Water and Development

Part 2a: Water in perspective and the Hydrological Cycle

Milind Sohoni

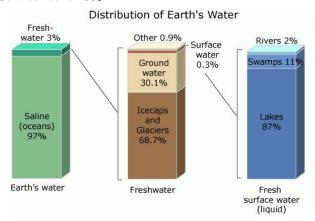
www.cse.iitb.ac.in/ \sim sohoni

email: sohoni@cse.iitb.ac.in

()

Water

- Chemical formula H_20 . The existence of strong hydrogen bond
- Exists in nature as Ice, water and vapour. Melting point 0 C, boiling point 100 C.
- Specific heat (water): 1 calorie/gm/degree C. Second highest!
 - very important for temperature regulation
- Density (water) 1gm/ml, maximum at 4 C. Ice floats on water.
 - very important for the existence of marine life.
- High surface tension and therefore strong capillary action.
 - very important for the sustenance of plants.
- Coefficient of thermal expansion (linear): 70×10^{-6} /C.
 - ► Roughly 5mm of sea-level rise due to thermal expansion alone. Can we explain this?


July 31, 2017 2 / 39

Life and water

- Roughly 60% of body weight is water.
- Water-key ingredient in most life processes-photosynthesis, energy transfer in animals, and so on.
- Life as we know it is water-centric (and organic carbon-centric).
- Water in the solar system:
 - ▶ Mercury atmosphere- roughly 4%
 - Enceladus (a moon of Saturn)- 91 %
 - recently-traces on the Moon.
- In general, earth is the only body which is (i) at the right distance from the sun, (ii) has a strong enough gravity to retain an atmosphere, and (iii) has water.
- Besides, early civilizations also revolved around water.

Water on Earth

- Roughly 71 % of earth's area are the oceans, i.e., about 36 b.Ha.
 - Average depth of oceans: 3790m.
 - ► Salt content: 3%

Water availability

Total renewable (defined using the water cycle) per-capita, per year.

Country	cu. m.
Congo	275,000
Canada	94,000
Brazil	48,000
Mongolia, Indonesia	13,000
Japan, Italy, Iraq	3300
Pakistan	2700
China	2200
Germany , Ethiopia	1800
India , Netherlands	1200
Israel	275

Roughly 4000 cu.km fall on India, of which roughly 690 cu.km. are used as surface water and about 430 cu. km. as ground water.

The main sectors

Use	India	Developed Countries
Agricultural	85%	25 %
Industrial	8 %	60 %
Domestic	7 %	15 %

Indian Hall-marks:

- Very low charges for agricultural water (Rs. 0.10 /cu.m.).
 Roughly Rs. 10 per cu.m. for domestic use, and Rs. 50 for industrial use.
- Investment of Rs. 150-200 required to develop a cubic meter of renewable resource.
- Poor domestic use network.
- Limited use of water saving practices in agriculture.

Agriculture

- 330 m.Ha, total, 180 m. Ha cultivable area. 110 m.Ha. irrigation potential, 54 m. Ha actually under irrigation.
- Only 25-30 % irrigation through canals.
- More than 50 % through tube-wells and open-wells.
- indication of poor canal infrastructure.
- Two typical water allocation systems, shejpali (pre-bid allocation), and wadabandi, fixed rotation.
- Typical billing, if at all, is per crop-acre and not volumetric.

July 31, 2017 7 / 39

Water needs

Substance	Needs (in liters)
1kg Rice	1900
1kg Chicken	3300
1kg Wheat	1000
1kg Wool	150
1kg Sugar	3000
1kg Gur	1000

- The numbers depend on the technology used. Drip Irrigation will typically reduce consumption by about 25-30 %.
- So why is there so much ruckus about sugarcane?

-()

Fishing

Besides being a food, Fish is also an important source of protein. Here is the fishing data for 2004 (F.A.O). Amounts are in million tonnes.

Country	Wild	Farms	Per-Capita/year (kg)
World	94	45	23
India	3.4	2.8	6.2
Iceland	1.8	0	??

Here is the consumption data (in kg. per capita/year):

France	28	Japan	60
China	28	Brazil	6
USA	21	UAE	27
Yemen	7	India	5

India is thus a fish-exporter!

• Wild production: 3kg/Ha.

Farm: 2000 kg/Ha.

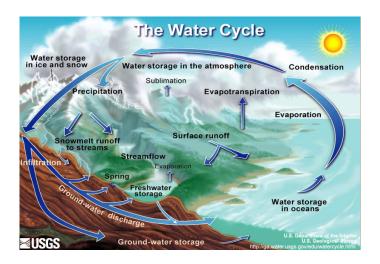
Industrial Use

- 40,000 million cubic meters were consumed by indian industry in 2001.
- Thermal Power plants consumed 87% of this water.
- Engineering, Paper and Textiles consumed 5%, 2 % and 2% respectively.
- Poor industrial productivity per cubic meter: \$ 7 /cu.m.
- 10-80 cu.m. per tonne of steel, no water recycling. In US 10 cu.m./tonne, full recycling.
- In power generation, again 80 cu.m. per Mwh, while global norm is 10-20.

http://www.cseindia.org/dte-supplement/industry20040215/non-issue.htm

Domestic Use

- Rough International Urban norm: 200 lpcd.
- Mumbai, roughly that, or a bit higher. Bangkok, London similar.
- Delhi, Chennai lower. Most cities in India plan for 150 lpcd or higher.


Surprisingly, rural design norm is 40 lpcd!

• Habitation is in stress if 40 lpcd is not met at any point of time within 2 km of the habitation.

What is domestic use

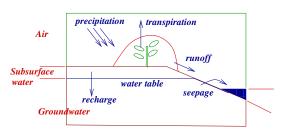
- Ablutions, Washing clothes, vessels, cleaning house.
- Drinking, cooking.
- Cattle?
- Livelihoods?

The basic movement of water

source: USGS.

The basic process

Going Up


- Oceans, Lakes and streams to Atmosphere-Evaporation
- Direct loss of moisture from the soil-Evapo-Transpiration
- Loss from vegetation-Transpiration
 - depends on solar intensity, humidity and air flow.
- Formation of liquid-water in the Atmosphere-Cloud-Formation

Coming Down

- Rain/Snow-Condensation and Precipitation
- Drainage of rainwater into streams and rivers-Runoff
- Seepage of rainwater into the ground -Infiltration/Recharge

July 31, 2017 13 / 39

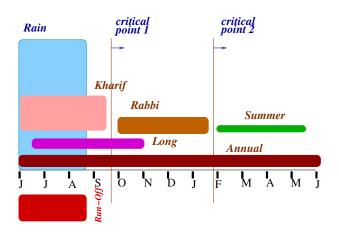
What happens when it rains

- Precipitation: world average of about 800mm annual.
- Evaporation, Transpiration: from surface to air.
- Recharge: surface to ground
- Seepage, Baseflow: from ground to surface

July 31, 2017 14 / 39

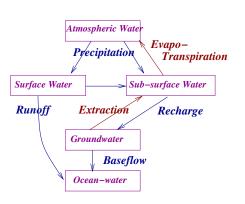
Evapo-transpiration

Photosynthesis: The process by which a plant grows, coverting water and CO2. This as well as loss of water through leafs is called *evapo-transpiration*.


Rice (Kharif)	800mm	100 days	Well-drained
Wheat (Rabbi)	500mm	100 days	Well drained
Cotton (K. Long)	700mm	140 days	Black
Bajri (Rabbi)	350mm	110 days	Black
Sugarcane	1800mm	15 mo.	All
Pomegranate	1200mm	12 mo.	Well drained
Seasonal Grass	200mm	2 mo.	All
Scrub	400mm	12 mo.	All
Forest	+700mm	12 mo.	All

ET loads

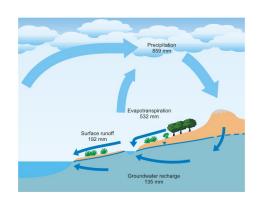
- 1 Ha. of Wheat will require a minimum of 5000 cu. m. of water.
- ET loads depend on planting method, row-width and climate. The above is indicative.
- It *does not* depend on irrigation method. It essentially is the water a healthy plant will require.
- Excess watering will either (i) drain, (ii) go into the ground, or (iii) evaporate from moist soil.


July 31, 2017 16 / 39

ET load graphically

(

The basic stocks and flows


- Air Moisture: Clouds end in the Troposphere (about 35,000 ft).
- Surface: Rivers, streams and glaciers. Man-made reservoirs.
 - Subsurface: Soil Moisture.
- Groundwater: under the water table.

18 / 39

July 31, 2017

A toy model-Germany

Rainfall	859 mm/yr
Runoff	192 mm/yr
Evapo-	
transpiration	532mm/yr
Groundwater	
flows	135mm/yr

Basic Stocks

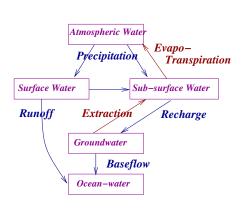
Sub-surface water: water in the top 1m of soil. Equivalent to 20-50 mm of water.

- Infiltration after rain.
- Water application for agriculture.
- Recharge into GW, Evapo-transpiration.

Groundwater: Below sub-surface.

- Recharge from sub-surface.
- Recharge from rivers, lakes and reservoirs.
- Baseflows into sea, rivers and streams.
- Extraction.

()


The Water-balance

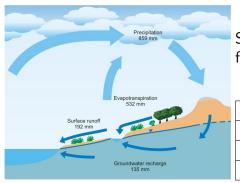
Key Stocks *S*, incoming iand outgoing flows *o*

$$\frac{dS}{dt} = i - o$$

Precipitation+Extraction= Recharge+Evapo-Transpiration+ Runoff+ Δ Soil Moisture

Recharge=Baseflow+ Extraction+ Δ Groundwater.

July 31, 2017 21 / 39

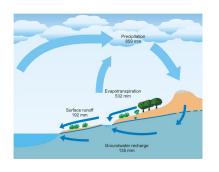

Some Δs

- Δ Soil Moisture= -5mm/day (ET)+ Infiltration-2mm (Recharge to GW).
- Daily Rainfall =Infiltration+Runoff-Sea $+\Delta$ Storage

22 / 39

July 31, 2017

MyWatershed-Water Balance Exercise


Suppose that we have the following data (per year):

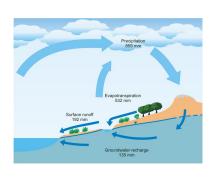
Rainfall	859 mm
Runoff	192 mm
Evapo-transpiration	532mm
Groundwater flows	135mm

- What will happen if we build a check-dam and a reservoir?
- What will happen if we increase groundwater extraction and use it for agriculture?

MyWatershed-Water Balance Exercise

• What will happen if we build a check-dam and a reservoir?

Flows:


Rainfall	859 mm	
rtannan	003	
Runoff	192 mm	
rtanon	132 111111	\
Evapo-transpiration	532mm	
Evapo transpiration	002	
Groundwater flows	135mm	↑
		<u> </u>

Stocks:

Surface Water	\uparrow
Groundwater	1

MyWatershed-Water Balance Exercise

• What will happen if we increase groundwater extraction and use it for agirculture?

Flows:

Rainfall	859 mm	
Runoff	192 mm	1
Evapo-transpiration	532mm	1
Groundwater flows	135mm	\downarrow

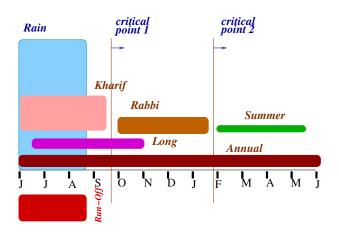
Stocks:

Surface Water	1
Groundwater	$\downarrow\downarrow$

Regional Picture

Village Ghotewadi		
Total Land	3000 Ha.	
Forest	1200 Ha.	
Commons	100 Ha.	
Wastelands	300 Ha.	
Agricultural	1500 Ha.	
Rainfall (f)	520mm	

Crop Choice

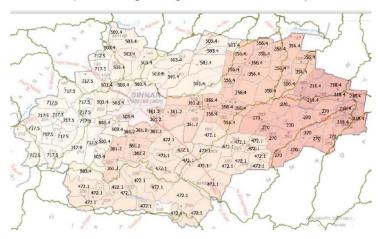

What is a feasible cropping pattern?

Is
$$(A * f) - (\sum_i A_i r_i)$$
 positive?

But what is A?

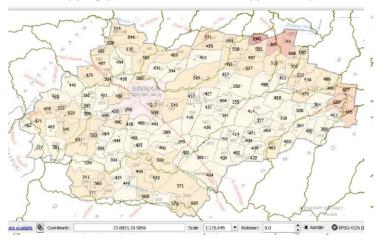
Crop	Area A_i (Ha.)	Req. r_i (mm)	Season
Grapes	100	1200	Annual
Soyabean	300	500	Kharif
Maize	200	700	Kharif
Tomato	200	650	Summer

ET load graphically

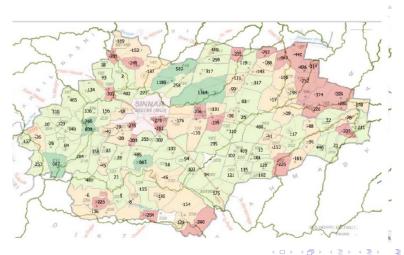


(.

Rains


mm rainfall assigned

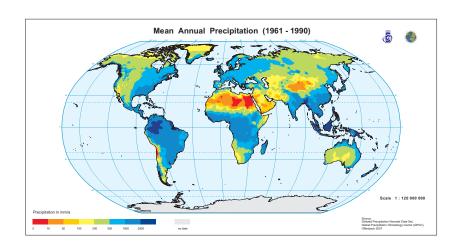
(each village assigned to closest circle)


Demand

Total mm crop water requirement based on village cropping (denominator is the cropped area)

Deficit

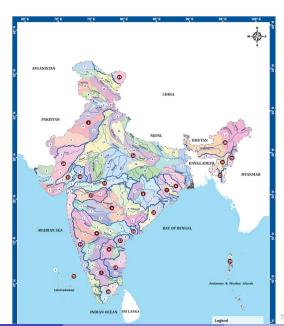
mm water use beyond rain in cultivable area (rain*cultivable area – water use*cropped area)/cropped area



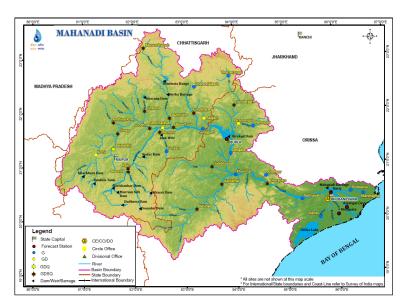
Precipitation

- Precipitation is the most visible component of the Hydrological cycle.
- Rains in India are the most important cultural and economic event of the year. 15 wets days supply 50% of annual rains!
- India receives most of its rains (of about 900 mm/year average) in the form of three monsoons:
 - South-west (for W. and C. India, May 1st-Oct. 1st)
 - South-east (for E. and N. India, June 1st-Oct. 1st)
 - South (south-east coast of India, Oct. 1 Dec. 1st)
- Most important regional data.
- Observed by network of rain-guages.

Daily Rainfall	mm/day
Season Total	mm
Rainfall Intensity	mm/day
Rainy Days	No.


Rainfall

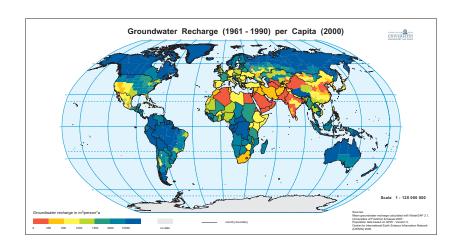
source: whymap.org, BGR-Unesco.



Run-off

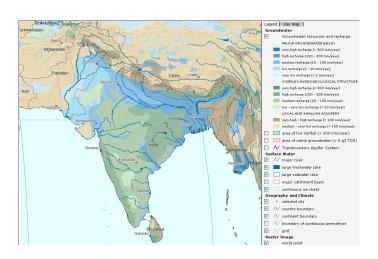
A Basin

Mahanadi Basin-Data


Length of Mahanadi River (Km)	850
Catchment Area (Sq.km.)	141600
Average Water Resource Potential (MCM)	66800
Utilizable* Surface Water Resource (MCM)	50000
Total Live Storage Capacity of Projects (MCM)	14200

^{*-}utilizable: which will not directlu run off to sea, or is available within the country's boundary.

- Can you estimate the infiltration fraction?
- What is the use of storage?
- What is the connection between the two?


July 31, 2017 35 / 39

Recharge

source: whymap.org, BGR-Unesco.

Recharge/Geology-India

source: whymap.org, BGR-Unesco.

CGWB estimates

Annual Replenishable Ground Water Resources	433 bcm
Net Annual Ground Water Availability	398 bcm
Annual Ground Water Draft for Irrigation	245 bcm
Domestic & Industrial uses	
Stage of Ground Water Development	62%

Thanks

