Water and Development

Part 3d: Transient and Unsaturated Systems: Water Table

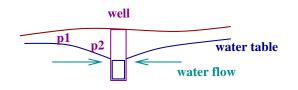
Milind Sohoni

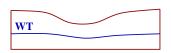
www.cse.iitb.ac.in/~sohoni email: sohoni@cse.iitb.ac.in

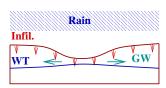
1 / 32

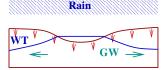
Issues with the earlier approach

- Saturated condition never occurs in isolation. In fact the water-table is an unknown boundary.
- Most phenomena are transient, i.e., change with time. Thus the conservation equation is more complex.



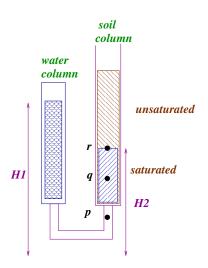






2 / 32

The Unsaturated water column



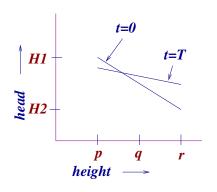
What is likely to happen?

- Firstly, $h(p) = H_1$, $h(r) = H_2$ and h(p) > h(q) > h(r).
- Thus water will seep from the water column into the soil column and the saturated part will increase in height.
- However, for every Δx drop in the water column, there will be a rise of $\Delta x/S_y$ in the saturated soil column!
- If $S_y = 5\%$, then a 1mm drop in water column \Rightarrow a 20mm rise in saturated part.

3 / 32

October 2, 2017

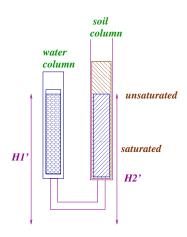
The heads within the soil column



- The head at *p* is exactly the height in the water column.
- As we go up from p to q and r, total heads drops linearly from H₁ to H₂.
- As time progresses, the height in the water column drops marginally but the height in the soil column increases substantially, thanks to $S_{\nu} << 1$.
- All the same, the linearity is maintained.

October 2, 2017 4 / 32

The Unsaturated water column: steady state



• The governing equation:

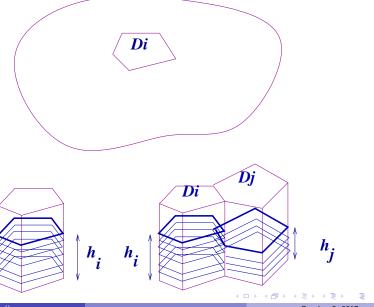
$$H_1'=H_1-\Delta x=H_2+\Delta x/S_y=H_2'$$

- This gives $\Delta x = (H_1 - H_2) * S_v / (1 + S_v).$
- If $S_v = 2\%$, $\Delta x = \Delta H * 0.0196$.

2 points

- Movement in the water table requires S_{ν} .
- Hydraulic heads in steady state depend on position of water table.

Modeling Unsaturated Domains



Modeling Unsaturated Domains: Principles

- The domain decomposition is as before.
- The variable q_i is unchanged: net recharge (vol./day) into D_i .
- Variable h_i signifies the height of the saturate column in D_i .
- Darcy's law is multiplied by Δt to get a volume equation:

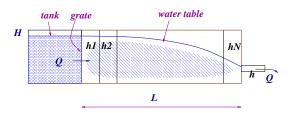
$$\sum_{j} \Delta t \cdot \frac{(h_i - h_j) A_{ij} K}{L_{ij}} + S_y \Delta h_i A_i = q_i \Delta t$$

• Δh_i : change in saturation height, A_i : area of domain D_i , A_{ij} : interaction area between D_i and D_j .

□ > < □ > < □ > < □ > < □ >

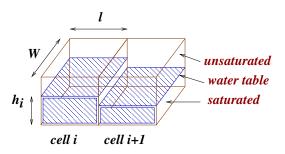
October 2, 2017 7 / 32

Soilbox 1



- Constant head *H* on the left and *h* on the right.
- Possibly implemented by a grate on the right. Then both h and Q are unknown. Lets assume h is known.
- ullet Or, there is a well with known discharge Q and h is unknown.
- Water-table is formed, with saturated portion below the WT and unsaturated above. However, height of saturated h_i part not known before-hand.

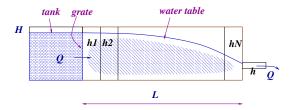
Two adjoining cells



- What is the flow from cell i to cell i + 1?
- Heads equal heights of water-table, i.e., h_i , h_{i+1} .
- Boundary surface: $h_{i+1} \times W$.
- Flow approximated by Darcy: $\Delta h_i \times h_{i+1} \times W/L$.

October 2, 2017 9 / 32

The Unsaturated Soil Box 1

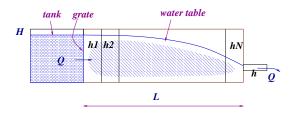


- Constant head H on the left and h on the right. Unknown discharge Q on the right.
- Height of saturated part, say h_i not known before-hand and yet:
- $\bullet (h_i h_{i-1}) * K * (h_i * W)/L + (h_i h_{i+1}) * K * (h_{i+1} * W)/L = 0$
- N = 3, H = 4, h = 2 gives us $h_2^2 2h_2 4 = 0$, i.e., $h_2 = 3.71$.

◆ロト ◆個ト ◆量ト ◆量ト ■ めので

October 2, 2017 10 / 32

The Unsaturated Soil Box 1



Lets keep N = 3 and see the dependance between h and Q.

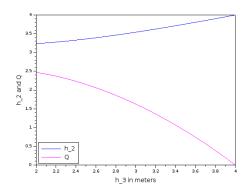
- $(h_2 4) * h_2 * KW/L + (h_2 h) * h * KW/L = 0$, i.e.,
- $h_2 = \frac{4-h+\sqrt{5}h^2-8h+16}{2}$ and $Q = (h_2 h)*h*KW/L$
- What does this mean?

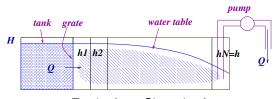
◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

()

Soilbox 2

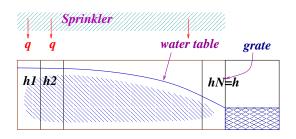
- Lets plot Q and h₂ w.r.t $h_3 = h$.
- This connects the flow Q out of the last cell and the head there.
- As h increases Q decreases.





Equivalent Situation!

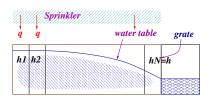
Steady state with rains



- Δh_i , f_i variables, $f_1 = f_2 = \ldots = f_{N-1} = q$ known. Assume h known and constant, implemented by an overflow level.
- Again, N-1 flow conservation equations and N-1 unknowns $\Delta h_1, \ldots, \Delta h_{N-1}$. Note that $q_N = q Nq = (1-N)q$, just by conservation.
- Interesting to compute h_i s.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Steady state with rains



Say N = 3.

$$(h_1 - h_2) * h_2 \alpha = q$$

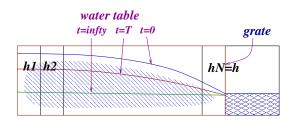
 $(h_1 - h_2) * h_2 \alpha + q = (h_2 - h) * h \alpha$

- Putting h = 2, $q = \alpha = 1$, we have $2q = (h_2 h) * h$ which gives $h_2 = 3$.
- Next, $(h_1 3) * 3 = 1$ gives $h_1 = 3.33$.
- What happens if the soilbox height was only 3.2m?
- What if *K* is increased?

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

14 / 32

What happens when the rain stops?



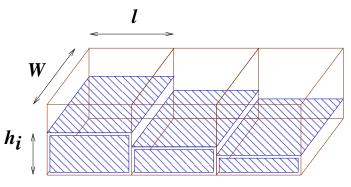
- The water-table slowly starts moving down. At $t=\infty$, the water-table is exactly at height h all through the soil box.
- The initial quantity of water in the soil-box was $\sum_i (A/n)h_i \times S_y$, where A is the area of the soil-box and S_y is the specific yield.
- The final quantity of water in the soil reduces to $Ah \times S_y$.

4□ > 4□ > 4 = > 4 = > = 90

15 / 32

() October 2, 2017

Cell and its neighbours

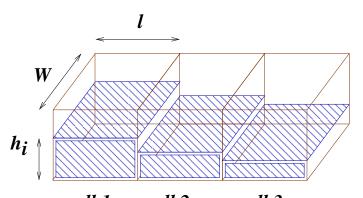


cell 1 cell 2 cell 3

- For any (h_{i-1}, h_i, h_{i+1}) and a flow f_i into the cell, we have: $\Delta q = f_i (h_i h_{i-1}) * h_i * \frac{WK}{I} + (h_i h_{i+1}) * h_{i+1} * \frac{WK}{I}$
- This Δq is the excess/deficit flow into a cell.
- Saturation: Δq is always zero.
- Unsaturated condition: This causes a rise or fall in the height h_i !

October 2, 2017 16 / 32

Rise and Fall

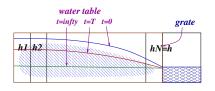


- Unsaturated condition: This causes a rise or fall in the height h_i !
- The change in saturation after time Δt is given by:

$$S_y * \Delta h_i * WI = \Delta q * \Delta t$$

() October 2, 2017 17 / 32

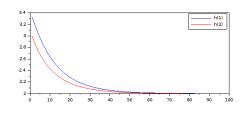
Lets take the discharge example



•	As	the	rain	stops	f_i	=	0
	for	all	i.				

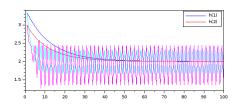
- Let us assume that $\frac{K}{S/l^2} = 1$.

	h_1	h_2	h ₃
t = 0	3.33	3	2
Δh	-0.99∆ <i>t</i>	$-1.01\Delta t$	0
t = 0.1	3.2	2.9	2
Δh	$-0.96\Delta t$	$-0.84\Delta t$	0

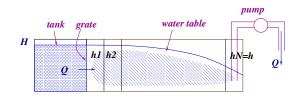


Delicate matters

- Thus, we are discretizing in both space and time.
- If the discretization is coarse in space, we are unlikely to get accurate answers.
- If coarse in time: instability ($\Delta t = 0.5$)



Another Situation: what happens when the pump turns off?

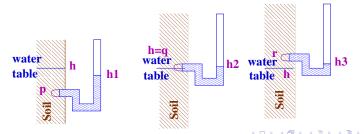


Predicting Rise and Fall in the WT

- Let h=ht. of water table and h' be the point at which the piezometer is inserted.
 Let h_i be the readings.
- (i) If p < h then $p < h_1$. (ii) If q = h then $q = h_2$. (iii) If r > h then $r > h_3$.
- Darcy's law: GW flows from higher head to lower head.

р	q = h	r
8	10	11
h_1	h_2	h ₃
9	10	10.5

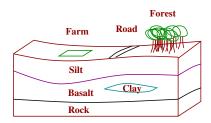
So, will the water-table rise in the near future?



Larger Picture

In general, we would like to

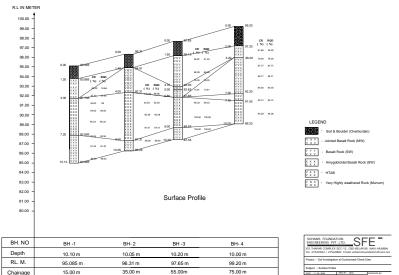
- analyse groundwater and surface water
- prescribe corrective measures
- understand sustainable use



A real-life scenario

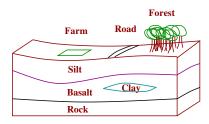
- Various surface features such as farmslands, forests, built-up areas, which affect infiltration
- Similar soils appearing as layers, and their geological properties, such as porosity, conductivity etc.
- climatic data such as rainfall. evaporation, etc.
- Water requirements and usage, such as for irrigation, domestic use, and so on.

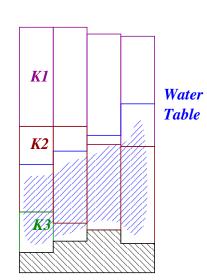
Bore Logs-Under the ground



Multi-layer model

- analyse groundwater and surface water
- prescribe corrective measures
- understand sustainable use



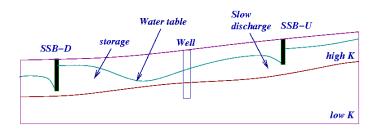


Groundwater Models

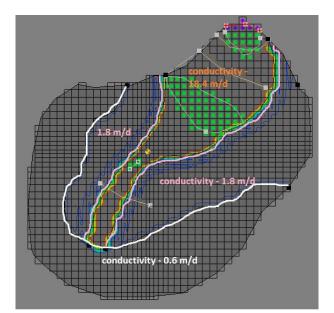
- The domain and its division into N multiple connected cells.
- Conductivity for each layer/cell.
- Two variables per cell. *N* conservation equations which depend on the geometry of saturated and un-saturated regions.
- Objective: Steady state/transient flows and heads for all cells.
- Boundary conditions. Either known flow or known head per cell.
 Climatological data.
 - Known head: May be varying in time, but known. Largely from groundwater data from wells or lake-levels.
 - Known flows. Extraction, infiltration.

Ikharicha pada

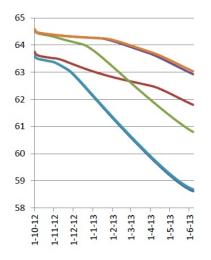
Problem



Model



Conclusions



Thanks

