible as∑r

i=1 ai(t)gi, for some elements ai(t) ∈ C((t)). Collecting terms of the same degree
gives us the result. �

Definition 3.5 For an element k ∈ K, we define k(t) as the element γ(t) · k ∈ G ⊗
C((t)) and k̂ as the leading term of k(t). The space K̂ will denote the C-space formed
by all elements {k̂|k ∈ K}. The space K(t) will denote the C((t))-space formed by the
elements {k(t)|k ∈ K}. In other words, K(t) = K ⊗ C((t)).

Note that K(t) is a Lie algebra over C((t)). We then have the following:

Proposition 3.6 In the above notation, we have:

1. There is a basis {ki(t)}ri=1 ⊆ G ⊗C[[t]] of K(t) such that (i) r = dim(K), (ii) if
K(0) is the space formed by the elements {ki(0)}ri=1, then K(0) is a subalgebra
of Hye ⊆ H of the same dimension.

2. K̂ ⊆ K(0).

The proof is a careful reworking of the proof of lemma 2.5, for details see [ASS22,
Theorem 3.13]. We omit the proof. Note that K̂ ( K(0) is eminently possible.

We continue with the notation γ(t) ⊆ G such that:

y(t) = γ(t)y = z + yet
e + higher degree terms
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where y0 = z and ye is the tangent of approach. Note that for the 1-PS λ of earlier
sections, we do have the 1-PS λ′ which is of the above format.

Recall that Iy (resp. Iz) are ideals in C[V ] for the varieties O(y) (resp. O(z)).
The rings Ay (resp. Az) are the corresponding coordinate rings, i.e., C[V ]/Iy (resp.

C[V ]/Iz). Note that since O(y) and O(z) are cones, the ideals Iy and Iz are homoge-
neous.

We use this limiting 1-PF γ to construct a suitable set of derivations D on the
ideal Iz. We then use this to define a G-invariant ideal J in the associated graded
ring of C[V ] with respect to Iz.

We begin with basic results on graded rings.

Definition 3.7 Let R = ⊕i≥0Ri be the associated graded ring for the ideal Iz ⊆ C[V ].
In other words, Ri = I iz/I

i+1
z (with I0z = C[V ]). For any homogeneous ideal I, set

Ii = I iz ∩ I and I i = (I i+1
z + Ii)/I

i+1
z . Let I = ⊕i≥0I i be the filtration of the ideal I.

Note that (Ii) is an Iz-stable filtration of the ideal I and that I is an ideal within
R. The ring R is the ring of functions on the “normal cone” to the variety O(z). We
have

Proposition 3.8 Using the above notation:

1. The ring C[V ] is isomorphic to R as G-modules. For any G-invariant ideal
I ⊆ C[V ] I and I are isomorphic as G-modules and so are C[V ]/I and R/I.

2. The ring Ay is isomorphic to Ry = R/Iy =
∑

i≥0Ri/(Iy)i as G-modules. More-
over, (Ry)0 = Az.

3. We have the exact sequence of ideals and rings (as well as G-modules):

0 → Iz/Iy → R/Iy → R/Iz → 0

In this sequence (R/Iz)i = 0 for all i > 0, and thus (Iz/Iy)i ∼= (R/Iy)i, for
i > 0.

The proof is clear and is omitted.

3.2 The tangent ideal J

The main result of this subsection is an extension of the Peter-Weyl condition and is
given below. It is based on the construction of the ideal J ⊆ R.

Proposition 3.9 Let z be the leading term of y under the action of the 1-PF γ and
let ye be the tangent of approach. Let Hye ⊆ H be the stabilizer of ye ∈ V/TzO(z).

Then for all i ≥ 1, then the dual (Ri/(Iy)i)
∗ is non-zero and has an Hye-fixed vector.
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Remark 3.10 For any subgroup L ⊆ G, let RepG(L) be those G-modules W such
that W ∗ has an L-fixed vector. The importance of this is in the Peter-Weyl theorem
on closed G-orbits O(v) with reductive stabilizer L = Gv. In this case, we have the
isomorphism of G-modules C[O(v)] ∼= C[G]L ∼= ⊕W∈RepG(L)nWW , where nW is the
dimension of the space of L-fixed vectors in W ∗. In the above notation, the kernel
Iz/Iy of the surjection Ay → Az contains G-modules in the set RepG(Hye). The other
modules in Ay come from Az and belong to RepG(H)

The proof of the above proposition needs the construction of the ideal J , which
we now proceed to do.

Definition 3.11 Let w ∈ V be a point, TwV be the tangent space at w and v ∈ TwV
be a tangent vector at w. For an indeterminate ǫ, we consider the substition and the
expansion:

f(w + ǫv) = f0 + f1ǫ+ . . .

where fi ∈ C. We define Dw,v : C[V ] → C as Dw,v(f) = f1.

The functional Dw,v is called a derivation at w. It is easy to check that for any
f, f ′ ∈ C[V ], we have Dw,v(ff

′) = f(w)Dw,v(f
′) + f ′(w)Dw,v(f).

For the γ(t) ⊆ G and g ∈ G, we define γg(t) as the family gγ(t) ⊆ G. Let
y(t) = γ(t)y and yg(t) = γg(t)y. Then we have:

yg(t) = gz + (gye)t
e + higher degree terms

Note that both y(t) and yg(t) are elements of V ⊗ C[[t]], i.e., power series in t with
coefficients in V .

Lemma 3.12 Given any polynomial f ∈ C[V ] and for any g ∈ G, we make the
substitution as below:

f(yg(t)) = f0 + f1t
1 + . . .

Then f0 = f(gz), f1 = · · · = fe−1 = 0 and fe = Dgz,gye(f).

The proof is a simple computation. This makes the substitution of yg(t) within f
behave as a path which evaluates the derivative of f at gz along the direction of the
tangent of approach gye.

Definition 3.13 Let w ∈ O(z), v ∈ TwV be arbitrary. For a k ≥ 1, and an element
f ∈ Ikz , upon substitution of w + ǫv in f , we have:

f(w + ǫv) = f0 + f1ǫ . . .

Then it is clear that f0 = · · · = fk−1 = 0. We define Dk
w,v(f) as fk, the coefficient of

ǫk.
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Dk
w,v is well defined and Dk

w,v(f) = 0 for f ∈ Ik+1
z , whence Dk

w,v is effectively a
map Dk

w,v : I
k
z /I

k+1
z → C.

Proposition 3.14 For the notation as above, let f ∈ Ikz and g ∈ G, then f(yg(t)) is
a power series in t of the form:

f(yg(t)) = αtke + higher terms in t

where α = Dk
gz,gye

(f).

The proof is straightforward.

Proposition 3.15 With the above notation, for any w ∈ O(z), v ∈ TwV , we have:

1. For f, f ′ ∈ Irz and f ′′ ∈ Isz , we have:

Dk
w,v(f) = 0 for all k < r

Dr
w,v(f + f ′) = Dr

w,v(f) +Dr
w,v(f

′)
Dr+s

w,v (ff
′′) = Dr

w,v(f)D
s
w,v(f

′′)

2. For any g ∈ G, and f ∈ Irz , let f
g denote the function f g(x) = f(g−1x). Then,

f g ∈ Irz as well. Moreover, for any g′ ∈ G, we have:

Dr
gz,gye

f g′ = Dr
(g′)−1gz,(g′)−1gye

(f)

Proof: The proof of (1) is straightforward. For (2), note that f g′(yg(t)) = f((g′)−1yg(t)) =
f(y(g

′)−1g(t)). This proves the proposition. �

Lemma 3.16 For w ∈ O(z) and v ∈ TwV let v′ ∈ TwO(z), the tangent space of the
orbit O(z) at w. Then for an f ∈ Irz with r > 0, we have Dr

w,v+v′(f) = Dr
w,v(f).

Proof: Let f ′ ∈ Iz. Since v
′ ∈ TwO(z), the tangent space of the orbit O(z) and since

f ′ vanishes on O(z), it is easy to check that Dw,v′(f
′) = 0. Hence, for any f ∈ IrZ , we

have Dr
w,v′(f) = 0 as well. This proves the claim. �

Remark 3.17 Proposition 3.15 tells us that since Dk
w,v vanishes on Ik+1

z , it is effec-
tively a functional on Ikz /I

k+1
z . The above lemma tells us that the functional depends

on the representative v ∈ N = V/TwO(z), and not on v itself.

We now use the tangent of approach ye to define the modules Jk.

Definition 3.18 For the above data, let Jk ⊆ Rk be defined as follows:

Jk = {f ∈ Ikz /I
k+1
z |Dk

gz,gye
(f) = 0 for all g ∈ G}

Proposition 3.19 With the above definition of Jk, we have:
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1. JrI
s
z ⊆ Jr+s and

2. (Iy)k ⊆ Jk.

3. Let J z,ye or simply J = ⊕k≥1Jk. Then J is a G-invariant ideal of R and
Iy ⊆ J ⊆ Iz = ⊕i≥1Ri.

Henceforth, we call J = Jz,ye as the tangent ideal for the data (z, ye).

Proof: For (1), we note that for any f ∈ Jr and f ′ ∈ Isz , have

Dr+s
gz,gye

(ff ′) = Dr
gz,gye

(f)Ds
gz,gye

(f ′)

Since the first term is zero, so is the product. For (2), let f ′′ ∈ Iy ∩ Ikz . Note that, by
Prop. 3.14, Dk

gz,gye
(f ′′) is also obtained by evaluating f ′′ on the path yg(t) = γg(t)y.

Since yg(t) ∈ O(y) for all t > 0, we have f ′′(y(t)) = 0 for all t > 0. Passing to the
limit, we must have Dk

gz,gye
(f ′′) = 0. This proves (2). For (3) above, (1) ensures

that (Jk) is Iz-stable. Its G-invariance follows from the fact that if for some f ∈ Ikz ,
Dk

gz,gye
(f) vanishes for all g, then, by Prop. 3.15 (2), so do Dk

gz,gye
(f g′), for any g′-

translate of f . This proves the first part of (3). The second part follows from (2).
This completes the proof of the proposition. �

Remark 3.20 Thus, the variety W ⊆ Spec(R) of J is an infinitesimal G-invariant
thickening of O(z) within the normal bundle, and in the direction ye and its translates.
Assuming that ye 6∈ TzO(z), and in light of Remark 3.17, this thickening is in a
direction transverse to the tangent space to the orbit at z. A natural question is
whether there is an ideal J ′ ⊆ C[V ] such that its filtered version J ′ equals J? In that
case, the variety W ′ ⊆ V of J ′ would be a model for W in the normal bundle. By
Prop. 3.19, this model would be an intermediate variety and lie between O(y) and
O(z). The construction of J ′ and a recipe for computing its dimension are addressed
in the next subsection.

We present three examples which illustrate that with y
γ
→ z, the ideal J and the

existence of an intermediate variety depend crucially on ye. Moreover, the construc-
tion allows for O(z) to be singular within O(y). Also see Ex. 4.14 which will be
discussed later.

Example 3.21 Let V = C2, and z = [0, 0]T and y = [1, 1]T . Let G be the parabolic
group given below. V consists of 3 orbits, viz., O(z) of the sole point z, O(y) of C2

minus the X-axis, and O([1, 0]T ) of the X-axis minus z. The stabilizer H of z is G.
Consider the two families γ1 and γ2 below and the paths γ1(t)y and γ2(t)y which

take y to z but with tangents y1 = [1, 1]T and y2 = [1, 0]T .

G =

{[
a b
0 c

]
|ac 6= 0

}
γ1(t) =

[
t 0
0 t

]
γ2(t) =

[
t 0
0 t2

]

Let J1 and J2 be the tangent ideals for the data (z, y1) and (z, y2) respectively. Then
J1 consists of all forms f of degree k whose k-th derivatives vanish in the directions
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[1, 1]T and its H-orbit. Thus (J1)k = (0) for all k. Let J1 = (0) ⊆ C[V ], then J1 is
an ideal and (J1) = J1 and thus W1 = C2 is the required model. This does lie between
O(z) and O(y) but is not strictly intermediate.

On the other hand, since the orbit of y2 = [1, 0] is its own multiples, (J2)k is the
ideal generated by the forms {yixk−i|i > 0}. Again, there is the ideal J2 = (y) ⊆ C[V ]
such that (J2) = J2. The variety W2 = O([1, 0]T ) is the required model. Note that in
this case O(z) ( W2 ( O(y) and W2 is strictly intermediate.

Example 3.22 Let us consider the group G = S1 × R∗ acting on R3 given by the
matrix g(θ, r) as:

g(θ, r) =




r cos θ r sin θ 0
−r sin θ r cos θ 0

0 0 r




Consider the point y = [1, 0, 1]T and its orbit O(y) = {(r cos θ, r sin θ, r)|θ ∈ [0, 2π), r 6=
0}. The point z = [0, 0, 0]T is in O(y)) via λ(t) = diag(t, t, t), with ye = [1, 0, 1]. Let
us compute the tangent ideal J for this data.

Note that O(z) = z, Gz = G and Iz = (x, y, z). Let f1 = ax + by + cz ∈ Iz, for
some real a, b, c, f2 = x2 ∈ I2z and f3 = x2 + y2 − z2 ∈ I2z . Note that O(z) = z and
Gz = H. We have:

D1
z,ye

(f1) = a+ c
D2

z,ye
(f2) = 1

D2
z,ye

(f3) = 0

Applying a general group element g(θ, r) and evaluating Dk
gz,gye

(fi) gives us that f1 6∈

J1 for any non-zero tuple (a, b, c). Indeed J1 = (0). On the other hand, f2 6∈ J2 but
f3 ∈ J2. In fact, for the ideal J ′ = (x2 + y2 − z2), we see that J ′ = J . This gives
O(y) as W ′ the intermediate variety. Note that W ′ has a singularity at z.

We give another example of J from the classical representation of matrices under
the adjoint action.

Example 3.23 Let us consider V = C3×3 with the coordinate functions X = (Xij) in
(C3×3)∗. Consider the action of GL3(C) on C3×3 by conjugation. Thus, for a matrix
A and g ∈ GL3(C), the action of g on A is given by A → gAg−1. Consider the matrix
C and the family λ(t) below:

C =




1 0 1
c21 1 0
c31 c32 1


 λ(t) =




1 0 0
0 t 0
0 0 t2




The entries cij ∈ C are chosen such that the matrix C has distinct eigenvalues. Let
N1 , N2 and I be the matrices below:

N1 =




0 0 1
0 0 0
0 0 0


 N2 =




0 1 0
0 0 1
0 0 0


 I =




1 0 0
0 1 0
0 0 1




27



We see that:

λ(t) · C = t−2N1 + I + terms with higher degree in t

Thus, in the notation of this section, we have y = C, z = N1 and ye = I. The ideal
of orbit closure O(N1) is given by the equation X2 = 0. Moreover, O(C) is given
by O(C) ∪ O(N2) ∪ O(N1) ∪ 0, where 0 is the zero matrix. The action of the family
γ(t) = t2λ(t) is given as:

γ(t)y = N1 + t2I + terms with higher degree in t

Let us evaluate Dz,ye(X
2) and Dz,ye(X

3). Since X2(N1) = X3(N1) = 0 these are
elements of Iz, and we have:

Dz,ye(X
2) = 2N1 6= 0

Dz,y2(X
3) = N2

1 I +N1IN1 + IN2
1 = 0

Thus X3 ∈ J1. This points to the variety W 1 = O(N2) as the possible intermediate
variety. Note that O(z) ( W 1 ( O(y).

We conclude this section with a proof of Proposition 3.9.

Proposition 3.24 In the notation of Prof. 3.8, for each i ≥ 1, Ri/(Iy)i 6= 0.

Proof: Recall that Ry = ⊕i≥0Ri/Iyi is isomorphic to Ay as a G-module. Since Iy ⊂

Iz, the 0-th term, (Ry)0 = C[V ]/Iz is precisely Az. The kernel of D
i
z,ye

: Ri/(Iy)i → C
is precisely J i. Thus, it suffices to show that Ri/J i is non-zero. Now, by the non-
singularity of the point z ∈ O(z) ⊆ V , there is an f ∈ Iz such that Dz,ye(f) 6= 0.
Then fk ∈ Ri and Dk

z,ye
(fk) 6= 0. �

Proof of Proposition 3.9. In view of the above proposition, what remains to be
shown is the existence of a non-zero functional on Ri/(Iy)i which is Hye-invariant.

This is of course Di
z,ye

: Ri/(Iy)i → C. Indeed, for any h ∈ Hye, we have hDk
z,ye

=
Dk

z,hye
. Now since hye ∈ TzO(z), for any f ∈ Ikz , D

k
z,hye

(f) = 0. This proves the

invariance of Dk
z,ye

and the proposition. �

3.3 The structure of the tangent ideal

This section analyses the tangent ideal Jz,ye (or simply J) and the question of its
dimension.

Let B be the affine variety O(z)× V and C[B] its coordinate ring. Let B′ be the
open subset = {(w, v) ∈ B with w ∈ O(z)} of B. For any (w, v) ∈ B, let us define
the map e(w, v) : R → C as follows. For f =

∑k
i=0 f i ∈ R, where f i ∈ Ri,we define:

e(w, v)(f) =

k∑

i=0

Di
w,vf i
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Thus e(w, v) treats v as a member of the tangent space TwV . We now list certain
properties of E = {ew,v|w ∈ O(y), v ∈ TwV }.

Proposition 3.25 For B as above, we have:

1. For any (w, v) ∈ B′, the map ew,v is a non-trivial algebra homomorphism.
Hence, the kernel Mw,v ⊆ R is a maximal ideal of R. Thus, we have a map
φ : B′ → MaxSpec(R).

2. For any point w ∈ O(z), if v′ ∈ TwO(z) then φ(w, v) = φ(w, v + v′). Thus,
the fiber of the map φ at any point in the Im(φ) is a linear space of dimension
dim(G)− dim(H).

3. Let BJ = {(gz, gye + v′)|g ∈ G and v′ ∈ TgzO(z)}. Then have:

J = ∩(w,v)∈BJ
Mw,v

Proof: That e(w, v) is an algebra homomorphism follows from Prop. 3.15. It is
then clear that its kernel must be a maximal ideal of R. Hence (1) is clear. The
second assertion follows from Lemma 3.16, which says that Dk

w,v+v′ = Dk
w,v when

v′ ∈ TwO(z). The fiber is clearly dim(TwO(z)) which is dim(G)− dim(H).
Finally, coming to (3), It is clear that J ⊆ ∩(w,v)∈BJ

Mw,v. In the other direction,
note that λ(t) ∈ H but λ(t)ye = te−dye. Thus, not only is (z, ye) ∈ BJ , but so is
(z, αye) ∈ BJ , for any α ∈ C∗. In general, for any α ∈ C∗, and (w, v) ∈ BJ we have
(w, αv) ∈ BJ as well. Now:

e(w, αv)(f) =
∑

i

αie(v, w)f i

Whence e(v, w)(f) = 0 implies that e(v, w)(f i) = 0 as well. Thus for any f ∈
∩(w,v)∈Bj

Mw,v, we have f i ∈ ∩(w,v)∈BJ
Mw,v as well. But that is equivalent to the

requirement that f i ∈ J i. Thus ∩(w,v)∈BJ
Mw,v ⊆ J . This proves (3) and the proposi-

tion. �

Proposition 3.26 The dimension of Jz,ye (i.e., J) is dim(G)− dim(Hye).

Proof: We have the map φ : B′ → MaxSpec(R) whose fiber at each point is of
dimension dim(G) − dim(H). By Prop. 3.25 (3) above, φ−1(MaxSpec(J z,ye)) = BJ

whose dimension is dim(G) − dim(Hye) + dim(G) − dim(H). This implies that the
dimension of Jz,ye must be dim(G)− dim(Hye). �

We know in general that K̂ ⊆ Hye . By the above theorem, if dim(K) < dim(Hye),
then, in the normal cone Spec(R), there is indeed an intermediate variety between
O(z) and O(y).

Conjecture 3.27 If dim(K) < dim(Hye), then there is a strictly intermediate variety

O(z) ( W ( O(y) of dimension dim(G)− dim(Hye).
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Next, we examine if there is an intermediate ideal J ′ ⊆ C[V ] such that J ′ = J
and Iz ) J ′ ) Iy. Whether the ideal of the variety Wz,ye defined below works is not
clear to us.

Definition 3.28 For any closed G-variety W with z ∈ W , we say that we is a tangent
of approach at z if there is a w ∈ W and a 1-PF β(t) ⊆ G such that:

w(t) = β(t)w = z + wet
e + higher degree terms

The collection of all tangents of approach is denoted by T zW

Definition 3.29 Let Wz,ye be the collection of all homogeneous G-varieties W within

V which (i) contain z (and therefore O(z)) and (ii) for which ye ∈ T zW .

Lemma 3.30 Let Wz,ye = ∩W∈Wz,ye
W . Then Wz,ye is an algebraic variety. Let

Iz,ye =
∑

W∈Wz,ye

IW

where IW ⊆ C[V ] is the ideal of W . Then Iz,ye ⊆ J .

Proof: It is clear that Wz,ye is an algebraic variety and that IW is an ideal whose
variety is W . Let us first show that for any W as above IW ⊆ J . Suppose that
f ∈ IW ∩ Ikz . By the definition of W , there is a 1-PF γ(t) taking some w ∈ W to z
with the tangent of approach being ye. Plugging w(t) = γ(t)w into the expression of
f , we have

f(w(t)) = tkeDk
z,ye

(f) + . . .

Since W is a G-variety, w(t) lies entirely in W . Hence, f ∈ IW implies that f(w(t))
is identically zero, i.e., Dk

z,ye
(f) = 0. The same applies to Dk

gz,gye
too. Hence f ∈ J .

Thus IW ⊆ J and indeed Iz,ye ⊆ J . �

4 Intermediate strata and co-limits space

As in the previous section, we continue with the search for intermediate varieties. We
go back to the 1-PS case with λ(t) and its action as below:

λ(t) · y = ydt
d + yet

e + . . .+ yDt
d

with z = yd. In the first subsection, we use T , a maximal torus of G containing λ,
and elementary polyhedral theory to arrive at possible intermediate varieties. In the
second subsection, we consider co-limits of z, i.e., leading terms ŷ′ of degree d for
some y′ ∈ O(y).
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4.1 Intermediate polyhedral strata

Let H0 = L(λ)∩H and TH be a maximal torus in H0. Since λ(t) commutes with TH ,
we may choose a maximal torus T ⊆ G containing λ as well as TH . Let its rank be r
which equals the rank of G. We assume that T ⊆ Dn

∼= (C∗)n, the group of diagonal
matrices diag(t1, . . . , tn) in GL(X).

Let the general element of T be t = (t1, . . . , tr) ∈ (C∗)r and ρ : T → Dn be its
realization within GL(X). Through ρ, we have a finite set Ξ(V ) of characters, i.e.,
vectors χ = (χ(i)) in Zr, and a weight space decomposition V =

∑
χ∈Ξ(V ) Vχ such

that for any vχ ∈ Vχ, we have ρ(t)vχ = (
∏r

=1 t
χ(i)
i )vχ. The product is simply denoted

as t
χ
. For any v ∈ V with v =

∑
χ∈Ξ(V ) vχ, we define Ξ(v) = {χ|vχ 6= 0}.

Let T be the Lie algebra of T and φ(T ) ⊆ G ⊆ gl(X) be its realization. Let
(t1, . . . , tr) be a basis for T such that tti = (1, 1, . . . , 1, ti, 1 . . . , 1) ∈ (C∗)r ∼= T . Let TZ

(resp. TR) be the Z-module (resp. R-module) generated by {t1, . . . , tr}. Henceforth,
by T , we will mean TR.

We fix an element 1 ∈ TZ such that φ(t1) ∈ Z, the center of GL(X). For a t ∈ TZ,
there are (t(i)) ∈ Zr, the coefficients of (t1, . . . , tr) such that tt = (tt(1), . . . , tt(r)) ∈ T .
Moreover, we have χ(tt) = t〈χ,t〉, where 〈, 〉 is the usual inner product on Rr. For any
1-PS µ(t) ⊆ T , we have log(µ) ∈ TZ such that tlog(µ) = µ(t). Finally, for 1 ∈ TZ there
is a c 6= 0 such that for all χ ∈ Ξ(V ), 〈χ, 1〉 = c

Lemma 4.1 In the above notation, for any v ∈ V , with v =
∑

χ∈Ξ(v) vχ and t ∈ T ,
we have:

tv =
∑

χ∈Ξ(v)

〈χ, t〉vχ

Definition 4.2 For any v ∈ V , let Tv = {t ∈ T |tv = 0} be the Lie algebra stabilizer
of v within T . For our y ∈ V , let T +(y) = {t ∈ T |〈χ, t〉 ≥ 0 for all χ ∈ Ξ(y)}. For
any w ∈ V let T +

w be Tw ∩ T +(y).

Lemma 4.3 For the above data, let

TZ,v = {t ∈ TZ|〈χ, t〉 = 0 for all χ ∈ Ξ(v)}

Then Tv equals TZ,v ⊗Z R.

Definition 4.4 A set F ⊆ Ξ(y) is called a face if there is a t ∈ T +(y) such that
F = {χ ∈ Ξ(y)|〈χ, t〉 = 0}. This face F is also denoted by F (t). The dimension
dim(F ) of a face is the dimension of the vector space R ·F within Rn spanned by the
elements of F . A face F of co-dimension 1 within Ξ(y) is called a facet. The element
yF is defined as

∑
χ∈F yχ.

Note that Ξ(y) is also a face and that Ξ(yF ) = F . We have the following simple
lemma:

Lemma 4.5 For the above data, we have:
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1. Let F ⊆ Ξ(y) and yF be as above. Then the dimension of the face F com-
plements the dimension of the sub-torus TyF ⊆ T which stabilizes it, i.e.,
dim(F ) = r − dim(TyF ).

2. Let t ∈ T +(y) and µ = tt. Then the leading term ŷµ of y under the action of
µ(t) equals yF (t). Conversely, if µ(t) ⊆ T is a 1-PS such that w = ŷµ, then there
is a c′ ∈ R such that t = log(µ)− c′1 ∈ T +(y) and w = yF (t).

The proofs of all the above lemmas are straightforward.
We now come to the main proposition of this subsection. We assume there is a

1-PS λ(t) ⊆ T , driving y to z. Recall that for this λ(t), we also have the 1-PS λ′(t)

(and an ℓ ∈ T with tℓ = λ′(t)) such that z is the leading term of y under λ′ of degree
0. This gives us an ℓ ∈ T +(y) such that z = yF (ℓ).

Proposition 4.6 Let λ(t) ⊆ T , z = ŷ and ℓ be as above. Suppose that dim(Ξ(y))−
dim(Ξ(z)) ≥ 2, then there is a t ∈ T +(y), its face F = F (t) and a 1-PS µ(t) = tt,
such that (i) yF is the leading term of y of degree 0 under µ and z is the leading term
of yF under λ′ of degree 0, and (ii) dim(Ξ(y)) > dim(Ξ(yF )) > dim(Ξ(z)). Thus,
there is an intermediate orbit O(yF ) such that dim(Ξ(yF )) is strictly intermediate.

Proof: Let Fy = Ξ(y) and suppose that dim(Fy) ≥ dim(Fz)+2. Then, we must have
dim(Tz) ≥ dim(Ty) + 2. By polyhedral theory, 〈χ, ℓ〉 > 0 for all χ ∈ F = Fy − Fz.
Thus ℓ ∈ Tz − Ty. Suppose that s is another element of Tz − Ty which is linearly
independent of Ty + Rℓ. Such an element exists since dim(Tz) ≥ dim(Ty) + 2. Let
a = (aχ) and b = (bχ) be vectors defined on F such that for any χ ∈ F , aχ = 〈χ, ℓ〉
and bχ = 〈χ, s〉. Clearly a > 0 and b is non-zero vector linearly independent of a.

Next, let us consider t(ǫ) = ℓ + ǫs. Given the properties of a, b, there is an
ǫ > 0 such that (i) 〈χ, t(ǫ)〉 ≥ 0 for all χ ∈ F and (ii) there is at least one χ′ ∈ F
for which 〈χ′, t(ǫ)〉 = 0, and finally (iii) a χ′′ ∈ F such that 〈χ′′, t(ǫ)〉 > 0. We
denote this by t′. If F = Ft′ , then clearly Fy ) F ) Fz and Ty ( TyF ( Tz.
Hence, for µ(t) = tt

′

we have ŷµ = yF has the required property on dimensions that

dim(Fy) > dim(F ) > dim(Fz). Finally, it is easy to see that ŷF
λ′

= z. We come
to the last part that O(yF ) is intermediate to O(y) and O(z). Since yF is a limit
of y under µ, we have O(y) ⊇ O(yF ), and since z is a limit of yF under λ, we have
O(yF ) ⊇ O(z). Thus yF is indeed an intermediate orbit. This proves the proposition.
�

Example 4.7 Let X = C3, G = GL(X) and V = Sym2(X∗). Let B = {x1, x2, x3}
be a basis for X∗. Let y = x1x2 + x1x3 + x2x3 + x2

3 and λ(t) = diag(1, 1, t). Thus
ℓ = [0, 0, 1] and tℓ = λ(t). We have z = x1x2 is the limit ŷλ. H0 contains a torus
µ(u) = u[1,−1,0] = diag(u, u−1, 1). Let ℓ′ = [1,−1, 0]. Note that the standard torus
T = diag(t1, t2, t3) contains both λ(t) and µ(u). We then choose it as the master
maximal torus of G and use it to construct Ξ(V ),Ξ(y) and Ξ(z). We record Ξ(y) =
{[1, 1, 0], [1, 0, 1], [0, 1, 1], [0, 0, 2]} and Ξ(z) = {[1, 1, 0]}. We have Ty = 0 but Tz =
Rℓ+Rℓ′ has dimension 2. Hence we may apply Prop. 4.6. Indeed, we may choose ℓ′

32



as the element s in the proof of the above proposition and construct t(ǫ) = ℓ+ ǫℓ′. We
get ǫ = 1 and t′ = [1,−1, 1]. We then see that F = {[1, 1, 0], [0, 1, 1]}, yF = x1x2+x2x3

and O(yF ) is an intermediate limit.

Corollary 4.8 Let z = ŷ under λ(t) be such that there is no intermediate G-stable
variety between O(y) and O(z). Then for any maximal torus T containing λ, there
is a λ′′(t) ⊆ T, z′′ ∈ O(z) and y′′ ∈ O(y) such that z′′ is the leading term of y′′ under
λ′′(t) and Ξ(z′′) is a facet of Ξ(y′′).

Proof: We consider tuples (y′, z′, µ′), where y′ ∈ O(y), z′ ∈ O(z), µ′(t) ⊆ T and
z′ = ŷ′

µ
, and induct on δ(y′, z′, µ) = dim(Ξ(y′))−dim(Ξ(z′)). We begin with (y, z, λ′),

where λ′(t) is the degree 0 version of λ(t), i.e., when z is a limit of y of degree 0
under λ′(t). If dim(Ξ(y)) = dim(Ξ(z)) + 1, we are done. If not and dim(Ξ(y)) >
dim(Ξ(z)) + 1, then by the above proposition, there is a µ(t) ⊆ T and a yF whose
orbit is intermediate and for which dim(Ξ(yF )) is strictly intermediate. Since, there
is no intermediate variety between y and z, we must either have (a) O(yF ) = O(y)
or (b) O(yF ) = O(z). This implies that either (a) yF ∈ O(y) or (b) yF ∈ O(z). We
thus get either (a) the tuple (yF , z, λ) or (b) the tuple (y, yF , µ) (as the case may be),
with a smaller δ and yet implementing the same limit. �

Example 4.9 Let X = C9 be the space of 3 × 3-matrices, and G = GL(X). Let
V = Sym3(X∗) and det3(X) ∈ V be y. The functions B = {x1, . . . , x9} is a basis for
X∗ corresponding to the entries of the matrix. For any matrix x ∈ X, we have the
expression x = xa+xs decomposing x as a sum of an antisymmetric and a symmetric
matrices. For λ2(t)(x) = txa + xs, we have det3(λ2(t)x) = tQ2(X) + t3R2(X). For a
suitable choice of basis, we have:

λ2(t)det3(X) = det






2tx6 tx8 + x1 tx9 − x2

tx8 − x1 2tx5 tx7 + x3

tx9 + x2 tx7 − x3 2tx4




 = tQ2(X) + t3R2(X)

where:

Q2(X) = 2(x4x
2
1 + x5x

2
2 + x6x

2
3 + x7x1x2 + x8x2x3 + x9x1x3)

R2(X) = 8x4x5x6 − 2x6x
2
7 − 2x4x

2
8 − 2x5x

2
9 + 2x7x8x9

We know that there is no intermediate orbit between O(det3(X)) and O(Q2). Using
the torus T with the basis x1, . . . , x9, we have:

Ξ(Q2) =

x1 x2 x3 x4 x5 x6 x7 x8 x9

2 0 0 1 0 0 0 0 0
0 2 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0
1 1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1

33



We may similarly build Ξ(R2). We see that dim(Ξ(Q2)) = 6, dim(Ξ(R2)) = 4 while
dim(Ξ(det3(X)) = 7. Thus Ξ(Q2) is indeed a facet, i.e., a face of co-dimension 1
within Ξ(det3(X)).

4.2 The Co-limit space Z(λ) and O(y)

Let us resume our standard assumption of action by a 1-PS:

λ(t)y = tdyd + teye + . . .+ tDyD

with the limit z = ŷ and ye as the tangent of approach.
Let us act λ on y′, a conjugate of y to get:

λ(t) · y′ = tay′a + · · ·+ tby′b

Next, for any d′, we define Yd′ and Y as below:

Yd′ = {y′ = gy|y′a = 0 for all a < d′} and Y = ∪d′Yd′

Thus, Yd′ consists of those elements y′ ∈ O(y) for which deg(ŷ′) ≥ d′. Note that the
notation and definitions are all with respect to this fixed λ.

Let Vd′ be the degree d′ subspace of V and consider the projection πd′ : V → Vd′.
We define Zd′ = πd′(Yd′) and Z as ∪d′Zd′ . Thus, it is the space of all z′ which are
degree-d′ limits under λ of some conjugate y′ of y. Note that y ∈ Yd and z ∈ Zd. We
call Zd as the space of co-limits of z.

The importance of Zd comes from the following lemma:

Lemma 4.10 Let O(Zd) = {gz′|z′ ∈ Zd and g ∈ G} and O(Zd) be its closure. Then
O(Zd) is an intermediate variety, i.e, O(z) ⊆ O(Zd) ⊆ O(y).

Proof: Since z ∈ Zd, it is clear that O(z) ⊆ O(Zd). For the other inclusion, we see
that every element z′ ∈ Zd is the leading term ŷ′ for some y′ ∈ Yd ⊆ O(y). Hence
z′ ∈ O(y′). But O(y′) = O(y) and is G-stable and hence O(z′) ⊆ O(y). This proves
the second inclusion. �

All points in O(Zd) will have a representative (up to conjugation) of pure degree
d. If y does not have this property, e.g., when y is stable, then O(Zd) ( O(y).

The more interesting question is whether O(Zd) contains z
′ which are not in O(z).

To answer this, we will compare TzZd and (TzO(z))d, the degree d component of the
tangent space of TzO(z). Note that (TzO(z))d ⊆ TzZd.

Recall that we have the parabolic group P (λ), its unipotent radical U(λ) and
a special reductive complement L(λ). Recall also that the Lie algebra of P (λ) is
P(λ) =

∑
i≥0 Gi, i.e., the subspace generated by elements within G of non-negative

degree, and that of L(λ) is L(λ) = G0. We have the following important lemma:

Lemma 4.11 The map πd : Yd → Zd is P (λ) equivariant.

The proof is straightforward. The lemma implies that L(λ) has an action on Zd.
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Assumption 4.12 We assume that both Yd and Zd are smooth at the points y and
z. See also Remark 4.22

Lemma 4.13 Let y ∈ Yd and z = πd(y) ∈ Zd be as above. Then we have:

1. The tangent space TzZd is given by the image of TyYd. In other words, (πd)∗TyYd =
TzZd.

2. Let OL(λ)(z) ⊆ Zd be the L(λ)-orbit of z. Let TzO(z) be the tangent space of the
G-orbit of z and TzOL(λ)(z) be the tangent space for the L(λ)-orbit of z, then
TzOL(λ)(z) = (TzO(z))d = G0z.

Proof: The first part follows from the definition of Zd as the image of Yd the projection
πd : V → Vd. For the second part, note that TzO(z) =

∑
i Giz and thus (TzO(z))d =

G0z = L(λ)z. But this is precisely TzOL(λ)(z). �
We illustrate the above lemma with an analysis of an example communicated to

us by Professor V. Popov.

Example 4.14 Let G = GL4(C) act by left multiplication on V = C4 ⊕ C4 ⊕ C4,
represented as a 4 × 3-matrix. Thus, an element v of V may be viewed as a 4 × 3
matrix and the action of a g ∈ G is g.v under the usual matrix multiplication. We
will use e1, e2, e3 and e4 to denote the standard basis of C4 as column vectors.

We set y = [e1, e2, e3] ∈ V and λ(t) = diagonal(1, t, t2, t2). Clearly,

λ(t).y = [e1, 0, 0] + t[0, e2, 0] + t2[0, 0, e3] = y0 + ty1 + t2y2

Thus, z = y0 = [e1, 0, 0] is the leading term of λ(t).y and the tangent of approach is
ye = y1 = [0, e2, 0]. The grading induced by λ(t) on G as well as the weight-subspaces
of V of λ(t) action are depicted in the following diagram.




0 −1 −2 −2
1 0 −1 −1
2 1 0 0
2 1 0 0







0 0 0
1 1 1
2 2 2
2 2 2




Weight space for gl4 Weight space for V

Note that O(y) is the collection of all matrices y′ of rank 3 and O(y) equals V .
Since d = 0, we have Y0 is the collection of all matrices y′ which have a non-zero first
row. Thus Z0 is the collection of all matrices z′ which are non-zero only in the first
row. These give rise to an infinite collection of orbits consisting of the space of all
rank 1 matrices of which z is one element. All these z′ ∈ Z0 are closely related to the
point z, indeed, they have identical stabilizers, viz., Gz = Gz′ and their orbits have
the same dimension, viz., 4.

On the other hand, it is easily checked that Wz,ye consists of all matrices where the
third column is zero. Thus the G-stable spaces O(Z0) and Wz,ye are not comparable,

and yet O(z) ( O(Z0),Wz,ye ( O(y).
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Finally, note that Y1 are all rank 3 matrices with zero first row. Z1 are all matrices
which are non-zero only in the second row. But note that O(Z1) = O(Z0).

Let us now analyse TyYd and TzZd. We begin with a definition:

Definition 4.15 Let y, λ and d be fixed as above. A element g ∈ G is called a d-
stabilizer iff g =

∑
i gi is such that (gy)a = 0 for all a < d. Let Gy,d ⊆ G be the

collection of d-stabilizers of y.

In other words, Gy,d is the collection of “Lie elements” g ∈ G such that gy ⊆ Yd.
The importance of Gy,d comes from the following lemma.

Lemma 4.16 The tangent space TyYd is given by the set {gy|g ∈ Gy,d}.

Proof: All elements in a neighborhood of y ∈ Yd are given by ρ(egt)(y) for some
g ∈ G. The tangent vector of the path βg(t) = ρ(egt)(y) at y is precisely ρ1(g)(y).
That the path lies is ⊕i≥dVi is equivalent to the condition that g ∈ Gy,d. �

Let us compute TzZd and compare it with (TzO(z))d = G0z. Since TzZd =
(πd)∗(TyYd), we have TzZd = (Gy,dy)d, the degree d component of the tangent space
TyYd. If g = gk + . . .+ gl ∈ Gy,d, then the action of g on y gives us:

g · y = (gk + . . .+ gk+(e−d)−1 + gk+(e−d) + . . .)(yd + ye + . . .)
= gkyd + . . . gk+(e−d)−1yd + (gkye + gk+(e−d)yd) + . . .+ . . .

If k > 0, then the leading term of gy has a degree greater than d, and does not
contribute to TzZd and therefore is of no interest. If k = 0, then the leading term is
g0yd ⊆ G0z which is in (TzO(z))d, and thus does not cross the orbit of z. Thus the
interesting situation is when k < 0. Then the first |k| terms of the above expression
must vanish for it to contribute to TzZd. It is the (|k|+ 1)-th term which gives us an
element of TzZd which depends not only on yd but also on higher degree components
of y. The analysis of these cancellations motivates us to study the structure of Gy,d.

Let us begin with three special nested families within Gy,d as specified below:

Definition 4.17 Let g =
∑

i≥a ga be an element ga of Gy,d. We define ĝ as the
leading term of g. Let:

GH
y,d = {ĝ|g ∈ Gy,d such that ĝ ∈ H}

Similarly, we define G
Hye

y,d (and resp. GK̂
y,d) as those g ∈ Gy,d for which ĝ belongs to

Hye (resp. K̂).

Note that since the members of GH
y,d and other spaces are only the leading terms

of elements of Gy,d, these are graded subspaces of G. Since H ⊇ Hye ⊇ K̂, we have the

corresponding containments GH
y,d ⊇ G

Hye

y,d ⊇ GK̂
y,d and dim(GH

y,d/G
Hye

y,d ) ≤ dim(H/Hye)

and dim(G
Hye

y,d /GK̂
y,d) ≤ dim(Hye/K̂).
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Proposition 4.18 Let y, zand d be as above. Suppose that dim(H/Hye) = r and

dim(Hye/K̂) = s. Then there is a subspace F ⊆ Gy,d of dimension at most r+s and a
basis B = {g1, . . . , gb} ⊂ Gy,d such that for all g ∈ Gy,d, g ∈ P(λ) +K+ F . Moreover

the set B̂ = {ĝi|gi ∈ B} is linearly independent in GH
y,d/G

K̂
y,d.

Proof: Let B′ = {g1, . . . , gb} be elements of Gy,d such that B̂′ = {ĝi|i = 1, . . . , b} is

a basis for GH
y,d/G

K̂
y,d. Let g =

∑
i≥k gi ∈ Gy,d be an arbitrary element. We prove the

assertion by induction on the degree of ĝ, and on the containment of ĝ in the chain
G ⊇ H ⊇ Hye ⊇ K̂.

Suppose that g is as above, i.e., (gy)a = 0 for all a < d. We write the action of g
on y as before:

g · y = (gk + . . .+ gk+(e−d)−1 + gk+(e−d) + . . .)(yd + ye + . . .)
= gkyd + . . . gk+(e−d)−1yd + (gkye + gk+(e−d)yd) + . . .+ . . .

If k ≥ 0 then g ∈ P(λ) and the assertion holds. That takes care of the base
case. Next consider the case when k < 0. We then have gkyd = 0. Thus ĝ ∈ H and
g ∈ (GH

y,d)k, the d-stabilizers with leading terms in H and of leading degree k. Then,

by the choice of B′, there is an element g′ ∈ C · F such that g− g′ ∈ GK̂
y,d, i.e., where

the leading term has dropped to K̂.
We are then reduced to the case where ĝ ∈ K̂. In which case, there is an element

k ∈ K such that k̂ = ĝ. Since k · y = 0, we have the element g′ = g − k of Gy,d which
has a leading term of degree greater than k. The set B is constructed from B′ from
the excess of Gy,d over P(λ) +K. This proves the proposition. �

Remark 4.19 If y is in the null cone of V for the G-action and λ is the “optimal”
1-PS then Gy,d = P(λ), see [Hes79], Lemma 4.6. Thus F measures the deviation of
λ from the optimal 1-PS which drives y to 0.

Proposition 4.20 Let TWz = πd({g · y|g ∈ F}) be the leading terms of F · y, then
TzZd =TWz+G0z. If TW z denotes the quotient (TWz+G0z)/G0z, then the codimen-
sion of (TzO(z))d in TzZd is dim(TW z).

Proof: Assuming manifold properties of Yd at y, we have

dim(Yd) = dim(TyYd) ≥ dim((TyYd)d) = dim(TzZd) = dim(Zd)
dim((TyYd)d) = dim((Gy,dy)d)

This gives us the equation dim((Gy,dy)d) = dim(TzZd). But, by Prop. 4.18, Gy,d =
P(λ)+K+F . Now ((P(λ)+K)y)d ⊆ (TzO(z))d. Thus F is the only part of Gy,d which
leads to tangent vectors outside (TzO(z))d. Whence, TzZd = πd(F ) + (TzO(z))d. But
(TzO(z))d = G0z hence dim(TzZd)− dim(G0z) is given by the expresion dim(TWz +
G0z)− dim(G0z) and this is precisely dim(TW z). This proves the proposition. �

Corollary 4.21 If dim(Zd) > dim((TzO(z))d) then F is non-empty. In other words,
there is a d-stabilizer g 6∈ P(λ) +K. If λ were optimal then O(z) = O(Zd).
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Remark 4.22 The above computation of TzZd depends on z ∈ Zd being smooth. But
is that so? If z were smooth, then there would be the action of H0 = H ∩ L(λ) on
TzZd as follows. Since πd : Yd → Zd is L(λ)-equivariant, and H stabilizes z, we have
the action of H0 on Zd which keeps z fixed. This gives us an action of H0 and its Lie
algebra, H0 on TzZd.

Even looking at the simple case when λ has two components, d = 0 and e = 1, we
have TzZd = H−1y1 + G0z. But G0z is already preserved by H0. Thus, we do have
an H0-action on TzZd if H0(H−1y1) ⊆ TW . This seems to be a precondition for the
smoothness of z in Zd.

We end this section with some examples.

Example 4.23 Continuing with Ex. 4.14, with V = C4×3, y = [e1, e2, e3] and λ(t) =
diagonal(1, t, t2, t2):

λ(t).y = [e1, 0, 0] + t[0, e2, 0] + t2[0, 0, e3] = y0 + ty1 + t2y2

Thus d = 0, e = 1, z = [e1, 0, 0] and the tangent of approach is y1 = [0, e2, 0]. The
tangent space TzO(z) is {[c, 0, 0]|c ∈ C4}, the space of all matrices which are 0 in the
second and third columns. Also recall the weight spaces:




0 −1 −2 −2
1 0 −1 −1
2 1 0 0
2 1 0 0







0 0 0
1 1 1
2 2 2
2 2 2




Weight space for gl4 Weight space for V

We see that:

K = K̂ =




0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 ∗


 H =




0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


 Hye =




0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗




Observe that H/Hye and Hye/K have bases {e1,2, e2,2, e3,2, e4,2} and {e1,3, e2,3, e3,3, e4,3}
respectively. It is easily verified that Gy,d equals G, and is spanned by P(λ) ∪ K ∪ F
where F = {e1,2, e1,3, e2,3}. Further,

e1,2.y = [0, e1, 0], e1,3.y = [0, 0, e1] e2,3.y = [0, 0, e2]

In the notation of Proposition 4.20, we see that TW0, the vectors of weight 0 are
spanned by [0, e1, 0] and [0, 0, e1] and that TW0 = TW 0. These are elements of TzZ0−
TzO(z). Indeed, it is easily seen that Z0 consists of all non-zero matrices where the
only non-zero row is the first row. Consider for example, z′ = [e1, α1e1, α2e1], where
α1, α2 ∈ C. Then for y′ = [e1, α1e1 + e2, α2e1+ e3], we see that y′ ∈ O(y) and ŷ′ = z′.
Thus z′ ∈ Z0.
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Note that O(z)0 = {[αe1, 0, 0]|α ∈ C, α 6= 0}, and O(z) are matrices of the form
[v, 0, 0] where v 6= 0. However O(Z0) is the space of matrices of rank 1. This has
an infinite family of orbits, each of the same dimension as O(z) (i.e., 4). Thus
O(z) ( O(Z0) ( O(y) is a strict intermediate variety.

Example 4.24 Consider the G = GL3(C)-module V = Sym3(C3) and the form
p(x, y, z) = x2(x − y) + (x − 2y)2z + z2(ax + by) + z3 ∈ V . We may choose a, b so
that K = Gp = 0. Let λ(t) be such that λ(t)x = x, λ(t)y = y but λ(t)z = tz. For
the action of λ(t) on p, we have d = 0, e = 1 and p̂ = (x − y)x2 is the leading term
and q = (x − 2y)2z is the tangent of approach ye. Clearly H, the stabilizer of p̂ is
4 dimensional and contains Hom(Cz,C · {x, y, z}). The other basis element of H is
the toric one parameter family of gl3 with a11 = 1, a21 = 3 and a22 = −2, which is of
degree 0. However none of these elements stabilize q so Hq = 0. Thus, K̂ = Hq = 0.
The expected dimension of Wz,ye is dim(G)− dim(Hye) = dim(G). Since this is also

the dimension of O(p) there is no strictly intermediate variety of the type Wz,ye.
On the other hand the space Tp̂(O(p̂))0 is given by G0p̂, which reduces to the action

of gl(x, y) on p̂. This gives us the 4 forms whose coefficients in terms of the basis
elements in the first row of the matrix given below are:

x3 x2y xy2 y3

x∂p/∂x 3 −2 0 0
y∂p/∂x 0 3 −2 0
x∂p/∂y −1 0 0 0
y∂p/∂y 0 −1 0 0

The rank of the above matrix, and therefore the dimension of (Tp̂O(p̂))0, is 3.
y∂/∂z is an element of H−1 = Hom(Cz,C{x, y}) and is in Gy,0. Applying this to q
gives us y∂q/∂z = (x−2y)2y ∈ (H−1q)0 ∈ Tp̂Z0. But this element is not in Tp̂(O(p̂))0.

So O(p̂) ( O(Z0). Now Z0 contains all forms in Sym3(C{x, y}), the space of degree
3 forms in the variables x, y. Thus, every form in O(Z0) is stabilized by a conjugate
of Hom(Cz,C{x, y}). Therefore O(Z0) ( O(p) which gives us a strict intermediate
variety.

4.3 Alignment and Co-limits

In this subsection, we connect the space Z0 with the presence of alignments for the
case when V = Symn(X∗) and X = Y ⊕Z are the weight spaces for λ, as in Section
2.4. Suppose that f0 ∈ Symn(Y ∗) is obtained as a degree 0 limit of some f ∈ V under
λ(t). We show that there is alignment between f and f ′

0 for some co-limit f ′
0 of f0.

As in Section 2.4, let us suppose that there is a 1-PS λ(t) ⊆ GL(X) such that
X = Y ⊕ Z, where Y = X0 and Z = X1, are the weight spaces. Suppose that:

λ(t)f = t0f0 + . . .+ tnfn

with f0 ∈ Symn(Y ∗) as the leading term. As before, let GL(X)f = K and GL(X)f0 =
H . Moreover, let GL(Y )f0 = HY be the restriction of H to Y .
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Let Z = {z1, . . . , zs} be a basis for Z and Y = {y1, . . . , yr} be a basis for Y
and X = Y ⊕ Z. For simplicity, let us identify Z with Cs+r treated as row vectors,
and {e1, . . . , es, es+1, . . . es+r} as the standard basis, with ei = zi, for i = 1, . . . s and
es+j = yj for j > s.

Then every element h ∈ H, and h ∈ H is of the form:

h =

[
a b

0 d

]
h =

[
a b
0 d

]

where a ∈ End(Z), b ∈ Hom(Z, Y ) and d ∈ HY (and a ∈ GL(Z), b ∈ End(Z, Y ) and
d ∈ HY ). Recall also the subgroups L(λ) and P (λ). We will also use the unipotent
subgroup U(λ), as shown below:

U(λ) =

{[
Is b
0 Ir

]
|b ∈ End(Z, Y )

}

Note that U(λ) ⊆ H .
We begin with a lemma:

Lemma 4.25 Let g ∈ GL(X) be a diagonalizable endomorphism. Then there is an
h ∈ U(λ) such that hgh−1 ∈ P (λ).

Let us assume this for the moment. Then we have:

Proposition 4.26 Let g ∈ K be a semisimple element, then there is u ∈ U(λ) and

a u′ ∈ U(λ) such that (i) (gu)u
′

= gu
′u is an alignment between fu′u and f ′

0 = f̂u′u
λ

,

and (ii) f̂u′u
λ

= f̂u
λ
. Moreover, (iii) f ′

0 ∈ Z0, is a co-limit of f0 such that there is a
common irreducible component Z i of Z0 which contains both f0 and f ′

0.

Proof: Let g ∈ K be a semisimple element. By lemma 4.25, there is an u ∈ U(λ) ⊆ H
such that ugu−1 ∈ P (λ). Thus, fu satisfies the hypothesis of Prop. 2.18, and thus,

there is a u′ ∈ U(λ) such that f̂u and (fu)u
′

= fu′u have an alignment, viz., gu
′u,

without changing the leading term f̂u
λ
= f ′

0.
Coming to (iii), since u ∈ U(λ) is unipotent, there is an X ∈ H−1, such that

u = eX . Consider the 1-parameter algebraic family f0(t) = êtXf ⊆ Z0. This is an
algebraic path connecting f0 with f ′

0 = f0(1). This implies that there must be a
component Z i of Z0 containing both. This proves the proposition. �

Remark 4.27 We see that (i) f0(t) are co-limits of f0 for all t, (ii) f ′
0 = f0(1) is

aligned with f g, a conjugate of f , and finally (iii) the derivative f ′(0) equals Xf1 ∈
Tf0Z0 is as identified by Prop. 4.20. The crux, of course is that f0(t) for t > 0 need

not lie in the same orbit, so it is not clear that f0 ∈ O(f ′
0). This leads us to the

following conjecture.

Conjecture 4.28 If f0 is L(λ)-stable and is the only form in Symn(Y ) with stabilizer
HY , then there is an alignment between f0 and a conjugate f g of f .

40



Let us come to the the proof of Lemma 4.25. Since dim(Z) = s and dim(Y ) = r,
P (λ) and U(λ) are of the form:

P (λ) =

[
A 0
C D

]
U(λ) =

[
Is X
0 Ir

]

The proof then boils down to the linear algebra computation below:

Lemma 4.29 Let R ∈ C(s+r)×(s+r) be a diagnolizable matrix, then there is a matrix
S, of the form shown below, such that W = SRS−1 is block lower triangular, i.e., of
the form shown below:

S =

[
Is X
0 Ir

]
SRS−1 = W =

[
W11 0
W21 W22

]

Proof: Let v1, . . . , vr+s be left eigenvectors of R, with viR = λivi for some λi ∈ C.
Now, since {v1, . . . , vr+s} form a basis of Cr+s, there are some vi1 . . . , vis such that
{vi1 , . . . , vis, yi, . . . , yr} is also a basis of Cr+s. Let us assume that i1 = 1, . . . , is = s.
Let B = [v1, . . . , vs, y1, . . . , yr]

T . Then B and BRB−1 are of the form shown below:

B =

[
A B
0 Ir

]
BRB−1 =

[
D 0
A′ B′

]

where D is the diagonal matrix diag(λ1, . . . , λr). Let C be as shown below. Then,
by suitable operations, shown below we get:

C =

[
A−1 0
0 Ir

]
(CB)R(CB)−1 =

[
E ′ 0
A′′ B′′

]
CB =

[
Is A−1B
0 Ir

]

Thus, the required matrix is CB above. �

5 In Conclusion

Geometric Complexity Theory (GCT) as an approach to key lower bounds problems
in computational complexity theory, was proposed in [MS01]. It is the study of spe-
cific forms (such as the determinant and the permanent) with distinctive stabilizers,
their homogenized versions in different spaces and their orbit closures. It is also a
belief that specific structures associated with their stabilizers will eventually lead us
to the construction of obstructions which yield lower bounds. Our paper was an
attempt to build a bridge between two specific approaches - the representation theo-
retic approach of [MS01, MS08, BLMW11] and others, and the geometric approach
of [MR04], [ASS22] and others.

We have used the existence of a 1-PS λ which must connect the implementation
of the degree homogenized version of the permanent (z) as a determinant (y) as the
starting point. This study has led us to stabilizer limits, alignment and weight spaces,
normal cones, co-limits and other geometric structures which provide interesting in-
sights into the problem. To the best of our knowledge the statement K̂ ⊆ Hye ⊂ H
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is the first explicit connection made between the stabilizer K of y and the stabilizer
H of z in y’s orbit closure. That allows us to probe the alignment of λ with respect
to the two stabilizers. In the case of the determinant versus permanent problem, the
presence of alignment leads to combinatorial insights in both, the boundary of the
orbit closure of the determinant and the “implementation” map φ of the permanent
as a determinant. This has been explored in Section 2.

Indeed, the chain of Lie algebras K̂ ⊆ Hye ⊂ H leads us to consider intermediate

orbits between O(z) and O(y). The varieties Spec(Jz,ye) (in the normal cone) and
Zd are steps in that direction. If the intermediate subvariety conjecture is correct, it
will allow us to construct a tower (Wi) of intermediate varieties where each step is
“tight”, i.e., with equality between K̂i and (Hi)yei . On the other hand, the structure
of Zd appears to be connected with the presence of alignment.

In summary, our approach allows a rich computational framework which connects
the GCT approach to classical questions on orbit closures, local group action and
stratification.

There are several interesting questions which seem to lie on this path. We briefly
list these.

We know that the boundary of the orbit of the determinant is of codimension
one. The techniques used here lead us to suspect that the components of this bound-
ary arise from special 1-PS λ which are well-aligned with K, its stabilizer. This is
connected to finding matrix families preserved by a large subgroup of K.

There are two stabilizer families which are of interest. The first is Gy′ for y
′ ∈ Yd,

the stabilizers of elements within the orbit O(y) which preserve the degree of the
limit. The second, of course, is G

ŷ′
, the stabilizers of the elements z′ = ŷ′ ∈ Zd. Since

Ĝy′ ⊆ G
ŷ′
, this is also related to alignment in the vicinity of z ∈ Zd. The invariance of

K̂ under the action of U(λ), puts a compact structure on the orbit space of stabilizer
limits. The master result on 1-PS is of course that of Kempf [Kem78]. Hence the

question of finding “optimal” 1-PS λ which “implement” the limit y
λ
→ z, if they

exist, and their properties, seems important.
Following Kempf, we may define the “null cone” of z as the space N (z) = {v ∈

V |z ∈ O(v)}. The stratification of N (z) too will yield important information on how
stabilizers change. This connects with the construction of a “local model” of [ASS22]
which described the G-action in a neighbourhood of z.

The last two questions appear to be connected to the varieties Spec(Jz,ye) and Zd

studied in this paper.
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