
Maple 9
Advanced Programming

Guide

M. B. Monagan K. O. Geddes K. M. Heal
G. Labahn S. M. Vorkoetter J. McCarron

P. DeMarco

c© Maplesoft, a division of Waterloo Maple Inc. 2003.

ii •

Maple, Maplesoft, Maplet, and OpenMaple are trademarks of Water-
loo Maple Inc.

c© Maplesoft, a division of Waterloo Maple Inc. 2003. All rights re-
served.

The electronic version (PDF) of this book may be downloaded and
printed for personal use or stored as a copy on a personal machine. The
electronic version (PDF) of this book may not be distributed. Information
in this document is subject to change without notice and does not rep-
resent a commitment on the part of the vendor. The software described
in this document is furnished under a license agreement and may be used
or copied only in accordance with the agreement. It is against the law to
copy the software on any medium as specifically allowed in the agreement.

Windows is a registered trademark of Microsoft Corporation.
Java and all Java based marks are trademarks or registered trade-

marks of Sun Microsystems, Inc. in the United States and other countries.
Maplesoft is independent of Sun Microsystems, Inc.

All other trademarks are the property of their respective owners.
This document was produced using a special version of Maple that

reads and updates LATEX files.

Printed in Canada

ISBN 1-894511-44-1

Contents

Preface 1
Audience . 1
Worksheet Graphical Interface 2
Manual Set . 2
Conventions . 3
Customer Feedback . 3

1 Procedures, Variables, and Extending Maple 5
Prerequisite Knowledge 5
In This Chapter . 5

1.1 Nested Procedures . 5
Scoping Rules . 6
Local Versus Global Variables 6
The Quick-Sort Algorithm 8
Example . 8
Creating a Uniform Random Number Generator 11

1.2 Procedures That Return Procedures 14
Conveying Values . 14
Creating a Newton Iteration 14
Example 1 . 15
Example 2 . 16
A Shift Operator . 17

1.3 Local Variables and Invoking Procedures 19
Example 1 . 19
Example 2 . 20
Procedure as a Returned Object 22
Example 3 . 22
Example 4 . 24
Exercises . 26

1.4 Interactive Input . 27

iii

iv • Contents

Reading Strings from the Terminal 27
Example 1 . 28
Reading Expressions from the Terminal 28
Example 2 . 29
Converting Strings to Expressions 30

1.5 Extending Maple . 31
Defining New Types . 31
Exercises . 33
Neutral Operators . 33
Example 1 . 34
Exercise . 37
Extending Commands . 39

1.6 Conclusion . 42

2 Programming with Modules 43
Modules . 43
Examples . 44
Module Versus Procedure 45
Accessing Module Exports 46
In This Chapter . 46

2.1 Syntax and Semantics . 47
The Module Definition . 47
The Module Body . 48
Module Parameters . 48
Named Modules . 48
Declarations . 50
Exported Local Variables 52
Module Options . 57
Implicit Scoping Rules . 58
Lexical Scoping Rules . 58
Modules and Types . 60
Example: A Symbolic Differentiator 61

2.2 Records . 72
2.3 Packages . 78

What Is a Package . 78
Writing Maple Packages by Using Modules 80
The LinkedList Package 80
Code Coverage Profiling Package 87
The Shapes Package . 94

2.4 The use Statement . 103
Operator Rebinding . 106

Contents • v

2.5 Modeling Objects . 108
Priority Queues . 111
An Object-oriented Shapes Package 115

2.6 Interfaces and Implementations 117
Interfaces . 118
Generic Graph Algorithms 124
Quotient Fields . 129
A Generic Group Implementation 138

2.7 Extended Example: A Search Engine 159
Introduction to Searching 159
Inverted Term Occurrence Indexing 161
The Vector Space Model 164
Term Weighting . 167
Building a Search Engine Package 168
Latent Semantic Analysis 172
The Search Engine Package 173
Using the Package . 180

2.8 Conclusion . 184

3 Input and Output 185
In This Chapter . 185

3.1 A Tutorial Example . 186
3.2 File Types and Modes . 190

Buffered Files versus Unbuffered Files 190
Text Files versus Binary Files 190
Read Mode versus Write Mode 191
The default and terminal Files 191

3.3 File Descriptors versus File Names 192
3.4 File Manipulation Commands 193

Opening and Closing Files 193
Position Determination and Adjustment 194
Detecting the End of a File 195
Determining File Status 195
Removing Files . 196

3.5 Input Commands . 197
Reading Text Lines from a File 197
Reading Arbitrary Bytes from a File 197
Formatted Input . 198
Reading Maple Statements 204
Reading Tabular Data . 204

3.6 Output Commands . 206

vi • Contents

Configuring Output Parameters Using the interface Com-
mand . 206

One-Dimensional Expression Output 206
Two-Dimensional Expression Output 207
Writing Maple Strings to a File 210
Writing Bytes to a File . 210
Formatted Output . 211
Writing Tabular Data . 215
Flushing a Buffered File 216
Redirecting the default Output Stream 217

3.7 Conversion Commands . 218
Conversion between Strings and Lists of Integers 218
Parsing Maple Expressions and Statements 218
Formatted Conversion to and from Strings 220

3.8 Notes to C Programmers 221
3.9 Conclusion . 221

4 Numerical Programming in Maple 223
Floating-Point Calculations 223
In This Chapter . 223
Why Use Numerical Computations 223

4.1 The Basics of evalf . 224
4.2 Hardware Floating-Point Numbers 227

Newton’s Method . 230
Computing with Arrays of Numbers 232

4.3 Floating-Point Models in Maple 235
Software Floats . 235
Roundoff Error . 236

4.4 Extending the evalf Command 238
Defining New Constants 238
Defining New Functions 240

4.5 Using the Matlab Package 243
4.6 Conclusion . 244

5 Programming with Maple Graphics 245
Maple Plots . 245
Creating Plotting Procedures 245
In This Chapter . 245

5.1 Basic Plotting Procedures 246
Altering a Plot . 248

5.2 Programming with Plotting Library Procedures 249

Contents • vii

Plotting a Loop . 249
Exercise . 251
A Ribbon Plot Procedure 251

5.3 Maple Plot Data Structures 254
The PLOT Data Structure 256
Arguments Inside a PLOT Structure 257
A Sum Plot . 259
The PLOT3D Data Structure 262
Objects Inside a PLOT3D Data Structure 264

5.4 Programming with Plot Data Structures 266
Writing Graphic Primitives 266
Plotting Gears . 268
Polygon Meshes . 272

5.5 Programming with the plottools Package 273
A Pie Chart . 275
A Dropshadow Procedure 276
Creating a Tiling . 278
A Smith Chart . 280
Exercise . 281
Modifying Polygon Meshes 281

5.6 Vector Field Plots . 286
Drawing a Vector . 286
Generating a Vector Plot Field 288

5.7 Generating Grids of Points 296
5.8 Animation . 301

Animation in Static Form 302
Graphical Object as Input 302
Methods for Creating Animations 303
Two and Three Dimensions 305
Demonstrating Physical Objects in Motion 306

5.9 Programming with Color 308
Generating Color Tables 309
Using Animation . 310
Adding Color Information to Plots 312
Creating A Chess Board Plot 315

5.10 Conclusion . 316

6 Advanced Connectivity 319
In This Chapter . 319
Code Generation . 319
External Calling: Using Compiled Code in Maple 319

viii • Contents

OpenMaple: Using Maple in Compiled Code 319
6.1 Code Generation . 319

The CodeGeneration Package 319
Calling CodeGeneration Functions 320
Translation Process . 321
Extending the CodeGeneration Translation Facilities . . . 324
Defining a Custom Translator 325

6.2 External Calling: Using Compiled Code in Maple 330
Method 1: Calling External Functions 332
External Definition . 334
Type Specification . 335
Scalar Data Formats . 336
Structured Data Formats 336
Specifying Argument Passing Conventions 338
Method 2: Generating Wrappers 338
Additional Types and Options 339
Structured Data Formats 339
Enumerated Types . 339
Procedure Call Formats 340
Call by Reference . 340
Array Options . 340
Non-passed Arguments . 341
Argument Checking and Efficiency Considerations 342
Conversions . 342
Compiler Options . 344
Evaluation Rules . 348
Method 3: Customizing Wrappers 350
External Function Entry Point 350
Inspecting Automatically Generated Wrappers 352
External API . 356
System Integrity . 374

6.3 OpenMaple: Using Maple in Compiled Code 374
Interface Overview . 375
Call-back Functions . 380
Maple Online Help Database 386
Technical Issues . 389
File Structure . 389
Building the Sample Program 390

6.4 Conclusion . 392

A Internal Representation and Manipulation 397

Contents • ix

A.1 Internal Organization . 397
Components . 398
Internal Functions . 398
Flow of Control . 399

A.2 Internal Representations of Data Types 400
Logical AND . 401
Assignment Statement . 401
Binary Object . 401
Break Statement . 401
Name Concatenation . 402
Complex Value . 402
Communications Control Structure 402
Type Specification or Test 403
Debug . 403
Equation or Test for Equality 403
Error Statement . 403
Expression Sequence . 404
Floating-Point Number . 404
For/While Loop Statement 404
Foreign Data . 405
Function Call . 406
Garbage . 406
Hardware Float . 406
If Statement . 407
Logical IMPLIES . 407
Not Equal or Test for Inequality 407
Negative Integer . 407
Positive Integer . 408
Less Than or Equal . 409
Less Than . 409
Lexically Scoped Variable within an Expression 409
List . 410
Local Variable within an Expression 410
Member . 410
Module Definition . 410
Module Instance . 412
Identifier . 412
Next Statement . 413
Logical NOT . 413
Logical OR . 413
Procedure Parameter within an Expression 413

x • Contents

Power . 414
Procedure Definition . 414
Product, Quotient, Power 416
Range . 416
Rational . 416
Read Statement . 417
Return Statement . 417
Rectangular Table . 417
Save Statement . 419
Series . 419
Set . 419
Statement Sequence . 420
Stop Maple . 420
String . 420
Sum, Difference . 421
Table . 421
Table Reference . 421
Try Statement . 422
Unevaluated Expression 422
Use Statement . 422
Logical XOR . 423
Polynomials with Integer Coefficients modulo n 423

A.3 The Use of Hashing in Maple 424
Basic Hash Tables . 424
Dynamic Hash Tables . 425
The Simplification Table 426
The Name Table . 427
Remember Tables . 427
Maple Language Arrays and Tables 428
Maple Language Rectangular Tables 429

A.4 Portability . 429

Index 431

Preface

This manual describes advanced MapleTM programming concepts, includ-
ing:

• Variable scope, procedures, modules, and packages

• Advanced input and output

• Numerical programming

• Programming with Maple plots

• Connectivity: translating Maple code to other programming lan-
guages, calling external libraries from Maple, and calling Maple code
from external libraries

• Internal representation and manipulation

Audience

This manual provides information for experienced Maple programmers.
You should be familiar with the following.

• Maple Online Help Introduction

• Example worksheets

• How to use Maple interactively

• The Introductory Programming Guide

1

2 • Preface

Worksheet Graphical Interface

You can access the power of the Maple computation engine through a vari-
ety of user interfaces: the standard worksheet, the command-line1 version,
the classic worksheet (not available on Macintosh r©), and custom-built

Maplet
TM

applications. The full Maple system is available through all of
these interfaces. In this manual, any references to the graphical Maple
interface refer to the standard worksheet interface. For more information
on the various interface options, refer to the ?versions help page.

Manual Set

There are three other manuals available for Maple users, the Maple Get-
ting Started Guide, the Maple Learning Guide, and the Maple Intro-
ductory Programming Guide.2

• The Maple Getting Started Guide contains an introduction to the
graphical user interface and a tutorial that outlines using Maple to
solve mathematical problems and create technical documents. It also
includes information for new users about the online help system, New
User’s Tour, example worksheets, and the Maplesoft Web site.

• The Maple Learning Guide explains how Maple and the Maple lan-
guage work. It describes the most important commands and uses them
to solve technical problems. User hints for Maplet applications are also
described in this guide.

• The Maple Introductory Programming Guide introduces the basic
Maple programming concepts, such as expressions, data structures,
looping and decision mechanisms, procedures, input and output, de-
bugging, and the Maplet User Interface Customization System.

The Maple software also has an online help system. The Maple help sys-
tem allows you to search in many ways and is always available. There are
also examples that you can copy, paste, and execute immediately.

1The command-line version provides optimum performance. However, the worksheet
interface is easier to use and renders typeset, editable math output and higher quality
plots.

2The Student Edition does not include the Maple Introductory Programming Guide
and the Maple Advanced Programming Guide. These programming guides can be pur-
chased from school and specialty bookstores or directly from Maplesoft.

Conventions • 3

Conventions

This manual uses the following typographical conventions.

• courier font - Maple command, package name, and option name

• bold roman font - dialog, menu, and text field

• italics - new or important concept, option name in a list, and manual
titles

• Note - additional information relevant to the section

• Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related
to this and other manuals, email doc@maplesoft.com.

4 • Preface

1 Procedures, Variables,
and Extending Maple

Prerequisite Knowledge

Before reading this chapter, you must have an understanding of Maple
evaluation rules for variables and parameters as described in chapter 6 of
the Introductory Programming Guide.

In This Chapter

Nested Procedures You can define a Maple procedure within another
Maple procedure.

Procedures That Return Procedures You can create procedures that
return procedures by using Maple evaluation rules.

Local Variables Local variables can exist after the procedure which cre-
ated them has exited. This feature allows a procedure to return a proce-
dure. The new procedure requires a unique place to store information.

Interactive Input You can write interactive procedures, querying the
user for missing information or creating an interactive tutorial or a test.

Extending Maple The Maple software includes useful mechanisms for
extending Maple functionality, which reduce the need to write special-
purpose procedures. Several Maple commands can be extended.

1.1 Nested Procedures

You can define a Maple procedure inside another Maple procedure. Some
Maple commands are very useful inside a procedure. In the worksheet

5

6 • Chapter 1: Procedures, Variables, and Extending Maple

environment, the map command is used to apply an operation to the
elements of a structure. For example, you can divide each element of a
list by a number, such as 8.

> lst := [8, 4, 2, 16]:
> map(x->x/8, lst);

[1,
1

2
,
1

4
, 2]

Consider a variation on the map command, which appears in the fol-
lowing procedure.

Example This new procedure divides each element of a list by the first
element of that list.

> nest := proc(x::list)
> local v;
> v := x[1];
> map(y -> y/v, x);
> end proc:
> nest(lst);

[1,
1

2
,
1

4
, 2]

The procedure nest contains a second procedure, map, which in this
case is the Maple command map. Maple applies its lexical scoping rules,
which declare the v within the call to map as the same v as in the outer
procedure, nest.

Scoping Rules
This section explains Maple scoping rules. You will learn how Maple de-
termines which variables are local to a procedure and which are global.
You must have a basic understanding of Maple evaluation rules for pa-
rameters, and for local and global variables. For more information, refer
to chapter 6 of the Introductory Programming Guide.

Local Versus Global Variables
In general, when writing a procedure, you should explicitly declare which
variables are global and which are local. Declaring the scope of the vari-
ables makes your procedure easier to read and debug. However, sometimes
declaring the variables is not the best method. In the previous nest pro-
cedure, the variable in the map command is defined by the surrounding

1.1 Nested Procedures • 7

procedure. What happens if you define this variable, v, as local to the
invocation of the procedure within map?

> nest2 := proc(x::list)
> local v;
> v := x[1];
> map(proc(y) local v; y/v; end, x);
> end proc:
> nest2(lst);

[
8

v
,
4

v
,
2

v
,
16

v
]

The nest2 procedure produces different results. When the variables
are declared in the inner procedure, the proper values from the enclosing
procedure are not used. Either a variable is local to a procedure and
certain procedures that are completely within it, or it is global to the
entire Maple session.

Rule Maple determines whether a variable is local or global, from the
inside procedure to the outside procedure. The name of the variable is
searched for among:

1. Parameters of the inner procedure

2. Local declarations and global declarations of the inner procedure

3. Parameters of the outside procedure

4. Local and global declarations of the outside procedure

5. Implicitly declared local variables of any surrounding procedure(s)

If found, that specifies the binding of the variable.

If, using the above rule, Maple cannot determine whether a variable
is global or local, the following default decisions are made.

• If a variable appears on the left side of an explicit assignment or as
the controlling variable of a for loop, Maple regards the variable as
local.

• Otherwise, Maple regards the variable as global to the whole session.
In particular, Maple assumes by default that the variables you pass as
arguments to other procedures, which may set their values, are global.

8 • Chapter 1: Procedures, Variables, and Extending Maple

The Quick-Sort Algorithm
Sorting a few numbers is quick using any method, but sorting large
amounts of data can be very time consuming; thus, finding efficient meth-
ods is important.

The following quick-sort algorithm is a classic algorithm. The key to
understanding this algorithm is to understand the operation of partition-
ing. This involves choosing any one number from the array that you are
about to sort. Then, you reposition the numbers in the array that are less
than the number that you chose to one end of the array and reposition
numbers that are greater to the other end. Lastly, you insert the chosen
number between these two groups.

At the end of the partitioning, you have not yet entirely sorted the
array, because the numbers less than or greater than the one you chose
may still be in their original order. This procedure divides the array into
two smaller arrays which are easier to sort than the original larger one.
The partitioning operation has thus made the work of sorting much eas-
ier. You can bring the array one step closer in the sorting process by
partitioning each of the two smaller arrays. This operation produces four
smaller arrays. You sort the entire array by repeatedly partitioning the
smaller arrays.

Example
The partition procedure uses an array to store the list because you can
change the elements of an array directly. Thus, you can sort the array in
place and not waste any space generating extra copies.

The quicksort procedure is easier to understand if you look at the
procedure partition in isolation first. This procedure accepts an array
of numbers and two integers. The two integers are element numbers of the
array, indicating the portion of the array to partition. While you could
possibly choose any of the numbers in the array to partition around, this
procedure chooses the last element of the section of the array for that
purpose, namely A[n]. The intentional omission of global and local

statements shows which variables Maple recognizes as local and which
are global by default. It is recommended, however, that you not make
this omission in your procedures.

> partition := proc(A::array(1, numeric),
> m::posint, n::posint)
> i := m;
> j := n;
> x := A[j];
> while i<j do
> if A[i]>x then

1.1 Nested Procedures • 9

> A[j] := A[i];
> j := j-1;
> A[i] := A[j];
> else
> i := i+1;
> end if;
> end do;
> A[j] := x;
> eval(A);
> end proc:

Warning, ‘i‘ is implicitly declared local to procedure
‘partition‘
Warning, ‘j‘ is implicitly declared local to procedure
‘partition‘
Warning, ‘x‘ is implicitly declared local to procedure
‘partition‘

Maple declares i, j, and x local because the partition procedure con-
tains explicit assignments to those variables. The partition procedure
also assigns explicitly to A, but A is a parameter, not a local variable.
Because you do not assign to the name eval, Maple makes it the global
name which refers to the eval command.

After partitioning the array a in the following, all the elements less
than 3 precede 3 but they are in no particular order; similarly, the elements
larger than 3 come after 3.

> a := array([2,4,1,5,3]);

a := [2, 4, 1, 5, 3]

> partition(a, 1, 5);

[2, 1, 3, 5, 4]

The partition procedure modifies its first argument, changing a.

> eval(a);

[2, 1, 3, 5, 4]

The final step in assembling the quicksort procedure is to insert
the partition procedure within an outer procedure. The outer proce-
dure first defines the partition subprocedure, then partitions the array.
In general, avoid inserting one procedure in another. However, you will

10 • Chapter 1: Procedures, Variables, and Extending Maple

encounter situations in following sections of this chapter in which it is nec-
essary to nest procedures. Since the next step is to partition each of the
two subarrays by calling quicksort recursively, partition must return
the location of the element which divides the partition.

Example This example illustrates the role of nested procedures. The
outer procedure, quicksort, contains the inner procedure, partition.

> quicksort := proc(A::array(1, numeric),
> m::integer, n::integer)
> local partition, p;
>
> partition := proc(m,n)
> i := m;
> j := n;
> x := A[j];
> while i<j do
> if A[i]>x then
> A[j] := A[i];
> j := j-1;
> A[i] := A[j];
> else
> i := i+1;
> end if;
> end do;
> A[j] := x;
> p := j;
> end proc:
>
> if m<n then # if m>=n there is nothing to do
> p:=partition(m, n);
> quicksort(A, m, p-1);
> quicksort(A, p+1, n);
> end if;
>
> eval(A);
> end proc:

Warning, ‘i‘ is implicitly declared local to procedure
‘partition‘
Warning, ‘j‘ is implicitly declared local to procedure
‘partition‘
Warning, ‘x‘ is implicitly declared local to procedure
‘partition‘

> a := array([2,4,1,5,3]);

a := [2, 4, 1, 5, 3]

1.1 Nested Procedures • 11

> quicksort(a, 1, 5);

[1, 2, 3, 4, 5]

> eval(a);

[1, 2, 3, 4, 5]

Maple determines that the A and p variables in the partition sub-
procedure are defined by the parameter and local variable (respectively)
from the outer quicksort procedure and everything works as planned.
The variable A can be passed as a parameter to the partition subproce-
dure (as in the stand-alone partition procedure). However, A does not
need to be passed because, by using Maple scoping rules, it is available
to the inner procedure.

Creating a Uniform Random Number Generator
If you want to use Maple to simulate physical experiments, you likely
need a random number generator. The uniform distribution is particu-
larly simple: any real number in a given range is equally likely. Thus, a
uniform random number generator is a procedure that returns a ran-
dom floating-point number within a certain range. This section develops
the procedure, uniform, which creates uniform random number genera-
tors.

The rand command generates a procedure which returns random in-
tegers. For example, rand(4..7) generates a procedure that returns ran-
dom integers between 4 and 7, inclusive.

> f := rand(4..7):
> seq(f(), i=1..20);

5, 6, 5, 7, 4, 6, 5, 4, 5, 5, 7, 7, 5, 4, 6, 5, 4, 5, 7, 5

The uniform procedure is similar to rand but returns floating-point
numbers rather than integers. You can use rand to generate random
floating-point numbers between 4 and 7 by multiplying and dividing by
10^Digits.

> f := rand(4*10^Digits..7*10^Digits) / 10^Digits:
> f();

12 • Chapter 1: Procedures, Variables, and Extending Maple

12210706011

2000000000

The procedure f returns fractions rather than floating-point numbers
so you must compose it with evalf; that is, use evalf(f()). Alterna-
tively, you can perform this operation by using the Maple composition
operator, @.

> (evalf @ f)();

6.648630719

The following uniform procedure uses evalf to evaluate the constants
in the range specification, r, to floating-point numbers, the map command
to multiply both endpoints of the range by 10^Digits, and round to
round the results to integers.

> uniform := proc(r::constant..constant)
> local intrange, f;
> intrange := map(x -> round(x*10^Digits), evalf(r));
> f := rand(intrange);
> (evalf @ eval(f)) / 10^Digits;
> end proc:

You can now generate random floating-point numbers between 4
and 7.

> U := uniform(4..7):
> seq(U(), i=1..20);

4.559076346, 4.939267370, 5.542851096, 4.260060897,

4.976009937, 5.598293374, 4.547350944,

5.647078832, 5.133877918, 5.249590037,

4.120953928, 6.836344299, 5.374608653,

4.586266491, 5.481365622, 5.384244382,

5.190575456, 5.207535837, 5.553710879,

4.163815544

The uniform procedure has a serious flaw: uniform uses the current
value of Digits to construct intrange; thus, U depends on the value of
Digits when uniform creates it. On the other hand, the evalf command
within U uses the value of Digits that is current when you invoke U. These
two values are not always identical.

1.1 Nested Procedures • 13

> U := uniform(cos(2)..sin(1)):
> Digits := 15:
> seq(U(), i=1..8);

0.828316845400000, −0.328875163100000,

0.790988967100000, 0.624953401700000,

0.362773633800000, 0.679519822000000,

−0.0465278542000000, −0.291055180800000

The proper design choice here is that U should depend only on the
value of Digits when you invoke U. The following version of uniform

accomplishes this by placing the entire computation inside the procedure
that uniform returns.

> uniform := proc(r::constant..constant)
>
> proc()
> local intrange, f;
> intrange := map(x -> round(x*10^Digits),
> evalf(r));
> f := rand(intrange);
> evalf(f()/10^Digits);
> end proc;
> end proc:

The r within the inner proc is not declared as local or global, so it
becomes the same r as the parameter to the outer proc.

The procedure that uniform generates is now independent of the value
of Digits at the time you invoke uniform.

> U := uniform(cos(2)..sin(1)):
> Digits := 15:
> seq(U(), i=1..8);

0.476383408581006, 0.554836962987261,

0.147655743361511, 0.273247304736175,

0.148172828708797, −0.258115633420094,

0.558246581434993, 0.518084711267009

Note: The interface variable displayprecision controls the number of
decimal places to be displayed. The default value is −1, representing full
precision as determined by the Digits environment variable. This sim-
plifies display without introducing round-off error. For more information,
refer to ?interface.

14 • Chapter 1: Procedures, Variables, and Extending Maple

Summary This section introduced:

• Rules Maple uses to distinguish global and local variables

• Principal implications of these rules

• Tools available for writing nested procedures

1.2 Procedures That Return Procedures

Some of the standard Maple commands return procedures. For example,
rand returns a procedure which in turn produces randomly chosen inte-
gers from a specified range. The dsolve function with the type=numeric
option returns a procedure which supplies a numeric estimate of the so-
lution to a differential equation.

You can write procedures that return procedures. This section dis-
cusses how values are passed from the outer procedure to the inner pro-
cedure.

Conveying Values
The following example demonstrates how locating the roots of a function
by using Newton’s method can be implemented in a procedure.

Creating a Newton Iteration
Use Newton’s method to find the roots of a function.

1. Choose a point on the x-axis that you think might be close to a root.

2. Find the slope of the curve at the point you chose.

3. Draw the tangent to the curve at that point and observe where the
tangent intersects the x-axis. For most functions, this second point is
closer to the real root than your initial guess. To find the root, use
the new point as a new guess and keep drawing tangents and finding
new points.

1.2 Procedures That Return Procedures • 15

x1x0

–1

–0.5
0

0.5

1

1.5

2

1 2 3 4 5 6 7 8
x

To find a numerical solution to the equation f(x) = 0, guess an ap-
proximate solution, x0, and then generate a sequence of approximations
using:

1. Newton’s method

2. The following formulation of the previous process

xk+1 = xk −
f(xk)

f ′(xk)

You can implement this algorithm on a computer in a number of ways.

Example 1
The following procedure takes a function and creates a new procedure,
which takes an initial guess and, for that particular function, generates
the next guess. The new procedure does not work for other functions. To
find the roots of a new function, use MakeIteration to generate a new
guess-generating procedure. The unapply command turns an expression
into a procedure.

> MakeIteration := proc(expr::algebraic, x::name)
> local iteration;
> iteration := x - expr/diff(expr, x);
> unapply(iteration, x);
> end proc:

The procedure returned by the MakeIteration procedure maps the
name x to the expression assigned to the iteration.
Test the procedure on the expression x− 2

√
x.

> expr := x - 2*sqrt(x);

16 • Chapter 1: Procedures, Variables, and Extending Maple

expr := x− 2
√
x

> Newton := MakeIteration(expr, x);

Newton := x → x− x− 2
√
x

1− 1√
x

Newton returns the solution, x = 4 after a few iterations.

> x0 := 2.0;

x0 := 2.0

> to 4 do x0 := Newton(x0); end do;

x0 := 4.828427124

x0 := 4.032533198

x0 := 4.000065353

x0 := 4.000000000

Example 2
The MakeIteration procedure requires its first argument to be an al-
gebraic expression. You can also write a version of MakeIteration that
works on functions. Since the following MakeIteration procedure recog-
nizes the parameter f as a procedure, you must use the eval command
to evaluate it fully.

> MakeIteration := proc(f::procedure)
> (x->x) - eval(f) / D(eval(f));
> end proc:
> g := x -> x - cos(x);

g := x → x− cos(x)

> SirIsaac := MakeIteration(g);

SirIsaac := (x → x)− x → x− cos(x)

x → 1 + sin(x)

1.2 Procedures That Return Procedures • 17

Note that SirIsaac is independent of the name g. Thus, you can
change g without breaking SirIsaac. You can find a good approximate
solution to x− cos(x) = 0 in a few iterations.

> x0 := 1.0;

x0 := 1.0

> to 4 do x0 := SirIsaac(x0) end do;

x0 := 0.7503638679

x0 := 0.7391128909

x0 := 0.7390851334

x0 := 0.7390851332

A Shift Operator
Consider the problem of writing a procedure that takes a function, f , as
input and returns a function, g, such that g(x) = f(x+1). You can write
such a procedure in the following manner.

> shift := (f::procedure) -> (x->f(x+1)):

Try performing a shift on sin(x).

> shift(sin);

x → sin(x+ 1)

Maple lexical scoping rules declare the f within the inner procedure
to be the same f as the parameter within the outer procedure. Therefore,
the shift command works as written.

The previous example of shift works with univariate functions but
it does not work with functions of two or more variables.

> h := (x,y) -> x*y;

h := (x, y) → x y

> hh := shift(h);

18 • Chapter 1: Procedures, Variables, and Extending Maple

hh := x → h(x+ 1)

> hh(x,y);

Error, (in h) h uses a 2nd argument, y, which is
missing

Multivariate Functions To modify shift to work with multivariate
functions, rewrite it to accept the additional parameters.

In a procedure, args is the sequence of actual parameters, and
args[2..-1] is the sequence of actual parameters except the first one.
For more information on the selection operation ([]), refer to chapter 4
of the Introductory Programming Guide. It follows that the procedure
x->f(x+1,args[2..-1]) passes all its arguments except the first directly
to f .

> shift := (f::procedure) -> (x->f(x+1, args[2..-1])):

> hh := shift(h);

hh := x → h(x+ 1, args2..−1)

> hh(x,y);

(x+ 1) y

The function hh depends on h; if you change h, you implicitly change
hh;

> h := (x,y,z) -> y*z^2/x;

h := (x, y, z) → y z2

x

> hh(x,y,z);

y z2

x+ 1

1.3 Local Variables and Invoking Procedures • 19

1.3 Local Variables and Invoking Procedures

Local variables are local to a procedure and to an invocation of that
procedure. Calling a procedure creates and uses new local variables each
time. If you invoke the same procedure twice, the local variables it uses
the second time are distinct from those it used the first time.

Local variables do not necessarily disappear when the procedure exits.
You can write procedures which return a local variable, either explicitly or
implicitly, to the interactive session, where it can exist indefinitely. These
variables are called escaped local variables. This concept can be confusing,
particularly since they can have the same name as global variables, or local
variables which another procedure or a different call to the same procedure
created. You can create many distinct variables with the same name.

Example 1
The following procedure creates a new local variable, a, and then returns
this new variable.

> make_a := proc()
> local a;
> a;
> end proc;

make_a := proc() local a; a end proc

By using local variables, you can produce displays that Maple would
otherwise simplify. For example, in Maple, a set contains unique elements.
The following demonstrates that each variable a that make_a returns is
unique.

> test := { a, a, a };

test := {a}

> test := test union { make_a() };

test := {a, a}

> test := test union { ’make_a’()$5 };

test := {a, a, a, a, a, a, a}

20 • Chapter 1: Procedures, Variables, and Extending Maple

This demonstrates that Maple identities consist of more than names.

Important: Independent of the number of variables you create with
the same name, when you type a name in an interactive session, Maple
interprets that name to be a global variable . You can easily find the
global a in the previous set test.

> seq(evalb(i=a), i=test);

true , false , false , false , false , false , false

Example 2
You can display expressions that Maple would ordinarily simplify au-
tomatically. For example, Maple automatically simplifies the expression
a + a to 2a. It is difficult to display the equation a + a = 2a. To display
such an equation, use the procedure make_a from Example 1.

> a + make_a() = 2*a;

a+ a = 2 a

When you type a name in an interactive session, the Maple program
interprets it as the global variable. While this prevents you from using
the assignment statement to directly assign a value to an escaped local
variable, it does not prevent you from using the assign command. You
must write a Maple expression which extracts the variable. For example,
in the previous equation, you can extract the local variable a by removing
the global a from the left side of the equation.

> eqn := %;

eqn := a+ a = 2 a

> another_a := remove(x->evalb(x=a), lhs(eqn));

another_a := a

You can then assign the global name a to this extracted variable and
verify the equation.

1.3 Local Variables and Invoking Procedures • 21

> assign(another_a = a);
> eqn;

2 a = 2 a

> evalb(%);

true

Assume Facility For complicated expressions, you must use the assume

command to extract the desired variable. You may have encountered this
situation before without realizing it, when you were using the assume

facility to remove an assumption. The assume facility attaches various
definitions to the variable you specify, with one result being that the
name subsequently appears as a local name with an appended tilde. No
relationship exists between the local variable b with an assumption, which
is displayed as b~, and the global variable name containing a tilde b~.

> assume(b>0);
> x := b + 1;

x := b~ + 1

> subs(‘b~‘=c, x);

b~ + 1

When you clear the definition of the named variable, the association
between the name and the local name with the tilde is lost, but expressions
created with the local name still contain it.

> b := evaln(b);

b := b

> x;

b~ + 1

To reuse the expression, you must either perform a substitution before
removing the assumption or perform some manipulations of the expres-
sions similar to those used for the equation eqn.

22 • Chapter 1: Procedures, Variables, and Extending Maple

Procedure as a Returned Object
An important use for returning local objects arises when the returned
object is a procedure. When you write a procedure, which returns a pro-
cedure, you will often find it useful to have the procedure create a variable
that holds information pertinent only to the returned procedure. This al-
lows different procedures (or different invocations of the same procedure)
to pass information among themselves. The following examples illustrate
how different procedures pass information.

Example 3
Creating the Cartesian Product of a Sequence of Sets When you pass
a sequence of sets to the procedure, it constructs a new procedure. The
new procedure returns the next term in the Cartesian product each time
you invoke it. Local variables from the outer procedure are used to keep
track of which term to return next.

The Cartesian product of a sequence of sets is the set of all lists
in which the ith entry is an element of the ith set. Thus, the Cartesian
product of {α, β, γ} and {x, y} is

{α, β, γ} × {x, y} = {[α, x], [β, x], [γ, x], [α, y], [β, y], [γ, y]}.

The number of elements in the Cartesian product of a sequence of sets
grows very rapidly as the number of sets or size of the sets increases. It
therefore requires a large amount of memory to store all the elements of
the Cartesian product.

Solution You must write a procedure that returns a new element of the
Cartesian product each time you call it. By calling such a procedure re-
peatedly, you can process every element in the Cartesian product without
storing all its elements at once.

The following procedure returns the next element of the Cartesian
product of the list of sets s. It uses an array, c, of counters to determine
the next element. For example, c[1]=3 and c[2]=1 correspond to the
third element of the first set and the first element of the second set.

> s := [{alpha, beta, gamma}, {x, y}];

s := [{γ, α, β}, {x, y}]

> c := array(1..2, [3, 1]);

c := [3, 1]

1.3 Local Variables and Invoking Procedures • 23

> [seq(s[j][c[j]], j=1..2)];

[β, x]

Before you call the element procedure you must initialize all the coun-
ters to 1, except the first one, which must be 0.

> c := array([0, 1]);

c := [0, 1]

In following procedure element, nops(s) is the number of sets and
nops(s[i]) is the number of elements in the ith set. When you have seen
all the elements, the procedure re-initializes the array of counters and
returns FAIL. Therefore, you can repeatedly trace the Cartesian product
by calling element.

> element := proc(s::list(set), c::array(1, nonnegint))
> local i, j;
> for i to nops(s) do
> c[i] := c[i] + 1;
> if c[i] <= nops(s[i]) then
> return [seq(s[j][c[j]], j=1..nops(s))] ;
> end if;
> c[i] := 1;
> end do;
> c[1] := 0;
> FAIL;
> end proc:

> element(s, c); element(s, c); element(s, c);

[γ, x]

[α, x]

[β, x]

> element(s, c); element(s, c); element(s, c);

[γ, y]

[α, y]

[β, y]

24 • Chapter 1: Procedures, Variables, and Extending Maple

> element(s, c);

FAIL

> element(s, c);

[γ, x]

Example 4
Instead of writing a new procedure for each Cartesian product you study,
you can write a procedure, CartesianProduct, that returns such a pro-
cedure. CartesianProduct creates a list, s, of its arguments, which must
be sets, and then initializes the array, c, of counters and defines the sub-
procedure element. Finally, the element subprocedure is invoked inside
a proc structure.

> CartesianProduct := proc()
> local s, c, element;
> s := [args];
> if not type(s, list(set)) then
> error "expected a sequence of sets, but received",
> args ;
> end if;
> c := array([0, 1$(nops(s)-1)]);
>
> element := proc(s::list(set), c::array(1, nonnegint))
> local i, j;
> for i to nops(s) do
> c[i] := c[i] + 1;
> if c[i] <= nops(s[i]) then
> return [seq(s[j][c[j]], j=1..nops(s))] ;
> end if;
> c[i] := 1;
> end do;
> c[1] := 0;
> FAIL;
> end proc;
>
> proc()
> element(s, c);
> end proc;
> end proc:

Again, you can find all six elements of {α, β, γ} × {x, y}.
> f := CartesianProduct({alpha, beta, gamma}, {x,y});

1.3 Local Variables and Invoking Procedures • 25

f := proc() element(s, c) end proc

> to 7 do f() end do;

[γ, x]

[α, x]

[β, x]

[γ, y]

[α, y]

[β, y]

FAIL

You can use CartesianProduct to study several products simultane-
ously.

> g := CartesianProduct({x, y}, {N, Z, R},
> {56, 23, 68, 92});

g := proc() element(s, c) end proc

The following are the first few elements of {x, y} × {N,Z,R} ×
{56, 23, 68, 92}.

> to 5 do g() end do;

[x, N, 23]

[y, N, 23]

[x, Z, 23]

[y, Z, 23]

[x, R, 23]

The variables s in f and g are local variables to CartesianProduct,
so they are not shared by different invocations of CartesianProduct.
Similarly, the variable c in f and g is not shared. You can see that the
two arrays of counters are different by invoking f and g a few more times.

26 • Chapter 1: Procedures, Variables, and Extending Maple

> to 5 do f(), g() end do;

[γ, x], [y, R, 23]

[α, x], [x, N, 56]

[β, x], [y, N, 56]

[γ, y], [x, Z, 56]

[α, y], [y, Z, 56]

The element procedure in g is also local to CartesianProduct. There-
fore, you can change the value of the global variable element without
breaking g.

> element := 45;

element := 45

> g();

[x, R, 56]

Summary The previous examples demonstrate that local variables can
escape the bounds of the procedures which create them, and that escaped
variables allow you to write procedures which create specialized proce-
dures.

Exercises
1. The procedure that CartesianProduct generates does not work if one

of the sets is empty.

> f := CartesianProduct({}, {x,y});

f := proc() element(s, c) end proc

> f();

Error, (in element) invalid subscript selector

1.4 Interactive Input • 27

Improve the type-checking in CartesianProduct so that it generates
an informative error message in each such case.

2. A partition of a positive integer, n, is a list of positive integers whose
sum is n. The same integer can appear several times in the partition
but the order of the integers in the partition is irrelevant. Thus, the
following are all the partitions of 5:

[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 3], [1, 2, 2], [1, 4], [2, 3], [5].

Write a procedure that generates a procedure that returns a new
partition of n each time you call it.

1.4 Interactive Input

Normally you pass input to Maple procedures as parameters. Sometimes,
however, you need a procedure to request input directly from the user.
For example, you can write a procedure that tests students on some topic
by generating random problems and verifying the students’ answers. The
input can be the value of a parameter, or the answer to a question such as
whether a parameter is positive. The two commands in Maple for reading
input from the terminal are the readline command and the readstat

command.

Reading Strings from the Terminal
The readline command reads one line of text from a file or the keyboard.
Use the readline command as follows.

readline(filename)

If filename is the special name terminal, then readline reads a line
of text from the keyboard. The readline command returns the text as a
string.

> s := readline(terminal);

Maplesoft

s := “Maplesoft”

28 • Chapter 1: Procedures, Variables, and Extending Maple

Example 1
The following application prompts the user for an answer to a question.

> DetermineSign := proc(a::algebraic) local s;
> printf("Is the sign of %a positive? Answer yes or no: ",a);
> s := readline(terminal);
> evalb(s="yes" or s = "y");
> end proc:

> DetermineSign(u-1);

Is the sign of u-1 positive? Answer yes or no: y

true

Information: For more details on the readline command, see Read-
ing Text Lines from a File on page 197.

Reading Expressions from the Terminal
You can write procedures that interpret user input as a Maple expression
rather than a string. The readstat command reads one expression from
the keyboard.

readstat(prompt)

The prompt is an optional string.

> readstat("Enter degree: ");

Enter degree: n-1;

n− 1

The user input for a readstat command must have a terminating semi-
colon or colon, or an error is raised.

Advantages Unlike the readline command, which only reads one line,
the readstat allows you to break a large expression across multiple lines.
Another advantage of using the readstat command is that if there is
an error in the input, the readstat command automatically repeats the
prompt for user input.

1.4 Interactive Input • 29

> readstat("Enter a number: ");

Enter a number: 5^^8;

syntax error, ‘^‘ unexpected:

5^^8;

^

Enter a number: 5^8;

390625

Example 2
The following is an application of the readstat command that imple-
ments an interface to the limit command. The procedure, given the
function f(x), assumes x is the variable if only one variable is present.
Otherwise, the user is asked for the variable and the limit point.

> GetLimitInput := proc(f::algebraic)
> local x, a, K;
> # choose all variables in f
> K := select(type, indets(f), name);
>
> if nops(K) = 1 then
> x := K[1];
> else
> x := readstat("Input limit variable: ");
> while not type(x, name) do
> printf("A variable is required: received %a\n", x);
> x := readstat("Please re-input limit variable: ");
> end do;
> end if;
> a := readstat("Input limit point: ");
> x = a;
> end proc:

The expression sin(x)/x depends only on one variable, so GetLimitInput
does not prompt for a limit variable.

> GetLimitInput(sin(x)/x);

Input limit point: 0;

x = 0

30 • Chapter 1: Procedures, Variables, and Extending Maple

In the following output, the user first tries to use the number 1 as the
limit variable. Because 1 is not a name, GetLimitInput requests another
limit variable.

> GetLimitInput(exp(u*x));

Input limit variable: 1;

A variable is required: received 1

Please re-input limit variable: x;

Input limit point: infinity;

x = ∞

Information: You can specify a number of options to readstat. For
more information, see Reading Maple Statements on page 204.

Converting Strings to Expressions
For greater control of how and when Maple evaluates user input to a pro-
cedure, use the readline command instead of readstat. The readline

command reads the input as a string, and the parse command converts
the string to an expression. The string must represent a complete expres-
sion.

> s := "a*x^2 + 1";

s := “a*x^2 + 1”

> y := parse(s);

y := a x2 + 1

When you parse the string s you get an expression. In this case, you
get a sum.

> type(s, string), type(y, ‘+‘);

true , true

1.5 Extending Maple • 31

The parse command does not evaluate the expression it returns. You
must use eval to evaluate the expression explicitly. In the following out-
put, the variable a is not evaluted to its value, 2, until you explicitly use
the eval command.

> a := 2;

a := 2

> z := parse(s);

z := a x2 + 1

> eval(z);

2x2 + 1

Information: For more details about the parse command, see Parsing
Maple Expressions and Statements on page 218.

Summary The techniques in this section are very simple, but you can
use them to create useful applications such as Maple tutorials, procedures
that test students, or interactive lessons.

1.5 Extending Maple

Although it may be useful to write custom procedures to perform new
tasks, sometimes extending the abilities of Maple commands is most ben-
eficial. This section familiarizes you with:

• Defining custom types and operators

• Modifying how Maple displays expressions

• Extending commands such as simplify and expand.

Defining New Types
If you are using a complicated structured type, it is recommended that
you assign the structured type to a variable of the form ‘type/name‘.

32 • Chapter 1: Procedures, Variables, and Extending Maple

Writing the structure once reduces the risk of errors. When you have
defined the variable ‘type/name‘, you can use name as a type.

> ‘type/Variables‘ := {name, list(name), set(name)}:
> type(x, Variables);

true

> type({ x[1], x[2] }, Variables);

true

If the structured type mechanism is not powerful enough, you can
define a new type by assigning a procedure to a variable of the form
‘type/name‘. When you test whether an expression is of type name,
Maple invokes the procedure ‘type/name‘ on the expression if such a
procedure exists. The procedure should return true or false. The fol-
lowing ‘type/permutation‘ procedure determines if p is a permutation
of the first n positive integers. That is, p should contain exactly one copy
of each integer from 1 through n.

> ‘type/permutation‘ := proc(p)
> local i;
> type(p,list) and { op(p) } = { seq(i, i=1..nops(p)) };
> end proc:
> type([1,5,2,3], permutation);

false

> type([1,4,2,3], permutation);

true

The type-testing procedure can accept more than one parameter.
When you test if an expression, expr, has type name(parameters), then
Maple invokes

‘type/name‘(expr, parameters)

if such a procedure exists. The following ‘type/LINEAR‘ procedure de-
termines if f is a polynomial in V of degree 1.

1.5 Extending Maple • 33

> ‘type/LINEAR‘ := proc(f, V::name)
> type(f, polynom(anything, V)) and degree(f, V) = 1;
> end proc:

> type(a*x+b, LINEAR(x));

true

> type(x^2, LINEAR(x));

false

> type(a, LINEAR(x));

false

Exercises
1. Modify the ‘type/LINEAR‘ procedure so that you can use it to test

if an expression is linear in a set of variables. For example, x+ ay+1
is linear in both x and y, but xy + a+ 1 is not.

2. Define the type POLYNOM(X) which tests if an algebraic expression is
a polynomial in X where X is a name, a list of names, or a set of
names.

Neutral Operators
The Maple software recognizes many operators, for example +, *, ^, and,
not, and union. These operators have special meaning to Maple. The
operators can represent:

• Algebraic operations, such as addition or multiplication

• Logical operations

• Operations performed on sets

Maple also has a special class of operators, the neutral operators ,
on which it does not impose any meaning. Instead, Maple allows you
to define the meaning of any neutral operator. The name of a neutral
operator begins with the ampersand character (&).

> 7 &^ 8 &^ 9;

34 • Chapter 1: Procedures, Variables, and Extending Maple

(7&^ 8)&^ 9

> evalb(7 &^ 8 = 8 &^ 7);

false

> evalb((7&^8)&^9 = 7&^(8&^9));

false

Internally, Maple represents neutral operators as procedure calls.
Thus, 7&^8 is a convenient way of writing &^(7,8).

> &^(7, 8);

7&^ 8

Maple uses the infix notation, in which the operator is placed between
the operands, only if the neutral operator has exactly two arguments.

> &^(4), &^(5, 6), &^(7, 8, 9);

&^(4), 5&^ 6, &^(7, 8, 9)

Information: For more information on naming conventions for neutral
operators, refer to chapter 3 of the Introductory Programming Guide.

Example 1
You can define the actions of a neutral operator by assigning a proce-
dure to its name. The following example implements the Hamiltonians by
assigning a neutral operator to a procedure that multiplies two Hamilto-
nians.

Mathematical Premise The Hamiltonians or Quaternions extend the
complex numbers in the same way the complex numbers extend the real
numbers. Each Hamiltonian has the form a + bi + cj + dk where a, b,
c, and d are real numbers. The special symbols i, j, and k satisfy the
following multiplication rules: i2 = −1, j2 = −1, k2 = −1, ij = k,
ji = −k, ik = −j, ki = j, jk = i, and kj = −i.

1.5 Extending Maple • 35

The following ‘&^‘ procedure uses I, J , and K as the three special
symbols. However, I is implemented as the complex imaginary unit in
Maple. Therefore, you should assign another letter to represent the imag-
inary unit by using the interface function. For more information, refer
to ?interface.

> interface(imaginaryunit=j);

You can multiply many types of expressions by using ‘&^‘, making it
convenient to define a new type, Hamiltonian, by assigning a structured
type to the name ‘type/Hamiltonian‘.

> ‘type/Hamiltonian‘ := { ‘+‘, ‘*‘, name, realcons,
> specfunc(anything, ‘&^‘) };

type/Hamiltonian :=

{∗, +, realcons , name , specfunc(anything , &^)}
The ‘&^‘ procedure multiplies the two Hamiltonians, x and y. If either

x or y is a real number or variable, then their product is the usual product
denoted by * in Maple. If x or y is a sum, ‘&^‘ maps the product onto the
sum; that is, ‘&^‘ applies the distributive laws: x(u+ v) = xu+ xv and
(u+ v)x = ux+ vx. If x or y is a product, ‘&^‘ extracts any real factors.
You must take special care to avoid infinite recursion when x or y is a
product that does not contain real factors. If none of the multiplication
rules apply, ‘&^‘ returns the product unevaluated.

> ‘&^‘ := proc(x::Hamiltonian, y::Hamiltonian)
> local Real, unReal, isReal;
> isReal := z -> evalb(is(z, real) = true);
>
> if isReal(x) or isReal(y) then
> x * y;
>
> elif type(x, ‘+‘) then
> # x is a sum, u+v, so x&^y = u&^y + v&^y.
> map(‘&^‘, x, y);
>
> elif type(y, ‘+‘) then
> # y is a sum, u+v, so x&^y = x&^u + x&^v.
> map2(‘&^‘, x, y);
>
> elif type(x, ‘*‘) then
> # Pick out the real factors of x.
> Real, unReal := selectremove(isReal, x);
> # Now x&^y = Real * (unReal&^y)
> if Real=1 then
> if type(y, ‘*‘) then

36 • Chapter 1: Procedures, Variables, and Extending Maple

> Real, unReal := selectremove(isReal, x);
> Real * ’‘&^‘’(x, unReal);
> else
> ’‘&^‘’(x, y);
> end if;
> else
> Real * ‘&^‘(unReal, y);
> end if;
>
> elif type(y, ‘*‘) then
> # Similar to the x-case but easier since
> # x cannot be a product here.
> Real, unReal := selectremove(isReal, y);
> if Real=1 then
> ’‘&^‘’(x, y);
> else
> Real * ‘&^‘(x, unReal);
> end if;
>
> else
> ’‘&^‘’(x,y);
> end if;
> end proc:

You can place all the special multiplication rules for the symbols I,
J , and K in the remember table of ‘&^‘.

Information: For more information on remember tables, refer to chap-
ter 6 of the Introductory Programming Guide.

> ‘&^‘(I,I) := -1: ‘&^‘(J,J) := -1: ‘&^‘(K,K) := -1:
> ‘&^‘(I,J) := K: ‘&^‘(J,I) := -K:
> ‘&^‘(I,K) := -J: ‘&^‘(K,I) := J:
> ‘&^‘(J,K) := I: ‘&^‘(K,J) := -I:

Since ‘&^‘ is a neutral operator, you can write products of Hamilto-
nians using &^ as the multiplication symbol.

> (1 + 2*I + 3*J + 4*K) &^ (5 + 3*I - 7*J);

20 + 41 I + 20 J − 3K

> (5 + 3*I - 7*J) &^ (1 + 2*I + 3*J + 4*K);

20− 15 I − 4J + 43K

> 56 &^ I;

1.5 Extending Maple • 37

56 I

In the following example, a is an unknown Hamiltonian until you enter
the assumption that a is an unknown real number.

> a &^ J;

a&^ J

> assume(a, real);
> a &^ J;

a~J

Exercise
1. The inverse of a general Hamiltonian, a+ bi+ cj+dk, is (a− bi− cj−

dk)/(a2 + b2 + c2 + d2). You can demonstrate this fact by assuming
that a, b, c, and d are real and define a general Hamiltonian, h.

> assume(a, real); assume(b, real);

> assume(c, real); assume(d, real);

> h := a + b*I + c*J + d*K;

h := a~ + b~ I + c~J + d ~K

By the formula above, the following should be the inverse of h.

> hinv := (a-b*I-c*J-d*K) / (a^2+b^2+c^2+d^2);

hinv :=
a~− b~ I − c~J − d ~K

a~2 + b~2 + c~2 + d ~2

Check that h &^ hinv and hinv &^ h simplify to 1.

> h &^ hinv;

38 • Chapter 1: Procedures, Variables, and Extending Maple

a~ (a~− b~ I − c~J − d ~K)

%1

+
b~ (I a~ + b~− c~K + d ~J)

%1

+
c~ (J a~ + b~K + c~− d ~ I)

%1

+
d ~ (K a~− b~J + c~ I + d ~)

%1

%1 := a~2 + b~2 + c~2 + d ~2

> simplify(%);

1

> hinv &^ h;

a~ (a~− b~ I − c~J − d ~K)

%1

+
a~ b~ I + b~2 + b~ c~K − b~ d ~J

%1

+
a~ c~J − b~ c~K + c~2 + c~d ~ I

%1

+
a~d ~K + b~d ~J − c~d ~ I + d ~2

%1

%1 := a~2 + b~2 + c~2 + d ~2

> simplify(%);

1

Write a procedure, ‘&/‘, that computes the inverse of a Hamiltonian.
It is recommended that you implement the following rules.

&/(&/x) = x, &/(x&^y) = (&/y) &^ (&/x),
x &^ (&/x) = 1 = (&/x) &^ x.

1.5 Extending Maple • 39

Extending Commands
If you introduce custom data structures, there are no manipulation rules
for them. In most cases, you write special-purpose procedures that manip-
ulate new data structures. However, sometimes extending the capabilities
of one or more of the Maple built-in commands is easier than develop-
ing new data structures and special-purpose procedures. You can extend
several Maple commands, among them expand, simplify, diff, series,
and evalf.

Extending the Diff Command You can represent a polynomial anu
n+

an−1u
n−1 + · · ·+ a1u+ a0 by using the data structure

POLYNOM(u, a_0, a_1, ..., a_n)

You can then extend the diff command so that you can differentiate
polynomials represented in that way. If you write a procedure with a
name of the form ‘diff/F‘ then diff invokes it on any unevaluated
calls to F. Specifically, if you use diff to differentiate F(arguments)

with respect to x, then diff invokes ‘diff/F‘ as follows.

‘diff/F‘(arguments, x)

The following procedure differentiates a polynomial in u with constant
coefficients with respect to x.

> ‘diff/POLYNOM‘ := proc(u)
> local i, s, x;
> x := args[-1];
> s := seq(i*args[i+2], i=1..nargs-3);
> ’POLYNOM’(u, s) * diff(u, x);
> end proc:

> diff(POLYNOM(x, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), x);

POLYNOM(x, 1, 2, 3, 4, 5, 6, 7, 8, 9)

> diff(POLYNOM(x*y, 34, 12, 876, 11, 76), x);

POLYNOM(x y, 12, 1752, 33, 304) y

40 • Chapter 1: Procedures, Variables, and Extending Maple

Extending the simplify Command The implementation of the Hamil-
tonians in this section 1.5 does not include the associative rule for multipli-
cation of Hamiltonians, that is (xy)z = x(yz). Sometimes, using associa-
tivity simplifies a result. Recall that I here is not the complex imaginary
unit, but rather, one of the special symbols I, J , and K that are part of
the definition of the Hamiltonians.

> x &^ I &^ J;

(x&^ I)&^J

> x &^ (I &^ J);

x&^K

You can extend the simplify command so that it applies the as-
sociative law to unevaluated products of Hamiltonians. If you write a
procedure with a name of the form ‘simplify/F‘, then simplify in-
vokes it on any unevaluated function calls to F. Thus, you must write a
procedure ‘simplify/&^‘ that applies the associative law to Hamiltoni-
ans.

The following procedure uses the typematch command to determine
if its argument is of the form (a&^b)&^c and, if so, it selects the a, b,
and c.

> s := x &^ y &^ z;

s := (x&^ y)&^ z

> typematch(s, ’‘&^‘’(’‘&^‘’(a::anything, b::anything),
> c::anything));

true

> a, b, c;

x, y, z

1.5 Extending Maple • 41

The userinfo Command You can give the user details about procedure
simplifications using the userinfo command. The ‘simplify/&^‘ pro-
cedure prints an informative message if you set infolevel[simplify] or
infolevel[all] to greater than or equal to least 2.

> ‘simplify/&^‘ := proc(x)
> local a, b, c;
> if typematch(x,
> ’‘&^‘’(’‘&^‘’(a::anything, b::anything),
> c::anything)) then
> userinfo(2, simplify, "applying the associative law");
> a &^ (b &^ c);
> else
> x;
> end if;
> end proc:

Applying the associative law simplifies some products of Hamiltoni-
ans.

> x &^ I &^ J &^ K;

((x&^ I)&^J)&^K

> simplify(%);

−x

If you set infolevel[simplify] to a sufficiently large value, Maple
prints information on the methods used by simplify while attempting to
simplify the expression.

> infolevel[simplify] := 5;

infolevel simplify := 5

> w &^ x &^ y &^ z;

((w&^x)&^ y)&^ z

> simplify(%);

simplify/&^: "applying the associative law"
simplify/&^: "applying the associative law"

42 • Chapter 1: Procedures, Variables, and Extending Maple

w&^ ((x&^ y)&^ z)

Information: For details on how to extend these commands, refer to
?expand, ?series, and ?evalf. For information on extending the evalf

command, see also 4.4 Extending the evalf Command.

1.6 Conclusion

Procedures which return procedures and local variables are fundamental
to advanced programming. Interactive input and extending Maple are also
important topics in advanced programming.

2 Programming with
Modules

Procedures allow you to associate a sequence of commands with a single
command. Similarly, modules allow you to associate related procedures
and data.

Modules

This chapter describes Maple modules. Modules are a type of Maple ex-
pression (like numbers, equations, and procedures), that enable you to
write generic algorithms, create packages, or use Pascal-style records in
programs.

The use of modules satifies four important software engineering concepts.

• Encapsulation

• Packages

• Object Modeling

• Generic Programming

Encapsulation guarantees that an abstraction is used only according to
its specified interface. You can write significant software systems that are
transportable and reusable and that offer clean, well-defined user inter-
faces. This makes code easier to maintain and understand—important
properties for large software systems.

Packages are a vehicle for bundling Maple procedures related to a prob-
lem domain. Much of the functionality of the standard Maple library
resides in packages.

43

44 • Chapter 2: Programming with Modules

Objects are easily represented using modules. In software engineering
or object-oriented programming, an object is defined as something that
has both state and behavior. You compute with objects by sending them
messages, to which they respond by performing services.

Generic Programs accept objects that possess specific properties or be-
haviors. The underlying representation of the object is transparent to
generic programs.

Examples
For better understanding, it is helpful to examine a small module.

Example 1: Simple Module When Maple evaluates the right side of
the assignment to TempGenerator, it creates a module using the module
definition that begins with module()... and ends with end module.

> TempGenerator := module()
> description "generator for temporary symbols";
> export gentemp;
> local count;
>
> count := 0;
> gentemp := proc()
> count := 1 + count;
> ‘tools/gensym‘(T || count)
> end proc;
> end module;

TempGenerator := module()

local count ;
export gentemp;

description “generator for temporary symbols”;

end module

Example Summary The module definition resembles a procedure defi-
nition. The main differences are the use of the keyword module instead
of proc (and the corresponding terminator) and the export declaration
following the description string.

Example 2: Procedure In the following example, the previous module
is written using only procedures.

> TempGeneratorProc := proc()
> description "generator for temporary symbols";
> local count, gentemp;
> count := 0;

• 45

> gentemp := proc()
> count := 1 + count;
> ‘tools/gensym‘(T || count)
> end proc;
> eval(gentemp, 1)
> end proc:

You can assign the procedure returned by TempGeneratorProc, and
then use it to generate temporary symbols.

> f := TempGeneratorProc();

f := proc()

count := 1 + count ; ‘tools/gensym‘(T ||count)
end proc

> f();

T1

> f();

T2

Module Versus Procedure
The module TempGenerator and the procedure TempGeneratorProc are
similar.

In the procedure version, the local variable gentemp is assigned a pro-
cedure that references another local variable count; the value of gentemp
is returned by the procedure to its caller. The module version of the
generator behaves similarly. Its structure differs: its gentemp variable is
declared as an export, not a local, and there is no explicit return.

In both versions of the generator, the variables count and gentemp

are local variables. The significant difference here is that, in the module
version, one of those local variables is exported. This means that it
is available outside the scope of the structure in which it was created.
Special syntax is used access exported local variables. For example, to
call the exported variable gentemp of the module, enter

> TempGenerator:-gentemp();

T1

46 • Chapter 2: Programming with Modules

using the member selection operator :-. A module definition returns a
data structure (a module) that contains all of its exported local variables.

Accessing Module Exports
The use statement allows you to access module exports.

> use TempGenerator in
> gentemp();
> gentemp();
> gentemp();
> end use;

T2

T3

T4

Within the body of a use statement, the exported local variables of
the module that appears after the use keyword can be accessed directly,
without using the member selection operator :-.

In This Chapter
This chapter provides many example modules. Some examples are very
simple, designed to illustrate a specific point. Others are more substantial.
Many of the nontrivial examples are available as Maple source code in the
samples directory of the Maple installation. You can load them into the
private Maple library and experiment with them. You can modify, extend,
and improve these code samples, and use them in custom programs.

The following topics are covered in this chapter.

• Syntax and Semantics

• Using Modules as Records or Structures

• Using Modules To Write Maple Packages

• The use Statement

• Modeling Objects

• Interfaces and Implementations

2.1 Syntax and Semantics • 47

2.1 Syntax and Semantics

The syntax of module definitions is very similar to that of procedures,
given in chapter 6 of the Introductory Programming Guide. Here is an
example of a simple module definition.

> module()
> export e1;
> local a, b;
>
> a := 2;
> b := 3;
> e1 := x -> a^x/b^x;
> end module:

Evaluating this expression results in a module with one export, e1, and
two local variables, a and b.

A template for a module definition looks like:

module()

local L;

export E;

global G;

options O;

description D;

B

end module

The simplest valid module definition is

> module() end;

module() end module

This module definition does not have: exported variables, locals, ref-
erences, global variables, or a body of statements. The module to which
this evaluates is not very useful.

The Module Definition
Every module definition begins with the keyword module, followed by
an empty pair of parentheses. Following that is an optional declaration
section and the module body. The keyword combination end module (or
just end) terminates a module definition.

48 • Chapter 2: Programming with Modules

The Module Body
The body of a module definition consists of the following.

• Zero or more Maple statements. The body is executed when the mod-
ule definition is evaluated, producing a module.

• A number of assignment statements that give values to the exported
names of the module.

The body of a module definition can also contain:

• Assignments to local variables, and performance of arbitrary compu-
tations.

• A return statement, but cannot contain a break or next statement
outside a loop. Executing a return statement terminates the execu-
tion of the body of the module definition.

Module Parameters
Module definitions begin with the Maple keywordmodule, followed by an
(empty) pair of parentheses. This is similar to the parentheses that follow
the proc keyword in a procedure definition. Unlike procedures, however,
module definitions do not have explicit parameters because modules are
not called (or invoked) with arguments.

Implicit Parameters Every module definition has an implicit parameter
called thismodule. Within the body of a module definition, this special
name evaluates to the module in which it occurs. This allows you to refer
to a module within its own definition (before the result of evaluating it
has been assigned to a name).

All procedure definitions can reference the implicit parameters proc-
name, args, and nargs. Module definitions cannot reference these im-
plicit parameters. Additionally, the difference between thismodule and
procname is that procname evaluates to a name, while thismodule
evaluates to the module expression itself. This is because the invocation
phase of evaluating a module definition is part of its normal evaluation,
and it occurs immediately. Procedures, on the other hand, are not invoked
until called with arguments. Normally, at least one name for a procedure
is known by the time it is called; this is not the case for modules.

Named Modules
An optional symbol may appear after the module keyword in a mod-
ule definition. Modules created with this variant on the syntax are called

2.1 Syntax and Semantics • 49

named modules . Semantically, named modules are nearly identical to
normal modules, but the exported members of named modules are printed
differently, allowing the module from which it was exported to be identi-
fied visually.

> NormalModule := module() export e; end;

NormalModule := module() export e; end module

> NormalModule:-e;

e

Here, the symbol (the name of the module) after themodule keyword
is NamedModule.

> module NamedModule() export e; end module;

moduleNamedModule () export e; end module

> NamedModule:-e;

NamedModule : −e

When the definition of a named module is evaluated, the name (which
appears immediately after the module keyword) is assigned the module
as its value, and the name is protected. Therefore, a named module can,
ordinarily, be created only once. For example, an attempt to execute the
same named module definition yields an error.

> module NamedModule() export e; end module;

Error, (in NamedModule) attempting to assign to
‘NamedModule‘ which is protected

Executing the normal module definition again creates a new in-
stance of the module, but does not result in an error. (It simply reassigns
the variable NormalModule to the new module instance.)

> NormalModule := module() export e; end;

NormalModule := module() export e; end module

50 • Chapter 2: Programming with Modules

Important Do not assign a named module to another variable.

> SomeName := eval(NamedModule);

SomeName :=
moduleNamedModule () export e; end module

> SomeName:-e;

NamedModule : −e

Exports of named modules are printed using the distinguished name
that was given to the module when it was created, regardless of whether
it has been assigned to another name.

Whether a module has a name also affects the reporting of errors
that occur during its evaluation. When the second attempt to evaluate
the named module definition above failed, the error message reported the
location of the error by name. By contrast, when an error occurs during
the evaluation of a normal module definition, the name unknown is used
instead.

> NormalModule := module() export e; error "oops"; end;

Error, (in unknown) oops

This differs from procedure error reporting. Maple cannot report
the name of a normal module (that is, the name of the variable to which
the module is assigned), because the evaluation of the right side of an
assignment occurs before the assignment to the name takes place. So the
error occurs before any association between a variable and the module
has occurred.

Declarations
The declarations section of the module must appear immediately after
the parentheses. All statements in the declarations section are optional,
but at most one of each kind may appear. Most module declarations are
the same as those for procedures.

Description Strings Provide a brief description outlining the purpose
and function of any module you write. It is valuable to other users who
read your code. Include an overview after the description keyword, just
as you would in a procedure definition.

2.1 Syntax and Semantics • 51

> Hello := module()
> description "my first module";
> export say;
> say := proc()
> print("HELLO WORLD")
> end proc;
> end module:

When the module is printed, its description string is displayed.

> eval(Hello);

module()
export say ;
description “my first module”;

end module

The export declaration is explained later in this chapter.

Global Variables Global variables referenced within a module definition
should be declared with the global declaration. Following the keyword
global is a sequence of one or more symbols. These symbols are bound
to their global instances. In certain cases you must declare a name as a
global variable to prevent implicit scoping rules from making it local.

> Hello := module()
> export say;
> global message;
> say := proc()
> message := "HELLO WORLD!"
> end proc;
> end module:
> message;

message

> Hello:-say();

“HELLO WORLD!”

> message;

“HELLO WORLD!”

52 • Chapter 2: Programming with Modules

Local Variables You can refer to variables that are local to the module
definition by using the local declaration. Its format is the same as for
procedures. Here is a variant on the previous Hello module which uses a
local variable.

> Hello := module()
> local loc;
> export say;
> loc := "HELLO WORLD!";
> say := proc()
> print(loc)
> end proc;
> end module:

Local variables are not visible outside the definition of the module
in which they occur. They are private to the module, and are exactly
analogous to local variables of procedures.

A local variable in a module (or procedure) is a distinct object from
a global variable with the same name. Local variables are normally short-
lived variables; the normal lifetime of a local variable is the execution time
of the body of code (a module or procedure body) to which it is local.
(Local variables may persist once execution of the scope in which they oc-
cur has completed, but they are normally inaccessable and will eventually
be recycled by the Maple automatic storage management system.)

Exported Local Variables
Procedures and modules both support local variables. Only modules sup-
port exported local variables, often referred to simply as exports.

Module exports are declared using the export declaration. It begins
with the keyword export, after which follows a (nonempty) sequence of
symbols. A name is never exported implicitly; exports must be declared.

The result of evaluating a module definition is a module. You can
view a module as a collection of its exports, which are also referred to
as members of the module. These are simply names that can (but need
not) be assigned values. You can establish initial values for the exports
by assigning to them in the body of the module definition.

The word export is short for exported local variable. In most respects,
a module export is a local variable (such as those declared via the local
declaration.) The crucial difference is that you can access the exported
local variables of a module after it has been created.

To access an export of a module, use the :- member selection opera-
tor. Its general syntax is:

2.1 Syntax and Semantics • 53

modexpr :- membername

Here, modexpr must be an expression that evaluates to a module, and
membername must be the name of an export of the module to which
modexpr evaluates. Anything else signals an exception. You cannot ac-
cess local variables of an instantiated module by using this syntax.

Local variables of a procedure are created when the procedure is called
(or invoked). Normally, the locals persist only during the execution of the
statements that form the body of the procedure. Sometimes, however,
local variables persist beyond the procedure activation that instantiated
them. For example:

> gen := proc()
> local s, p;
> s := 2;
> p := x -> s * x;
> p
> end proc:
> g := gen();

g := p

> g(3);

6

The local variable s of gen persists after gen has returned. It is cap-
tured in the closure of the procedure p, whose name is returned by gen.
Thus, both local variables p and s of gen escape, but in different ways.
The local name p is accessible because it is the assigned value of the
global variable g. However, there is no way to refer to s once gen has
returned. No Maple syntax exists for that purpose. The member selection
operator :- provides a syntax for referencing certain local variables of
modules–those declared as exports.

The most recent Hello example has one export, named say. In this
case, say is assigned a procedure. To call it, enter

> Hello:-say();

“HELLO WORLD!”

The following expression raises an exception, because the name
noSuchModule is not assigned a module expression.

54 • Chapter 2: Programming with Modules

> noSuchModule:-e;

Error, ‘noSuchModule‘ does not evaluate to a module

Here, a module expression is assigned to the name m, and the
member selection expression m:-e evaluates to the value of the exported
variable e of m.

> m := module() export e; e := 2 end module:
> m:-e;

2

Since m does not export a variable named noSuchExport, the following
expression raises an exception.

> m:-noSuchExport;

Error, module does not export ‘noSuchExport‘

Important The following module exports an unassigned name. This
illustrates the importance of distinguishing module exports from global
variables.

> m := module() export e; end:

References to the exported name e in m evaluate to the name e.

> m:-e;

e

Note, however, that this is a local name e, not the global instance of
the name.

> evalb(e = m:-e);

false

The first e in the previous expression refers to the global e, while the
expression m:-e evaluates to the e that is local to the module m. This
distinction between a global and export of the same name is useful. For
example, you can create a module with an export sin. Assigning a value
to the export sin does not affect the protected global name sin.

2.1 Syntax and Semantics • 55

The exports Procedure You can determine the names of the exports
of a module by using the exports procedure.

> exports(Hello);

say

> exports(NormalModule);

e

This returns the global instances of the export names.

> exports(m);

e

> evalb(% = e);

true

You can also obtain the local instances of those names by passing the
option instance.

> exports(m, ’instance’);

e

> evalb(% = e);

false

> evalb(%% = m:-e);

true

For this reason, you cannot have the same name declared both as a
local and an export.

> module() export e; local e; end;

Error, export and local ‘e‘ have the same name

56 • Chapter 2: Programming with Modules

(The declared exports and locals actually form a partition of the
names that are local to a module.)

The member Procedure You have already seen the built-in procedure
member that is used to test for membership in a set or list.

> member(4, { 1, 2, 3 });

false

This procedure can be used for membership tests in modules as well.

> member(say, Hello);

true

> member(cry, Hello);

false

The first argument is a (global) name whose membership is to be
tested, and the second argument is a module. It returns the value true if
the module has an export whose name is the same as the first argument.

The procedure member also has a three argument form that can be
used with lists to determine the (first) position at which an item occurs.

> member(b, [a, b, c], ’pos’);

true

The name pos is now assigned the value 2 because b occurs at the
second position of the list [a, b, c].

> pos;

2

When used with modules, the third argument is assigned the local
instance of the name whose membership is being tested, provided that
the return value is true.

> member(say, Hello, ’which’);

2.1 Syntax and Semantics • 57

true

> which;

say

> eval(which);

proc() print(loc) end proc

If the return value from member is false, then the name remains
unassigned (or maintains its previously assigned value).

> unassign(’which’):
> member(cry, Hello, ’which’);

false

> eval(which);

which

Module Options
As with procedures, a module definition may contain options. The op-
tions available for modules are different from those for procedures. Only
the options trace, and ‘Copyright...‘ are common to procedures and
modules. The following four options have a predefined meaning for mod-
ules: load, unload, package, and record.

The load and unload Options The module initialization option is
load= pname where pname is the name of a procedure in the declared
exports or locals of the module. If this option is present, then the pro-
cedure is called when the module is read from the Maple repository in
which it is found. The unload = pname option specifies the name of a
local or exported procedure of the module that is called when the module
is destroyed. A module is destroyed either when it is no longer accessible
and is garbage collected, or when Maple exits.

There is a situation that can arise wherein a module is no longer
accessible, and hence subject to garbage collection before the unload=
procedure is executed, but becomes accessible again during the execution

58 • Chapter 2: Programming with Modules

of that procedure. In that case, the module is not garbage collected. When
it eventually is garbage collected or Maple exits, the unload= procedure
is not executed again. The load= and unload= procedures are called
with no arguments.

The package Option Modules with the option package represent Maple
packages. The exports of a module created with the package option are
automatically protected.

The record Option The record option is used to identify records.
Records are produced by the Record constructor and are represented
using modules.

Implicit Scoping Rules
The bindings of names that appear within a module definition are deter-
mined when the module definition is simplified. Module definitions are
subject to the same implicit scoping rules that procedure definitions are.
Under no circumstances is a name ever implicitly determined to be ex-
ported by a module; implicitly scoped names can resolve only to locals or
globals.

Lexical Scoping Rules
Module definitions, along with procedure definitions, obey standard lex-
ical scoping rules. Modules may be nested, in the sense that a module
may have any of its exports assigned to a module whose definition occurs
within the body of the outer module.

Here is a simple example of a submodule.

> m := module()
> export s;
> s := module()
> export e;
> e := proc()
> print("HELLO WORLD!")
> end proc;
> end module
> end module:

The global name m is assigned a module that exports the name s. Within
the body of m, the export s is assigned a module that exports the name
e. As such, s is a submodule of m. The Shapes package, described later,
illustrates a nontrivial use of submodules.

Modules and procedures can be mutually nested to an arbitrary depth.
The rules for the visibility of local variables (including exported locals of

2.1 Syntax and Semantics • 59

modules) and procedure parameters are the same as the rules for nested
procedures.

Parameterized Modules Modules do not take explicit parameters. You
can write a generic module that could be specialized by providing one or
more parameters.

For example, here is a module for arithmetic modulo 6.

> z6 := module()
> export add, mul;
> add := (a, b) -> a + b mod 6;
> mul := (a, b) -> a * b mod 6;
> end module:
> z6:-add(5, 4);

3

> z6:-mul(2, 3);

0

You can write a generic module for arithmetic modulo any positive
integer n, and then specialize it for any integer that you need. This is
possible as a result of the standard lexical scoping rules. You must write
a constructor procedure for the module that accepts the value of n as
an argument. Here is a generic version of the z6 example.

> MakeZn := proc(n::posint)
> module()
> export add, mul;
> add := (a, b) -> a + b mod n;
> mul := (a, b) -> a * b mod n;
> end module
> end proc:

To generate a module that does arithmetic modulo 7, call the constructor
MakeZn with the number 7 as its argument.

> z7 := MakeZn(7);

z7 := module() exportadd , mul ; end module

> z7:-add(3, 4);

0

60 • Chapter 2: Programming with Modules

Modules and Types
Two Maple types are associated with modules. First, the name module
is a type name. Naturally, an expression is of type module only if it is a
module. When used as a type name, the name module must be enclosed
in name quotes (‘).

> type(module() end, ’‘module‘’);

true

> type(LinearAlgebra, ’‘module‘’);

true

Secondly, a type called moduledefinition identifies expressions that
are module definitions. In the previous example, the module definition

> module() end:

was evaluated before being passed to type, so the expression that was
tested was not the definition, but the module to which it evaluates. You
must use unevaluation quotes (’) to delay the evaluation of a module
definition.

> type(’module() end’, ’moduledefinition’);

true

Other important type tests satisfied by modules are the types atomic
and last_name_eval.

> type(module() end, ’atomic’);

true

The procedure map has no effect on modules; they pass through un-
changed.

> map(print, module() export a, b, c; end);

module() export a, b, c; end module

Modules also follow last name evaluation rules. For more information
on last name evaluation rules, refer to ?last_name_eval.

2.1 Syntax and Semantics • 61

> m := module() end:
> m;

m

> type(m, ’last_name_eval’);

true

Although type module is a surface type, it acts also as a structured
type. Parameters passed as arguments to the unevaluated name module
are taken to be the names of exports. For example, the module

> m := module() export a, b; end:

has the structured module type ‘module‘(a, b):

> type(m, ’‘module‘(a, b)’);

true

It also has type type ‘module‘(a)

> type(m, ’‘module‘(a)’);

true

because any module that exports symbols a and b is a module that
exports the symbol a.

Example: A Symbolic Differentiator

This section illustrates the various module concepts through a symbolic
differentiator example. Since Maple provides a built-in differentiator diff,
the example symbolic differentiator is named differentiate. Its (final)
implementation is in the module DiffImpl (later in this chapter), which
holds all the local state for the program. Much of the code for the dif-
ferentiator is designed to implement either a standard rule (such as the
rule that the derivative of a sum is the sum of the derivatives of the sum-
mands), or special case rules for mathematical functions such as sin and
exp. The example differentiator handles only real valued functions of a
single real variable.

62 • Chapter 2: Programming with Modules

The following example shows several steps in the development of the
module, from a very simple first try to the final, fully functional program.
The final form of the differentiator is a good illustration of a very common
Maple design pattern. This pattern arises when you have a single top-level
routine that dispatches a number of subroutines to handle special cases
using special purpose algorithms.

The First Attempt This initial example presents the differentiator as
an ordinary procedure, not a module.

> differentiate := proc(expr, var)
> local a, b;
>
> if type(expr, ’constant’) then
> 0
> elif expr = var then
> 1
> elif type(expr, ’‘+‘’) then
> map(procname, args)
> elif type(expr, ’‘^‘’) then
> a, b := op(expr);
> if a = var and not has(b, var) then
> b * a ^ (b - 1)
> else
> ’procname(args)’
> end if
> elif type(expr, ’‘*‘’) then
> a, b := op(1, expr), subsop(1 = 1, expr);
> procname(a, var) * b + a * procname(b, var)
> else
> ’procname(args)’
> end if
> end proc:

Trivial cases are handled first: The derivative of a constant expression is
equal to 0, and the derivative of the variable with respect to which we are
differentiating is equal to 1. The additivity of the derivative operator is
expressed by mapping the procedure over sums, using the command

> map(procname, args);

This is commonly used to map a procedure over its first argument,
passing along all the remaining arguments. Only the simple case of powers
of the differentiation variable is handled so far, provided also that the
power is independent of the differentiation variable. The product rule for
derivatives is expressed by splitting expressions of type product into two
pieces:

• the first factor in the product, and

• the product of all the remaining factors.

2.1 Syntax and Semantics • 63

This is achieved by the double assignment of

> a, b := op(1, expr), subsop(1 = 1, expr);

so the input expression expr is expressed as expr = a * b. The stan-
dard technique of returning unevaluated is used so that computation can
proceed symbolically on expressions that the procedure is unable to dif-
ferentiate.

This first example is simple, but it is already able to handle polyno-
mials with numeric coefficients.

> differentiate(2 - x + x^2 + 3*x^9, x);

−1 + 2x+ 27x8

However, it fails on expressions containing calls to standard mathe-
matical functions.

> differentiate(sin(x), x);

differentiate(sin(x), x)

It is also unable to deal successfully with symbolic coefficients.

> differentiate(a*x^2 + b*x + c, x);

differentiate(a, x)x2 + 2 a x+ differentiate(b, x)x+ b

+ differentiate(c, x)

Adding Missing Functionality To add the missing functionality, add a
case for expressions of type function.

> differentiate := proc(expr, var)
> local a, b;
>
> if not has(expr, var) then
> 0
> elif expr = var then
> 1
> elif type(expr, ’‘+‘’) then
> map(procname, args)
> elif type(expr, ’‘^‘’) then
> a, b := op(expr);
> if not has(b, var) then
> b * a ^ (b - 1) * procname(a, var)
> else
> ’procname(args)’

64 • Chapter 2: Programming with Modules

> end if
> elif type(expr, ’‘*‘’) then
> a, b := op(1, expr), subsop(1 = 1, expr);
> procname(a, var) * b + a * procname(b, var)
> elif type(expr, ’function’) and nops(expr) = 1 then
> # functions of a single variable; chain rule
> b := op(0, expr); # the name of the function
> a := op(1, expr); # the argument
> if b = ’sin’ then
> cos(a) * procname(a, var)
> elif b = ’cos’ then
> -sin(a) * procname(a, var)
> elif b = ’exp’ then
> exp(a) * procname(a, var)
> elif b = ’ln’ then
> (1 / a) * procname(a, var)
> else
> ’procname(args)’
> end if
> else
> ’procname(args)’
> end if
> end proc:

This uses the chain rule to compute the derivatives of calls to known
functions.

> differentiate(sin(x) + cos(exp(x)), x);

cos(x)− sin(ex) ex

> differentiate(sin(x^2) + cos(x^2), x);

2 cos(x2)x− 2 sin(x2)x

> differentiate(sin(x)^2 + cos(x)^3, x);

2 sin(x) cos(x)− 3 cos(x)2 sin(x)

At the same time, this has also improved the handling of expressions
independent of the variable of differentiation.

> differentiate(a*x^2 + b*x + c, x);

2 a x+ b

2.1 Syntax and Semantics • 65

This is effected by using the expression has(expr, var) instead of
the weaker test type(expr, ’constant’). The power rule now handles
more than just powers of var.

> differentiate(sin(x)^2, x);

2 sin(x) cos(x)

However, adding new functions to the differentiator is tedious and
error prone, and the job of handling the chain rule must be repeated for
each function recognized by it.

Introducing a Function Table Many functions (that you need to add)
and the rules used for their differentiation can be stored in a table as
follows:

> differentiate := proc(expr, var)
> local a, b, functab;
>
> functab := table();
> functab[’sin’] := ’cos’;
> functab[’cos’] := x -> -sin(x);
> functab[’exp’] := exp;
> functab[’ln’] := x -> 1 / x;
>
> if not has(expr, var) then
> 0
> elif expr = var then
> 1
> elif type(expr, ’‘+‘’) then
> map(procname, args)
> elif type(expr, ’‘^‘’) then
> a, b := op(expr);
> if a = var and not has(b, var) then
> b * a ^ (b - 1) * procname(a, var)
> else
> ’procname(args)’
> end if
> elif type(expr, ’‘*‘’) then
> a, b := op(1, expr), subsop(1 = 1, expr);
> procname(a, var) * b + a * procname(b, var)
> elif type(expr, ’function’) and nops(expr) = 1 then
> # functions of a single variable; chain rule
> b := op(0, expr); # the name of the function
> a := op(1, expr); # the argument
> if assigned(functab[b]) then
> # This is a ‘‘known’’ function
> functab[b](a) * procname(a, var)
> else
> # This function is not known; return unevaluated
> ’procname(args)’

66 • Chapter 2: Programming with Modules

> end if
> else
> ’procname(args)’
> end if
> end proc:

This not only simplifies the code used for the function case, but also
makes it very easy to add new functions.

Drawbacks Unfortunately, this implementation has serious drawbacks.

• It is not extensible. The known functions are hardcoded as part of
the procedure definition for differentiate. New functions cannot
be added without editing this source code.

• A second problem relates to performance. A complete implementation
would require a table of dozens or hundreds of functions. That large ta-
ble would need to be created and initialized each time differentiate
is invoked.

Encapsulation and Extensibility One way to fix both problems is to
make the table of functions a global variable. However, using global vari-
ables can be dangerous, because they pollute the user namespace and are
subject to unwanted inspection and tampering.

Solution A better solution is to put the differentiate procedure,
along with its table of functions, into a module. The table is then ini-
tialized only once–when the module is created–and can be saved to a
Maple repository with the rest of the module by using a savelib call. By
making the table a local variable of the module, you prevent users from
modifying the table or otherwise inspecting it in unwanted ways.

This does not prevent you from making the differentiator user-
extensible, however. You can add an access procedure addFunc that allows
users to add rules for differentiating new functions. For example, you can
use the call

> addFunc(’cos’, x -> -sin(x));

to add the derivative of the sin function. The export addFunc of the
DiffImpl module is a procedure that requires two arguments. The first
is the name of a function whose derivative is to be made known to the
differentiator. The second is a Maple procedure of one argument that
expresses the derivative of the function being added.

2.1 Syntax and Semantics • 67

With this strategy in mind, you can create a module DiffImpl, with
principal export differentiate. At the same time, you can also make
the basic differentiation rules extensible.

Here is the complete source code for the differentiator with these im-
provements.

> DiffImpl := module()
> description "a symbolic differentiator";
> local functab, ruletab, diffPower;
> export differentiate, addFunc, addRule, rule;
>
> addFunc := proc(fname::symbol, impl)
> functab[fname] := impl
> end proc;
>
> addRule := proc(T, impl)
> if type(T, ’{ set, list }’) then
> map(procname, args)
> elif type(T, ’And(name, type)’) then
> ruletab[T] := impl
> else
> error "expecting a type name, but got %1", T
> end if
> end proc;
>
> rule := proc(T)
> if type(T, ’And(name, type)’) then
> if assigned(ruletab[T]) then
> eval(ruletab[T], 1)
> else
> error "no rule for expressions of type %1", T
> end if
> else
> error "expecting a type symbol, but got %1", T
> end if
> end proc;
>
> differentiate := proc(expr, var)
> local a, b, e;
> if not has(expr, var) then
> 0
> elif expr = var then
> 1
> elif type(expr, ’function’) and nops(expr) = 1 then
> e := op(0, expr);
> a := op(expr);
> if assigned(functab[e]) then
> functab[e](a) * procname(a, var)
> else
> ’procname(args)’
> end if
> else
> b := whattype(expr);

68 • Chapter 2: Programming with Modules

> if assigned(ruletab[b]) then
> ruletab[b](expr, var)
> else
> ’procname(args)’
> end if
> end if
> end proc;
>
> addRule(’{list,set,tabular}’,
> () -> map(differentiate, args));
> addRule(’‘+‘’,
> () -> map(differentiate, args));
> addRule(’‘*‘’,
> (expr,var) ->
> op(1,expr)*differentiate(subsop(1=1,expr),var)
> + differentiate(op(1,expr),var)*subsop(1=1,expr));
> diffPower := proc(expr, var)
> local b, e;
> Assert(type(expr, ’‘^‘’));
> b, e := op(expr);
> if has(e, var) then
> expr * (differentiate(e, var) * ln(b)
> + e * differentiate(b, var) / b)
> else # simpler formula
> e * b^(e - 1) * differentiate(b, var)
> end if;
> end proc;
> addRule(’‘^‘’, eval(diffPower));
>
> addFunc(’sin’, cos);
> addFunc(’cos’, x -> -sin(x));
> addFunc(’exp’, exp);
> addFunc(’ln’, x -> 1/x);
> # ... etc.
>
> end module:
> differentiate := DiffImpl:-differentiate:

To give the set of rules for nonfunctional expressions similar extensibility,
you can store those rules in a table. The table is indexed by the primary (or
basic) type name for the expression type, as given by the Maple procedure
whattype.

> whattype(a + 2);

+

> whattype(a / b);

∗

2.1 Syntax and Semantics • 69

> whattype(a^sqrt(2));

^

> whattype([f(x), g(x)]);

list

A rule is expressed by a procedure of two arguments, expr and var, in
which expr is the expression to be differentiated, and var is the variable
of differentiation. For instance, to make the differentiator handle items
such as sets and lists by differentiating their individual components, add
the rule

> addRule(’{ list, set, tabular }’, () -> map(differentiate,
> args));

The first version of the differentiator dealt with sums by mapping
itself over the sum expression. In the new scheme, this is expressed by the
statement

> addRule(’‘+‘’, () -> map(differentiate, args));

in the module body. The advantage of using this scheme is that, not
only can the author of the differentiator extend the system, but so can
users of the system. Having instantiated the module DiffImpl, any user
can add rules or new functions, simply by issuing appropriate calls to
addRule and addFunc.

The differentiator cannot handle the procedure tan.

> differentiate(tan(x)/exp(x), x);

−tan(x)

ex
+

differentiate(tan(x), x)

ex

You must add it to the database of known functions.

> DiffImpl:-addFunc(’tan’, x -> 1 + tan(x)^2);

x → 1 + tan(x)2

> differentiate(tan(x)/exp(x), x);

70 • Chapter 2: Programming with Modules

−tan(x)

ex
+

1 + tan(x)2

ex

Similarly, there is not yet any rule for handling equations and other
relations.

> differentiate(y(x) = sin(x^2) - cos(x^3), x);

differentiate(y(x) = sin(x2)− cos(x3), x)

> DiffImpl:-addRule(’{ ‘=‘, ‘<‘, ‘<=‘ }’,
> () -> map(differentiate, args));

{() → map(differentiate , args)}

> differentiate(y(x) = sin(x^2) - cos(x^3), x);

differentiate(y(x), x) = 2 cos(x2)x+ 3 sin(x3)x2

The Extension Mechanism is Module Aware Do not confuse the ex-
tension mechanism previously proposed for the differentiator with the
extension mechanism used by the built-in Maple command diff. The
diff command uses a traditional string concatenation mechanism for
adding knowledge of the derivatives of functions, and all its rules are
built-in, so they cannot be extended. For instance, to add a new func-
tion F to the Maple built-in diff command, you can define a procedure
‘diff/F‘ that computes the derivative of F.

By contrast, the extension mechanism used in the differentiate

example is module aware. To add knowledge of the derivative of some
top-level function F, you can issue a command, such as

> DiffImpl:-addFunc(’F’, x -> sin(x) + cos(x));

x → sin(x) + cos(x)

The derivative of F(x) is sin(x) + cos(x).) Define a module
with some special functions, one of which is also called F.

2.1 Syntax and Semantics • 71

> SpecFuncs := module()
> export F; # etc.
> # definition of F() and others
> end module:

You can now add this new F to the known functions.

> DiffImpl:-addFunc(SpecFuncs:-F, x -> exp(2 * x));

x → e(2x)

> differentiate(F(x), x);

sin(x) + cos(x)

> use SpecFuncs in
> differentiate(F(x), x);
> end use;

e(2x)

With the traditional mechanism, this does not work.

> ‘diff/‘ || F := x -> sin(x) + cos(x);

diff /F := x → sin(x) + cos(x)

> diff(F(x), x);

sin(x) + cos(x)

> use SpecFuncs in
> ‘diff/‘ || F := x -> exp(2 * x);
> diff(F(x), x);
> end use;

diff /F := x → e(2x)

e(2x)

The definition for the global F has been lost.

> diff(F(2 * x), x);

e(4x)

72 • Chapter 2: Programming with Modules

(You can use a different argument to diff to avoid recalling the an-
swer from its remember table.) The traditional mechanism fails because
it relies on the external representation of names, and not upon their
bindings, so each attempt to define an extension to diff in fact adds a
definition for the derivative of all functions whose names are spelled "F".

Note: A commented version of the differentiate module is available
in the samples/AdvPG directory of the Maple installation. The implemen-
tation shown in the text has been somewhat simplified.

2.2 Records

The simplest way to use modules is as Pascal-style records (or structures,
as in C and C++). A record is a data structure that has some number
of named slots or fields. In Maple, these slots can be assigned arbitrary
values. Although the underlying data structure of a Maple record is cur-
rently a module, records and modules represent distinct abstractions. A
record is simply an aggregate data structure in which the members have
fixed names. Modules provide additional facilities such as computation at
initialization and access control.

Instantiating Records To create a record, use the Record constructor.
In the simplest form, it takes the slot names as arguments.

> rec := Record(’a’, ’b’, ’c’);

rec :=
module() export a, b, c; option record ; end module

The name rec is now assigned a record with slots named a, b, and c.
These are the slot names for the record rec. You can access and assign
these slots by using the expressions rec:-a, rec:-b, and rec:-c.

> rec:-a := 2;

a := 2

> rec:-a;

2

2.2 Records • 73

If not assigned, the record slot evaluates to the local instance of the
slot name.

> rec:-b;

b

> evalb(% = b);

false

This is useful because the entire record can be passed as an aggregate
data structure.

The record constructor accepts initializers for record slots. That is,
you can specify an initial value for any slot in a new or in an unassigned
record by passing an equation with the slot name on the left side and the
initial value on the right.

> r := Record(’a’ = 2, ’b’ = sqrt(3));

r := module() export a, b; option record ; end module

> r:-b;

√
3

In addition, you can attach type assertions to record slots. To intro-
duce a type assertion, use a ‘::‘ structure with the slot name specified
as the first operand. Type assertions can be used in combination with
initializers. An incompatible initializer value triggers an assertion failure
when the assertlevel kernel option is set to 2. For more information,
refer to ?kernelopts.

> kernelopts(’assertlevel’ = 2):
> Record(a::integer = 2.3, b = 2);

Error, (in assign/internal) assertion failed in
assignment, expected integer, got 2.3

> r := Record(’a’::integer = 2, ’b’::numeric);

74 • Chapter 2: Programming with Modules

r := module()

export a::integer , b::numeric ;

option record ;

end module
> r:-b := "a string";

Error, assertion failed in assignment, expected
numeric, got a string

If the initializer for a record slot is a procedure, you can use the
reserved name self to refer to the record you are constructing. This
allows records to be self-referential. For example, you can write a complex
number constructor as follows.

> MyComplex := (r, i) ->
> Record(’re’ = r, ’im’ = i, ’abs’ = (() -> sqrt(
> self:-re^2 + self:-im^2))):
> c := MyComplex(2, 3):
> c:-re, c:-im, c:-abs();

2, 3,
√
13

Combined with prototype-based inheritance, described on page 76,
this facility makes the Record constructor a powerful tool for object-
oriented programming.

Record Types Expressions created with the Record constructor are of
type record.

> type(rec, ’record’);

true

This is a structured type that works the same way as the ‘module‘

type, but recognizes records specifically.

> r := Record(a = 2, b = "foo"):
> type(r, ’record(a::integer, b::string)’);

true

2.2 Records • 75

Note: In a record type, the slot types are used to test against the values
assigned to the slots (if any), and are not related to type assertions on
the slot names (if any).

> r := Record(a::integer = 2, b::{symbol,string} = "foo"):
> type(r, ’record(a::numeric, b::string)’);

true

Using Records to Represent Quaternions Records are useful for im-
plementing simple aggregate data structures for which named access to
slots is wanted. For example, four real numbers can be combined to form
a quaternion, and you can represent this using a record structure, as fol-
lows.

> MakeQuaternion := proc(a, b, c, d)
> Record(’re’ = a, ’i’ = b, ’j’ = c, ’k’ = d)
> end proc:
> z := MakeQuaternion(2, 3, 2, sqrt(5));

z := module()

export re , i, j, k;
option record ;

end module

In this example, z represents the quaternion 2+3i+2j+
√
5k (where

i, j, and k are the nonreal quaternion basis units). The quaternion records
can now be manipulated as single quantities. The following procedure ac-
cepts a quaternion record as its sole argument and computes the Euclidean
length of the quaternion that the record represents.

> qnorm := proc(q)
> use re = q:-re, i = q:-i, j = q:-j, k = q:-k in
> sqrt(re * re + i * i + j * j + k * k)
> end use
> end proc:
> qnorm(z);

√
22

A Maple type for quaternions can be introduced as a structured record
type.

76 • Chapter 2: Programming with Modules

> TypeTools:-AddType(’quaternion’, ’record(re, i, j, k)’);
> type(z, ’quaternion’);

true

Object Inheritance The Record constructor supports a simple form of
prototype-based inheritance. An object system based on prototypes does
not involve classes; instead, it uses a simpler, more direct form of object-
based inheritance. New objects are created from existing objects (called
prototypes) by cloning, that is, copying and augmenting the data and
behavior of the prototype.

The Record constructor supports prototype-based inheritance by ac-
cepting an index argument, which is the prototype for the new object
record.

> p := Record(a = 2, b = 3); # create a prototype

p := module() export a, b; option record ; end module

> p:-a, p:-b;

2, 3

> r := Record[p](c = 4);

r :=
module() export a, b, c; option record ; end module

> r:-a, r:-b, r:-c;

2, 3, 4

In this example, the record p is the prototype, and the second record
r inherits the slots a and b, and their values, from the prototype p. It also
augments the slots obtained from p with a new slot c. The prototype p is
not changed.

> r:-a := 9;

a := 9

2.2 Records • 77

> p:-a;

2

Behavior, as well as data, can be copied from a prototype. To copy be-
havior, use a constructor procedure for both the prototype and its clones.

> BaseComplex := proc(r, i)
> Record(’re’ = r, ’im’ = i)
> end proc:
> NewComplex := proc(r, i)
> Record[BaseComplex(r,i)](’abs’ =
> (() -> sqrt(self:-re^2 + self:-im^2)))
> end proc:
> c := NewComplex(2, 3):
> c:-re, c:-im, c:-abs();

2, 3,
√
13

An object created from a prototype can serve as a prototype for an-
other object.

> NewerComplex := proc(r, i)
> Record[NewComplex(r,i)](’arg’ =
> (() -> arctan(self:-im,self:-re)))
> end proc:
> c2 := NewerComplex(2, 3):
> c2:-re, c2:-im, c2:-abs(), c2:-arg();

2, 3,
√
13, arctan(

3

2
)

Note: Prototypes are supertypes of their clones.

> subtype(’record(re, im, abs)’, ’record(re, im)’);

true

For example, NewComplex creates objects of a type that is a subtype
of the objects created by BaseComplex.

78 • Chapter 2: Programming with Modules

2.3 Packages

Modules are ideal for writing Maple packages. They provide facilities for
large software projects that are better than table and procedure based
methods.

What Is a Package
A package is a collection of procedures and other data, that can be treated
as a whole. Packages typically gather a number of procedures that enable
you to perform computations in some well-defined problem domain. Pack-
ages may contain data other than procedures, and may even contain other
packages (subpackages).

Packages in the Standard Library A number of packages are shipped
with the standard Maple library. For example, the group, numtheory,
codegen, and LinearAlgebra packages are all provided with Maple,
along with several dozen others. The group package provides procedures
that allow you to compute with groups that have a finite representation
in terms of permutations, or of generators and defining relations. The
LinearAlgebra package has a large number of procedures available for
computational linear algebra.

Table-Based Packages Many packages are implemented as tables. The
essential idea underlying this implementation scheme is that the name of
a package routine is used as the index into a table of procedures. The
table itself is the concrete representation of the package.

Use Modules for New Packages Modules are the new implementa-
tion vehicle for packages. A module represents a package by its exported
names. The exported names can be assigned arbitrary Maple expressions,
typically procedures, and these names form the package.

Package Exports Some of the data in a package is normally made acces-
sible to the user as an export of the package. For packages implemented
as modules, the package exports are the same as the exports of the under-
lying module. For packages implemented as tables, the package exports
are the names used to index the underlying table.

Accessing the exports of a package is a fundamental operation that is
supported by all packages. If P is a Maple package, and e is one among its
exports, you can access e by using the fully qualified reference P[e]. If
P is a module, then you can also use the syntax P:-e. These methods of
accessing the exports of a module are normally used when programming
with a package.

2.3 Packages • 79

Note that :- is a left-associative operator. If S is a submodule of a
module P, and the name e is exported by S, then the notation P:-S:-e is
parsed as (P:-S):-e, and so it refers to the instance of e local to S. This
fact is important to reference members of subpackages. For example,

> m := Matrix(2,2,[[1-x,2-x],[3-x,4-x]],
> ’datatype’ = ’polynom(integer)’);

m :=

[

1− x 2− x
3− x 4− x

]

> LinearAlgebra:-LA_Main:-Norm(m, 1, conjugate = false);

max(|x− 1|+ |x− 3| , |x− 2|+ |x− 4|)

calls the procedure Norm in the subpackage LA_Main of the LinearAlgebra
package. You can use indexed notation for this.

> LinearAlgebra[LA_Main][Norm](m, 1, conjugate = false);

max(|x− 1|+ |x− 3| , |x− 2|+ |x− 4|)

Using Packages Interactively For interactive use, it is inconvenient to
enter fully-qualified references to all the exports of a package. To ease
this burden, the Maple procedure with is provided for the interactive
management of package namespaces. Using with, you can globally impose
the exported names of a package. This allows you to access the package
exports, without typing the package prefix, by making the names of the
exports visible at the top-level of the Maple session. For example, to use
the numtheory package, you can issue the command

> with(numtheory);

Warning, the protected name order has been redefined
and unprotected

80 • Chapter 2: Programming with Modules

[GIgcd , bigomega, cfrac , cfracpol , cyclotomic , divisors ,

factorEQ , factorset , fermat , imagunit , index ,

integral_basis , invcfrac , invphi , issqrfree , jacobi ,

kronecker , λ, legendre , mcombine , mersenne , migcdex ,

minkowski , mipolys , mlog , mobius , mroot , msqrt ,

nearestp, nthconver , nthdenom, nthnumer , nthpow ,

order , pdexpand , φ, π, pprimroot , primroot , quadres ,

rootsunity , safeprime , σ, sq2factor , sum2sqr , τ, thue]

The effect of this command is to make the names exported by the
numtheory package (a list of which is returned by the call to with) avail-
able temporarily as top-level Maple commands.

> cfrac((1 + x)^k, x, 5, ’subdiagonal’, ’simregular’);

1

1− k x

1 +
1

2

(k + 1)x

1− 1

6

(k − 1)x

1 +
1

6

(k + 2)x

1 + ...

Writing Maple Packages by Using Modules
This section describes how to write Maple packages by using modules.
The following subsections present several examples that illustrate how to
do this.

The LinkedList Package
The first example package is a small package called LinkedList. This
example illustrates the basic structure of a package implemented by using
modules.

Background Linked lists are a basic data structure used in programs
for many different purposes. There are many kinds of linked lists, with
variations on the basic idea intended to address performance and func-
tionality issues. The example package shown in this subsection provides
a few operations on the simplest possible form of linked lists.

The links in a linked list are formed from a very simple data structured
called a pair. A pair is essentially a container with space for exactly two
elements. Pairs can be modeled by fixed length records with two slots.

2.3 Packages • 81

When used to implement linked lists, the first slot holds the data for the
list entry, and the second slot stores a pointer to the next pair in the list.

The LinkedList package implements an abstract data definition for
the pair data structure, and adds some higher level operations on pairs
to effect the list abstraction. A linked list is effectively represented by its
first pair.

The pair abstract data structure is very simple. It consists of a con-
structor pair, and two accessors called head and tail that satisfy the
algebraic specification

p = pair(head(p), tail(p))

for each pair p. In addition, there is a distinguished pair nil, satisfying
this algebraic relation, that is unequal to any other pair, and satisfies

head(nil) = nil, tail(nil) = nil.

Note that linked lists are quite different from the Maple built-in list
structures, which are really immutable arrays. Linked lists are best suited
for applications in which you want to incrementally build up the list from
its members.1

Package Implementation The LinkedList package is implemented as
a module containing the primitive operations on pairs, and higher level
operations that implement the list abstraction.

> macro(_PAIR = ‘‘): # for nice printing
> LinkedList := module()
> description "routines for simple linked lists";
> export
> nil,
> nullp,
> pair,
> head,
> tail,
> list,
> length,
> member,
> reverse,
> append,
> map;
> local
> setup,
> cleanup,

1Lisp programmers will recognize the pair, head, and tail operations as the more
traditional operations known as “consÔ, “carÔ and “cdrÔ.

82 • Chapter 2: Programming with Modules

> map1,
> reverse1,
> _PAIR;
> option
> package,
> load = setup,
> unload = cleanup;
>
> setup := proc()
> global ‘type/Pair‘, ‘type/LinkedList‘;
> ‘type/Pair‘ := ’{ _PAIR(anything, anything),
> identical(nil) }’;
> ‘type/LinkedList‘ := proc(expr)
> if expr = nil then
> true
> elif type(expr, Pair) then
> type(tail(expr), ’LinkedList’)
> else
> false
> end if
> end proc;
> userinfo(1, ’LinkedList’,
> "new types ‘Pair’ and ‘LinkedList’ defined");
> NULL
> end proc;
>
> cleanup := proc()
> global ‘type/Pair‘, ‘type/LinkedList‘;
> userinfo(1, ’LinkedList’,
> "cleaning up global types");
> ‘type/Pair‘ := evaln(‘type/Pair‘);
> ‘type/LinkedList‘ := evaln(‘type/LinkedList‘);
> NULL
> end proc;
>
> pair := (a, b)
> -> setattribute(’_PAIR’(a, b), ’inert’);
> head := (c::Pair)
> -> ‘if‘(c = nil, nil, op(1, c));
> tail := (c::Pair)
> -> ‘if‘(c = nil, nil, op(2, c));
> nullp := (pair)
> -> evalb(pair = nil);
>
> list := proc()
> local a, L;
> L := nil;
> for a in args do
> L := pair(a, L)
> end do
> end proc;
>
> length := proc(lst)
> if nullp(lst) then

2.3 Packages • 83

> 0
> else
> 1 + length(tail(lst))
> end if
> end proc;
>
> member := proc(item, lst)
> if nullp(lst) then
> false
> elif item = head(lst) then
> true
> else
> procname(item, tail(lst))
> end if
> end proc;
>
> map := proc(p, lst)
> if nullp(lst) then
> nil
> else
> pair(p(head(lst)),
> procname(p, tail(lst)))
> end if
> end proc;
>
> append := proc(lst1, lst2)
> if nullp(lst1) then
> lst2
> else
> pair(head(lst1),
> procname(tail(lst1), lst2))
> end if
> end proc;
>
> reverse1 := proc(sofar, todo)
> if nullp(todo) then
> sofar
> else
> procname(pair(head(todo), sofar),
> tail(todo))
> end if
> end proc;
>
> reverse := lst -> reverse1(nil, lst);
>
> setup();
>
> end module:

Normally, a package definition like this would be entered into a Maple
source file using a text editor, or in a worksheet using the Maple graphical
user interface. In either case, the definition would then be followed by a
call to the savelib procedure using the name of the module as its sole

84 • Chapter 2: Programming with Modules

argument:

> savelib(’LinkedList’);

Evaluating the savelib call saves the module to the first repository
found in the global variable libname, or the repository named with the
global variable savelibname, if it is defined. (At least one of these must
be defined.)

Important Always ensure that the standard Maple library is write-
protected to avoid saving expressions in it. If you accidentally save some-
thing to the standard Maple library, you may need to restore the original
from the media on which you obtained the Maple software.

The package exports are listed as the exports of the module. A few
local variables are used to implement the package. The local procedures
map1 and reverse1 are part of the package implementation that is not
available to users of the package. They are visible only within the module
definition. This allows the package author to make improvements to the
package without disturbing any code that uses it. If the local procedures
reverse1 and map1 were exported (thus, available to users), it would be
difficult for the author to replace these routines without breaking existing
code that relies upon them.

The package includes two special (local) procedures, setup and
cleanup. These are executed, respectively, when the module is first read
from a repository, and when the package is either garbage collected or
when Maple is about to exit.

Using the Package The package exports can always be accessed by
using the long form of their names.

> LinkedList:-pair(a, b);

(a, b)

For consistency with the older table-based package implementations,
an indexed notation can also be used.

> LinkedList[’pair’](a, b);

(a, b)

2.3 Packages • 85

This form requires that the index (in this case, the symbol pair) be
protected from evaluation, and the notation does not extend to packages
with nested subpackages.

To access the package exports interactively, use the with command.

> with(LinkedList);

Warning, the protected names length, map and member
have been redefined and unprotected

[append , head , length, list , map, member , nil , nullp, pair ,

reverse , tail]

Note that, since some of the package exports shadow global procedures
with the same name, the with command issues warnings. These warnings
are normal. They remind you that these names now refer to expressions
different from the expressions to which they referred previously. Once the
exports of the package LinkedList have been bound, you can call them
as you would global Maple routines with those names. Note that you can
still access the global version of member, for example, by using the syntax
:-member.

> use LinkedList in
> member(a, %%);
> :-member(a, [a, b, c, d])
> end use;

true

true

This is one of the principal advantages of using modules and binding,
rather than assignment, to implement packages.

Lists are either built incrementally using the pair export of the pack-
age, or by calling the list export.

> L := nil:
> for i from 1 to 10 do
> L := pair(i, L)
> end do;

86 • Chapter 2: Programming with Modules

L := (1, nil)

L := (2, (1, nil))

L := (3, (2, (1, nil)))

L := (4, (3, (2, (1, nil))))

L := (5, (4, (3, (2, (1, nil)))))

L := (6, (5, (4, (3, (2, (1, nil))))))

L := (7, (6, (5, (4, (3, (2, (1, nil)))))))

L := (8, (7, (6, (5, (4, (3, (2, (1, nil))))))))

L := (9, (8, (7, (6, (5, (4, (3, (2, (1, nil)))))))))

L := (10, (9, (8, (7, (6, (5, (4, (3, (2, (1, nil))))))))))

> length(L);

10

> member(3, L);

true

> member(100, L);

false

> reverse(L);

(1, (2, (3, (4, (5, (6, (7, (8, (9, (10, nil))))))))))

> map(x -> x^2, L);

(100, (81, (64, (49, (36, (25, (16, (9, (4, (1, nil))))))))))

> member(100, %);

true

2.3 Packages • 87

> L2 := list(a, b, c, d);

L2 := (d, (c, (b, (a, nil))))

> map(sin, L2);

(sin(d), (sin(c), (sin(b), (sin(a), nil))))

> eval(L2, { a = 1, b = 2, c = 3, d = 4 });

(4, (3, (2, (1, nil))))

> map(evalf[10], %);

(4., (3., (2., (1., nil))))

Code Coverage Profiling Package
The following example is a package called coverage. It instruments proce-
dures and modules for coverage profiling, that is, turns on statement-level
tracing. It serves as an example of a small package, and illustrates ways
in which modules can be manipulated.2

Design You can write tests that exercise each part of the program to
ensure that the program:

• Works correctly

• Continues to work when it, or other programs on which it depends,
change over time.

It is important to be able to determine whether each statement in a
procedure is executed by some test case. The traceproc option of the
Maple command debugopts provides that capability. It takes the name p
of a procedure, using the syntax

2The Maple CodeTools package provides tools for profiling code and testing code
coverage. For more information, refer to ?CodeTools.

88 • Chapter 2: Programming with Modules

debugopts(’traceproc’ = p);

and instruments the procedure assigned to p for coverage profiling. Here
is an example.

> p := proc(x)
> if x < 0 then
> 2 * x
> else
> 1 + 2 * x
> end if
> end proc:
> debugopts(’traceproc’ = p):

Once the procedure has been instrumented, each time it is executed,
profiling information at the statement level is stored. To view the profiling
information, use the procedure showstat.

> p(2);

5

> showstat(p);

p := proc(x)
|Calls Seconds Words|

PROC | 1 0.000 12|
1 | 1 0.000 12| if x < 0 then
2 | 0 0.000 0| 2*x

else
3 | 1 0.000 0| 1+2*x

end if
end proc

The display shows that only one branch of the if statement that forms
the body of p was taken so far. This is because only a non-negative argu-
ment has been supplied as an argument to p. To get complete coverage,
a negative argument must also be supplied.

> p(-1);

−2

> showstat(p);

2.3 Packages • 89

p := proc(x)
|Calls Seconds Words|

PROC | 2 0.000 24|
1 | 2 0.000 24| if x < 0 then
2 | 1 0.000 0| 2*x

else
3 | 1 0.000 0| 1+2*x

end if
end proc

The display shows that each statement in the body of p has been
reached.

To display the profiling information, use the debugopts command
with the traceproctable=procedure_name equation argument.

> debugopts(traceproctable=p);









2 0 24
2 0 24
1 0 0
1 0 0









The package illustrated in this section helps extend this functionality
to modules, and acts as an interface to the debugopts with the traceproc
option.

The coverage package has two exports: profile and covered. Two
private procedures, rprofile and traced, are used as subroutines. They
are stored in local variables of the underlying module of the package.

The Package Source Here is the source code for the package.

> coverage := module()
> description "a package of utilities for "
> "code coverage profiling";
> option package;
> export profile, covered;
> local rprofile, traced, userprocs;
>
> # Instrument a procedure or module
> # for coverage profiling. Return the
> # number of procedures instrumented.
> profile := proc()
> local arg;
> add(rprofile(arg), arg = [args])
> end proc;

90 • Chapter 2: Programming with Modules

>
> rprofile := proc(s::name)
> local e;
> if type(s, ’procedure’) then
> debugopts(’traceproc’ = s);
> 1
> elif type(s, ’‘module‘’) then
> add(procname(e),
> e = select(type,
> [exports(s, ’instance’)],
> ’{ ‘module‘, procedure }’))
> else
> error "only procedures and modules can be profiled"
> end if
> end proc;
>
> # Subroutine to recognize non-builtin procedures
> userprocs := proc(s)
> type(’s’, procedure) and not(type(’s’, builtin))
> end proc;
>
> # Subroutine to recognize profiled procedures
> traced := proc(s)
> debugopts(’istraceproced’ = ’s’)
> end proc;
>
> # Determine which procedures have
> # coverage information.
> covered := proc()
> local S;
> S := [anames()];
> S := select(userprocs, S);
> S := select(traced, S);
> if nargs > 0 and args[1] = ’nonzero’ then
> S := select(s -> evalb(s[1,1] <> 0), S)
> elif nargs > 0 then
> error "optional argument is the name nonzero"
> end if;
> map(parse, map(convert, S, ’string’))
> end proc;
> end module:

How the Package Works The export profile is an interface to the
package’s principal facility: instrumenting procedures and modules for
coverage profiling. It returns the number of procedures instrumented, and
calls the private subroutine rprofile to do most of the work.

1. The procedure rprofile accepts a name s as an argument. If s is the
name of a procedure, rprofile simply calls debugopts to instrument
the procedure assigned to that name. Otherwise, if s is the name
of a module, rprofile selects any exports of the module that are

2.3 Packages • 91

procedures or modules and calls itself recursively to instrument them.
If the parameter s is assigned a value of any other type, then an
exception is raised.

2. The expression [exports(s, ’instance’)] evaluates to a list
of all the exported variables of the module that are assigned to s. It
is important to pass the instance option to exports, because when
those names are passed to rprofile in a recursive call, rprofilemust
test the type of their assigned values. This list contains all the module
exports, so those that are of type procedure, or of type module, are
selected by using a call to select. The recursion is effected in the
call to add, which sums the return values of all the recursive calls to
rprofile.

3. The exported procedure covered is used to determine which proce-
dures have been instrumented and called, with profiling information
stored. One possible design would store this information in a private
table in the coverage package. With this design, covered could sim-
ply query that internal table for the names of the procedures that
have been instrumented and that have profiling information stored.
However, a user may have instrumented the procedure manually by
calling debugopts directly, or historical profiling data may have been
read from a Maple repository. Therefore, a design that queries the
system directly, without regard to how a procedure was initially in-
strumented, is best used.

The procedure covered queries Maple for all the names currently as-
signed values using the Maple command anames (“assigned names”).
Names corresponding to profiled user procedures are selected using the
subroutines userprocs and traced. If the nonzero option is passed to
covered, then only those which have actually been called are chosen.
The final statement

> map(parse, map(convert, S, ’string’))

first converts the names to strings, and then calls parse on each string
to convert it to the procedure for which profiling data is stored.

Using the Package As with all packages, you can access the coverage

package interactively by using the with command.

> with(coverage);

Warning, the protected name profile has been redefined
and unprotected

92 • Chapter 2: Programming with Modules

[covered , profile]

A list of the package exports is returned. Alternatively, the package ex-
ports can always be accessed by using the long forms coverage:-profile
and coverage:-covered.

Suppose that you want to test the procedure copy (chosen because it
is short). This procedure produces a new copy of a table, array, or rtable.
Now that the coverage package has been globally imposed by using with,
simply call

> profile(copy);

1

The return value of 1 indicates that, as expected, one procedure was
instrumented. Next, call copy with a few arguments (output suppressed):

> copy(table()):
> copy(array(1 .. 3)):

Using covered, copy has its profiling information stored.

> covered(’nonzero’);

[p, copy]

From the output of showstat,

> showstat(copy);

copy := proc(A)
|Calls Seconds Words|

PROC | 2 0.000 664|
1 | 2 0.000 50| if type(A,rtable) then
2 | 0 0.000 0| return rtable(rtable_indfns(A),

rtable_dims(A),A,rtable_options(A),
readonly = false)

elif type(A,{array, table}) then
3 | 2 0.000 24| if type(A,name) then
4 | 0 0.000 0| return map(proc () args end proc,

eval(A))
else

5 | 2 0.000 590| return map(proc () args end proc,A)
end if

else
6 | 0 0.000 0| return A

end if

2.3 Packages • 93

end proc

it appears that the rtable case (statement 2) has not been called.
Add a test for the rtable case.

> copy(rtable()):
> showstat(copy);

copy := proc(A)
|Calls Seconds Words|

PROC | 3 0.000 832|
1 | 3 0.000 62| if type(A,rtable) then
2 | 1 0.000 156| return rtable(rtable_indfns(A),

rtable_dims(A),A,rtable_options(A),
readonly = false)

elif type(A,{array, table}) then
3 | 2 0.000 24| if type(A,name) then
4 | 0 0.000 0| return map(proc () args end proc,

eval(A))
else

5 | 2 0.000 590| return map(proc () args end proc,A)
end if

else
6 | 0 0.000 0| return A

end if
end proc

Statement 4 has not been called. This statement can be reached
by assigning an array or table to a name and by calling copy with that
name as argument.

> t := table():
> copy(t):
> showstat(copy);

copy := proc(A)
|Calls Seconds Words|

PROC | 4 0.000 1185|
1 | 4 0.000 96| if type(A,rtable) then
2 | 1 0.000 156| return rtable(rtable_indfns(A),

rtable_dims(A),A,rtable_options(A),
readonly = false)

elif type(A,{array, table}) then
3 | 3 0.000 28| if type(A,name) then
4 | 1 0.000 315| return map(proc () args end proc,

eval(A))
else

5 | 2 0.000 590| return map(proc () args end proc,A)
end if

else

94 • Chapter 2: Programming with Modules

6 | 0 0.000 0| return A
end if

end proc

The only case that has not been called is the one in which the
argument to copy is something other than an rtable, array, or table.

> copy(2):
> showstat(copy);

copy := proc(A)
|Calls Seconds Words|

PROC | 5 0.000 1221|
1 | 5 0.000 122| if type(A,rtable) then
2 | 1 0.000 156| return rtable(rtable_indfns(A),

rtable_dims(A),A,rtable_options(A),
readonly = false)

elif type(A,{array, table}) then
3 | 3 0.000 28| if type(A,name) then
4 | 1 0.000 315| return map(proc () args end proc,

eval(A))
else

5 | 2 0.000 590| return map(proc () args end proc,A)
end if

else
6 | 1 0.000 10| return A

end if
end proc

The final output shows that every statement has been reached by
the test cases. This functionality is very useful for interactively developing
unit tests for Maple programs.

Note: The source presented here for the coverage package has been
simplified for presentation in printed form. The full source code is available
in the samples/AdvPG directory of the Maple installation.

The Shapes Package
Modules permit the construction of packages with hierarchical structure.
This cannot be done with table-based implementations of packages. This
section presents:

• How to organize the source code for a (potentially) large package that
has a nontrivial substructure.

• A description of the Shapes package, including details of its design
and implementation

2.3 Packages • 95

• Hints related to source code organization.

The mathematical functionality of this package is trivial. It provides
the means to compute areas and circumferences of various planar figures,
which are called shapes.

Note: Only portions of the source code for this package are shown here.
The fully commented source code can be found in the samples/AdvPG/shapes
directory of the Maple installation.

Source Code Organization The Shapes package is organized into sev-
eral source files:

shapes.mpl

point.mpl

segment.mpl

circle.mpl

square.mpl

triangle.mpl

To avoid platform-specific differences, a flat directory structure is used.
(All the source files reside in the same directory or folder.)

96 • Chapter 2: Programming with Modules

shapes.mpl Shapes Package

point.mpl

segment.mpl

triangle.mpl

square.mpl

circle.mpl

To define the module that implements this package, use the Maple pre-
processor to include the remaining source files at the appropriate point in
the master source file shapes.mpl. A number of $include directives are
included in shapes.mpl, such as

$include "point.mpl"

$include "segment.mpl"

...

Splitting a large project into a number of source files makes it easier
to manage, and allows several developers to work on a project simultane-
ously. The source file is divided into shape-specific functionality. Most of
the functionality for points, for instance, is implemented by source code
stored in the file point.mpl.

Package Architecture The Shapes package is structured as a module
with a number of exported procedures. Individual submodules provide
shape-specific functionality for each shape type supported by the package.

2.3 Packages • 97

Each of these shape-specific submodules is stored in its own source file;
these files are included into the main package source file, shapes.mpl.

The package module Shapes has a submodule, also called Shapes.
The submodule Shapes:-Shapes contains one submodule for each shape
supported. This submodule hierarchy is illustrated in the following dia-
gram.

Shapes

Shapes

point

segment

circle

square

triangle

Shapes Package Submodule Structure

The result of preprocessing the main file shapes.mpl produces a module
whose source has the following general outline.

Shapes := module()

export make, area, circumference;

local Shapes, circum_table;

Shapes := module()

export point, segment, circle, square, triangle;

point := module() ... end;

segment := module() ... end;

.....

end module;

make := proc() ... end;

area := proc() ... end;

circum_table := table(); ...

circumference := proc() ... end;

end module:

98 • Chapter 2: Programming with Modules

The Package API The Shapes package exports the following routines:

1. make

2. area

3. circumference

The make Procedure The exported procedure make is a constructor for
shapes. It is used to create a shape expression from the input data. For
example, points are constructed from their x and y coordinates.

> org := make(’point’, 0, 0);

org := make(point , 0, 0)

A circle is constructed from its center and radius.

> circ := make(’circle’, org, 2);

circ := make(circle , make(point , 0, 0), 2)

In each case, the name of the shape is passed as the first argument,
to specify to make the kind of shape to return.

The area Procedure To compute the area of a shape, call the exported
procedure area with the shape as its argument.

> area(circ);

area(make(circle , make(point , 0, 0), 2))

The circumference Procedure The exported procedure circumference
computes the circumference of a given shape.

> circumference(circ);

circumference(make(circle , make(point , 0, 0), 2))

2.3 Packages • 99

Shape Representation Shapes are represented as unevaluated function
calls. The arguments to the call are the instance-specific data for the
shape. For example, a point with coordinates (2, 3) is represented by the
unevaluated function call POINT(2, 3). Some instance data are shapes
themselves. For example, a segment is represented, using its endpoints,
as an unevaluated function call of the form SEGMENT(start_point,

end_point). The start and end points of the segment can be obtained
by calls to the point constructor.

Procedure Dispatch The Shapes package illustrates three types of pro-
cedure dispatching:

1. Dispatching on submodule exports

2. Conditional dispatching

3. Table-based dispatching

Dispatching on Submodule Exports The procedure make, which is ex-
ported from the Shapes package, uses the submodule Shapes:-Shapes

for procedure dispatching.
To test whether a method for a given shape is available, the pro-

cedure make tests whether there is a submodule by that name in the
Shapes:-Shapes submodule. If no such submodule is found, an excep-
tion is raised. Otherwise, the export make from the submodule is passed
the arguments that were given to the top-level Shapes:-make procedure.
The make source code follows.

> make := proc(what::symbol)
> description "constructor for shapes";
> local ctor, # the shape constructor,
> # if found
> theShape; # the submodule for the
> # kind of shape requested
>
> if not member(what, Shapes, ’theShape’) then
> error "shape ‘%1’ not available", what
> end if;
> if member(’:-make’, theShape, ’ctor’) then
> ctor(args[2 .. nargs])
> else
> error "no constructor provided for "
> "shape %1", what
> end if
> end proc:

100 • Chapter 2: Programming with Modules

Summary The first argument to make is a symbol that denotes the kind
of shape to construct (point, circle, triangle). This symbol is used
as an index in the Shapes:-Shapes submodule. The first statement uses
member to test whether the symbol passed in the parameter what is ex-
ported by the submodule Shapes:-Shapes. If it is not found, an appro-
priate diagnostic is issued, and an exception raised. If member returns
the value true, then its third argument, the local variable theShape, is
assigned the export found in the submodule.

For example, if what is the symbol circle, then the local variable
theShape is assigned the submodule Shapes:-Shapes:-circle that im-
plements operations on circles. The same idea is used to select the shape-
specific constructor; it is the value assigned to the local variable ctor

upon a true return value from the second call to member. Any remaining
arguments are used as data to construct the shape. These are passed to the
make export in a shape-specific submodule, if found, and are not checked
further at this level. This design localizes the shapes to the corresponding
submodule.

Conditional Dispatching The procedure area uses a simple conditional
dispatching mechanism. The tag of the input shape is extracted and is
used in direct comparisons with hard-coded values to determine which
shape-specific area subroutine to call to perform the area computation.

> area := proc(shape)
> description "compute the area of a shape";
> local tag;
>
> if not type(shape, ’function’) then
> error "expecting a shape expression, "
> "but got %1", shape
> end if;
>
> # Extract the "tag" information from the shape
> tag := op(0, shape);
>
> # Dispatch on the "tag" value
> if tag = ’:-POINT’ then
> Shapes:-point:-area(shape)
> elif tag = ’:-SEGMENT’ then
> Shapes:-segment:-area(shape)
> elif tag = ’:-CIRCLE’ then
> Shapes:-circle:-area(shape)
> elif tag = ’:-SQUARE’ then
> Shapes:-square:-area(shape)
> elif tag = ’:-TRIANGLE’ then
> Shapes:-triangle:-area(shape)
> else
> error "not a recognized shape: %1", tag

2.3 Packages • 101

> end if
> end proc:

Table-based Dispatching The third dispatch method illustrated in the
Shapes package is table-based. This technique is used by the exported
procedure circumference, which references the table circum_table to
look up the appropriate routine to call. This table is built simply by
assigning its entries in the body of the Shapes package.

> circum_table := table();
> circum_table[’POINT’] := Shapes:-point:-circumference;
> circum_table[’SEGMENT’] := Shapes:-segment:-circumference;
> circum_table[’CIRCLE’] := Shapes:-circle:-circumference;
> circum_table[’SQUARE’] := Shapes:-square:-circumference;
> circum_table[’TRIANGLE’] := Shapes:-triangle:-circumference;

The source code for the procedure circumference follows.

> circumference := proc(shape)
> description "compute the circumference of a "
> "shape expression";
> if not type(shape, ’function’) then
> error "expecting a shape, but got %1", shape
> end if;
> if assigned(circum_table[op(0, shape)]) then
> circum_table[op(0, shape)](shape)
> else
> error "no circumference method available "
> "for shape %1. Supported shapes "
> "are: %2", tag,
> sprintf("%q", op(ALL_SHAPES))
> end if
> end proc:

Minimal checking is done to ensure that the input has the right struc-
ture. If an entry is found in the table circum_table for the shape tag
(as with the area routine), then the corresponding procedure is called
with the given shape as an argument. (The shape must be passed as an
argument, so that the shape-specific subroutine can extract the instance
data from it.) Otherwise, a diagnostic is issued, and an exception raised.

Shape-specific Submodules As already noted, each shape is imple-
mented in a shape-specific submodule. The set of exports of each mod-
ule varies, but each supports the required exports make, area, and
circumference in the top-level Shapes module. Particular shapes sup-
port other operations. Only two submodules are described here. You can
see the source for the other submodules in the sample source code.

102 • Chapter 2: Programming with Modules

The point Submodule The submodule that implements points is fairly
simple. In fact, it makes no reference to any lexically scoped variables in
its parent modules (Shapes and Shapes:-Shapes).

> point := module()
> description "support routines for points";
> export make, area, circumference, xcoord, ycoord;
> option package;
>
> make := (x, y) -> ’POINT’(x, y);
> area := () -> 0;
> circumference := () -> 0;
> xcoord := p -> op(1, p);
> ycoord := p -> op(2, p);
> end module:

Since the area and circumference of a point are both 0, these proce-
dures are trivial to implement. In addition to the required exports, the
point submodule also exports two utility routines, xcoord and ycoord,
for retrieving the x and y coordinates of a point. Providing these makes
it possible for clients of this submodule to use it without knowing any-
thing about the concrete representation of points. This makes it easier to
change the representation later, if required.

Within this submodule, the names make, area, and circumference

shadow the names with the same external representation at the top-level
Shapes module.

The circle Submodule This submodule provides the circle-specific
subroutines for the Shapes package.

> circle := module()
> export make, center, radius, diameter,
> area, circumference;
> option package;
>
> make := proc(cntrPt, radius)
> ’CIRCLE’(cntrPt, radius)
> end proc;
>
> center := circ -> op(1, circ);
> radius := circ -> op(2, circ);
> diameter := circ -> 2 * radius(circ);
> circumference := circ -> Pi * diameter(circ);
> area := circ -> Pi * radius(circ)^2;
> end module:

Again, a few extra routines are provided in addition to those required
at the top-level of the Shapes package. The exported procedure radius

is used to define other routines. It can be made local to this submodule.

2.4 The use Statement • 103

2.4 The use Statement

The use statement is formally unrelated to modules, but is expressly
designed to complement them and to make programming with modules
easier in some circumstances.

Syntax and Semantics The keyword use introduces the use statement,
which has the following syntax template:

use env in

body

end use;

Here, env is an expression sequence of binding equations, each of
which is either a module or an equation whose left side is a symbol;
and body is a sequence of Maple statements. The right side of a binding
equation can be any Maple expression.

Executing a use statement executes the body of the statement. Each
occurrence of a name that appears on the left side of any of the binding
equations is replaced by the right side of the corresponding equation.

For example,

> use f = sin, g = cos in
> f(x)^2 + g(x)^2
> end use;

sin(x)2 + cos(x)2

Characteristics of the use Statement The use statement can be
nested.

> use f = sin in
> use g = cos in
> simplify(f(x)^2 + g(x)^2)
> end use
> end use;

1

When nested use statements are encountered, the name bindings es-
tablished by the inner use statement take precedence over those of the
outer one.

104 • Chapter 2: Programming with Modules

> use a = 2, b = 3 in
> use a = 3 in a + b end
> end use;

6

In this example, the inner binding of the value 3 to the name a takes
precedence, so the value of the expression a + b (and hence of the entire
statement) is the number 6. The inner binding of 3 to a has an effect
only within the body of the inner use statement. Once the execution has
exited the inner use statement, the binding of 2 to a is restored.

> use a = 2, b = 3 in
> # here a is bound to 2 and b to 3
> use a = 3 in
> # here, b is still bound to 3, but a is bound to 3
> a + b
> end use;
> # binding of a to 2 is restored
> a + b
> end use;

6

5

The use statement is unique in the Maple language because it is fully
resolved during automatic simplification. It is not possible to evaluate a
use statement. (Recall that Maple uses a modified read-eval-print loop,
which actually involves the four stages: parsing (reading), automatic sim-
plification, evaluation, and printing.)

To see how this works, consider an example in which the use statement
appears inside a procedure.

> f := proc(a, b)
> use x = a + b, y = a - b in
> x * y
> end use
> end proc;

f := proc(a, b) (a+ b) ∗ (a− b) end proc

Note that the body of the procedure f contains no use statement.
During automatic simplification, the use statement that formed the body

2.4 The use Statement • 105

of f was expanded, yielding the expression that involves only the param-
eters a and b.

Modules and use Statements As a special case, a module m can appear
in the binding sequence of a use statement. The module is regarded as
an abbreviation for the sequence of equations a = m:-a, b = m:-b, . . . ,
where a,b,... are the exports of the module m.

For example,

> m := module() export a, b; a := 2; b := 3; end:
> use m in a + b end;

5

This is useful for programming with packages.

> m := Matrix(4, 4, [[26, 0, 0, 30],
> [0, -41, -90, 0],
> [0, -7, -56, 0],
> [0, 0, 0, 0]]);

m :=









26 0 0 30
0 −41 −90 0
0 −7 −56 0
0 0 0 0









> use LinearAlgebra in
> Determinant(m);
> Rank(m);
> CharacteristicPolynomial(m, ’lambda’)
> end use;

0

3

λ4 + 71λ3 − 856λ2 − 43316λ

Note that a name that appears in a binding list for a use statement,
which is intended to be a module, must evaluate to a module at the
time the use statement is simplified. This is necessary because the
simplification of the use statement must be able to determine the exports
of the module. In particular, the following attempt to pass a module as a
parameter to a procedure does not work, and yields an error during the
simplification of the procedure.

106 • Chapter 2: Programming with Modules

> proc(m, a, b)
> use m in e(a, b) end
> end proc;

Error, no bindings were specified or implied

The correct way to use a module as a parameter is to specify the
names to be bound explicitly, such as in this example:

> proc(m, a, b)
> use e = m:-e in a + b end
> end proc;

proc(m, a, b) a+ b end proc

This is necessary because, until the procedure is called with a module
expression as first argument, the reference to e is ambiguous. The variable
e could refer to a module export or to something else (such as a global
name). To expand the use statement, this must be known at the time the
procedure is simplified.

Operator Rebinding
An additional feature of the use statement is that it allows most infix
and prefix operators in the Maple language to be rebound. This is not
the operator overloading found in some programming languages (such as
C++), because the rebinding occurs during automatic simplification in
Maple.

If an operator name appears on the left side of a binding equation
for a use statement (consequently, if it is an exported name of a module
that is bound via use), then the corresponding operator expressions in
the body of the use statement are transformed into function calls. For
example:

> use ‘+‘ = F in a + b end;

F(a, b)

> m := module()
> export ‘*‘, ‘+‘;
> ‘+‘ := (a, b) -> a + b - 1;
> ‘*‘ := (a, b) -> a / b;
> end module:
> s * (s + t);

2.4 The use Statement • 107

s (s+ t)

> use m in s * (s + t) end;

s

s+ t− 1

The operators that can be rebound are summarized in the following
table.

Operator Arity Position Description

Arithmetic Operators

+ binary infix addition
* binary infix multiplication
. binary infix multiplication
^ binary infix exponentiation
- unary prefix negation
/ unary prefix inversion (reciprocal)

Logical Operators

and binary infix logical and
or binary infix logical or
not unary prefix logical negation

Relational Operators

< binary infix less than
<= binary infix less than or equal
> binary infix greater than
>= binary infix greater than or equal
= binary infix equality
<> binary infix not equal

Other Operators

@ binary infix composition
@@ binary infix power composition
! unary postfix factorial

Note that the operators - and / are treated as unary operators (that
represent negation and inversion, respectively). Subtraction is represented
internally in Maple by composing addition and negation: a - b = a +

(-b). Similarly for division. Therefore, it is not necessary to override the
binary infix operators - and /.

Note also that an expression such as a + b + c + d is treated as
though it were parenthesized as ((a + b) + c) + d, so that each + op-
erator is binary. For example,

108 • Chapter 2: Programming with Modules

> use ‘+‘ = F in
> a + b + c + d;
> a + ((b + c) + d)
> end use;

F(F(F(a, b), c), d)

F(a, F(F(b, c), d))

2.5 Modeling Objects

A principle application of modules is modeling objects. An object is some-
thing that has both state and behavior. Many programming languages
provide support for programming with objects. Some of these are called
object-oriented; popular examples include Smalltalk, CLOS, JavaTM, and
C++.

Maple is not an object-oriented programming language, but it does
support programming with objects. In Maple, an object can be repre-
sented by a module. The state of the object (module) is stored in the local
and exported data variables. The behavior of the object is represented by
procedures assigned to the exported variables. In Maple, procedures stand
on an equal footing with other expressions in the language; the distinc-
tion between state and behavior is somewhat artificial and exists only as
a convention.

The essential idea behind programming with objects is that the ob-
jects carry their behavior with them. Clients of an object can elicit be-
havior by sending the object messages. Objects respond to these messages
by performing some prescribed computation that is determined by both
the recipient of the message (the object) and the message itself (which
may be parameterized by other arguments). This is in contrast to non-
object-oriented approaches to programming, in which the objects in a
software system merely contain static data and serve as inputs and out-
puts of the algorithms, which are represented separately from the objects
by procedures or other routines.

Objects and Constructors Objects are usually created by invoking a
constructor. A constructor is a procedure that builds the object expression
from some (possibly empty) set of inputs. Maple uses constructors for a
number of its native expression types. For example, the procedure table

2.5 Modeling Objects • 109

is a constructor for Maple tables, and series is a constructor for Maple
series expressions.

A constructor must be used to create objects that have no input
syntax (such as series and tables, in Maple), but can also be used for
expressions that do have an input syntax (the Float constructor is an
example of the latter case). Therefore, most user-defined objects must be
created by using a constructor. Most of the object examples in this section
are defined by specifying a constructor for the object.

Example: Complex Number Constructor A simple example of an object
is the following representation of a complex number.

> MakeComplex := proc(real, imag)
> if nargs <> 2 then
> error "real and imaginary parts are required"
> end if;
> module()
> description "a complex number";
> local real_part, imag_part;
> export re, im, abs, arg;
>
> real_part, imag_part := real, imag;
> re := () -> real_part;
> im := () -> imag_part;
> abs := () -> sqrt(re()^2 + im()^2);
> arg := () -> arctan(im(), re());
> end module
> end proc:

To create the complex number 1 + i, use the constructor.

> z := MakeComplex(1, 1);

z := module()

local real_part , imag_part ;

export re , im, abs, arg ;

description “a complex number”;

end module

The procedure MakeComplex is a constructor for complex number ob-
jects. The value returned by the procedure is the instantiation of the
module whose definition appears in the body of MakeComplex.

The local state of the complex number is represented by the local
variables of the module, real_part and imag_part. The behavior is rep-
resented by the exported procedures re, im, abs, and arg.

110 • Chapter 2: Programming with Modules

The exports of a module that represents an object are sometimes
viewed also asmessages . Objects respond to these messages by exhibiting
the behavior that the messages elicit.

> z:-re(), z:-im();

1, 1

> z:-abs();

√
2

> z:-arg();

1

4
π

For instance, the expression z:-abs() is viewed as sending the abs

message to the complex number object z. The object responds by com-
puting its absolute value.

Note that each time the procedure MakeComplex is invoked, a new
module is created using the module definition that is visible within the
procedure body. Thus, complex numbers created by different calls to the
constructor are distinct, even if the arguments real and imag are the
same. Whether a constructor should produce distinct objects for the same
input (instance) data depends on the nature of the objects being modeled.
For complex number objects, multiple calls with the same inputs should
produce the same object. This can be achieved by using the remember

option in the constructor. For more information, refer to chapter 6 of the
Introductory Programming Guide.

Effect of Immutable Local States The previous MakeComplex construc-
tor represents the local state of complex number objects by using two local
variables real_part and imag_part. For many object constructors, some
or all of the local state of the object is expected to be immutable. In these
cases, local variables do not need to be allocated in the module to store
the local state of the object. The state can instead be represented by the
parameters to the constructor, which are visible within the module by the
Maple lexical scoping rules. Using this idea, the previous constructor can
be simplified as follows.

2.5 Modeling Objects • 111

Table 2.1 Priority Queue Methods

empty Test for an empty priority queue
top Return the highest-priority item

insert Insert a prioritized item
delete Remove (and return) the highest priority item

> MakeComplex := proc(real, imag)
> if nargs <> 2 then
> error "real and imaginary parts are required"
> end if;
> module()
> description "a complex number";
> export re, im, abs, arg;
>
> re := () -> real;
> im := () -> imag;
> abs := () -> sqrt(real^2 + imag^2);
> arg := () -> arctan(imag, real);
> end module
> end proc:

Priority Queues
A useful data structure that can be implemented in an object-oriented
way with modules is the priority queue. A priority queue is a container
data structure that admits the following operations:

• Test for an empty priority queue

• Insert a prioritized item into a priority queue

• Return (non-destructively) the highest-priority item in the priority
queue

• Delete the highest priority item from a priority queue

Design Table 2.1 lists the methods of an object representation of priority
queues.

This representation leads directly to the following Maple type, which
can be used to identify priority queues.

> ‘type/PriorityQueue‘ := ’‘module‘(empty, top, insert,
> delete)’:

112 • Chapter 2: Programming with Modules

Constructor Implementation Priority queues can be implemented as
Maple objects by writing a constructor for the objects.

> PriorityQueue := proc(priority::procedure)
> description "priority queue constructor";
> local largs, lnargs;
>
> lnargs := nargs;
> if lnargs > 1 then
> largs := [args[2 .. -1]]
> else
> largs := []
> end if;
>
> module()
> description "a priority queue";
> export empty, top, insert,
> size, delete, init;
> local heap, nitems,
> bubbleup, bubbledown;
>
> nitems := 0;
> heap := table();
>
> bubbleup := proc(child::posint)
> local parent;
> parent := iquo(child, 2);
> if child > 1
> and priority(heap[child]) > priority(heap[
> parent]) then
> heap[parent], heap[child] := heap[child],
> heap[parent];
> procname(parent) # recurse
> end if
> end proc;
>
> bubbledown := proc(parent::posint)
> local child;
> child := 2 * parent;
> if child < nitems
> and priority(heap[1 + child]) > priority(
> heap[child]) then
> child := 1 + child
> end if;
> if child <= nitems
> and priority(heap[parent]) < priority(heap[
> child]) then
> heap[parent], heap[child] := heap[child],
> heap[parent];
> procname(child) # recurse (new parent)
> end if
> end proc;
>
> # Initialize the priority queue.

2.5 Modeling Objects • 113

> init := proc()
> heap := table();
> nitems := 0
> end proc;
>
> # Test whether the priority queue is empty.
> empty := () -> evalb(nitems < 1);
>
> # Return the number of items on the priority queue.
> size := () -> nitems;
>
> # Query the highest priority item.
> top := proc()
> if empty() then
> error "priority queue is empty"
> else
> heap[1]
> end if
> end proc;
>
> # Delete the highest priority item from the
> # priority queue.
> delete := proc()
> local val;
> val := heap[1]; # val := top()
> # move bottom to the top
> heap[1] := heap[nitems];
> # allow expression to be collected
> heap[nitems] := evaln(heap[nitems]);
> # decrement the bottom of heap counter
> nitems := nitems - 1;
> # heapify the array
> bubbledown(1);
> # return the value
> val
> end proc;
>
> # Insert an item into the priority queue.
> insert := proc(v)
> if nargs > 1 then
> op(map(procname, [args]))
> else
> nitems := 1 + nitems;
> heap[nitems] := v;
> bubbleup(nitems)
> end if
> end proc;
>
> # Insert any intially specified items.
> if lnargs > 1 then
> insert(op(largs))
> end if
> end module
> end proc:

114 • Chapter 2: Programming with Modules

The constructor takes a Maple procedure priority as its argument. For
each expression placed on the queue, this procedure returns a numeric
measure of its priority. Items on the queue are maintained in a prioritized
order so that the highest priority items are removed first.

In this sample computation with a priority queue, use the Maple built-
in procedure length as the priority of an expression. Here, the randomly
generated expressions are all polynomials.

> pq := PriorityQueue(x -> length(x));

pq := module()

localheap, nitems , bubbleup, bubbledown;

export empty , top, insert , size , delete , init ;

description “a priority queue”;

end module
> for i from 1 to 10 do
> pq:-insert(randpoly(x));
> end do:
> while not pq:-empty() do
> pq:-delete()
> end do;

50− 85x5 − 55x4 − 37x3 − 35x2 + 97x

72− 99x5 − 85x4 − 86x3 + 30x2 + 80x

72− 53x5 + 85x4 + 49x3 + 78x2 + 17x

−59 + 79x5 + 56x4 + 49x3 + 63x2 + 57x

88− 86x5 + 23x4 − 84x3 + 19x2 − 50x

−62− 50x5 − 12x4 − 18x3 + 31x2 − 26x

83− 58x5 − 90x4 + 53x3 − x2 + 94x

−61 + 77x5 + 66x4 + 54x3 − 5x2 + 99x

−62 + 45x5 − 8x4 − 93x3 + 92x2 + 43x

41 + x5 − 47x4 − 91x3 − 47x2 − 61x

Priority Queue Usage Priority queues can be used to implement a heap-
sort algorithm.

> HeapSort := proc(L::list(numeric))
> local pq, t, count;

2.5 Modeling Objects • 115

> pq := PriorityQueue(x -> -x, op(L));
> t := array(1 .. nops(L));
> count := 0;
> while not pq:-empty() do
> count := 1 + count;
> t[count] := pq:-delete()
> end do;
> ASSERT(count = nops(L));
> [seq(t[count], count = 1 .. nops(L))]
> end proc:
> r := rand(100):
> L := [seq(r(), i = 1 .. 20)]:
> HeapSort(L);

[7, 7, 15, 25, 27, 27, 28, 29, 42, 51, 52, 55, 62, 74, 82,

88, 94, 97, 97, 98]

Note: The fully commented source code for the PriorityQueue con-
structor is available in the samples/advPG/PriorityQueue directory of
the Maple installation.

An Object-oriented Shapes Package
This section demonstrates an object-oriented approach to the Shapes

package described in section 2.3. The earlier revision of the package used
unevaluated function calls as the concrete representation of shapes. This
section demonstrates how to build a package that offers the same function-
ality, but which represents shapes as objects. Each shape uses a module
as its concrete representation. The package itself does not export the
area and circumference features of the traditional style package, be-
cause these features are available as part of each shape object. Instead,
the package is merely a collection of constructors for the various kinds
of shapes. You could use the object representation at a lower level, and
present exactly the same interface as the first Shapes package, but this
section shows how to make the object-oriented nature of shape expressions
more apparent to the user.

The point Constructor Points are simple shapes, so the corresponding
constructor is similarly simple.

> point := proc(x, y)
> module()
> export area, circumference, xcoord, ycoord;
> xcoord := () -> x;
> ycoord := () -> y;
> area := () -> 0;
> circumference := () -> 0;

116 • Chapter 2: Programming with Modules

> end module
> end proc:

The module returned by this constructor uses the lexically scoped
parameters x and y, representing the abscissa and ordinate of the point.
These values are part of the local state, or instance data, of each point
constructed. These points are captured in the closures of the exported
methods, so that variables local to the module in which to store these
values are not necessary.

The segment Constructor Segments are represented using the start and
end points of the segment. These are the points returned by the point

constructor.

> segment := proc(pt1, pt2)
> module()
> export area,
> circumference,
> length,
> start_point,
> end_point;
> local mymidpoint;
>
> start_point := () -> pt1;
> end_point := () -> pt2;
> area := () -> 0;
> circumference := () -> 0;
> length := proc()
> local x, y;
> x := pt1:-xcoord() - pt2:-xcoord();
> y := pt1:-ycoord() - pt2:-ycoord();
> sqrt(x^2 + y^2)
> end proc;
> midpoint := proc()
> local x, y;
> if assigned(mymidpoint) then
> mymidpoint
> else
> y := (pt1:-ycoord() + pt2:-ycoord())/2;
> x := (pt1:-xcoord() + pt2:-xcoord())/2;
> point(x, y)
> end if
> end proc;
> end module
> end proc:

The segment objects implement methods in addition to the required
area and circumferencemethods. Apart from the trivial syntax methods
start_point and end_point, there are methods for computing the length
of a segment and its midpoint.

2.6 Interfaces and Implementations • 117

The circle Constructor Circles are represented by using the center
and radius of the circle as instance data.

> circle := proc(ctr, rad)
> module()
> export area, circumference, diameter,
> center, centre, radius;
> radius := () -> rad;
> center := () -> ctr;
> centre := eval(center); # UK spelling
> diameter := () -> 2 * radius();
> circumference := () -> Pi * diameter();
> area := () -> Pi * rad * rad;
> end module
> end proc:

Again, the lexically scoped parameters ctr and rad encode the in-
stance data of the circle object.

Note: The remainder of the object oriented version of the Shapes pack-
age can be read in ShapeObj.mpl file in the samples/AdvPG directory of
your Maple installation.

2.6 Interfaces and Implementations

Generic programming is a programming style and a software engineering
methodology for software reuse. In this sense, many Maple built-in op-
erations are generic. The addition operator + computes sums of integers,
rational numbers, complex numbers, polynomials, special functions, and
so on. When using the addition operator +, it is not necessary to state
how an expression is represented. (The automatic simplifier recognizes
how Maple expressions are represented.) As with any dynamically typed
language, Maple allows for a great deal of generic programming. Most
built-in Maple operations (including many standard library routines) are
naturally polymorphic in that they are able to perform successfully with
a large variety of data formats.

Generic Programming as Good Software Engineering Practice On any
large project, it is important to write reusable code; that is, code that can
perform a well-defined function in a wide variety of situations. Generic
programs do not rely on the details of how their inputs are represented.
They are able to perform their function on any inputs that satisfy a spec-
ified set of constraints. Normally, these constraints are described in terms

118 • Chapter 2: Programming with Modules

of the behavior of the inputs rather than on their physical representation
or the storage layout of their concrete representation. This behavior is
sometimes called a contract. Generic programs rely only on the object
behavior specified by the contract. They do not rely on knowledge of how
an object is implemented. So, generic software separates interfaces from
implementations.

Distinction Between Local and Exported Variables The behavior spec-
ified by the contract for a module includes any module exports. Whatever
is expressed through its local variables is private to the module, and is
not to be relied upon, or even known, by clients of the module. (Client
access is, in fact, the only technical difference between module locals and
exports.)

Before the introduction of the module system, design by contract was
enforced in Maple only by convention. Maple routines whose names had
to be enclosed in name quotes (‘) were considered private, and not for
client use. But this was only a convention. Moreover, it was necessary
to use global variables to communicate information and state among the
routines that comprised a subsystem (such as solve or assume). Now,
using modules, it is possible to design software systems that enforce their
contracts by a mechanism embedded in the Maple language.

Interfaces
The contracts discussed previously in this section are represented formally
in Maple by an interface . An interface is a special kind of structured type.
It has the form

‘module‘(symseq);

in which symseq is a sequence of symbols or of typed symbols (ex-
pressions of the form symbol::type). For example, an interface for a ring
can be written as

> ‘type/ring‘ := ’‘module‘(‘+‘, ‘*‘, ‘-‘, zero, one)’:

while an (additive) abelian group can take the form

> ‘type/abgroup‘ := ’‘module‘(‘+‘, ‘-‘, zero)’:

These symbols are the ones to which clients have access as module
exports.

A module is said to satisfy, or to implement, an interface if it is of
the type defined by the interface.

2.6 Interfaces and Implementations • 119

> z5 := module()
> description "the integers modulo 5";
> export ‘+‘, ‘*‘, ‘-‘, zero, one;
> ‘+‘ := (a,b) -> a+b mod 5;
> ‘*‘ := (a,b) -> a*b mod 5;
> ‘-‘ := s -> 5-s mod 5;
> zero := 0;
> one := 1;
> end module:
> type(z5, ’ring’);

true

A module can satisfy more than one interface.

> type(z5, ’abgroup’);

true

Interfaces are an abstraction that form part of the Maple type system.
They provide a form of constrained polymorphism. Not every Maple type
is an interface; only those that have the form described are. You can define
a Maple type (that, as it happens, is not itself an interface) to describe
interfaces.

> ‘type/interface‘ := ’specfunc({symbol,symbol::type},
> ‘module‘)’:

This is a structured type. It describes expressions that are themselves
structured types. They have the form of an unevaluated function call
with the operator symbol ‘module‘ and all arguments of type symbol, or
of type symbol::type. In the two previous examples in this section, the
types type/ring and type/abgroup are the interface expressions, and the
names ring and abgroup are the respective names of those interfaces.

A Package for Manipulating Interfaces Interfaces are sufficiently im-
portant that it is worthwhile to develop a package for manipulating them.
The package is small enough that it can be reproduced here, in full, but it
is also available in the samples/AdvPG directory of the Maple installation.

> Interface := module()
> description "a package for manipulating interfaces";
> global ‘type/interface‘;
> export define, # define an interface
> extend, # extend an interface
> extends, # test for an extension
> equivalent,# test equivalence
> savelib, # save an interface

120 • Chapter 2: Programming with Modules

> satisfies; # test whether a module satisfies
> # an interface
> local gassign, # assign to a global variable
> totype, # convert from interface name to type
> toset, # convert from interface name to a set
> setup; # install ‘type/interface‘ globally
> option package, load = setup;
>
> # Define a global type for interfaces.
> # This assignment takes care of installing the type
> # in the Maple session in which this module definition
> # is evaluated. Calling ‘setup()’ ensures that this also
> # happens when the instantiated module is read from a
> # repository.
> ‘type/interface‘
> := ’specfunc({symbol, ‘::‘}, ‘module‘)’;
>
> # Ensure that ‘type/interface‘ is defined. This thunk is
> # called when the instantiated ‘Interface’ module is read
> # from a Maple repository.
> setup := proc()
> global ‘type/interface‘;
> ‘type/interface‘
> := ’specfunc({symbol, ‘::‘}, ‘module‘)’;
> NULL # quiet return
> end proc;
>
> # Assign to the global instance of a name
> gassign := proc(nom::symbol, val)
> option inline;
> eval(subs(_X = nom,
> proc()
> global _X;
> _X := val
> end))()
> end proc;
>
> # Convert an interface name to the corresponding type.
> totype := (ifc::symbol) -> (‘type/‘ || ifc);
>
> # Convert an interface name to a set of symbols.
> toset := (ifc::symbol) -> { op((‘type/‘ || ifc)) };
>
> # Install a new interface into the type system.
> define := proc(ifc)
> description "define an interface";
> if map(type, {args}, ’symbol’) <> { true } then
> error "arguments must all be symbols"
> end if;
> gassign(‘type/‘ || ifc,
> ’‘module‘’(args[2 .. nargs]));
> ifc # return the interface name
> end proc;
>

2.6 Interfaces and Implementations • 121

> # Implement subtyping.
> extend := proc(new, old)
> description "extend an existing inteface";
> if map(type, {args}, ’symbol’) <> { true } then
> error "arguments must all be symbols"
> end if;
> if not type(totype(old), ’interface’) then
> error "cannot find an interface named %1", old
> end if;
> define(new, op(totype(old)), args[3..nargs])
> end proc;
>
> # Test whether ifc2 is an extension of ifc1.
> extends := proc(ifc1, ifc2)
> description "test whether the second interface "
> "extends the first";
> local t1, t2;
> t1, t2 := op(map(totype, [ifc1, ifc2]));
> if not type([t1,t2], ’[interface,interface]’) then
> if not type(t1, ’interface’) then
> error "arguments must be interface names, "
> "but got %1", ifc1
> else
> error "arguments must be interface names, "
> "but got %1", ifc2
> end if
> end if;
> toset(ifc1) subset toset(ifc2)
> end proc;
>
> # Save an interface to the repository.
> savelib := proc()
> description "save a named interface to a "
> "repository";
> local ifc;
> for ifc in map(totype, [args]) do
> if not type(ifc, ’interface’) then
> error "arguments must be interfaces, "
> "but got %1", ifc
> end if;
> :-savelib(totype(ifc))
> end do
> end proc;
>
> # Test whether a module satisfies an interface.
> # This is simply an alternative to a call
> # to ‘type()’.
> satisfies := proc(m, ifc)
> description "test whether a module satisfies an interface";
> if not type(totype(ifc), ’interface’) then
> error "second argument must be an interface name, "
> "but got %1", ifc
> end if;
> type(m, ifc)

122 • Chapter 2: Programming with Modules

> end proc;
>
> # Test whether two interfaces are equivalent.
> # Since unevaluated function calls compare
> # differently if their arguments are in a
> # different order, we convert them to sets first,
> # and then test for equality.
> equivalent := proc(ifc1, ifc2)
> description "test whether two interfaces "
> "are equivalent";
> local t1, t2;
> t1, t2 := totype(ifc1), totype(ifc2);
> if not type(t1, ’interface’) then
> error "expecting an interface name, "
> "but got %1", ifc1
> elif not type(t2, ’interface’) then
> error "expecting an interface name, "
> "but got %1", ifc2
> end if;
> evalb({ op(t1) } = { op(t2) })
> end proc;
> end module:

This package implements the interface abstraction. It allows you to
manipulate interfaces without having to worry about how they fit into
the Maple type system.

> with(Interface);

Warning, the protected names define and savelib have
been redefined and unprotected

[define , equivalent , extend , extends , satisfies , savelib]

> define(’abgroup’, ’‘+‘’, ’‘-‘’, ’zero’);

abgroup

> type(‘type/abgroup‘, ’interface’);

true

> type(z5, ’abgroup’);

true

2.6 Interfaces and Implementations • 123

> satisfies(z5, ’abgroup’);

true

> extend(’ring’, ’abgroup’, ’‘*‘’, ’one’);

ring

> type(‘type/ring‘, ’interface’);

true

> extends(abgroup, ring);

true

> satisfies(z5, ’ring’);

true

> type(z5, ’ring’);

true

The load= Option This package provides an abstraction of the inter-
face concept in Maple and illustrates a module feature not previously
demonstrated–the load=procedure_name option. In the Interface pack-
age, this option is used in a fairly typical way. The declaration

option load = setup;

that appears in the module definition instructs Maple that, when the
instantiated module is read from a repository, it is to call the procedure
setup. The procedure named must be a local or an exported local of the
module. The local procedure setup in this module simply ensures that
the global variable type/interface is assigned an appropriate value. This
assignment is also made in the body of the module so that the assignment
is also executed in the session in which the module is instantiated. This
is done for illustrative purposes. A better scheme simply invokes setup

in the body of the module definition.

124 • Chapter 2: Programming with Modules

Generic Graph Algorithms
The following example uses simple graph algorithms to illustrate generic
programming.

Mathematical Description A directed graph can be thought of as an
object that consists of a set V of vertices and a set E ⊆ V ×V of ordered
pairs of vertices, called edges. Graphs can be visualized by diagrams like
the following.

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

ba

c d

e

f

This diagram represents a graph with vertex set V = {a, b, c, d, e, f}, and
edge set E = {(a, b), (a, c), (b, d), (c, f), (f, d), (b, e), (d, e), (c, b), (c, d)}.

Software Models Graphs can be represented in a variety of ways. The
choice of storage mechanism depends on the expected applications of the
graph. Three possibilities for representing graphs in software are:

1. Store the set V of vertices and the set E of edges explicitly.

2. Store the “adjacency matrix” of the graph.

3. Store, for each vertex of the graph, the set of all its neighbours.

(The adjacency matrix is a square matrix whose rows and columns are
indexed by the vertices of the graph; the (i, j)-entry is equal to 1 if there
is an edge from i to j, and is equal to 0 otherwise.) You can write software
that manipulates a graph independent of representation.

Designing a Graph Interface To demonstrate how this can be achieved,
consider graphs as objects that implement the methods listed in Table 2.2.

Then, represent the abstract interface of a graph by a Maple type.

> ‘type/Graph‘ := ’‘module‘(vertices, edges, addedge, order,
> size)’:

An object implements the graph interface if it is of type Graph.

2.6 Interfaces and Implementations • 125

Table 2.2 Graph Methods

vertices Returns the set of vertices of the graph
edges Returns the set of edges of the graph

addedge Allows one to add a new edge to a graph
order Returns the number of vertices of the graph
size Returns the number of edges of the graph

Computing Vertex Degrees Generically If an object implements this
interface, then you can write generic code based on that interface. For
example, you can write the following procedure to compute the in-degree
and out-degree of a vertex of a given graph.

> vdeg := proc(G::Graph, v)
> local vs, vt;
> description "compute the in- and out-degrees "
> "of a vertex in a graph";
> if member(v, G:-vertices()) then
> vs := select(e -> evalb(v = e:-source()),
> G:-edges());
> vt := select(e -> evalb(v = e:-target()),
> G:-edges());
> nops(vs), nops(vt)
> else
> 0, 0
> end if
> end proc:

You can write this procedure even though, at this point, you do not know
the graph implementation. This capability is very important when you
are designing a large software system.

Edge Object Representation Assume that edges are represented as ob-
jects that implement the interface ‘module‘(source, target). The
interface provides methods for extracting the source and target vertices
from an edge. Writing a constructor Edge for edges is easy.

> Edge := proc(src, targ)
> module()
> local the_source, the_target;
> export source, target, setsource, settarget;
> the_source := src;
> the_target := targ;
> source := () -> the_source;
> target := () -> the_target;
> setsource := proc(v)
> the_source := v
> end proc;
> settarget := proc(v)
> the_target := v

126 • Chapter 2: Programming with Modules

> end proc;
> end module
> end proc:

First Graph Constructor At first, you might choose to adopt a graph
representation that is simple to implement. Here is a graph constructor
that produces graphs represented by storing the vertex and edge sets
explicitly as part of the state of a module.

> Graph1 := proc()
> local vertex_set, edge_set;
> description "graph constructor";
>
> edge_set := { args };
> if not andmap(type, edge_set, ’[anything, anything]’)
> then
> error "graph must be specified by a sequence of edges"
> end if;
> if not andmap(edge -> evalb(nops (edge)= 2), edge_set)
> then
> error "each edge must be specified "
> "as a [source, target] pair"
> end if;
> vertex_set := map(op, edge_set);
> edge_set := map(Edge@op, edge_set);
> module()
> export order, size,
> vertices, edges,
> addedge; # required exports
> vertices := () -> vertex_set;
> edges := () -> edge_set;
> addedge := proc(src, targ)
> edge_set := { Edge(src, targ) }
> union edge_set;
> vertex_set := { src, targ }
> union vertex_set;
> NULL
> end proc;
> order := () -> nops(vertices());
> size := () -> nops(edges());
> end module
> end proc:

If you create a small graph using this constructor

> g1 := Graph1([a, b], [a, c], [b, c]):
> type(g1, ’Graph’);

true

2.6 Interfaces and Implementations • 127

you can use the routine vdeg with the graph g1, since graphs produced
by Graph1 implement the Graph interface.

> vdeg(g1, a);

2, 0

> vdeg(g1, b);

1, 1

> vdeg(g1, c);

0, 2

The important feature of the procedure vdeg is its generic quality.
It can be used with any implementation of graphs that implements the
Graph interface previously specified.

Second Graph Constructor Here is another, different implementation of
the Graph interface. The graph is represented by using a table N in which
the neighbors of each vertex are stored.

> Graph2 := proc()
> local vertex_set, edge_set;
> description "graph constructor";
>
> edge_set := { args };
> vertex_set := map(op, edge_set);
> if not andmap(type, edge_set, ’list’) then
> error "graph must be specified by a sequence of edges"
> end if;
> if not andmap(edge -> evalb(nops (edge)= 2), edge_set)
> then
> error "each edge must be specified "
> "as a [source, target] pair"
> end if;
> module()
> export order, size,
> vertices, edges,
> addedge;
> local N, e, v, n, edge_pairs;
> N := table();
> edge_pairs := () -> { seq(
> seq([v, n], n = N[v]),
> v = map(op, { indices(N) })
>) };
> vertices := () -> map(op, edge_pairs());

128 • Chapter 2: Programming with Modules

> edges := () -> map(Edge@op, edge_pairs());
> addedge := proc(src, targ)
> if assigned(N[src])
> and not member(targ, N[src]) then
> N[src] := { op(N[src]), targ }
> else
> N[src] := { targ };
> end if;
> NULL
> end proc;
> order := () -> nops(vertices());
> size := () -> nops(edges());
> for e in edge_set do
> addedge(op(1, e), op(2, e))
> end do
> end module
> end proc:

A graph returned by the constructor Graph2 also satisfies the Graph in-
terface.

> g2 := Graph2([a, b], [a, c], [b, c]):
> type(g2, ’Graph’);

true

Therefore, the generic procedure vdeg works equally well with it.

> vdeg(g2, a);

2, 0

> vdeg(g2, b);

1, 1

> vdeg(g2, c);

0, 2

Note: The full source code for these procedures is available in the
samples/AdvPG/graph directory of the Maple installation.

Generic Computation of Adjacency Matrices Another example of a
generic procedure over the Graph interface is the following routine for
computing the adjacency matrix of a graph.

2.6 Interfaces and Implementations • 129

> AdjacencyMatrix := proc(g::Graph)
> local a, # the adjacency matrix; returned
> n, # the order of the graph g
> V, # the vertex set of the graph
> E, # the edge set of the graph
> row, # row index for matrix
> col, # column index for matrix
> e; # induction variable for loop
>
> n := g:-order();
> a := Matrix(n, n, ’storage’ = ’sparse’);
> V := sort(convert(g:-vertices(), ’list’));
> E := g:-edges();
> for e in E do
> if not member(e:-source(), V, ’row’)
> or not member(e:-target(), V, ’col’) then
> error "inconsistent graph structure detected"
> end if;
> a[row, col] := 1
> end do;
> a
> end proc:
> AdjacencyMatrix(g1);





0 1 1
0 0 1
0 0 0





> AdjacencyMatrix(g2);





0 1 1
0 0 1
0 0 0





Quotient Fields
As an example of generic programming, a generic quotient field (or field
of fractions) construction algorithm is discussed.

Mathematical Description Given an integral domain D, its quotient
field is (up to isomorphism) the unique field k, paired with a nonzero ring
homomorphism η : D −→ k, with the property that, for any nonzero ring
homomorphism ϕ : D −→ F , in which F is a field, there is a unique ring
homomorphism σ for which the diagram

130 • Chapter 2: Programming with Modules

D

k

Fη

ϕ

σ

commutes. Because a nonzero ring homomorphism into a field must be
injective, this says that every field F that contains D as a subring must
also contain an isomorphic copy of k.

Concretely, the quotient field of an integral domain D can be thought
of as the set of “reduced fractions” n/d, with n, d ∈ D. A formal con-
struction can be produced by defining an equivalence relation on the set
D × (D \ {0}), according to which two pairs (n1, d1) and (n2, d2) are
equivalent only if,

n1 · d2 = n2 · d1.

A representative from each equivalence class is chosen to represent the
field element defined by that class. This understanding guides the com-
puter representation of the quotient field.

Unit Normal Representatives If R is a commutative ring with multi-
plicative identity, then

U(R)×R −→ R : (u, r) → u · r

is a natural action of the group U(R) of units of R on R. Each orbit of this
action has a representative called the unit normal representative of the
class. Consider an effective mapping R −→ R that selects the unit normal
representative of each class. For instance, for the ring Z of integers, the
group U(Z) of units is the set {1,−1}, the orbits are the sets {n,−n} for
n ∈ Z\{0} together with {0}, and you take the unit normal representative
to be the positive member of each orbit, and 0 for the orbit {0}. (Thus,
the unit normal mapping simply computes the sign and absolute value of
an integer.) The unit normal mapping on the ring k[T] of polynomials in
an indeterminate T over a field k is

p(T) → 1

lc(p(T))
· p(T),

in which lc(p(T)) denotes the leading coefficient of the polynomial p(T).
(The group of units in k[T] is the set k∗ = k \ {0}, of nonzero members of
k, and each orbit of k[T] under the action of k∗ contains an unique monic
polynomial that is its representative.)

2.6 Interfaces and Implementations • 131

Designing the Ring Interfaces The first step in representing these ideas
in software is to devise an interface that describes the rings. Suppose that
the rings are equipped with the basic ring operations, as well as several
methods that implement desired computations.

> ‘type/Ring‘ := ’‘module‘(
> ‘+‘::procedure,
> ‘*‘::procedure,
> ‘-‘::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one
>)’:

This interface corresponds naturally with a formal mathematical charac-
terization of the ring as a tuple

〈S,+, ∗, 0, 1〉

that satisfies a number of properties, and to which some computational
capabilities have been added. Given the way operator overrides work in
Maple, unary negation (-) is added. (In a more tightly integrated system,
you specify the number and types of arguments to each of the procedures.)

For these computations, you need a slightly richer structure.

> ‘type/GcdRing‘ := ’‘module‘(
> ‘+‘::procedure,
> ‘*‘::procedure,
> ‘-‘::procedure,
> quo::procedure,
> rem::procedure,
> gcd::procedure,
> unormal::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one
>)’:

This interface extends the Ring interface defined previously. Note that
nothing in the signature enforces any ring-theoretic properties (such as
being an integral domain, or having unique factorization). It merely spec-
ifies the admissible operations. To compute with infinite rings (and even
large finite ones), you do not require an enumeration of the elements of
the ring. You can focus entirely on the effectively computable operations
that the ring must support.

Representing the ring Z of Integers One of the simplest examples of a
ring that supports the computations is the ring of integers Z in its native
Maple representation.

132 • Chapter 2: Programming with Modules

> MapleIntegers := module()
> description "the ring of integers";
> export ‘+‘, ‘*‘, ‘-‘,
> gcd, unormal, iszero,
> isone, zero, one, rem, quo;
> ‘+‘ := (a, b) -> a + b;
> ‘*‘ := (a, b) -> a * b;
> ‘-‘ := i -> -i;
> quo := (a, b) -> :-iquo(a, b);
> rem := (a, b) -> :-irem(a, b);
> gcd := (a, b) -> :-igcd(a, b);
> unormal := proc(i::integer)
> if i < 0 then
> -1, -i
> else
> 1, i # includes 0
> end if
> end proc;
> iszero := i -> evalb(i = 0);
> isone := i -> evalb(i = 1);
> zero := 0;
> one := 1;
> end module:

This is a software representation of the ring of integers. The unit normal
mapping is represented by the exported procedure unormal. It returns an
expression sequence of length two, whose first member is a unit, and whose
second member is the unit normal form of its argument. The product of
the output values yields the input ring element. The other methods only
invoke the corresponding built-in Maple operations.

> type(MapleIntegers, ’Ring’);

true

> type(MapleIntegers, ’GcdRing’);

true

An Interface for Fields The quotient field constructor produces a field.
An interface that describes fields differs from the one for integral domains
by the absence of a gcd method (since they are trivial) and the addition of
the (unary) / operator that computes inverses. The methods rem and quo

are also not included in the signature for fields, because they are trivial
in a field. Two new methods are included:

• make for constructing field elements from their numerators and de-
nominators

2.6 Interfaces and Implementations • 133

• embed, the natural embedding of the integral domain D into its field
k of fractions.

Additionally, the two methods numer and denom allow the user to extract
the components of a fraction.

> ‘type/Field‘ := ’‘module‘(
> ‘+‘::procedure,
> ‘*‘::procedure,
> ‘-‘::procedure,
> ‘/‘::procedure,
> normal::procedure,
> iszero::procedure,
> isone::procedure,
> zero, one,
> make::procedure,
> embed::procedure,
> numer::procedure,
> denom::procedure
>)’:

Naturally, the ring Z of integers is not a field.

> type(MapleIntegers, ’Field’);

false

Fields produced by the quotient field constructor satisfy this interface.

The Quotient Field Functor Here is the generic constructor for quotient
fields.

> QuotientField := proc(R::GcdRing)
> description "quotient field functor";
> module()
> description "a quotient field";
> export ‘+‘, ‘*‘, ‘-‘, ‘/‘,
> zero, one,
> iszero, isone,
> make,
> numer, denom,
> normal, embed;
> make := proc(n, d)
> local u, nd;
> if R:-iszero(d) then
> error "division by zero"
> end if;
> u, nd := R:-unormal(d);
> ’FRACTION’(u*n, nd)
> end proc;
> embed := d -> make(d, R:-one);
> numer := f -> op(1, f);
> denom := f -> op(2, f);

134 • Chapter 2: Programming with Modules

> zero := embed(R:-zero);
> one := embed(R:-one);
> iszero := f -> evalb(normal(f) = zero);
> isone := f -> evalb(normal(f) = one);
> normal := proc(f)
> local g, a, b;
> g := R:-gcd(numer(f), denom(f));
> if R:-isone(g) then
> f
> else
> a := R:-quo(numer(f), g);
> b := R:-quo(denom(f), g);
> make(a, b)
> end if
> end proc;
> ‘-‘ := f -> normal(R:-‘-‘(numer(f)), denom(f));
> ‘/‘ := f -> normal(make(denom(f), numer(f)));
> ‘+‘ := proc(a, b)
> use ‘+‘ = R:-‘+‘, ‘*‘ = R:-‘*‘ in
> normal(make(numer(a) * denom(b)
> + denom(a) * numer(b),
> denom(a) * denom(b)))
> end use
> end proc;
> ‘*‘ := proc(a, b)
> use ‘*‘ = R:-‘*‘ in
> normal(make(numer(a) * numer(b),
> denom(a) * denom(b)))
> end use
> end proc;
> end module
> end proc:

Note: The source code for QuotientField.mpl is available in the
samples/AdvPG directory of your Maple installation.

Most of the exported routines are straightforward. The fraction con-
structor make accepts two members of the ring R as arguments and returns
the constructed fraction, which is represented by an unevaluated function
call of the form

FRACTION(numerator, denominator)

The exported procedure embed is the canonical embedding η of the inte-
gral domain into its quotient field, described previously. This makes the
constructor functorial. The arithmetic operators are simple implementa-
tions of the familiar rules for fraction arithmetic:

a

b
+

c

d
=

ad+ bc

bd

2.6 Interfaces and Implementations • 135

a

b
× c

d
=

ac

bd
(a

b

)−1
=

b

a

−
(a

b

)

=
−a

b

After applying these simple formulae, the result is normalized by using
a call to the local routine normal (not the top-level routine :-normal).
The normal routine does most of the interesting work in the ring generated
by this constructor. It uses the manifestation of the division algorithm in
the ring R via the exported procedures quo and gcd to reduce each frac-
tion to the lowest terms. The fraction constructor make and the method
normal represent field elements by the normal form representative of the
appropriate equivalence class. The make routine prevents division by zero,
and forces denominators to be unit normal representatives. The normal

routine ensures that fractions are reduced to lowest terms.
The most important property of the QuotientField functor is that

it is generic. It relies solely on the GcdRing interface. No knowledge of
the concrete representation of the input integral domain R (other than
that it is a module that satisfies the required interface) is used in the
construction. Therefore, it works with any implementation of the GcdRing
interface that:

• Implements the correct semantics for its public operations

• Satisfies the abstract constraint that it be a software representation
of an integral domain. (This constraint is required to ensure that the
arithmetic operations are well defined.)

Constructing the Rationals as the Quotient Field of Z To construct
the quotient ring of the ring MapleIntegers defined previously, proceed
as follows.

> FF := QuotientField(MapleIntegers);

FF := module()

export‘ + ‘, ‘ ∗ ‘, ‘− ‘, ‘/‘, zero, one , iszero, isone , make ,

numer , denom, normal , embed ;

description “a quotient field”;

end module
> type(FF, ’Field’);

136 • Chapter 2: Programming with Modules

true

> a := FF:-make(2, 3);

a := FRACTION(2, 3)

> b := FF:-make(2, 4);

b := FRACTION(2, 4)

> use FF in
> a + b;
> a * b;
> a / b
> end use;

FRACTION(7, 6)

FRACTION(1, 3)

FRACTION(4, 3)

Note: This is a complex representation of the field of rational numbers.

The Quotient Field of the Polynomial Ring Q[T] To illustrate the
generic quality of this constructor, construct the field Q[T] of rational
functions in a single indeterminate T from a concrete representation of
Maple rational polynomials.

> MaplePoly := module()
> description "the ring of rational polynomials";
> export ‘+‘, ‘*‘, ‘-‘,
> zero, one,
> iszero, isone,
> gcd, unormal,
> quo, rem;
> ‘+‘ := (a, b) -> expand(a + b);
> ‘*‘ := (a, b) -> expand(a * b);
> ‘-‘ := p -> -p;
> gcd := (a, b) -> :-gcd(a, b);
> unormal := proc(p)
> local lc;
> if iszero(p) then
> one, zero
> else
> use lc = lcoeff(p) in
> lc, :-normal(p / lc)

2.6 Interfaces and Implementations • 137

> end use
> end if
> end proc;
> iszero := p -> Testzero(p);
> isone := p -> Testzero(p - 1);
> zero := 0;
> one := 1;
> rem := (a, b) -> :-rem(a, b);
> quo := (a, b) -> :-quo(a, b);
> end module:

The unormal method produces the leading coefficient and monic associate
of a given polynomial in Q[T]. The remaining exports simply capture
built-in Maple operations on univariate rational polynomials.

> RR := QuotientField(MaplePoly);

RR := module()

export‘ + ‘, ‘ ∗ ‘, ‘− ‘, ‘/‘, zero, one , iszero, isone , make ,

numer , denom, normal , embed ;

description “a quotient field”;

end module
> type(RR, ’Field’);

true

To make printed fractions more readable, introduce the following ex-
tension to the print command.

> ‘print/FRACTION‘ := (n, d) -> sort(n) / sort(d):

Finally, construct a few examples, and test the arithmetic.

> a := RR:-make(randpoly(’T’, ’degree’ = 4, ’terms’ = 3),
> randpoly(’T’, ’degree’ = 4, ’terms’ = 3));

a :=
−2072T 2 − 1960T + 5432

T 3 +
7

8
T 2 +

9

8

> b := RR:-make(randpoly(’T’, ’degree’ = 4, ’terms’ = 3),
> randpoly(’T’, ’degree’ = 4, ’terms’ = 3));

b :=
−2790T 3 + 496T 2 + 5766

T 2 − 77

62
T − 33

31

138 • Chapter 2: Programming with Modules

> use RR in
> a + b;
> a * b;
> a / b
> end use;

(−2790T 6 − 7781

4
T 5 − 1638T 4 +

401827

124
T 3

+
1943715

124
T 2 − 144452

31
T +

87333

124
)

/

(

T 5 − 91

248
T 4 − 1067

496
T 3 +

6

31
T 2 − 693

496
T − 297

248
)

(5780880T 5 + 4440688T 4 − 16127440T 3 − 9252880T 2

− 11301360T + 31320912)/(

T 5 − 91

248
T 4 − 1067

496
T 3 +

6

31
T 2 − 693

496
T − 297

248
)

(5780880T 4 − 1711080T 3 − 28100520T 2 + 13000680T

+ 16133040)/(

T 6 +
251

360
T 5 − 7

45
T 4 − 113

120
T 3 − 241

120
T 2 − 93

40
)

A Generic Group Implementation
This section illustrates how to develop a moderately complex software
system by using features of the Maple module system. Generic program-
ming is at the heart of the design. Only a fraction of the complete system
from which the examples are taken is shown. A system for computing with
finite groups comprises the examples that follow. Recall that a group is
a set of objects together with an associative binary operation, for which
there is an unique two-sided identity element, and with respect to which
each member of the underlying set possesses an unique inverse. Examples
of groups include:

• Systems of numbers, using addition

• Closed sets of invertible matrices (all of the same size, with a common
ground field), using multiplication (linear groups)

• Closed sets of permutations (bijective mappings on a set), using com-
position (permutation groups)

• Groups of points on elliptic curves

Only finite groups are discussed.

2.6 Interfaces and Implementations • 139

Table 2.3 Abstract Group Methods

id Returns the group identity
‘.‘ Performs the binary operation on the group
mul n-ary version of ‘.‘
inv Performs the unary inversion operation
pow Computes integral powers of group elements
eq Tests whether two group elements are equal

member Tests membership in the group and in sets
gens Returns a generating set for the group
order Returns the order of the group

elements Returns an enumeration of the group’s members

An Interface for Finite Groups First, you must decide how to represent
the generic group interface. This is determined by the proposed use of the
group objects. Once again, the design takes a group to be a repository of
data and computational services that you can query or invoke.

The Group signature used in the examples describes a computational
model of abstract groups that supports the methods in Table 2.3.

> ‘type/Group‘ := ’‘module‘(
> id, ‘.‘, mul, inv,
> eq, member,
> gens,
> order, elements
>)’:

A corresponding constructor for groups is easily written using the Record
constructor introduced earlier. For the examples in this section, no default
methods are introduced.

> Group := proc()
> Record(op(‘type/Group‘));
> end proc:

This constructor does very little work on its own. It relies on more spe-
cialized constructors to establish useful values or defaults for the methods
exported.

You can write generic algorithms using this interface immediately.
A few simple examples are these routines for computing conjugates and
commutators of group elements. The conjugate of a group member a by
a group member b is b−1ab. This routine computes the conjugate of an
element a by an element b in a group G.

> Conjugate := proc(G, a, b)
> description "compute the conjugate of a "
> "group element by another";

140 • Chapter 2: Programming with Modules

> use ‘/‘ = G:-inv, ‘.‘ = G:-‘.‘ in
> b^(-1) . a . b
> end use
> end proc:

Since the group operations ‘.‘ and inv in a generic group remain unas-
signed, the following computation is done symbolically.

> Conjugate(Group(), ’x’, ’y’);

(inv(y)) . x . y

Similarly, you can compute the commutator [a, b] = a(−1)b(−1)ab,
generically, as follows.

> Commutator := proc(G, a, b)
> description "compute the commutator of "
> "two group elements";
> use ‘/‘ = G:-inv, mul = G:-mul in
> mul(inv(a), inv(b), a, b)
> end use
> end proc:

Again, this computation is done symbolically, so the group operations
return unevaluated.

> Commutator(Group(), ’x’, ’y’);

mul(inv(x), inv(y), x, y)

The ability to write generic algorithms over a given interface is im-
portant for the management of large software projects involving many
developers. One developer can be assigned the task of implementing par-
ticular group constructors along with the attendant arithmetic, while an-
other developer can begin coding generic routines. The two developers
can work independently, provided each ensures that the work conforms
to some agreed-upon interface and semantics.

Permutation Groups Before attempting to develop any complicated al-
gorithms, it is helpful to have a few constructors for specific kinds of
groups. These can then be used to validate generic algorithms in specific
instances. For this reason, develop a straightforward implementation of
permutation groups.

Permutations are represented using Maple lists. For example, the list
[2,1,3] represents the permutation that maps 1 → 2, maps 2 → 1,
and leaves 3 fixed. (In cycle notation, this is written as the transposition

2.6 Interfaces and Implementations • 141

(12).) The constructor takes a positive integer as its first argument, indi-
cating the degree of the permutation group. The remaining arguments are
expected to be permutations (represented as lists) of the stated degree.
These are used to form the generating set of the group returned by the
constructor.

> PermutationGroup := proc(deg::posint)
> description "permutation group constructor";
> local G, gens;
> gens := { args[2 .. -1] };
> G := Group();
> G:-id := [$ 1 .. deg];
> G:-‘.‘ := proc(a, b)
> local i;
> [seq(b[i], i = a)]
> end proc;
> G:-mul := () -> foldl(G:-‘.‘, G:-id, args);
> G:-inv := proc(g)
> local i, a;
> a := array(1 .. deg);
> for i from 1 to deg do
> a[g[i]] := i
> end do;
> [seq(a[i], i = 1 .. deg)]
> end proc;
> G:-member := proc(g, S, pos::name)
> if nargs = 1 then
> type(g, ’list(posint)’)
> and { op(g) } = { $ 1 .. deg }
> else
> :-member(args)
> end if
> end proc;
> G:-eq := (a, b) -> evalb(a = b);
> G:-gens := gens;
> eval(G, 1)
> end proc:

For example, to construct the group 〈(12), (123)〉 in the symmetric group
S4, use the PermutationGroup constructor as follows.

> G := PermutationGroup(4, { [2,1,3,4], [2,3,1,4] });

G := module()
export
id , ‘.‘, mul , inv , eq , member , gens , order , elements ;

option record ;

end module

142 • Chapter 2: Programming with Modules

To compute with its elements, use the methods exported by the in-
stantiated group G.

> use G in
> inv([2,1,3,4]) . [2,3,1,4];
> end use;

[3, 2, 1, 4]

It is useful to provide more specialized permutation group con-
structors for special kinds of groups. Using the general constructor
PermutationGroup, and overriding some of the exported methods, you
can define several of these specialized constructors as follows.

The full symmetric group Sn on the n points {1, 2, 3, . . . , n} is pro-
duced by specifying a particular set of generators for a given degree (which
must be specified as an argument to the constructor).

> Symmetric := proc(n::posint)
> description "symmetric group constructor";
> if n < 2 then
> error "argument must be an integer larger than 1"
> elif n = 2 then
> PermutationGroup(2, [2,1]);
> else
> PermutationGroup(n, [2,1,$3..n], [$2..n,1]);
> end if
> end proc:

This uses the fact that Sn is the two-generator group

Sn = 〈(12), (123 · · ·n)〉,

for any integer n ≥ 3.
A second special case is the class of dihedral groups. Think of these as

the groups of symmetries of regular plane polygons. The symmetry group
of the regular n-gon is the dihedral group of degree n and order 2n; it is
denoted by Dn.

D6

(12)

(123456)

2.6 Interfaces and Implementations • 143

Use the following utility for reversing the order of a list.

> lreverse := proc(L::list)
> description "reverse a list";
> option inline;
> [seq(L[-i], i = 1 .. nops(L))]
> end proc:
> Dihedral := proc(n::posint)
> description "dihedral group constructor";
> local a, b, D;
> if n = 2 or n = 3 then
> return Symmetric(n)
> end if;
> a := [$ 2 .. n, 1];
> b := [1, op(lreverse([$ 2 .. n]))];
> D := PermutationGroup(n, { a, b });
> D:-order := () -> 2*n;
> eval(D, 1)
> end proc:

Exercises

1. Use the fact that the alternating group An of degree n >= 3 is gen-
erated by the set {(123), (234), (345), . . . , (n− 2, n− 1, n)} of 3-cycles
to write a constructor Alternating for this class of groups.

Dimino’s Algorithm Dimino’s algorithm is used to compute a complete
enumeration of the elements of a finite group, given a generating set for
the group. Suppose that you are given a generating set {g1, g2, . . . , gn} for
a finite group G. The idea behind Dimino’s algorithm is to enumerate,
successively, the elements of each of the subgroups

Gk = 〈g1, g2, . . . , gk〉

of G, which form a chain

〈g1〉 = G1 ≤ G2 ≤ · · · ≤ Gk ≤ · · · ≤ Gn = G.

These elements can be enumerated by forming products of the generators
g1, g2, . . . , gn in all possible ways, until all the elements of G have been
found. Dimino’s algorithm does this in a careful way, avoiding unnecessary
product computations.

Use the following utility routine to determine the entries assigned to
a table. It can be used when you are certain no entry is a non-NULL ex-
pression sequence. Since it is sufficiently simple, it is defined with option

inline;.

144 • Chapter 2: Programming with Modules

> Entries := proc(T)
> description "return a set of simple table entries";
> option inline;
> map(op, { entries(T) })
> end proc:

Here is the code for Dimino’s algorithm.

> Dimino := proc(G::Group)
> description "enumerate the elements of a finite group";
> local s, g, ord, elements, i, j, prev_ord, rep_pos,
> elt, addElt, gens;
>
> if nargs > 1 then
> gens := args[2]
> else
> gens := G:-gens
> end if;
>
> if not type(gens, ’{ set, list }’) then
> error "no generating set specified"
> end if;
>
> if nops(gens) = 0 then
> # trivial group
> return { G:-id }
> end if;
>
> addElt := proc(h)
> ord := 1 + ord;
> elements[ord] := h
> end proc;
>
> elements := table();
> ord := 0;
> addElt(G:-id);
>
> # Handle the first cyclic subgroup
> s := gens[1];
> g := s;
> while not G:-eq(g, G:-id) do
> addElt(g);
> g := G:-‘.‘(g, s)
> end do;
> userinfo(1, ’Dimino’, "finished first cycle; order is:", ord);
>
> for i from 2 to nops(gens) do
> userinfo(1, ’Dimino’, "Adding generator number:", i);
> s := gens[i];
> if not G:-member(s, Entries(elements)) then
> prev_ord := ord;
> addElt(s);
> for j from 2 to prev_ord do
> addElt(G:-‘.‘(elements[j], s))

2.6 Interfaces and Implementations • 145

> end do;
> rep_pos := 1 + prev_ord;
> do
> for s in gens[1 .. i] do
> elt := G:-mul(elements[rep_pos], s);
> if not G:-member(elt, Entries(elements)) then
> addElt(elt);
> for j from 2 to prev_ord do
> addElt(G:-‘.‘(elements[j], elt))
> end do
> end if
> end do;
> rep_pos := rep_pos + prev_ord;
> if rep_pos > ord then
> break
> end if
> end do
> end if
> end do;
> Entries(elements)
> end proc:

The coding of this algorithm is generic. The exported members of the
group object G are used to effect computations within the procedure.
Even comparisons of equality use the export eq instead of the built-in
comparison operator ‘=‘. (The need for this is illustrated below.)

Using the Symmetric constructor previously defined, you can compute
the elements of the symmetric group S4, using Dimino’s algorithm, as
follows.

> G := Symmetric(4);

G := module()
export
id , ‘.‘, mul , inv , eq , member , gens , order , elements ;

option record ;

end module
> Dimino(G);

{[2, 1, 3, 4], [2, 3, 1, 4], [1, 2, 3, 4], [3, 2, 1, 4],
[2, 3, 4, 1], [3, 2, 4, 1], [1, 3, 4, 2], [3, 1, 4, 2],

[3, 4, 1, 2], [4, 3, 1, 2], [2, 4, 1, 3], [4, 2, 1, 3],

[3, 4, 2, 1], [4, 3, 2, 1], [4, 1, 2, 3], [1, 4, 2, 3],

[3, 1, 2, 4], [1, 3, 2, 4], [4, 1, 3, 2], [1, 4, 3, 2],

[4, 2, 3, 1], [2, 4, 3, 1], [1, 2, 4, 3], [2, 1, 4, 3]}

146 • Chapter 2: Programming with Modules

Anticipating later developments, the procedure Dimino has been
coded to accept a second, optional argument that specifies an alternate
set of generators to use. Thus, you could compute the same set using the
set {(12), (23), . . . , (n− 1, n)} of transpositions instead.

> Dimino(G, { [2,1,3,4], [1,3,2,4], [1,2,4,3] });

{[2, 1, 3, 4], [2, 3, 1, 4], [1, 2, 3, 4], [3, 2, 1, 4],
[2, 3, 4, 1], [3, 2, 4, 1], [1, 3, 4, 2], [3, 1, 4, 2],

[3, 4, 1, 2], [4, 3, 1, 2], [2, 4, 1, 3], [4, 2, 1, 3],

[3, 4, 2, 1], [4, 3, 2, 1], [4, 1, 2, 3], [1, 4, 2, 3],

[3, 1, 2, 4], [1, 3, 2, 4], [4, 1, 3, 2], [1, 4, 3, 2],

[4, 2, 3, 1], [2, 4, 3, 1], [1, 2, 4, 3], [2, 1, 4, 3]}
You still need to pass the group object G for Dimino to access its

operations.
Dimino’s algorithm is a useful fallback algorithm, but many finite

groups of interest can be enumerated more efficiently using specific knowl-
edge of their structure. For small examples, the implementation presented
here suffices, but a well-optimized implementation that takes advantage
of fast arithmetic for group elements is required.

Representing Subgroups A subset of a group that forms a group for
larger groups (using the operations inherited from the group, by restric-
tion) is called a subgroup. For example, the 3-member set {(123), (132), (1)}
is a subgroup of the full symmetric group S3 of degree 3 (which has
6 members). There are many approaches for representing of subgroups.
One way is to represent a subgroup H of a known group G by specifying
a generating set for H and copying the computational services from the
representation of G to the representation of H. Thus, the Maple repre-
sentations G and H of G and H would both be of type Group.

There is a different approach that is better suited to implicit repre-
sentations of subgroups. This design can be extended to allow implicit
representations of subgroups that you do not need to compute with di-
rectly. The idea is to represent a subgroup by a simpler structure that
maintains a link to its parent group and an indication of how it is defined
in terms of its parent group. Thus, a subgroup is represented by a module
with an export parent that is assigned the group in which the subgroup
is contained. A second export has a name depending upon the way in
which the subgroup is defined. One way to define a subgroup in terms of
its parent is to specify a generating set. Subgroups defined in this way are

2.6 Interfaces and Implementations • 147

represented by a module having the export gens of type set. A second
way to define a subgroup is by a property. For example, the center of
a group is defined by the property that all its members commute with
every element of the group (or, equivalently, that each member of the
subgroup commutes with all the generators of the parent group). You can
specify properties by using a procedure that tests for membership in the
subgroup. Thus, subgroups can be described by either of the following
interfaces.

parent Parent group

test Membership test (a procedure)
gens Set of generators

Only one of the methods test and gens need be present. A Maple
implementation of this interface is as follows.

> ‘type/SubGroup‘ := ’{
> ‘module‘(parent::Group, gens::set),
> ‘module‘(parent::Group, test::procedure)
> }’:

The SubGroup constructor must dispatch on the type of its second argu-
ment to determine which kind of record to create to model the subgroup.

> SubGroup := proc(G::{Group,SubGroup}, how::{set,procedure})
> description "subgroup constructor";
> local S;
> if type(how, ’procedure’) then
> S:= Record(’parent’, ’test’ = eval(how, 1))
> else
> S := Record(’parent’, ’gens’ = how)
> end if;
> S:-parent := G;
> eval(S, 1)
> end proc:

For example, the center of the symmetric group S3 can be defined as
follows.

> S3 := Symmetric(3):
> Z := SubGroup(S3, proc(z)
> local g;
> use S3 in
> for g in gens do
> if not eq(mul(inv(g), inv(z), g), z) then
> return false
> end if
> end do;
> end use;
> true
> end proc);

148 • Chapter 2: Programming with Modules

Z := module()
exportparent , test ;
option record ;

end module
> Z:-test([2,1,3]);

false

> Z:-test([2,3,1]);

false

> Z:-test([1,2,3]);

true

Similarly, you can write a constructor for the centralizer of an element
in a group.

> Centralizer := proc(G, g)
> SubGroup(G, proc(s)
> use ‘.‘ = G:-‘.‘, ‘=‘ = G:-eq in
> s . g = g . s
> end use end proc)
> end proc:

Generic Interfaces Dimino’s algorithm is relatively slow. For many
classes of groups, there are better alternatives for enumerating group
elements. Use Dimino’s algorithm only as a last resort. The advantage
of Dimino’s algorithm is that it works for any finite group. To provide
a clean and uniform interface to the enumeration functionality, you can
develop a frontend procedure, which hides the details, to choose the best
available algorithm.

> GroupElements := proc(G)
> description "enumerate the elements of a finite group";
> if type(G, ’Group’) then
> if type(G:-elements, ’set’) then
> G:-elements
> elif type(G:-elements, ’procedure’) then
> G:-procedure()
> else
> G:-elements := Dimino(G)

2.6 Interfaces and Implementations • 149

> end if
> else
> ’procname’(args)
> end if
> end proc:

Several elements of the design allow you to take advantage of structural
knowledge to improve efficiency. This routine first checks whether the
export elements of its input group is of type set. If it is, then it is taken
to be a stored enumeration of the group elements and is simply returned.
Otherwise, if the export elements is a procedure, then it is taken to be a
(perhaps specialized) routine for computing the requested enumeration.
Finally, Dimino’s algorithm is used as a last resort if no better alternative
is provided. As a simple optimization, the result of Dimino’s algorithm
is stored as a new value for the elements export so that it need only be
computed once.

Providing the GroupElements interface shields the user from needing
to know what the available alternatives are and how to use them. An
additional benefit of the design is that it allows you to change the algo-
rithm selection criteria at any time (to correct software faults, or make
functional or performance improvements). Code using this interface need
not be modified, provided that the routine continues to honor its contract.

Enumerating Elements in Subgroups Once the elements of the parent
group are known, the members of the subgroup can be computed using a
call to the built-in Maple command select.

> select(C:-test, Dimino(G));

How best to enumerate the elements of a subgroup depends upon how
it is defined and what is known about the parent group. The procedure
SubGroupElements that follows takes a subgroup as argument and at-
tempts to find the optimal way to compute the elements of the subgroup
from among the available methods.

> SubGroupElements := proc(S)
> description "enumerate the elements of "
> "a subgroup of a group";
> local P;
> P := S;
> while type(P, ’SubGroup’) do
> P := P:-parent
> end do;
> if type(P, ’Group’) then
> if member(:-test, S) then
> select(S:-test, GroupElements(P))
> else
> ASSERT(member(:-gens, S));

150 • Chapter 2: Programming with Modules

> Dimino(P, S:-gens)
> end if
> else
> ’procname’(args)
> end if
> end proc:
> G := Symmetric(4);

G := module()
export
id , ‘.‘, mul , inv , eq , member , gens , order , elements ;

option record ;

end module
> SubGroupElements(Centralizer(G, [1, 3, 2, 4]));

{[1, 2, 3, 4], [4, 3, 2, 1], [1, 3, 2, 4], [4, 2, 3, 1]}

With SubGroupElements implemented, it is a good idea to extend
GroupElements to accept subgroups also, thus providing a common in-
terface.

> GroupElements := proc(G)
> description "enumerate the elements of a "
> "group or subgroup";
> if type(G, ’SubGroup’) then
> SubGroupElements(G)
> elif type(G, ’Group’) then
> if type(G:-elements, ’set’) then
> G:-elements
> elif type(G:-elements, ’procedure’) then
> G:-elements()
> else
> G:-elements := Dimino(G)
> end if
> else
> ’procname’(args)
> end if
> end proc:

Computing the Order of a Group As you can enumerate all of a group’s
elements, it is always possible to determine its order. (Note that this is
rarely the best way to do this, however.) In many cases, it is possible to
provide much better ways to compute the order of a group. For instance,
the symmetric group of degree n has order equal to n!, so its order export
could be redefined to compute this number instead.

2.6 Interfaces and Implementations • 151

A generic interface to computing group orders, in the same spirit as
GroupElements can be written as follows.

> GroupOrder := proc(G)
> description "compute the order of a finite group";
> if type(G, ’SubGroup’) then
> nops(GroupElements(G))
> elif type(G, ’Group’) then
> if type(G:-order, ’posint’) then
> G:-order
> elif type(G:-elements, ’set’) then
> G:-order := nops(G:-elements)
> elif type(G:-order, ’procedure’) then
> G:-order()
> else
> nops(GroupElements(G))
> end if
> else
> ’procname’(args)
> end if
> end proc:

As with GroupElements, this routine checks the possible shortcuts that
might be available for a group. It begins with those that are likely to
involve the least computation and progresses through more costly alter-
natives. Only as a last resort does the procedure call GroupElements to
compute a full enumeration of the group elements only to return their
number.

> G := Symmetric(4);

G := module()
export
id , ‘.‘, mul , inv , eq , member , gens , order , elements ;

option record ;

end module
> C := Centralizer(G, [1, 3, 2, 4]);

C := module()
exportparent , test ;
option record ;

end module
> GroupOrder(G);

152 • Chapter 2: Programming with Modules

24

> GroupOrder(C);

4

Note that, when the argument G is neither a group nor a subgroup, the
procedure GroupElements returns unevaluated. This allows you to extend
other Maple operations, such as expand, combine or simplify to be effec-
tive on algebraic expressions involving unevaluated calls to GroupOrder.

Matrix Groups So far, all the groups have been permutation groups
returned by one of the constructors previously presented. You must test
the code on some other kinds of groups. A good source for examples of
finite groups are the finite groups of exact matrices.

Equality and Membership Tests for Matrices Because distinct matri-
ces with equal entries compare differently using the Maple equality com-
parison operator ‘=‘, it is necessary to implement a specialized test for
membership in a set. For example, consider the matrices

> A := Matrix([[1,0],[0,1]]);

A :=

[

1 0
0 1

]

> B := Matrix([[2,3],[3,4]]);

B :=

[

2 3
3 4

]

> C := Matrix([[1,0],[0,1]]);

C :=

[

1 0
0 1

]

Both A and C have the same entries, and represent mathematically
identical objects. However, because matrices are mutable data structures
(necessary for efficiency in matrix computations), they are distinct as
Maple objects. Thus, for instance:

2.6 Interfaces and Implementations • 153

> member(A, { B, C });

false

To deal with this property of these data structures, you must imple-
ment a generic version of the Maple command member. The gmember

routine accepts arguments like those required by the member routine in
addition to the first argument, which specifies an equality test. This utility
is used in the following implementation of the matrix group constructor.

> gmember := proc(test, g::anything, S::{set,list}, pos::name)
> description "a generic membership predicate";
> local i;
> if type(test, ’procedure’) then
> for i from 1 to nops(S) do
> if test(g, S[i]) then
> if nargs > 3 then
> pos := i
> end if;
> return true
> end if
> end do;
> false
> elif test = ’‘=‘’ then
> # use the standard membership test
> :-member(args[2 .. -1])
> else
> ’procname’(args)
> end if
> end proc:

The built-in procedure Equal in the LinearAlgebra package provides an
equality predicate that is suitable for use with matrices.

> gmember(LinearAlgebra:-Equal, A, { B, C });

true

The MatrixGroup Constructor Except for the member export, most of
the exported methods for matrix groups simply delegate to the appropri-
ate routine in the LinearAlgebra package. The MatrixGroup constructor
takes the degree n of the matrix group as its first argument and, if given
more than one argument, takes the remaining ones to be matrices that
form a set of generators for the group.

> MatrixGroup := proc(n::posint)
> description "matrix group constructor";
> local matgens, G;
> use LinearAlgebra in

154 • Chapter 2: Programming with Modules

> matgens := { args[2 .. -1] };
> G := Record(
> ’id’ = Matrix(n, n, (i, j) -> ‘if‘(i = j, 1, 0)),
> ’‘.‘’ = ((a, b) -> MatrixMatrixMultiply(a, b)),
> ’mul’ = (() -> foldl(G:-‘.‘, G:-id, args)),
> ’inv’ = (m -> MatrixInverse(m)),
> ’gens’ = matgens,
> ’eq’ = ((a, b) -> Equal(a, b)),
> ’member’ = proc(g, S, pos::name)
> local i, s;
> if nargs = 1 then
> if type(g, ’Matrix(square)’) then
> evalb(Determinant(g) <> 0)
> else
> false
> end if
> else
> gmember(G:-eq, args)
> end if
> end proc,
> ’order’, ’elements’);
>
> if nargs = 1 then
> G:-order := 1;
> G:-elements := { G:-id }
> end if
> end use;
> eval(G, 1)
> end proc:

Here, the matrix group constructor is used to generate a dihedral matrix
group of order 12.

> theta := Pi / 3;

θ :=
1

3
π

> a := Matrix(2, 2, [[0, 1], [1, 0]]);

a :=

[

0 1
1 0

]

> b := Matrix(2, 2,
> [[cos(theta),sin(theta)],
> [-sin(theta),cos(theta)]]);

2.6 Interfaces and Implementations • 155

b :=







1

2

1

2

√
3

−1

2

√
3

1

2







> B := MatrixGroup(2, a, b);

B := module()
export
id , ‘.‘, mul , inv , gens , eq , member , order , elements ;

option record ;

end module
> GroupElements(B);







[

0 1
1 0

]

,







1

2

1

2

√
3

−1

2

√
3

1

2





 ,

[

1 0
0 1

]

,







−1

2

√
3

1

2
1

2

1

2

√
3





 ,







1

2

√
3

1

2
1

2
−1

2

√
3





 ,







1

2
−1

2

√
3

1

2

√
3

1

2





 ,







−1

2

1

2

√
3

−1

2

√
3

−1

2





 ,







−1

2

√
3

−1

2
−1

2

1

2

√
3





 ,







1

2

√
3

−1

2
−1

2
−1

2

√
3





 ,







−1

2
−1

2

√
3

1

2

√
3

−1

2





 ,

[

−1 0
0 −1

]

,

[

0 −1
−1 0

]







Direct Products To enrich the supply of example groups that you can
use, develop a constructor for the direct product of (two) groups. (Ex-
tending the constructor to handle any finite number of groups is straight-
forward, but complicates the exposition unnecessarily.) Direct products
are very important in the study of finite groups because all finitely gen-
erated abelian groups possess an unique factorization as a direct product
of cyclic groups. (In the abelian theory, direct products are often referred
to as direct sums.)

156 • Chapter 2: Programming with Modules

The direct product of two groups A and B is the group G whose
elements are all pairs (a, b), with a ∈ A and b ∈ B. The group product in
G is defined by (a1, b1)·(a2, b2) = (a1 ·a2, b1 ·b2). The inverse of an element
(a, b) is the pair (a−1, b−1). All the operations are defined component-wise.
Represent the elements (a, b) of the direct product by two-element lists.
Here is the constructor DirectProduct.

> DirectProduct := proc(A::Group, B::Group)
> description "direct product constructor";
> local G, a, b;
> if type(A, ’Group’) and type(B, ’Group’) then
> G := Group();
> G:-id := [A:-id, B:-id];
> G:-‘.‘ := (u, v) -> [A:-‘.‘(u[1], v[1]),
> B:-‘.‘(u[2], v[2])];
> G:-mul := () -> foldl(G:-‘.‘, G:-id, args);
> G:-inv := v -> [A:-inv(v[1]),
> B:-inv(v[2])];
> G:-gens := [seq(seq([a, b],
> a = A:-gens), b = B:-gens)];
> G:-eq := (u, v) -> A:-eq(u[1], v[1])
> and B:-eq(u[2], v[2]);
> G:-order := () -> GroupOrder(A) * GroupOrder(B);
> G:-member := proc(g, S, pos::name)
> if nargs = 1 then
> A:-member(g[1])
> and B:-member(g[2])
> else
> gmember(G:-eq, args)
> end if
> end proc;
> G:-elements := () -> [seq(seq([a, b],
> a = GroupElements(A)), b = GroupElements(B))];
> eval(G, 1)
> else
> ’procname’(args)
> end if
> end proc:

Most of the group methods are straightforward, but use the known group
structure to reduce the complexity of some computations such as those
for the order and elements exports.

> A := Symmetric(3):
> G := DirectProduct(A, B):
> GroupOrder(G);

72

> nops(GroupElements(G));

2.6 Interfaces and Implementations • 157

Table 2.4 Homomorphism Interface

domain Domain of the homomorphism
codomain Codomain of the homomorphism
genmap Mapping of the generators of the domain into the codomain

72

Homomorphisms In all algebraic theories, homomorphisms play a key
role. A group homomorphism is a mapping from a group to another
(possibly the same) group which commutes with the group operations.
That is, a map ϕ : A −→ B of groups A and B is a homomorphism if
ϕ(ab) = ϕ(a)ϕ(b), for all a and b in A. A homomorphism is determined
uniquely by its effect on a generating set for its domain, so to define a
homomorphism, it is enough to specify the images of each among a set of
generators for the domain.

Use the interface in Table 2.4 for homomorphisms.
This leads directly to a simple constructor for homomorphism objects.

> ‘type/Homomorphism‘ := ’‘module‘(domain, codomain, genmap)’:
> Homomorphism := proc(A::Group, B::Group, p::procedure)
> description "homomorphism constructor";
> Record(’domain’ = A, ’codomain’ = B, ’genmap’ = p)
> end proc:

The image of a group homomorphism ϕ : A −→ B is the subset ϕ(A) of
B consisting of all elements of B having the form ϕ(a), for some element
a in A. It is a subgroup of B. These various design choices lead to a simple
formulation for computing or representing images of homomorphisms.

> HomImage := proc(hom::Homomorphism)
> description "compute the image of a homomorphism";
> SubGroup(hom:-codomain,
> map(hom:-genmap, hom:-domain:-gens))
> end proc:

As an example computation, compute the image of a homomorphism from
the symmetric group S4 onto a two-element matrix group generated by
the reflection

> Matrix([[0, 1], [1, 0]]);

[

0 1
1 0

]

First, define the groups.

158 • Chapter 2: Programming with Modules

> A := Symmetric(4):
> B := MatrixGroup(2, Matrix([[0,1],[1,0]])):

Define a mapping from the generators of A to the group B by inserting the
images of the generators into a procedure’s remember table.

> h([2,1,3,4]) := Matrix([[0,1],[1,0]]):
> h([2,3,4,1]) := Matrix([[1,0],[0,1]]):

This defines a Maple procedure h that performs the indicated mapping
and returns unevaluated for any other arguments.

> eval(h);

proc()option remember ; ’procname(args)’ end proc

Use A, B and h to construct the homomorphism object.

> hom := Homomorphism(A, B, h);

hom := module()

exportdomain, codomain, genmap;

option record ;

end module
> type(hom, ’Homomorphism’);

true

Use the machinery developed earlier in this example to compute the
order of the image of this homomorphism.

> GroupOrder(HomImage(hom));

2

Thus, the homomorphism is surjective (as expected). You can com-
pute the elements explicitly.

> GroupElements(B);

{
[

0 1
1 0

]

,

[

1 0
0 1

]

}

> GroupElements(HomImage(hom));

2.7 Extended Example: A Search Engine • 159

{
[

1 0
0 1

]

,

[

0 1
1 0

]

}

Exercises

1. An automorphism α of a group G is called inner if there is an element
a in G for which α(g) = a−1ga, for all g in G. Write a constructor for
inner automorphisms of groups.

Summary With generic programming you need only implement compu-
tation in quotient fields or groups once — in the constructors and generic
procedures. The functor QuotientField and the various generic group
constructors and procedures are parameterized by the computational do-
mains upon which their computed values depend. Rings, fields, groups,
and subgroups are collections of computational capabilities, which you
use to construct new instances with derived computational capabilities.
Overriding default methods (which may not be efficient, but are always
present) with methods that take advantage of specific structural informa-
tion allows for efficient computation without sacrificing generality. This
leads to a powerful paradigm for software reuse, and is the principal mo-
tivation underlying the Maple module system.

2.7 Extended Example: A Search Engine

Search engines are used in a variety of contexts to locate documents that
match or satisfy a query. Queries consist of sequences of search terms
– words that are meant to prescribe the subject matter of matching
documents. Examples of search engines include Web search engines and
database interfaces. However, search engines can be adapted to search a
wide variety of structured or unstructured data.

This example illustrates how a simple search engine, based on the vec-
tor space model, can be constructed using Maple. Various Maple packages
are used to pre- and post-process the data to be searched, as well as the
queries, and the LinearAlgebra package is used to effect the computa-
tions necessary to locate relevant documents.

Introduction to Searching
Prototypically, a document is a file of structured or unstructured text, but
this section treats documents as abstract data items. A document can be

160 • Chapter 2: Programming with Modules

a scientific article in LaTeX format, a web page, an integral formula, an
image, or a simple string of text, as used here for illustrative purposes.
The document is a raw piece of data that can be identified as a whole.
Each document is equipped with a document ID, that is, an identifier
that is used as a handle for the document data. The document ID is small,
while the document (containing data) may be arbitrarily large.

For searching, documents are organized into corpora. A corpus is a
collection of documents that can be searched collectively using search
terms. A query is a list of search terms. A search term is typically a
(natural language) word or phrase. The purpose of a search is to identify,
among documents in a given corpus, those which match the search terms.
Thus, search input consists of a corpus to search, and one or more search
terms. The output is a ranked list of documents that the search criteria
judge to be relevant to the search terms.

For this example, consider the following simple corpus of documents.
Each document is a short string of text, which serves as both the document
ID and the document data.

> doc1 := "The mathematician’s patterns, like the painter’s "
> "or the poet’s must be beautiful; the ideas, like "
> "the colors or the words must fit together in a "
> "harmonious way. Beauty is the first test: there "
> "is no permanent place in this world "
> "for ugly mathematics.": # Hardy
> doc2 := "God does arithmetic.": # Karl Friedrich Gauss
> doc3 := "Anyone who cannot cope with mathematics is not"
> " fully human. At best he is a tolerable subhuman "
> "who has learned to wear shoes, bathe, and not make "
> "messes in the house.": # Robert A. Heinlein
> doc4 := "Things should be made as simple as possible, "
> "but no simpler.":
> doc5 := "I don’t believe in mathematics.":
> doc6 := "Imagination is more important than knowledge.":
> doc7 := "The most beautiful thing we can experience is "
> "the mysterious. It is the source of all true "
> "art and science.":
> doc8 := "Common sense is the collection of prejudices "
> "acquired by age eighteen.":
> doc9 := "God does not care about our mathematical "
> "difficulties. He integrates empirically.": # A. Einstein

The corpus consists of these documents. To facilitate searches, the corpus
is preprocessed to construct a search index. The index aids searches by
making it easy to quickly locate documents in the corpus that are relevant
to one or more of the search terms in a query.

2.7 Extended Example: A Search Engine • 161

Inverted Term Occurrence Indexing
An inverted term occurrence index is a simple search index. An inverted
term occurrence index constructs a list of all the potential search terms
present in the corpus and maintains a list of the documents in which
each search term occurs. Construction of an inverted term occurrence
index begins by constructing a document-term mapping. For simple text
strings, construct a list of document terms as follows.

> DocumentTerms := proc(text::string)
> StringTools:-Words(text)
> end proc:
> DocumentTerms(doc1);

[“The”, “mathematician’s”, “patterns”, “like”, “the”,

“painter’s”, “or”, “the”, “poet’s”, “must”, “be”,

“beautiful”, “the”, “ideas”, “like”, “the”, “colors”, “or”,

“the”, “words”, “must”, “fit”, “together”, “in”, “a”,

“harmonious”, “way”, “Beauty”, “is”, “the”, “first”,

“test”, “there”, “is”, “no”, “permanent”, “place”, “in”,

“this”, “world”, “for”, “ugly”, “mathematics”]

Using this, construct an inverted term occurrence index.

> BuildIndex := proc(corpus::list(string))
> local docterms, corpusterms, index, term, doc;
> use StringTools in
> # Construct all terms in the corpus
> docterms := table([seq](doc = DocumentTerms(doc),
> doc = corpus));
> corpusterms := ‘union‘(seq({op}(docterms[doc]),
> doc = corpus));
> # Map each term to the documents containing it
> index := table();
> for doc in corpus do
> for term in docterms[doc] do
> if assigned(index[term]) then
> index[term] := index[term] union { doc }
> else
> index[term] := { doc }
> end if
> end do
> end do
> end use;
> # Return the table
> eval(index, 1)
> end proc:
> Index := BuildIndex([doc || ($1..9)]):
> nops({indices}(Index));

162 • Chapter 2: Programming with Modules

104

Searching is simple, using this index. Search for the terms “mathe-
matical” and “beauty”.

> Search := proc(query::list(string))
> global Index;
> local results, term;
> results := {};
> for term in query do
> if assigned(Index[term]) then
> results := results union Index[term]
> end if
> end do;
> results
> end proc:
> Search(["mathematical", "beauty"]);

{“God does not care about our mathematical diff \
iculties. He integrates empirically.”}

> nops(%);

1

There are several problems with this index. One problem is that the
index is quite large (relative to the size of the corpus). Many words that
occur in the corpus convey little or no information about the content of
the documents in which they occur. This can lead to irrelevant results,
especially for poorly chosen search terms.

> nops(Search(["the"]));

4

This problem can be solved by removing unimportant terms from the
index. This set of unwanted terms is called a stop list.

> STOP_WORDS := { "a", "i", "an", "the", "in", "to",
> "which", "that", "is", "and", "we", "it", "of",
> "all", "can", "does", "don’t", "most", "true",
> "thing" }:

A second problem is synonymy in the corpus. That is, many distinct
terms in the corpus have the same meaning in the context of searching. For
example, searching for the term “mathematics” should return documents

2.7 Extended Example: A Search Engine • 163

that contain the terms “mathematical”, “math” and “mathematically”,
even if the exact term “mathematics” does not occur in the document.
To solve this problem, map each term onto its stem, or root term.

To implement these changes in the DocumentTerms procedure, use the
StringTools package.

> DocumentTerms := proc(text::string)
> global STOP_WORDS;
> local words;
> use StringTools in
> words := map(LowerCase, Words(text));
> words := remove(type, words, STOP_WORDS);
> map(Stem, words)
> end use
> end proc:

By using the LowerCase function, case distinctions are removed, making
the process more efficient. Apply the same preprocessing to search terms:
convert to lowercase, remove stop list words, and map words onto their
stems.

> Search := proc(query::list(string))
> global Index;
> local results, term, terms;
> use StringTools in
> terms := map(LowerCase, query);
> terms := remove(type, terms, STOP_WORDS);
> terms := map(Stem, terms)
> end use;
> results := {};
> for term in terms do
> if assigned(Index[term]) then
> results := results union Index[term]
> end if
> end do;
> results
> end proc:

Because BuildIndex uses DocumentTerms, rebuild the index.

> Index := BuildIndex([doc || ($1..9)]):
> nops({indices}(Index));

83

This has substantially reduced the size of the index.

> Search(["the"]);

{}

164 • Chapter 2: Programming with Modules

Because the stop word “the” has been removed from the index, it
returns no matches. This is also a user interface enhancement because
queries can contain stop words without affecting the results.

> Search(["mathematical", "beauty"]);

{“The mathematician’s patterns, like the painter’ \
s or the poet’s must be beautiful; the ideas, like t \
he colors or the words must fit together in a har \
monious way. Beauty is the first test: there is no \
permanent place in this world for ugly mathem\
atics.”, “Anyone who cannot cope with mathem \
atics is not fully human. At best he is a tolerabl \
e subhuman who has learned to wear shoes, bat\
he, and not make messes in the house.”,

“I don’t believe in mathematics.”, “The most bea \
utiful thing we can experience is the mysterious. \
It is the source of all true art and science.”, “Go\

d does not care about our mathematical difficult \
ies. He integrates empirically.”}

> nops(%);

5

The new process returns many more documents relevant to the query.

The Vector Space Model
It is possible to model the search by using a vector space model of the
term-document indices for corpora. After collecting the relevant search
terms for a corpus, represent each document by a vector in a Euclidean
space En, where n is the number of distinct terms in the corpus. Each
coordinate in this vector space represents a term in the corpus. First
determine an ordering of the corpus terms. Then map each document to
a term vector in this Euclidean space. A simple mapping is to represent
a document by a term vector whose ith coordinate is equal to 1 if the ith
term occurs in the document, and is equal to 0 otherwise. For each query,
construct a term vector. The dot product of the query term vector with
a document term vector is the number of query terms that appear in the

2.7 Extended Example: A Search Engine • 165

document. A document containing more query terms might reasonably
be judged more relevant than one containing fewer query terms. To rank
the documents, sort the dot products of the query term vector with the
document term vectors.

For example, consider a smaller corpus comprising only the documents
doc2, doc5, and doc7.

> SmallIndex := BuildIndex([doc2, doc5, doc7]):

The ordered list of corpus terms is:

> SmallCorpusTerms := sort([op](map(op, {indices}(
> SmallIndex))));

SmallCorpusTerms := [“arithmet”, “art”, “beauti”,

“believ”, “experi”, “god”, “mathemat”, “mysteri”,

“scienc”, “sourc”]

Note: Terms in the documents are replaced by their stems and stop
words are removed from the index. The document term vector can be
computed using the following procedure.

> DocumentTermVector := proc(doc)
> global SmallCorpusTerms;
> local terms;
> terms := DocumentTerms(doc);
> Vector[row](1 .. nops(SmallCorpusTerms),
> i -> ‘if‘(member(SmallCorpusTerms[i], terms), 1, 0))
> end proc:
> doc5Vector := DocumentTermVector(doc5);

doc5Vector := [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]

Compute the query term vector for the search term “mathematical
beauty”.

> queryVector := DocumentTermVector("mathematical beauty");

queryVector := [0, 0, 1, 0, 0, 0, 1, 0, 0, 0]

The inner product is:

> LinearAlgebra:-DotProduct(queryVector, doc5Vector);

1

166 • Chapter 2: Programming with Modules

which indicates that one of the query terms (corresponding to “math-
ematical”) appears in the document.

To rank the documents in the corpus for their relevance to the query,
apply this process to each document in the corpus.

> use LinearAlgebra in
> DotProduct(queryVector, DocumentTermVector(doc2));
> DotProduct(queryVector, DocumentTermVector(doc5));
> DotProduct(queryVector, DocumentTermVector(doc7));
> end use;

0

1

1

It is more efficient to represent the entire corpus by a term-document
matrix, in which the rows are the term vectors for the documents in the
corpus. First determine a fixed ordering of the documents in the corpus.
The dot products can then be computed by forming the product of the
term-document matrix representing the corpus with the term vector for
a query.

> TermDocumentMatrix := Matrix(
> map([s->s], map(DocumentTermVector,
> [doc2, doc5, doc7])));

TermDocumentMatrix :=




1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0
0 1 1 0 1 0 0 1 1 1





> use LinearAlgebra in
> Scores := TermDocumentMatrix . Transpose(queryVector)
> end use;

Scores :=





0
1
1





There is a geometric interpretation of the search process. The dot
product of two vectors, u and v, is related to the angle between the vectors,

2.7 Extended Example: A Search Engine • 167

for which the cosine is given by the formula:

〈u, v〉/(|| u || · || v ||).

Consider the projection of the document term vectors onto the hyperplane
defined by the component vectors of the query vector, and then introduce
appropriate scaling, using vector norms. In this context, searching can be
viewed as a process of determining those vectors representing documents
in a corpus for which the angle between their projections and the query
vector is small.

Term Weighting
A document that contains many instances of a given term is generally
considered to be more relevant to queries containing that term than a
document with fewer instances. To improve rankings, therefore, record
not only the presence of a term in a document, but also its frequency.
This is a simple change to DocumentTermMatrix. The term vector of a
document is the vector of En whose ith entry is equal to the number of
times the ith corpus term occurs in the document.

> DocumentTermVector := proc(doc)
> global SmallCorpusTerms;
> local terms;
> terms := DocumentTerms(doc);
> Vector[row](1 .. nops(SmallCorpusTerms),
> i -> numboccur(terms, SmallCorpusTerms[i]))
> end proc:

This can lead to significantly improved results when searching a larger
corpus.

To improve this method, scale the number of instances by the size (the
total number of terms with multiplicities) of the document. For example,
a book about cats is not more relevant than a short paper on cats merely
because the term “cats” appears more often in the book than in the short
article.

> DocumentTermVector := proc(doc)
> global SmallCorpusTerms;
> local terms;
> terms := DocumentTerms(doc);
> Vector[row](1 .. nops(SmallCorpusTerms),
> i -> evalf(numboccur(terms, SmallCorpusTerms[i])
> / nops(terms)))
> end proc:

With this change, recompute the term-document matrix and the matrix
of scores, which represents the search results. Also recompute the query
term vector.

168 • Chapter 2: Programming with Modules

> TermDocumentMatrix := Matrix(map([s->s],
> map(DocumentTermVector, [doc2, doc5, doc7]))):
> queryVector := DocumentTermVector("mathematical beauty"):
> use LinearAlgebra in
> Scores := TermDocumentMatrix . Transpose(queryVector)
> end use;

Scores :=





0.
0.250000000000000000
0.0833333333499999968





According to these results, the second document in the corpus (doc5)
is the most relevant to the query, followed by the third document (doc7).
The first document (doc2) is judged to have no relevance to the query.

Building a Search Engine Package
The next step is to design a search engine package that includes all the
features described to this point. The search engine must also be as generic
as possible, and accept a variety of document and term types.

The package manages two kinds of data objects: documents and cor-
pora. Each is represented by an object that supports certain features.

A document is abstracted as a record object with three slots. The
constructor is:

> Document := proc(id, fetch, filter)
> Record(
> ’:-id’ = id,
> ’:-fetch’ = fetch,
> ’:-filter’ = filter)
> end proc:

The id slot is the document ID. The document ID must uniquely represent
the document within the corpus. For efficiency, document IDs are small,
while their referents may be quite large. While enormous documents can
be handled in the design, for simplicity, it is assumed that any document
can reasonably be read into memory in its entirety. The fetch slot is a
procedure that returns the body of a document, given its document ID.
The filter slot contains a procedure that generates a list of terms ap-
pearing in the document, with multiplicities. Several accessor procedures
for documents are also provided in the package.

A corpus is a collection of documents. It is represented by an object
that supports methods for accessing, indexing, and searching the collec-
tion.

> SearchEngine := module()
> description "a simple search engine";

2.7 Extended Example: A Search Engine • 169

> option package;
> export
> Filters, # subpackage of filters
> Document, # document constructor
> DocumentID, # accessor procedure
> FilterDocument, # accessor procedure
> FetchDocument, # accessor procedure
> Corpus, # corpus constructor
> NumberOfDocuments, # returns number of documents in corpus
> BuildIndex, # index a corpus
> GetDocumentIdByIndex, # retrieve a document ID
> Search; # perform a search
> local
> documentTermVector, # construct document term vector
> queryTermVector; # construct query term vector
>
> # Exports
>
> # Document constructor
> Document := proc(id, fetch, filter)
> Record(
> ’:-id’ = id,
> ’:-fetch’ = fetch,
> ’:-filter’ = filter)
> end proc;
>
> # Accessor routines for documents.
> DocumentID := doc -> doc:-id;
> FetchDocument := doc -> doc:-fetch(doc:-id);
> FilterDocument := doc -> doc:-filter(FetchDocument(doc));
>
> # Corpus constructor. Called with either a sequence of
> # documents or a list of document IDs, a fetcher, a document
> # filter routine, and an optional query filter routine.
>
> Corpus := proc(listOfIds::list, fetch, filter, _qfilter)
> local docs, qfilter;
>
> # Process arguments.
> if nargs = 0 then
> error "expecting corpus description"
> elif nargs > 3 then
> # Allow the query filter to be different
> # from the document filter
> qfilter := eval(_qfilter, 2)
> else
> # If query filter is not specified,
> # use the document filter.
> qfilter := eval(filter, 2)
> end if;
>
> # Construct list of documents.
> docs := map(Document, listOfIds, fetch, filter);
>

170 • Chapter 2: Programming with Modules

> # Build the corpus.
> module()
> export search, buildIndex,
> numberOfDocuments,
> getDocumentIdByIndex;
> local ids, corpusTerms,
> documents,
> term_document_matrix;
>
> ids := listOfIds;
> documents := docs;
>
> numberOfDocuments := () -> nops(documents);
> getDocumentIdByIndex := proc(idx::posint)
> if idx <= numberOfDocuments() then
> ids[idx]
> else
> error "there are fewer than %1 documents in the corpus",
> idx
> end if
> end proc;
>
> buildIndex := proc()
> local docterms;
> # Construct corpus terms.
> docterms := map(FilterDocument, documents);
> corpusTerms := sort([op](
> ‘union‘(op(map({op}, docterms)))));
> # Build the term-document matrix.
> term_document_matrix := Matrix(map([s -> s],
> map(documentTermVector, docs, corpusTerms)),
> ’datatype’ = ’float’[8], ’storage’ = ’sparse’);
> eval(thismodule, 1)
> end proc;
>
> search := proc(query, numberOfResults::posint)
> local qt, qv, scores;
> if not type(term_document_matrix, ’Matrix’) then
> error "corpus not yet indexed"
> end if;
> qt := qfilter(query);
> qv := queryTermVector(qt, corpusTerms);
> use LinearAlgebra in
> scores := Transpose(
> MatrixVectorMultiply(
> term_document_matrix, qv))
> end use
> end proc;
> end module
> end proc;
>
> NumberOfDocuments := corpus -> corpus:-numberOfDocuments();
> GetDocumentIdByIndex := (corpus, idx)
> -> corpus:-getDocumentIdByIndex(idx);

2.7 Extended Example: A Search Engine • 171

> BuildIndex := corpus -> corpus:-buildIndex();
> Search := (corpus, query) -> corpus:-search(query);
>
> # Locals
> documentTermVector := proc(doc, corpusTerms::list)
> local terms;
> terms := FilterDocument(doc);
> Vector[row](1 .. nops(corpusTerms),
> i -> evalf(numboccur(terms, corpusTerms[i])
> / nops(terms)),
> ’datatype’ = ’float’[8],
> ’storage’ = ’sparse’)
> end proc;
>
> queryTermVector := proc(queryTerms::list, corpusTerms::list)
> Vector[column](1 .. nops(corpusTerms),
> i -> evalf(numboccur(queryTerms, corpusTerms[i])
> / nops(queryTerms)),
> ’datatype’ = ’float’[8],
> ’storage’ = ’sparse’)
> end proc;
>
> # Filters subpackage
> Filters := module()
> description "filter subpackage";
> option package;
> export Text;
> local stopWords;
>
> stopWords := { "a", "i", "an", "the", "in", "to",
> "which", "that", "is", "and", "we", "it", "of",
> "all", "can", "does", "don’t", "most", "true",
> "thing" }:
>
> Text := proc(text::string)
> local words;
> use StringTools in
> words := map(LowerCase, Words(text));
> words := remove(type, words, stopWords);
> map(Stem, words)
> end use
> end proc;
>
> end module;
>
> end module:
>
> with(SearchEngine):
> corpus := Corpus([doc || ($1..9)], s -> s, Filters:-Text):
> NumberOfDocuments(corpus);

9

172 • Chapter 2: Programming with Modules

> GetDocumentIdByIndex(corpus, 1);

“The mathematician’s patterns, like the painter’s \
or the poet’s must be beautiful; the ideas, like th \
e colors or the words must fit together in a harm \
onious way. Beauty is the first test: there is no p \
ermanent place in this world for ugly mathemati\
cs.”

> BuildIndex(corpus):
> Search(corpus, "mathematical beauty");

[0.0483870967749999992, 0., 0.0208333333349999990,

0., 0.250000000000000000, 0.,

0.0833333333499999968, 0., 0.0500000000000000028

]

Latent Semantic Analysis
The simple vector space model described previously has shortcomings.
Suppose a user searches a corpus of documents about pets for the term
“cat”. The simple vector space model search engine locates all the docu-
ments that contain the term “cat”. However, the search engine does not
locate documents that contain the word “feline”, but not the word “cat”
(or any term for which the stem is “cat”). This issue is called synonymy –
the problem that distinct search terms may represent the same concept.
One way to circumvent this problem is to have a human domain expert
prepare search term lists for each document in the corpus. All documents
referring either to “cats” or “felines” would contain the search term “cat”
included in their list of search terms. This solution is, however, very ex-
pensive.

An automatic indexing procedure known as latent semantic analysis
(LSA) helps to discover relations between terms and documents that are
latent in the corpus by analyzing the corpus as a whole. The process is
related to factor analysis, and is essentially a statistical technique, relying
heavily on linear algebra. When used to prepare a search index for a
corpus, LSA is referred to as latent semantic indexing (LSI).

A thorough discussion of LSI is beyond the scope of this manual,
so only the operational details necessary to construct the SearchEngine

package are discussed.

2.7 Extended Example: A Search Engine • 173

LSI computes a lower rank approximation to the term-document ma-
trix. The approximation is computed by using the singular value decom-
position of the term-document matrix. The singular value decomposition
of a matrix A is a factorization:

A = U · S · V T

where U and V are column orthogonal matrices, and S is a diagonal ma-
trix whose diagonal entries are arranged in descending order. The diagonal
entries of S are called the singular values of A, the columns of U are
called the left singular vectors of A, and the columns of V are called the
right singular vectors of A. If A is a term-document matrix, then the
columns of U can be interpreted as an orthogonal basis for the semantic
factors of term-term correlations between terms in the corpus represented
by A, while the columns of V can be interpreted as an orthogonal basis
for the semantic factors of the correlations between documents. For large
corpora, the rank of S may be on the order of a few thousand. To obtain
a rank k approximation of A that is closest in the least squares sense,
choose a rank k smaller than the rank of S (say, on the order of a few
hundred), and form the matrix:

Ak = Uk · Sk · V T
k

where Uk consists of the first k columns of U , Vk consists of the first k
columns of V , and Sk is the first k × k submatrix of S.

When the matrix A is a term-document matrix, its approximation Ak

is used as a surrogate corpus index for searching. It can be argued that the
matrix Ak is better able to determine correlations between terms in such
a way that searches using it are able to approximate results obtained by
human expert indexing. For example, in a corpus on pets, some documents
may contain the term “cat”, others the term “feline”, and still others may
contain both terms. LSI places documents containing only one of these
terms closer together in the lower dimensional projection by virtue of
their co-occurrence in some of the documents in the corpus. In practice,
the rank k chosen for the approximation is an empirically determined
value, based on the quality of search results. Because LSI is a statistical
technique, in general, it produces useful results only for large corpora.

The Search Engine Package
This section modifies the SearchEngine package to incorporate LSI with-
out changing the interface that was designed for the simpler indexing
scheme. The updated package contains more filters to allow for a greater
variety of corpora.

174 • Chapter 2: Programming with Modules

> SearchEngine := module()
> description "a generic search engine package";
> option package;
> export
> Filters, # subpackage of filters
> Document, # document constructor
> DocumentID,
> FilterDocument,
> FetchDocument,
> Corpus, # corpus constructor
> NumberOfDocuments,
> BuildIndex,
> GetDocumentIdByIndex,
> Search;
> local
> Tools, # private submodule
> documentTermVector,
> queryTermVector;
>
> # Exports
>
> # Document constructor
> Document := proc(id, fetch, filter)
> description "document constructor";
> Record(
> ’:-id’ = id,
> ’:-fetch’ = fetch,
> ’:-filter’ = filter)
> end proc;
>
> # Document accessors.
> DocumentID := doc -> doc:-id;
> FetchDocument := doc -> doc:-fetch(doc:-id);
> FilterDocument := doc -> doc:-filter(FetchDocument(doc));
>
> # Corpus constructor. Called with either a sequence of documents,
> # or a list of document IDs, a fetcher and a document filter
> # routine, and a query filter routine.
>
> Corpus := proc(listOfIds::list, fetch, filter, _qfilter)
> description "corpus constructor";
> local docs, qfilter;
>
> # Process arguments.
> if nargs = 0 then
> error "expecting corpus description"
> elif nargs > 3 then
> # Allow the query filter to be different
> # than the document filter
> qfilter := eval(_qfilter, 2)
> else
> # If not query filter is specified,
> # use the document filter
> qfilter := eval(filter, 2)

2.7 Extended Example: A Search Engine • 175

> end if;
>
> # Construct list of documents.
> docs := map(Document, listOfIds, fetch, filter);
>
> # Build the corpus.
> module()
> export search, buildIndex,
> numberOfDocuments,
> getDocumentIdByIndex;
> local ids, corpusTerms,
> documents,
> term_document_matrix;
>
> # Initialize private data.
> ids := listOfIds;
> documents := docs;
>
> # Accessor methods.
> numberOfDocuments := () -> nops(docs);
> getDocumentIdByIndex := proc(idx::posint)
> if idx <= numberOfDocuments() then
> ids[idx]
> else
> error "there are fewer than %1 documents in the corpus",
> idx
> end if
> end proc;
>
> # Construct an index based on a _k-dimensional approximation
> # to the term-document matrix.
> buildIndex := proc(_k::posint)
> local docterms, k, u, s, v;
>
> # Construct corpus terms.
> docterms := map(FilterDocument, documents);
> corpusTerms := sort([op](‘union‘(op(map({op},
> docterms)))));
>
> # Build the term-document matrix.
> term_document_matrix := Matrix(map([s -> s],
> map(documentTermVector, docs, corpusTerms)),
> ’datatype’ = ’float’[8], ’storage’ = ’sparse’);
>
> use LinearAlgebra in
> u, s, v := SingularValues(term_document_matrix,
> ’output’ = [’:-U’, ’:-S’, ’:-Vt’]);
> v := Transpose(v);
> if nargs > 0 then
> k := _k
> else
> # Use a default if no dimension provided.
> k := floor(Rank(DiagonalMatrix(s)) * 0.7)
> end if;

176 • Chapter 2: Programming with Modules

> u := u[1 .. -1, 1 .. k];
> v := v[1 .. k, 1 .. -1];
> s := DiagonalMatrix(s[1 .. k]);
> # Replace the term-document matrix with its rank
> # k approximation
> term_document_matrix := MatrixMatrixMultiply(u,
> MatrixMatrixMultiply(s, v))
> end use;
> eval(thismodule, 1)
> end proc;
>
> search := proc(query, numberOfResults::posint)
> local qt, qv, scores;
> if not type(term_document_matrix, ’Matrix’) then
> error "corpus not yet indexed"
> end if;
> qt := qfilter(query);
> qv := queryTermVector(qt, corpusTerms);
> use LinearAlgebra in
> scores := Transpose(MatrixVectorMultiply(
> term_document_matrix, qv));
> Tools:-permSort(scores)
> end use
> end proc;
> end module
> end proc;
>
> NumberOfDocuments := corpus -> corpus:-numberOfDocuments();
> GetDocumentIdByIndex := (corpus, idx) ->
> corpus:-getDocumentIdByIndex(idx);
> BuildIndex := (corpus, k) -> ‘if‘(nargs = 1,
> corpus:-buildIndex(), corpus:-buildIndex(k));
> Search := (corpus, query) -> corpus:-search(query);
>
> # Locals
> documentTermVector := proc(doc, corpusTerms::list)
> local terms, norm;
> terms := FilterDocument(doc);
> Vector[row](1 .. nops(corpusTerms),
> i -> evalf(numboccur(terms, corpusTerms[i]) /
> nops(corpusTerms)),
> ’datatype’ = ’float’[8],
> ’storage’ = ’sparse’)
> end proc;
>
> queryTermVector := proc(queryTerms::list, corpusTerms::list)
> Vector[column](1 .. nops(corpusTerms),
> i -> evalf(numboccur(queryTerms, corpusTerms[i]) /
> nops(corpusTerms)),
> ’datatype’ = ’float’[8],
> ’storage’ = ’sparse’)
> end proc;
>
> # The Tools submodule

2.7 Extended Example: A Search Engine • 177

> Tools := module()
> export permSort;
>
> permSort := proc(V::Vector)
> local partition, quickSort, n, P, i;
>
> partition := proc(a, lb, ub)
> local i, j, k, v;
> i, j, k := lb, 1 + ub, lb;
> v := a[k];
> while i < j do
> i := 1 + i;
> while i < j and a[i] < v do
> i := 1 + i
> end do;
> j := j - 1;
> while a[j] > v do
> j := j - 1
> end do;
> if i < j then
> P[i], P[j] := P[j], P[i];
> a[i], a[j] := a[j], a[i]
> end if
> end do;
> P[k], P[j] := P[j], P[k];
> a[k], a[j] := a[j], a[k];
> j
> end proc;
>
> quickSort := proc(a, lb, ub)
> local k;
> if lb < ub then
> k := partition(a, lb, ub);
> procname(a, lb, k - 1);
> procname(a, k + 1, ub)
> end if;
> a
> end proc;
>
> n := LinearAlgebra:-Dimensions(V);
> P := Array(1 .. n, [$ 1 .. n], ’datatype’ =
> ’integer[4]’);
> quickSort(V, 1, n);
> [seq](P[i], i = 1 .. n)
> end proc;
>
> end module;
>
> # The Filters subpackage
> Filters := module()
> option package;
> export Text, XML, Maple, Worksheet;
> local stopWords;
>

178 • Chapter 2: Programming with Modules

> stopWords := {
> # The 48 most common English words
> "i", "a", "all", "an", "and", "are",
> "as", "at", "be", "been", "but", "by",
> "can", "do", "for", "from", "had", "has",
> "have", "he", "his", "if", "in", "is",
> "it", "not", "of", "on", "or", "she",
> "that", "the", "their", "there", "they", "this",
> "to", "was", "we", "were", "what", "which",
> "who", "will", "with", "would", "you",
> # a few others
> "thing", "true", "most", "does", "don’t",
> NULL};
>
> Text := proc(text::string)
> description "compute the terms in a text string";
> local words;
> use StringTools in
> words := map(LowerCase, Words(text));
> words := remove(type, words, stopWords);
> map(Stem, words)
> end use
> end proc;
>
> XML := proc(xml)
> description "compute the terms in an XML document";
> local t, count, rec;
>
> rec := proc(xml, t::table)
> local cm, texts, text, others;
> use XMLTools in
> if IsElement(xml) then
> cm := ContentModel(xml);
> texts, others := selectremove(IsText, cm);
> for text in texts do
> count := 1 + count;
> t[count] := text
> end do;
> map(procname, others, t)
> end if
> end use
> end proc;
> count := 0;
> t := rec(xml, t)
> [seq](t[i], i = 1 .. count)
> end proc;
>
> Maple := proc(expr)
> description "compute the terms in a Maple expression";
> local fns, terms, nocc;
> fns := [op](map2(op, 0, indets(expr, ’function’)));
> nocc := map2(numboccur, expr, fns);
> terms := [seq]([seq(fns[i], j = 1 .. nocc[i])],
> i = 1 .. nops(fns));

2.7 Extended Example: A Search Engine • 179

> sort(map(op, terms), ’lexorder’)
> end proc;
>
> Worksheet := proc(mws)
> description "compute the terms in a worksheet";
> local rec, wks, count, t, i;
>
> rec := proc(x, t::table)
> local cm, texts, text, others;
> use XMLTools in
> if IsElement(x) and ElementName(x) = "Text-field" then
> cm := ContentModel(x);
> texts, others := selectremove(IsText, cm);
> for text in texts do
> count := 1 + count;
> t[count] := text
> end do;
> map(procname, others, t)
> elif not type(x, ’string’) then
> map(procname, args)
> end if
> end use
> end proc;
>
> use XMLTools in
> if IsDocument(mws) then
> wks := select(IsElement, [op](mws));
> if nops(wks) = 1 then
> wks := wks[1]
> else
> error "ill-formed worksheet ‘%1’", fname
> end if
> end if
> end use;
>
> count := 0;
> t := table();
> rec(wks, t);
> t := [seq](t[i], i = 1 .. count);
>
> use XMLTools in
> t := map(TextText, t);
> t := cat(op(t));
> Filters:-Text(t)
> end use;
> end proc;
>
> end module;
>
> end module:

The revised package contains several new document filters. To use doc-
ument formats that are not directly supported, compose these filters with

180 • Chapter 2: Programming with Modules

custom code. Rather than providing a vector of raw scores, the Search

command in the package now returns a permutation of the document
list indicating document rankings. This can be used directly with the
GetDocumentIdByIndex routine.

Using the Package
The package can be used with a variety of corpora. This subsection demon-
strates two examples. The first is the corpus of short text strings used
previously in this section.

> with(SearchEngine):
> corpus := Corpus([doc || ($1..9)], id -> id,
> Filters:-Text):
> NumberOfDocuments(corpus);

9

> GetDocumentIdByIndex(corpus, 1);

“The mathematician’s patterns, like the painter’s \
or the poet’s must be beautiful; the ideas, like th \
e colors or the words must fit together in a harm \
onious way. Beauty is the first test: there is no p \
ermanent place in this world for ugly mathemati\
cs.”

> ranking := Search(BuildIndex(corpus),
> "mathematical beauty");

ranking := [1, 3, 5, 6, 2, 7, 9, 8, 4]

> map2(GetDocumentIdByIndex, corpus, ranking[1 .. 3]);

2.7 Extended Example: A Search Engine • 181

[“The mathematician’s patterns, like the painter’ \
s or the poet’s must be beautiful; the ideas, like t \
he colors or the words must fit together in a har \
monious way. Beauty is the first test: there is no \
permanent place in this world for ugly mathem\
atics.”, “Anyone who cannot cope with mathem \
atics is not fully human. At best he is a tolerabl \
e subhuman who has learned to wear shoes, bat\
he, and not make messes in the house.”,

“I don’t believe in mathematics.”]

The second example corpus is a database of formulae. The intent is
to be able to locate formulae relevant to a search query consisting of
function names. For the formula database, generate a list of identities
among elementary functions using the FunctionAdvisor command.

> Formulae := map2(FunctionAdvisor, ’identities’,
> FunctionAdvisor(’elementary’, ’quiet’), ’quiet’):
> Formulae := map(op, sort(Formulae, ’length’)):
> nops(Formulae);

132

Use each formula as both the document and its ID. The Maple filter
in the Filters subpackage extracts the terms from each document.

> corpus2 := Corpus(Formulae, id -> id, Filters:-Maple,
> query -> [op]({op}(query))):
> BuildIndex(corpus2):

It is possible to locate formulae relevant to, for example, the sin and cos

functions.

> ranking := Search(corpus2, [’sin’, ’cos’]);

182 • Chapter 2: Programming with Modules

ranking := [120, 19, 103, 127, 29, 104, 126, 119, 59, 81,

131, 97, 125, 102, 101, 124, 49, 76, 107, 4, 9, 96, 132,

128, 83, 6, 82, 108, 22, 16, 114, 91, 116, 113, 92, 94,

118, 24, 86, 112, 90, 105, 42, 65, 33, 95, 25, 117, 20,

32, 23, 14, 17, 2, 12, 10, 7, 3, 5, 18, 80, 110, 111, 109,

21, 30, 89, 87, 88, 115, 44, 39, 64, 38, 85, 68, 61, 69,

93, 40, 36, 35, 62, 67, 1, 43, 37, 66, 34, 41, 63, 31, 13,

11, 60, 130, 122, 129, 121, 123, 48, 47, 26, 27, 53, 50,

57, 84, 106, 99, 100, 98, 77, 75, 56, 74, 55, 54, 45, 28,

72, 78, 52, 51, 58, 15, 79, 71, 70, 46, 8, 73]

> map2(GetDocumentIdByIndex, corpus2, ranking[1 .. 3]);





tan(z) = 2
tan(

1

2
z)

1− tan(
1

2
z)2

,
1

csc(arccsch(x) I + arccsch(y) I)4

+ (− 1

x2
+

1

y2
)2

− 2
−y2 − x2 − 2

csc(arccsch(x) I + arccsch(y) I)2 x2 y2
= 0,

cot(z) =
1

2

1− tan(
1

2
z)2

tan(
1

2
z)







Construct a similar corpus using a different choice for the document
IDs and the fetcher routine passed to the constructor. Instead of using
formulae for both the document and its ID, use the position of the formula
in the global list Formulae as the document ID, and pass a suitable fetcher
routine.

> corpus3 := Corpus([$1..nops(Formulae)], id -> Formulae[
> id], Filters:-Maple, query -> [op]({op}(query))):
> ranking := Search(corpus2, [’sin’, ’cos’]);

2.7 Extended Example: A Search Engine • 183

ranking := [120, 19, 103, 127, 29, 104, 126, 119, 59, 81,

131, 97, 125, 102, 101, 124, 49, 76, 107, 4, 9, 96, 132,

128, 83, 6, 82, 108, 22, 16, 114, 91, 116, 113, 92, 94,

118, 24, 86, 112, 90, 105, 42, 65, 33, 95, 25, 117, 20,

32, 23, 14, 17, 2, 12, 10, 7, 3, 5, 18, 80, 110, 111, 109,

21, 30, 89, 87, 88, 115, 44, 39, 64, 38, 85, 68, 61, 69,

93, 40, 36, 35, 62, 67, 1, 43, 37, 66, 34, 41, 63, 31, 13,

11, 60, 130, 122, 129, 121, 123, 48, 47, 26, 27, 53, 50,

57, 84, 106, 99, 100, 98, 77, 75, 56, 74, 55, 54, 45, 28,

72, 78, 52, 51, 58, 15, 79, 71, 70, 46, 8, 73]

The common and practical case, in which a corpus represents a col-
lection of files to be indexed, can be handled by using a constructor call
such as the following.

> corpus := Corpus(
> remove(type, listdir("MyDocuments"), { ".", ".." }),
> fname -> readbytes(fname, ’TEXT’, infinity),
> Filters:-Text):

If the documents contain structured text encoded as XML, then a
similar invocation can be used.

> corpus := Corpus(
> remove(type, listdir("MyDocuments"), { ".", ".." }),
> fname -> XMLTools:-ParseFile(fname), Filters:-XML):

Finally, a directory of Maple worksheets can be represented by a cor-
pus constructed as follows.

> corpus := Corpus(
> remove(type, listdir("MyDocuments"), { ".", ".." }),
> fname -> Worksheet:-ReadFile(fname), Filters:-Worksheet
>):

A client of the SearchEngine package can provide a specialized filter
routine to be used in constructing a corpus object to represent a collection
of documents of a specific type. Generic interfaces and careful hiding
of representational details provide considerable client flexibility and the
ability to evolve the implementation.

184 • Chapter 2: Programming with Modules

2.8 Conclusion

This chapter introduced the concept of Maple modules. It described the
structure and flexibility of modules.

Encapsulation and generic programming with modules allow you to
write code that can be reused, transported, and easily maintained. By
collecting procedures into a module called a package, you can organize
procedures into distinct sets of related functions. You can also use modules
to implement objects in Maple.

3 Input and Output

Although Maple is primarily a system and language for performing math-
ematical manipulations, many situations arise where such manipulations
require:

• Data originating outside Maple

• Output of data in a form accepted by other applications

• Input directly from the user

• Output presented directly to the user

The Maple software includes a comprehensive collection of input and
output (I/O) commands. Maple I/O library refers to these commands
as a group.

In This Chapter

• Tutorial Example

• File Types and Modes

• File Descriptors Versus File Names

• File Manipulation Commands

• Input Commands

• Output Commands

• Conversion Commands

• Notes to C Programmers

185

186 • Chapter 3: Input and Output

3.1 A Tutorial Example

This section illustrates how you can use the Maple I/O library. Specifi-
cally, the examples show how to write a table of numerical data to a file,
and how to read such a table from a file. The examples refer to the follow-
ing data set, given in the form of a list of lists and assumed to represent a
list of (x, y) pairs, where each x is an integer and each y is a real number.

> A := [[0, 0],
> [1, .8427007929],
> [2, .9953222650],
> [3, .9999779095],
> [4, .9999999846],
> [5, 1.000000000]]:

In a real application, this list is generated by a Maple command or pro-
cedure. In this example, the list was simply entered as above.

If you want to use another program (like a presentation graphics pro-
gram, or perhaps a custom C program) to process data that Maple has
generated, then you often need to save the data to a file in a format that
the other program recognizes. Using the I/O library, you can write such
data to a file.

> for xy in A do fprintf("myfile", "%d %e\n", xy[1], xy[2])
> end do:
> fclose("myfile");

The file myfile is saved in the current directory. To determine the current
directory, use the currentdir() command. If you print the file myfile,
or view it with a text editor, it looks like this:

0 0.000000e-01

1 8.427008e-01

2 9.953223e-01

3 9.999779e-01

4 1.000000e+00

5 1.000000e+00

The fprintf command writes each pair of numbers to the file. This com-
mand takes two or more arguments. The first argument specifies the file
that Maple is to write, and the second argument specifies the format for
the data items. The remaining arguments are the actual data items that
Maple is to write.

Opening a File In the preceding example, the filename is myfile. The
first time a given filename appears as an argument to fprintf (or any

3.1 A Tutorial Example • 187

of the other output commands described later), the command creates the
file if it does not already exist, and prepares (opens) it for writing. If
the file exists, the new version overwrites the old one. You can override
this behavior (for example, if you want to append to an already existing
file) by using the fopen command. For more information on the fopen

command, see 3.4 Opening and Closing Files.

Format String The format string, "%d %e\n", specifies that Maple write
the data items as follows:

• First data item as a decimal integer (%d)

• Second data item in Fortran-like scientific notation (%e)

• A single space separates the first and second data items

• A line break (\n) follows the second data item (to write each pair of
numbers on a new line)

By default, as in the example, Maple rounds floating-point numbers
to six significant digits for output. You can specify more or fewer digits by
using options to the %e format. The section on fprintf describes these
options in more detail.

Closing a File When you are finished writing to a file, you must close
it. Until you close a file, the data may not be in the file, because output
is buffered under most operating systems. The fclose command closes a
file. If you forget to close a file, Maple automatically closes it when you
exit.

One Command for Opening, Writing, and Closing a File For a simple
case like the one presented here, writing the data to a file by using the
writedata command is easier.

> writedata("myfile2", A, [integer,float]):

The writedata command performs all the operations of opening the file,
writing the data in the specified format (an integer and a floating-point
number) and then closing the file. However, writedata does not provide
the precise formatting control that you may need in some cases. For this,
use fprintf.

Reading Data From a File In some applications, you need to read data
from a file. For example, some data acquisition software supplies data
that you need to analyze. Reading data from a file is almost as easy as
writing to it.

188 • Chapter 3: Input and Output

> A := [];

A := []

> do
> xy := fscanf("myfile2", "%d %e");
> if xy = 0 then break end if;
> A := [op(A),xy];
> end do;

xy := [0, 0.]

A := [[0, 0.]]

xy := [1, 0.8427007929]

A := [[0, 0.], [1, 0.8427007929]]

xy := [2, 0.995322265]

A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265]]

xy := [3, 0.9999779095]

A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265],

[3, 0.9999779095]]

xy := [4, 0.9999999846]

A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265],

[3, 0.9999779095], [4, 0.9999999846]]

xy := [5, 1.000000000]

A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265],

[3, 0.9999779095], [4, 0.9999999846],

[5, 1.000000000]]

xy := []

3.1 A Tutorial Example • 189
A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265],

[3, 0.9999779095], [4, 0.9999999846],

[5, 1.000000000], []]

xy := 0

> fclose("myfile2");

This example starts by initializing A to be the empty list. Upon entering
the loop, Maple reads pairs of numbers from the file.

The fscanf command reads characters from a specified file, and parses
them according to the specified format (in this case, "%d %e", indicating a
decimal integer and a real number). It either returns a list of the resulting
values or the integer 0 to indicate that it has reached the end of the file.
The first time you call fscanf with a given file name, Maple prepares
(opens) the file for reading. If it does not exist, Maple generates an error.

The second line of the loop checks if fscanf returned 0 to indicate the
end of the file, and breaks the loop if it has. Otherwise, Maple appends the
pair of numbers to the list of pairs in A. (The syntax A := [op(A),xy]

tells Maple to assign to A a list consisting of the existing elements of A,
and the new element xy.)

One Command for Opening, Reading, and Closing a File As when you
write to a file, you can read from a file more easily by using the readdata
command.

> A := readdata("myfile2", [integer,float]);

A := [[0, 0.], [1, 0.8427007929], [2, 0.995322265],

[3, 0.9999779095], [4, 0.9999999846],

[5, 1.000000000]]

The readdata command performs all the operations of opening the file,
reading the data, parsing the specified format (an integer and a floating-
point number), and then closing the file. However, readdata does not
provide the precise parsing control that you may need in some cases. For
this, use fscanf directly.

The next section expands on the basic concepts of the Maple I/O
library.

190 • Chapter 3: Input and Output

3.2 File Types and Modes

Most of the Maple I/O library commands operate on files. In this chapter,
the term file is not limited to a disk file. It can include the default output
stream to a terminal or worksheet output region. Almost any operation
that you can perform on a real file you can perform on a data output
stream to the terminal or worksheet.

Buffered Files versus Unbuffered Files
The Maple I/O library can use two file types: buffered (STREAM) and
unbuffered (RAW). Maple uses these files similarly.

Buffered Files:

• When buffering a lot of I/O, buffered file operations are usually faster.

• Maple collects characters in a buffer and writes them to a file when
the buffer is full or the file is closed. (Changes made in Maple may
not appear on disk until later.)

• In general, you should use buffered files. They are used by default
with most I/O library commands.

Raw Files:

• Raw files are useful when examining the properties of the underlying
operating system, such as the block size on the disk.

Identifiers Commands that provide information about I/O status use
the identifiers STREAM and RAW to indicate buffered and unbuffered files,
respectively.

Text Files versus Binary Files
Many operating systems, including DOS/Windows r© and the Macintosh
operating system (Mac OS r©), distinguish between files containing se-
quences of characters (text files) and files containing sequences of bytes
(binary files). The distinction lies primarily in the treatment of the new-
line character. Other distinctions may exist on some platforms, but they
are not visible when using the Maple I/O library.

Within Maple, the newline character, which represents ending one
line and beginning a new one, is a single character (although you can
type it as the two characters “\n” within Maple strings). The internal

3.2 File Types and Modes • 191

representation of this character is the byte whose value is 10, the ASCII
linefeed character. Many operating systems, however, represent the con-
cept of newline within a file using a different character, or a sequence of
two characters. For example, DOS/Windows represents a newline with
two consecutive bytes whose values are 13 and 10 (carriage return and
line feed). The Macintosh represents a newline with the single byte with
value 13 (carriage return).

The Maple I/O library can use text files or binary files. When Maple
writes to a text file, any newline characters that it writes to the file are
translated into the appropriate character or character sequence that the
underlying operating system uses. When Maple reads this character or
character sequence from a file, it translates it to the single newline char-
acter. When Maple writes to a binary file, no translation takes place; it
reads newline characters and writes them as the single byte with value
10.

When running Maple under the UNIX r© operating system or one of
its many variants, Maple makes no distinction between text and binary
files. It treats both in the same way, and no translation takes place.

Identifiers Commands that can specify or query whether a file is a text
file or a binary file use the identifiers TEXT and BINARY, respectively.

Read Mode versus Write Mode
At any given time, a file may be open either for reading or for writing.

• You cannot write to a file that is open only for reading. If you attempt,
using the Maple I/O library, to write to a file which is open for reading,
Maple closes and reopens the file for writing. If the user does not have
the necessary permissions to write to the file (if the file is read-only,
or resides on a read-only file system), errors occur.

• You can write to and read from a file that is open for writing.

Identifiers Commands where you can specify or query whether a file
is open for reading or writing use the identifiers READ and WRITE, respec-
tively.

The default and terminal Files
The Maple I/O library treats the Maple user interface as a file. The iden-
tifiers default and terminal refer to this file. The default identifier
refers to the current input stream, the one from which Maple reads and

192 • Chapter 3: Input and Output

processes commands. The terminal identifier refers to the top-level in-
put stream, the one which was the current input stream when you started
Maple.

When Maple is run interactively, default and terminal are equiv-
alent. Only when reading commands from a source file using the read

statement does a distinction arise. In that case, default refers to the file
being read; whereas, terminal refers to the session. Under UNIX, if input
is redirected from a file or pipe, terminal refers to that file or pipe.

Note that only the symbols default and terminal are special; the
strings "default" and "terminal" refer to files with those names.

3.3 File Descriptors versus File Names

The commands of the Maple I/O library refer to files in one of two ways:
by name or by descriptor.

Name Referring to a file by name is the simpler of the two methods.
The first time Maple performs an operation on the file, it opens the file,
either in READ mode or in WRITE mode and as a TEXT file or a BINARY

file, as appropriate to the operation that it is performing. The primary
advantage of referring to files by name is simplicity. However, you will
experience a slight performance penalty for using this method, especially
if performing many small operations on a file (such as writing individual
characters).

Descriptor Referring to a file by descriptor is only slightly more complex
and is a familiar concept to those who have programmed in more tradi-
tional environments. A descriptor simply identifies a file after you have
opened it. Use the name of the file once to open it and create a descriptor.
When you subsequently manipulate the file, use the descriptor instead of
the file name. An example in Opening and Closing Files on page 194
illustrates the use of a file descriptor.

The advantages of the descriptor method include more flexibility when
opening the file (you can specify whether the file is TEXT or BINARY, and
whether Maple opens it in READ mode or in WRITE mode), improved effi-
cency when performing many operations on a file, and the ability to work
with unbuffered files. The disadvantage is a slight increase in the amount
of programming that you must do.

3.4 File Manipulation Commands • 193

Best Approach Which approach is best depends on the task at hand.
You can perform simple file I/O tasks most easily by using names,
whereas, more complex tasks can benefit from the use of descriptors.

Note: In subsequent sections, the term fileIdentifier refers to a filename
or a file descriptor.

3.4 File Manipulation Commands

Opening and Closing Files
Before you can read from or write to a file, you must open it. When refer-
ring to files by name, this happens automatically with the first attempt at
any file operation. When you use descriptors, however, you must explicitly
open the file first to create the descriptor.

The two commands for opening files are fopen and open. The fopen

command opens buffered (STREAM) files, whereas, the open command
opens unbuffered (RAW) files.

Use the fopen command as follows.

fopen(fileName, accessMode, fileType)

The fileName specifies the name of the file to open. This name is specified
as a string, and follows the conventions that the underlying operating
system uses. The accessMode must be one of READ, WRITE, or APPEND,
indicating whether you should initially open the file for reading, writing,
or appending. The optional fileType is either TEXT or BINARY.

If you try to open the file for reading and it does not exist, fopen
generates an error.

If you try to open the file for writing and it does not exist, Maple
creates it. If it does exist and you specify WRITE, Maple truncates the file
to zero length; if you specify APPEND, subsequent calls to commands that
write to the file append to it.

Call the open command as follows.

open(fileName, accessMode)

The arguments to open are the same as those to fopen, except that you
cannot specify a fileType (TEXT or BINARY). Maple opens an unbuffered
file with type BINARY.

194 • Chapter 3: Input and Output

Both fopen and open return a file descriptor. Use this descriptor to
refer to the file for subsequent operations. You can still use the filename.

When you have finished with a file, instruct Maple to close it. This en-
sures that Maple writes all information to the disk. It also frees resources
of the underlying operating system, which often imposes a limit on the
number of files that you can open simultaneously.

Close files by using the fclose or close commands. These two com-
mands are equivalent. You can call them as follows.

fclose(fileIdentifier)

close(fileIdentifier)

The fileIdentifier is the name or descriptor of the file to close. Once you
close a file, any descriptors referring to the file are no longer valid.

> f := fopen("testFile.txt",WRITE):

> writeline(f,"This is a test"):
> fclose(f);

> writeline(f,"This is another test"):

Error, (in fprintf) file descriptor not in use

When you exit Maple or issue a restart command, Maple automatically
closes any open files, whether you opened them explicitly by using fopen

or open, or implicitly through a file I/O command.

Position Determination and Adjustment
Associated with each open file is the concept of its current position. This
is the location within the file to which a subsequent write occurs, or
from which a subsequent read occurs. Any reading or writing operation
advances the position by the number of bytes read or written.

You can determine the current position within a file by using the
filepos command. Use this command in the following manner.

filepos(fileIdentifier, position)

The fileIdentifier is the name or descriptor of the file whose position
to determine or adjust. If you give a filename, and that file is not yet
open, Maple opens it in READ mode with type BINARY.

3.4 File Manipulation Commands • 195

The position is optional. If you do not specify the position, Maple
returns the current position. If you supply the position, Maple sets the
current position to position and returns the resulting position. In that
case, the returned position is the same as the specified position unless
the file is shorter than the specified position, in which case the returned
position is that of the end of the file (that is, its length). You can specify
the position either as an integer or as the name infinity, which specifies
the end of the file.

The following command returns the length of the file myfile.txt.

> filepos("myfile.txt", infinity);

36

Detecting the End of a File
The feof command determines whether you have reached the end of a
file. Only use the feof command on files that you have opened as STREAMs
implicitly or explicitly via fopen. Call feof in the following manner.

feof(fileIdentifier)

The fileIdentifier is the name or descriptor of the file to query. If you give
a filename, and that file is not yet open, Maple opens it in READ mode
with type BINARY.

The feof command returns true if and only if you have reached the
end of the file during the most recent readline, readbytes, or fscanf

operation. Otherwise, feof returns false. This means that if 20 bytes
remain in a file and you use readbytes to read these 20 bytes, then feof

still returns false. You encounter the end-of-file only after you attempt
another read.

Determining File Status
The iostatus command returns detailed information about all the files
currently in use. Call the iostatus command with the following syntax.

iostatus()

The iostatus command returns a list. The list contains the following
elements:

iostatus()[1] The number of files that the Maple I/O library is cur-
rently using.

196 • Chapter 3: Input and Output

iostatus()[2] The number of active nested read commands (when read

reads a file, which itself contains a read statement).

iostatus()[3] The upper bound on iostatus()[1] + iostatus()[2]

that the underlying operating system imposes.

iostatus()[n] for n > 3. A list giving information about a file currently
in use by the Maple I/O library.

When n > 3, the lists that iostatus()[n] return each contain the
following elements:

iostatus()[n][1] The file descriptor which fopen or open returned.

iostatus()[n][2] The filename.

iostatus()[n][3] The file kind (STREAM, RAW, or DIRECT).

iostatus()[n][4] The file pointer or file descriptor that the underlying
operating system uses. The pointer is in the form FP=integer or
FD=integer .

iostatus()[n][5] The file mode (READ or WRITE).

iostatus()[n][6] The file type (TEXT or BINARY).

Removing Files
Many files are solely for temporary use. Because you do not need these
files in future Maple sessions, remove them. Use the fremove command
to do this.

fremove(fileIdentifier)

The fileIdentifier is the name or descriptor of the file to remove. If the
file is open, Maple closes it before removing it. If the file does not exist,
Maple generates an error.

To remove a file regardless of whether it exists, use a try/catch state-
ment to trap the error that fremove might create.

> try fremove("myfile.txt") catch: end try:

3.5 Input Commands • 197

3.5 Input Commands

Reading Text Lines from a File
The readline command reads a single line of text from a file. Characters
are read up to and including a new line. The readline command then
discards the new line character, and returns the line of characters as a
Maple string. If readline cannot read a whole line from the file, then it
returns 0 instead of a string.

Call the readline command by using the following syntax.

readline(fileIdentifier)

The fileIdentifier is the name or descriptor of the file to read. For
compatibility with earlier versions of Maple, you can omit the fileI-
dentifier, in which case Maple uses default. Thus readline() and
readline(default) are equivalent.

If you use -1 as the fileIdentifier, Maple also takes input from the
default stream, except that the Maple command-line preprocessor runs
on all input lines. This means that lines beginning with “!” pass to the
operating system instead of returning through readline, and that lines
beginning with “?” translate to calls to the help command.

If you call readline with a filename, and that file is not open, Maple
opens it in READ mode as a TEXT file. If readline returns 0 (indicating
the end of the file) when called with a filename, it automatically closes
the file.

Example The following example defines a Maple procedure which reads
a text file and displays it on the default output stream.

> ShowFile := proc(fileName::string)
> local line;
> do
> line := readline(fileName);
> if line = 0 then break end if;
> printf("%s\n",line);
> end do;
> end proc:

Reading Arbitrary Bytes from a File
The readbytes command reads one or more individual characters or bytes
from a file, returning a string or a list of integers. If there are no characters
remaining in the file when you call readbytes, the command returns 0,
indicating that you have reached the end of the file.

198 • Chapter 3: Input and Output

Use the following syntax to call the readbytes command.

readbytes(fileIdentifier, length, TEXT)

The fileIdentifier is the name or descriptor of the file to read. The length,
which you may omit, specifies how many bytes Maple needs to read. If
you omit length, Maple reads one byte. The optional parameter TEXT

indicates that the result is to be returned as a string rather than a list of
integers.

You can specify the length as infinity, in which case Maple reads
the remainder of the file.

If you specify TEXT when a byte with value 0 resides among the bytes
being read, the resulting string contains only those characters preceding
the 0 byte.

If you call readbytes with a filename, and that file is not open, Maple
opens it in READ mode. If you specify TEXT, Maple opens it as a TEXT file;
otherwise, Maple opens it as a BINARY file. If readbytes returns 0 (indi-
cating the end of the file) when you call it with a filename, it automatically
closes the file.

Example The following example defines a Maple procedure which reads
an entire file, by using readbytes, and copies it to a new file.

> CopyFile := proc(sourceFile::string, destFile::string)
> writebytes(destFile, readbytes(sourceFile, infinity))
> end proc:

Note: For information on the writebytes function, refer to ?writebytes
or see Writing Bytes to a File on page 210.

Formatted Input
The fscanf and scanf commands read from a file, parsing numbers and
substrings according to a specified format. The commands return a list of
these parsed objects. If no more characters remain in the file when you
call fscanf or scanf, they return 0 instead of a list, indicating that it
has reached the end of the file.

Call the fscanf and scanf commands as follows.

fscanf(fileIdentifier, format)

scanf(format)

The fileIdentifier is the name or descriptor of the file to read. A call to
scanf is equivalent to a call to fscanf with default as the fileIdentifier.

3.5 Input Commands • 199

If you call fscanf with a filename, and that file is not open, Maple
opens it in READ mode as a TEXT file. If fscanf returns 0 (indicating the
end of the file) when you call it with a filename, Maple automatically
closes the file.

Format String The format specifies how Maple is to parse the input.
The format is a Maple string consists of a sequence of conversion spec-
ifications, that may be separated by other characters. Each conversion
specification has the following format, where the brackets indicate op-
tional components.

%[*][width][modifiers]code

• The “%” symbol begins the conversion specification.

• The optional “*” indicates that Maple is to scan the object, but not
return it as part of the result. It is discarded.

• The optional width indicates the maximum number of characters to
scan for this object. You can use this to scan one larger object as two
smaller objects.

The optional modifiers are used to indicate the type of the value to
be returned:

l or L The letters l and L are supported for compatibility with the C
scanf function, and indicate that a “long int” or “long long” is to be
returned. In Maple, these flags have no effect.

zc or Z One of these flags can precede any of the numeric formats,
namely d, o, x, e, f, or g, indicating that a complex value is to
be scanned. The real and imaginary parts of the complex value are
scanned by using the specified format with the z or Z elided. The
z format scans the real part, followed by the character specified by
c, followed by the imaginary part. The Z format scans the real part,
followed by a “+” or “-” sign, followed by the imaginary part, fol-
lowed by a string of characters corresponding to the current setting
of interface(imaginaryunit).

The z and Z options can result in one of the few conditions in which
scanf raises an exception. If scanf is scanning a complex value (for
example, the real part has already been successfully scanned), and is
unable to finish scanning the remainder (for example, there is no imag-
inary part after the real part), scanf raises an exception of the form "

200 • Chapter 3: Input and Output

‘%1‘ expected in input for complex format ", where %1 is re-
placed by the expected character (for example, a comma).

The code indicates the type of object to scan. It determines the type
of object that Maple returns in the resulting list. The code can be one of
the following.

d The next non-whitespace characters in the input must comprise a signed
or unsigned decimal integer. A Maple integer is returned.

o The next non-whitespace characters in the input must make up an
unsigned octal (base 8) integer. The integer is converted to a decimal,
and then returned as a Maple integer.

x The next non-whitespace characters in the input must consist of an
unsigned hexadecimal (base 16) integer. The letters A through F (up-
per or lower case) represent the digits corresponding to the decimal
numbers 10 through 15. The integer is converted to a decimal, and
then returned as a Maple integer.

y The next non-whitespace characters in the input must consist of an
IEEE hex-dump format floating-point value. This value must consist
of sixteen hexadecimal characters. The value is converted to and re-
turned as a Maple float.

e, f, or g The next non-whitespace characters in the input must consist
of a signed or unsigned decimal number, possibly including a decimal
point, and possibly followed by E or e, an optional sign, and a decimal
integer indicating a power of ten. The number is returned as a Maple
floating-point value.

In addition to numeric values, the e, f, and g formats also recognize
the special values “inf” and “NaN”. If an i or N is encountered when
scanf is looking for the first digit of a number, it assumes that one
of these special values has been found, and proceeds to look for the
subsequent nf or aN. If the rest of the special value is not found, an
exception is raised.

he, hf, or hg These are special formats for reading one or two-dimensional
numeric arrays. In general, such arrays should be read by using the
more sophisticated functionality provided by the {} format, but the
he, hf, and hg formats are provided for backward compatibility with
hfarrays, and provide some intelligence in automatically dealing with
a variety of textual layouts of such arrays.

3.5 Input Commands • 201

The following input must consist of a one or two-dimensional array
of floating-point (or integer) values. Characters encountered during
scanning are categorized into three classes: numeric, separator, and
terminator. All the characters that can appear within a number (the
digits, decimal point, signs, E, e, D, and d) are numeric. Any white
space, commas, or square brackets are separators. A square bracket
not immediately followed by a comma, and any other character, is a
terminator. If a backslash is encountered, it and the following charac-
ter are ignored.

The dimensions of the array are determined by the number of lines
read, and the number of values in the first line. If either of these is 1,
or if the number of rows multiplied by the number of columns does
not equal the total number of values read, a one-dimensional array is
produced.

The definition of “the first line” is “everything read up to the first
line break that does not immediately follow a comma or a backslash,
or up to the first closing square bracket that is immediately followed
by a comma”.

This method can read anything that can be written by the corre-
sponding printf, typical tables of numbers, and lprinted or saved (in
text form) Maple lists and lists of lists.

The result is returned as an hfarray of one or two dimensions.

hx The following input must consist of a one or two dimensional array of
floating-point numbers in IEEE hex-dump format (16 characters per
number). The dimensions of the array are determined as described for
the previous "%he", "%hf", and "%hg" formats.

s The next non-whitespace characters, up to but not including the fol-
lowing blank characters (or the end of the string), are returned as a
Maple string.

a Maple collects and parses the next non-whitespace characters, up to
but not including the following blank characters (or the end of the
string). An unevaluated Maple expression is returned.

m The next characters must be a Maple expression encoded in the Maple
.m file format. Maple reads enough characters to parse a single com-
plete expression; it ignores the width specification. The Maple expres-
sion is returned.

202 • Chapter 3: Input and Output

c This code returns the next character (whitespace or otherwise) as a
Maple string. If a width is specified, that many characters (blank or
otherwise) are returned as a single Maple string.

[. . .] The characters between “[” and “]” become a list of characters that
are acceptable as a character string. Maple scans characters from the
input until it encounters one that is not in the list. The scanned
characters are then returned as a Maple string.

If the list begins with a “^” character, the list represents all those
characters not in the list.

If a “]” is to appear in the list, it must immediately follow the opening
“[” or the “^” if one exists.

You can use a “-” in the list to represent a range of characters. For
example, “A-Z” represents any capital letter. If a “-” is to appear
as a character instead of representing a range, it must appear at the
beginning or the end of the list.

{. . .}wft The characters between the left brace, "{", and the right brace,
"}", are options for scanning Arrays, Matrices, or Vectors (that is, the
various classes of rtable). The optional w is an integer specifying the
width to scan for each element (any width specified before the opening
"{" applies to the entire rtable being scanned, but is ignored). The
character f specifies the format code, and can be any format code
supported by scanf except [...] or {...}. The character t, which
must be one of a, m, c, or r, specifies the type of object to be created
(Array, Matrix, Vector[column], or Vector[row] respectively).

For more information on rtable formatting options, refer to
?rtable_scanf.

M The next sequence of characters must correspond to a well formed XML
element. The result is a Maple function call whose name is constructed
from the XML element, whose arguments are either function calls for
the child elements or the CDATA as strings, and whose attributes are
equations defining the XML attributes of the object.

n The total number of characters scanned up to the “%n” is returned as
a Maple integer.

Maple skips non-whitespace characters in the format but not within a
conversion specification (where they must match the corresponding char-
acters in the input). It ignores white space in the format, except that a

3.5 Input Commands • 203

space immediately preceding a “%c” specification causes the “%c” speci-
fication to skip any blanks in the input. If it does not successfully scan
any objects, Maple returns an empty list.

The fscanf and scanf commands use the underlying implementa-
tion that the hardware vendor provides for the “%o” and “%x” formats.
As a result, input of octal and hexadecimal integers are subject to the
restrictions of the operating system.

Example The following example defines a Maple procedure that reads a
file containing a table of numbers, in which each row can have a different
width. The first number in each row is an integer specifying how many
real numbers follow it in that row, and commas separate all the numbers
in each row.

> ReadRows := proc(fileName::string)
> local A, count, row, num;
> A := [];
> do
> # Determine how many numbers are in this row.
> count := fscanf(fileName,"%d");
> if count = 0 then break end if;
> if count = [] then
> error "integer expected in file"
> end if;
> count := count[1];
>
> # Read the numbers in the row.
> row := [];
> while count > 0 do
> num := fscanf(fileName,",%e");
> if num = 0 then
> error "unexpected end of file"
> end if;
> if num = [] then
> error "number expected in file"
> end if;
> row := [op(row),num[1]];
> count := count - 1
> end do;
>
> # Append the row to the accumulated result.
> A := [op(A),row]
> end do;
> A
> end proc:

204 • Chapter 3: Input and Output

Reading Maple Statements
The readstat command reads a single Maple statement from the
terminal input stream. Maple parses and evaluates the statement, and
returns the result. Call the readstat command as follows.

readstat(prompt, ditto3, ditto2, ditto1)

The prompt argument specifies the prompt that readstat is to use. If you
omit the prompt argument, Maple uses a blank prompt. You can either
supply or omit all of the three arguments ditto3, ditto2, and ditto1. If you
supply them, they specify the values which Maple uses for %%%, %%, and
% in the statement that readstat reads. Specify each of these arguments
as a Maple list containing the actual value for substitution. This allows
for values that are expression sequences. For example, if % is to have the
value 2*n+3 and %% is to have the value a,b, then use [2*n+3] for ditto1
and [a,b] for ditto2.

The response to readstat must be a single Maple expression. The
expression can span more than one input line, but readstat does not
permit multiple expressions on one line. If the input contains a syntax
error, readstat returns an error describing the nature of the error, and
its position in the input.

Example The following example shows a trivial use of readstat within
a procedure.

> InteractiveDiff := proc()
> local a, b;
> a := readstat("Please enter an expression: ");
> b := readstat("Differentiate with respect to: ");
> printf("The derivative of %a with respect to %a is %a\n",
> a,b,diff(a,b))
> end proc:

Reading Tabular Data
The readdata command reads TEXT files containing tables of data. For
simple tables, this is more convenient than writing a procedure by using
a loop and the fscanf command.

Use the following syntax to call the readdata command.

readdata(fileIdentifier, dataType, numColumns)

The fileIdentifier is the name or descriptor of the file from which readdata

reads the data. The dataType must be one of integer or float, or you

3.5 Input Commands • 205

can omit it, in which case readdata assumes float. If readdata needs
to read more than one column, you can specify the type of each column
by using a list of data types.

The numColumns argument indicates how many columns of data are
to be read from the file. If you omit numColumns, readdata reads the
number of columns specified by the number of data types that you spec-
ified (one column if you did not specify any dataType).

If Maple reads only one column, readdata returns a list of the values
read. If Maple reads more than one column, readdata returns a list of
lists, each sublist of which contains the data read from one line of the file.

If you call readdata with a filename, and that file is not open, Maple
opens it in READ mode as a TEXT file. Furthermore, if you call readdata
with a filename, it automatically closes the file when readdata returns.

Example The following two examples are equivalent uses of readdata
to read a table of (x, y, z)-triples of real numbers from a file.

> A1 := readdata("my_xyz_file.text",3);

A1 := [[1.5, 2.2, 3.4], [2.7, 3.4, 5.6], [1.8, 3.1, 6.7]]

> A2 := readdata("my_xyz_file.text",[float,float,float]);

A2 := [[1.5, 2.2, 3.4], [2.7, 3.4, 5.6], [1.8, 3.1, 6.7]]

Note: Data elements in the file are white space delimited. Newlines sepa-
rate rows, and white space separates columns. The numColumns argument
defines how many columns to read and those columns are read from all
rows. For the file:

1 2 3 4
5 6 7 8
readdata(...,2) returns [[1,2],5,6]] and readdata(...,3) returns

[[1,2,3],[5,6,7]].

206 • Chapter 3: Input and Output

3.6 Output Commands

Configuring Output Parameters Using the interface

Command
The interface command is not an output command. It is a mechanism
to provide communication between Maple and the user interface. You can
use it to configure parameters affecting the output produced by various
commands within Maple.

To set a parameter, call the interface command as follows.

interface(variable = expression)

The variable argument specifies which parameter to change, and the ex-
pression argument specifies the value that the parameter is to have. For
a list of parameters you can use, see the following sections or refer to
?interface. You can set multiple parameters by giving several argu-
ments of the form variable = expression , with commas separating
them.

To query the setting of a parameter, use the following syntax.

interface(variable)

The variable argument specifies the parameter to query. The interface

command returns the current setting of the parameter. You can query
only one parameter at a time.

One-Dimensional Expression Output
The lprint command prints Maple expressions in a one-dimensional no-
tation similar to the format Maple uses for input. In most cases, you
can use this output as input, and the same expression would result. The
single exception is if the expression contains Maple names containing non-
alphanumeric characters.

The lprint command is called as follows.

lprint(expressionSequence)

The expressionSequence consists of one or more Maple expressions. Each
of the expressions is printed in turn, with three spaces separating each of
them. Maple prints a new line character after the last expression.

Maple always sends the output that lprint produces to the default

output stream. You can use the writeto and appendto commands, de-
scribed later, to temporarily redirect the default output stream to a
file.

3.6 Output Commands • 207

The interface parameter screenwidth affects the output of lprint.
If possible, Maple wraps the output between tokens. If a single token is
too long to display (for example, a very long name or number), Maple
breaks it across lines, and prints a backslash, “\”, before each line break.

Example The following command-line example illustrates lprint out-
put, and how screenwidth affects it.

> lprint(expand((x+y)^5));

x^5+5*x^4*y+10*x^3*y^2+10*x^2*y^3+5*x*y^4+y^5

> interface(screenwidth=30);

> lprint(expand((x+y)^5));

x^5+5*x^4*y+10*x^3*y^2+10*x^2
*y^3+5*x*y^4+y^5

Two-Dimensional Expression Output
The print command prints Maple expressions in a two-dimensional no-
tation. Depending on the version of Maple and the user interface, this
notation is either the standard math notation that appears in text books
and other typeset mathematical documents, or an approximation of stan-
dard math notation using only text characters.

The print command is called as follows.

print(expressionSequence)

The expressionSequence consists of one or more Maple expressions. Maple
prints each expression, in turn, with commas separating them.

The output produced by print is always sent to the default output
stream. You can use the writeto and appendto commands, described
later, to temporarily redirect the default output stream to a file.

Several interface parameters affect the output of print. They are
set using the syntax

208 • Chapter 3: Input and Output

interface(parameter = value)

They include:

prettyprint This selects the type of output that print is to produce.

• If you set prettyprint to 0, print produces the same output as
lprint.

• If you set prettyprint to 1, print produces a simulated math
notation using only text characters.

• If you set prettyprint to 2, and the version of Maple you are
running is capable of it, print produces output using standard
math notation.

• The default setting of prettyprint is 2.

indentamount This specifies the number of spaces that Maple uses to
indent the continuation of expressions that are too large to fit on a
single line. This parameter takes effect only when you set prettyprint
(see previous definition) to 1, or when Maple is printing procedures.
The default setting of indentamount is 4.

labelling or labeling You can set this to true or false, indicating
whether Maple should use labels to represent common subexpressions
in large expressions. Labels can make large expressions easier to read
and comprehend. The default setting of labelling is true.

labelwidth This indicates the size that a subexpression must have for
Maple to consider it for labeling (if labelling is true). The size is
the approximate width, in characters, of the expression when printed
with print and prettyprint = 1.

screenwidth This indicates the width of the screen in characters. When
prettyprint is 0 or 1, Maple uses this width to decide when to wrap
long expressions. When prettyprint is 2, the user interface uses pix-
els instead of characters, and determines the width automatically.

verboseproc Use this parameter when printing Maple procedures.

• If you set verboseproc to 1, Maple prints only user defined proce-
dures; Maple shows system defined procedures in a simplified form
giving only the arguments, and possibly a brief description of the
procedure.

3.6 Output Commands • 209

• If you set verboseproc to 2, Maple prints all procedures in full.

• If you set verboseproc to 3, Maple prints all procedures in full, and
prints the contents of a procedure’s remember table in the form of
Maple comments after the procedure.

When you use Maple interactively, it automatically displays each com-
puted result. The format of this display is the same as if you used the
print command. Therefore, all the interface parameters that affect the
print command also affect the display of results.

Example The following command-line example illustrates print output,
and how prettyprint, indentamount, and screenwidth affect it.

> print(expand((x+y)^6));

x6 + 6x5 y + 15x4 y2 + 20x3 y3 + 15x2 y4 + 6x y5 + y6

> interface(prettyprint=1);
> print(expand((x+y)^6));

6 5 4 2 3 3 2 4 5
x + 6 x y + 15 x y + 20 x y + 15 x y + 6 x y

6
+ y

> interface(screenwidth=35);
> print(expand((x+y)^6));

6 5 4 2 3 3
x + 6 x y + 15 x y + 20 x y

2 4 5 6
+ 15 x y + 6 x y + y

> interface(indentamount=1);
> print(expand((x+y)^6));

210 • Chapter 3: Input and Output

6 5 4 2 3 3
x + 6 x y + 15 x y + 20 x y

2 4 5 6
+ 15 x y + 6 x y + y

> interface(prettyprint=0);
> print(expand((x+y)^6));

x^6+6*x^5*y+15*x^4*y^2+20*x^3*y^3+
15*x^2*y^4+6*x*y^5+y^6

Writing Maple Strings to a File
The writeline command writes one or more Maple strings to a file. Each
string appears on a separate line. Call the writeline command as follows.

writeline(fileIdentifier, stringSequence)

The fileIdentifier is the name or description of the file to which Maple is
to write, and stringSequence is the sequence of strings that writeline

should write. If you omit the stringSequence, then writeline writes a
blank line to the file.

Writing Bytes to a File
The writebytes command writes one or more individual characters or
bytes to a file. You can specify the bytes either as a string or a list of
integers.

The following syntax calls the writebytes command.

writebytes(fileIdentifier, bytes)

The fileIdentifier is the name or descriptor of the file to which writebytes

is writing. The bytes argument specifies the bytes to write. This can be
either a string or a list of integers. If you call writebytes with a filename,
and that file is not open, Maple opens it in WRITE mode. If you specify
the bytes as a string, Maple opens the file as a TEXT file; if you specify
the bytes as a list of integers, Maple opens the file as a BINARY file.

3.6 Output Commands • 211

Example The following example defines a Maple procedure which reads
an entire file and copies it to a new file using writebytes.

> CopyFile := proc(sourceFile::string, destFile::string)
> writebytes(destFile, readbytes(sourceFile, infinity));
> end proc:

Formatted Output
The fprintf and printf commands write objects to a file, using a spec-
ified format.

Call the fprintf and printf commands as follows.

fprintf(fileIdentifier, format, expressionSequence)

printf(format, expressionSequence)

The fileIdentifier is the name or descriptor of the file to which Maple is to
write. A call to printf is equivalent to a call to fprintf with default

as the fileIdentifier. If you call fprintf with a filename, and that file is
not yet open, Maples opens it in WRITE mode as a TEXT file.

The format specifies how Maple is to write the elements of the ex-
pressionSequence. This Maple string consists of a sequence of formatting
specifications, possibly separated by other characters. Each format spec-
ification has the following syntax, where the brackets indicate optional
components.

%[flags][width][.precision][modifiers]code

The “%” symbol begins the format specification. One or more of the fol-
lowing flags can optionally follow the “%” symbol:

+ A signed numeric value is output with a leading “+” or “-” sign, as
appropriate.

- The output is left-justified instead of right-justified.

blank A signed numeric value is output with either a leading “-” or a
leading blank, depending on whether the value is negative or non-
negative.

0 The output is padded on the left (between the sign and the first digit)
with zeroes. If you also specify a “-”, the “0” is ignored.

212 • Chapter 3: Input and Output

{} The braces enclose a set of detailed formatting options for printing
an rtable. These are described in more detail in the help page
?rtable_printf.

The optional width indicates the minimum number of characters to
output for this field. If the formatted value has fewer characters, Maple
pads it with blanks on the left (or on the right, if you specify “-”).

The optional precision specifies the number of digits that appear after
the decimal point for floating-point formats, or the maximum field width
for string formats.

You can specify both width or precision as “*”, in which case Maple
takes the width or precision from the argument list. The width or precision
argument(s) must appear, in that order, before the argument that is being
output. A negative width argument is equivalent to the appearance of the
“-” flag.

The optional modifiers are used to indicate the type of the value to
be printed:

l or L The letters l and L are supported for compatibility with the C
printf function, and indicate that a "long int" or "long long" is to
be formatted. In Maple, these flags have no effect.

zc or Z One of these flags can precede any of the numeric formats,
namely d, o, x, e, f, or g, indicating that a complex value is to be
formatted. Each of the real and imaginary parts of the complex value
are formatted using the specified format, with the z or Z elided. The
z format prints the real part, followed by the character specified by c,
followed by the imaginary part. The Z format prints the value in the
form x+yi, where x is the real part, y is the imaginary part, and i is
the current setting of interface(imaginaryunit). If y is negative, a
"-" is output instead of a "+". If a supplied value is not complex, it
is treated as a complex value with a zero imaginary part.

The code indicates the type of object that Maple is to write. The code
can be one of the following.

d Formats the object as a signed decimal integer.

o Formats the object as an unsigned octal (base 8) integer.

x or X Formats the object as an unsigned hexadecimal (base 16) integer.
Maple represents the digits corresponding to the decimal numbers 10
through 15 by the letters “A” through “F” if you use “X”, or “a”
through “f” if you use “x”.

3.6 Output Commands • 213

e or E Formats the object as a floating-point number in scientific nota-
tion. One digit will appear before the decimal point, and precision
digits will appear after the decimal point (six digits if you do not
specify a precision). This is followed by the letter “e” or “E”, and a
signed integer specifying a power of 10. The power of 10 will have a
sign and at least three digits, with leading zeroes added if necessary.

If the value being formatted is infinity, -infinity, or undefined, the
output is "Inf", "-Inf", or "NaN" respectively.

f Formats the object as a fixed-point number. The number of digits spec-
ified by the precision will appear after the decimal point.

If the value being formatted is infinity, -infinity, or undefined, the
output is "Inf", "-Inf", or "NaN" respectively.

g or G Formats the object using “d”, “e” (or “E” if you specified “G”), or
“f” format, depending on its value. If the formatted value does not
contain a decimal point, Maple uses “d” format. If the value is less
than 10−4 or greater than 10precision, Maple uses “e” (or “E”) format.
Otherwise, Maple uses “f” format.

If the value being formatted is infinity, -infinity, or undefined, the
output is "Inf", "-Inf", or "NaN" respectively.

y or Y The floating-point object is formatted in byte-order-independent
IEEE hex dump format (16 characters wide). At least 16 characters
are always output, regardless of the specified width. The precision is
ignored. The digits corresponding to the decimal numbers 10 through
15 are represented by the letters "A" through "F" if uppercase Y was
specified, or "a" through "f" if lowercase y was specified.

c Outputs the object, which must be a Maple string containing exactly
one character, as a single character.

s Outputs the object, which must be a Maple string of at least width
characters (if specified) and at most precision characters (if specified).

a or A Outputs the object, which can be any Maple object, in correct
Maple syntax. Maple outputs at least width characters (if specified)
and at most precision characters (if specified). Note: Truncating a
Maple expression by specifying a precision can result in an incomplete
or syntactically incorrect Maple expression in the output.

The "%a" and "%A" formats are identical, except that "%A" omits
any quotes that would normally appear around Maple symbols that
require them.

214 • Chapter 3: Input and Output

q or Q These are similar to "%a" or "%A", except that "%q" or "%Q" ignores
all remaining arguments and print them as an expression sequence,
with each element formatted in "%a" or "%A" format respectively. No
additional format specifiers can appear after "%q" or "%Q", since there
are no arguments to format.

m The object, which can be any Maple object, is output in the Maple
.m file format. Maple outputs at least width characters (if specified),
and at most precision characters (if specified). Note: Truncating a
Maple .m format expression by specifying a precision can result in an
incomplete or incorrect Maple expression in the output.

% A percent symbol is output verbatim.

Maple outputs characters that are in format but not within a format
specification verbatim.

All the formats apply to Arrays (type Array), Matrices (type Matrix),
Vectors (type Vector), and hfarrays (type hfarray), all of which are
objects of type rtable.

• If no rtable-specific formatting options are specified (via the {...} op-
tion, refer to ?rtable_printf), the %a, %A, %m, and %M format codes
print a representation of the rtable structure itself. For example, the
format code %a prints a Matrix, Vector, or Array call.

• If no additional rtable-specific formatting options are specified for a
format code other than %a, %A, %m, and %M, or if an empty rtable
option sequence (that is, just {}) is specified for any format code, the
following default formatting is applied:

One-dimensional objects are formatted as one long line, with the ele-
ments separated by at least one space.

Objects of N dimensions, where N > 1, are formatted as a sequence
of (N −1)-dimensional objects separated by N −2 blank lines. There-
fore, two-dimensional objects are formatted in the obvious way, three-
dimensional objects are formatted as a series of two-dimensional ob-
jects separated by blank lines, and so on.

• Any of the floating-point formats can accept integer, rational, or
floating-point objects; Maple converts the objects to floating-point
values, and then outputs them appropriately.

• The fprintf and printf commands do not automatically start
a new line at the end of the output. If you require a new line,

3.6 Output Commands • 215

the format string must contain a new line character, “\n”. Out-
put from fprintf and printf is not subject to line wrapping at
interface(screenwidth) characters.

• The “%o”, “%x”, and “%X” formats use the underlying implementa-
tion that the hardware vendor provides. As a result, output of octal
and hexadecimal values is subject to the restrictions of the operating
system.

Writing Tabular Data
The writedata command writes tabular data to TEXT files. In many cases,
this is more convenient than writing an output procedure by using a loop
and the fprintf command.

Call the writedata command in the following manner.

writedata(fileIdentifier, data, dataType, defaultProc)

The fileIdentifier is the name or descriptor of the file to which writedata

writes the data.
If you call writedata with a filename, and that file is not yet open,

Maple opens it in WRITE mode as a TEXT file. Furthermore, if you call
writedata with a filename, the file automatically closes when writedata

returns.
The data must be a vector, matrix, list, or list of lists.1

• If the data is a vector or list of values, writedata writes each value
to the file on a separate line.

• If the data is a matrix or a list of lists of values, writedata writes
each row or sublist to the file on a separate line, with tab characters
separating the individual values.

The dataType is optional, and specifies whether writedata is to write
the values as integers, floating-point values (the default), or strings.

• If you specify integer, the values must be numeric, and writedata

writes them as integers (Maple truncates rational and floating-point
values to integers).

• If you specify float, the values must be numeric, and writedata

writes them as floating-point values (Maple converts integer and ra-
tional values to floating-point).

1For information about how to read and write rtable-based Matrices and Vectors,
refer to ?ImportMatrix and ?ImportVector.

216 • Chapter 3: Input and Output

• If you specify string, the values must be strings.

• When writing matrices or lists of lists, you can specify the dataType
as a list of data types, one corresponding to each column in the output.

The optional defaultProc argument specifies a procedure that
writedata calls if a data value does not conform to the dataType you
specified (for example, if writedata encounters a non-numeric value when
the dataType is float). Maple passes the file descriptor corresponding to
the fileIdentifier, along with the non-conforming value, as an argument to
the defaultProc. The default defaultProc simply generates the error, Bad
data found. A more useful defaultProc might be the following.

> UsefulDefaultProc := proc(f,x) fprintf(f,"%a",x) end proc:

This procedure is generic. It can write any value to the file.

Example The following example computes a 5 by 5 Hilbert matrix, and
writes its floating-point representation to a file.

> writedata("hilbertFile.txt",linalg[hilbert](5)):

Examining the file shows:

1 .5 .3333333333 .25 .2

.5 .3333333333 .25 .2 .1666666667

.3333333333 .25 .2 .1666666667 .1428571429

.25 .2 .1666666667 .1428571429 .125

.2 .1666666667 .1428571429 .125 .1111111111

Flushing a Buffered File
I/O buffering may result in a delay between when you request a write
operation and when Maple physically writes the data to the file. This
capitalizes on the greater efficiency of performing one large write instead
of several smaller ones.

Normally, the I/O library chooses when to write to a file automatically.
In some situations, however, you want to ensure that the data you write
is inserted into the file. For example, in UNIX, a common procedure is to
run a command, such as tail -f fileName, in another window to monitor
the information as Maple is writing it. For cases such as these, the Maple
I/O library provides the fflush command.

Call the fflush command using the following syntax.

3.6 Output Commands • 217

fflush(fileIdentifier)

The fileIdentifier is the name or descriptor of the file whose buffer Maple
is to flush. When you call fflush, Maple writes all information that is in
the buffer, but not yet in the physical file, to the file. Typically, a program
would call fflush whenever something significant is written (for example,
a complete intermediate result or a few lines of output).

Note that you do not need to use fflush; anything you write to a
file is physically written before you close the file. The fflush command
simply forces Maple to write data on demand, so that you can monitor
the progress of a file.

Redirecting the default Output Stream
The writeto and appendto commands redirect the default output
stream to a file. This means that any operations that write to the default
stream write to the file you specify instead.

You can call the writeto and appendto commands as follows.

writeto(fileName)

appendto(fileName)

The fileName argument specifies the name of the file to which Maple is
to redirect the output. If you call writeto, Maple truncates the file if it
exists, and writes subsequent output to the file. The appendto command
appends to the end of the file if the file exists. If the file you specify is open
(for example, it is in use by other file I/O operations), Maple generates
an error.

The special fileName terminal (specified as a name, not a string)
causes Maple to send subsequent default output to the original default
output stream (the one that was in effect when you started Maple). The
calls writeto(terminal) and appendto(terminal) are equivalent.

Recommendation Issuing a writeto or appendto call directly from the
Maple prompt is not recommended. When writeto or appendto is in
effect, Maple also writes any error messages that can result from subse-
quent operations to the file. Therefore, you cannot see what is happening.
Generally, use the writeto and appendto commands within procedures
or files of Maple commands that the read command is reading.

218 • Chapter 3: Input and Output

3.7 Conversion Commands

Conversion between Strings and Lists of Integers
The readbytes and writebytes commands described in sections 3.5
and 3.6 can work with either Maple strings or lists of integers. You
can use the convert command to convert between these two formats
as follows.

convert(string, bytes)

convert(integerList, bytes)

If you pass convert(...,bytes) a string, it returns a list of integers; if
you pass it a list of integers, it returns a string.

Due to the way strings are implemented in Maple, the character cor-
responding to the byte-value 0 cannot appear in a string. Therefore, if
integerList contains a zero, convert returns a string of only those char-
acters corresponding to the integers preceding the occurrence of 0 in the
list.

Conversion between strings and lists of integers is useful when Maple
must interpret parts of a stream of bytes as a character string, while it
must interpret other parts as individual bytes.

In the following example, Maple converts a string to a list of integers.
Then, it converts the same list, but with one entry changed to 0, back to
a string. Notice that the string is truncated at the location of the 0.

> convert("Test String",bytes);

[84, 101, 115, 116, 32, 83, 116, 114, 105, 110, 103]

> convert([84,101,115,116,0,83,116,114,105,110,103],bytes);

“Test”

Parsing Maple Expressions and Statements
The parse command converts a string of valid Maple input to the corre-
sponding Maple expression. The expression is simplified, but not evalu-
ated.

Use the parse command as follows.

parse(string, options)

3.7 Conversion Commands • 219

The string argument is the string to be parsed. It must describe a Maple
expression (or statement, see the following definition) by using the Maple
language syntax.

You can supply one or more options to the parse command:

statement This indicates that parse is to accept statements in addition
to expressions. However, since Maple automatically evaluates state-
ments, parse evaluates the string if you specify statement.

nosemicolon Normally, parse supplies a terminating semicolon, “;” if
the string does not end in a semicolon or a colon, “:”. If you
specify nosemicolon, this does not happen, and Maple generates
an unexpected end of input error if the string is incomplete. The
readstat command, which uses readline and parse, makes use of
this facility to allow multi-line inputs.

If the string passed to parse contains a syntax error, parse generates
an error (which you can trap with traperror) of the following form.

incorrect syntax in parse:

errorDescription (errorLocation)

The errorDescription describes the nature of the error (for example, ‘+‘
unexpected, or unexpected end of input). The errorLocation gives the
approximate character position within the string at which Maple detected
the error.

When you call parse from the Maple prompt, Maple displays the
parsed result depending on whether the call to parse ends in a semi-
colon or a colon. The string passed to parse does not require a trailing
semicolon or a colon. If included, it is ignored.

> parse("a+2+b+3");

a+ 5 + b

> parse("sin(3.0)"):
> %;

0.1411200081

220 • Chapter 3: Input and Output

Formatted Conversion to and from Strings
The sprintf and sscanf commands are similar to fprintf/printf and
fscanf/scanf, except that they read from or write to Maple strings in-
stead of files.

Call the sprintf command using the following syntax.

sprintf(format, expressionSequence)

The format specifies how Maple is to format the elements of the ex-
pressionSequence. This Maple string consists of a sequence of formatting
specifications, possibly separated by other characters. For more informa-
tion, see 3.6 Formatted Output on page 211.

The sprintf command returns a string containing the formatted re-
sult.

Call the sscanf command as follows.

sscanf(sourceString, format)

The sourceString provides the input for scanning. The format specifies
how Maple is to parse the input. A sequence of conversion specifications
(and possibly other anticipated characters) consist of this Maple string.
For information on the format, see Formatted Input on page 198. The
sscanf command returns a list of the scanned objects, just as fscanf

and scanf do.
The following example illustrates sprintf and sscanf by converting a

floating-point number and two algebraic expressions into a floating-point
format, Maple syntax, and Maple .m format, respectively. This string is
then parsed into the corresponding objects using sscanf.

> s := sprintf("%4.2f %a %m",evalf(Pi),sin(3),cos(3));

s := “3.14 sin(3) -%$cosG6#““$”

> sscanf(s,"%f %a %m");

[3.14, sin(3), cos(3)]

Information: For information on translating Maple expressions into
other programming languages, see 6.1 Code Generation.

3.8 Notes to C Programmers • 221

3.8 Notes to C Programmers

If you have experience programming in the C or C++ programming lan-
guages, many of the I/O commands described in this chapter seem famil-
iar. The Maple I/O library design purposely emulates the C standard I/O
library.

In general, the Maple I/O commands work in a similar manner to
their C counterparts. The differences that arise are the result of differences
between the Maple and C languages, and how you use them. For example,
in the C library, you must pass the sprintf function a buffer into which
it writes the result. In Maple, strings are objects that you can pass as
easily as numbers, so the sprintf command simply returns a string that
is sufficiently long to hold the result. This method is both easier to work
with and less error prone, as it removes the danger of writing past the
end of a fixed length buffer.

Similarly, the fscanf, scanf, and sscanf commands return a list of
the parsed results instead of requiring you to pass references to variables.
This method is also less error prone, as it removes any danger of passing
the wrong type of variable or one of insufficient size.

Other differences include the use of a single command, filepos, to
perform the work of two C functions, ftell and fseek. You can do this
in Maple because functions can take a variable number of arguments.

In general, if you have C or C++ programming experience, you should
have little trouble using the Maple I/O library.

3.9 Conclusion

This chapter presented the details of importing and exporting data and
code to and from Maple. While this book teaches fundamental concepts
and provides a pedagogical introduction to topics, the Maple help system
provides the details on each command and feature. It explains such things
as the options and syntax of Maple commands and serves as a resource
for use of the Maple interface. For more information on a command, enter
?command_name at the Maple prompt.

222 • Chapter 3: Input and Output

4 Numerical Programming
in Maple

Floating-Point Calculations

The focus of this chapter is on how to perform floating-point calculations
in Maple. You can select from the following.

• Software floating-point calculations of arbitrary precision – other than
speed, independent of your computer

• Hardware floating-point arithematic – precision determined by the
architecture of your computer, but offers exceptional speed

In This Chapter

• Basics of the evalf Command

• Hardware Floating-Point Numbers

• Foating-Point Models in Maple

• Extending the evalf Command

• Using the Matlab Package

Why Use Numerical Computations

Representation and manipulation of expressions in symbolic mode, in
terms of variables, functions, and exact constants, is a powerful feature of
the Maple system. Practical scientific computation also demands floating-
point calculations which represent quantities by approximate numerical
values.

Typically, numerical computations are used for one of three reasons.

223

224 • Chapter 4: Numerical Programming in Maple

1. Not all problems have analytical or symbolic solutions. For example,
there are many forms of partial differential equations, but only a small
subset have known closed-form solutions. Despite this, it is usually
possible to find numerical solutions.

2. The analytic solution that Maple returns to a problem may be very
large or complex. To understand the behavior of these expressions,
compute a floating-point approximation.

3. In some cases, it is wasteful to compute an exact answer. Comput-
ing an analytic solution is not necessary if only an approximation is
needed. For example, to plot a solution, an approximation accurate
to the resolution of the plotting device is sufficient.

4.1 The Basics of evalf

The evalf command is the primary tool in Maple for performing floating-
point calculations. It causes Maple to evaluate in software floating-point
mode. The Maple software floating-point arithmetic has an n-digit ma-
chine floating-point model as its basis, but allows computations at arbi-
trary precision. The environment variable Digits, which has an initial
setting of 10, determines the default number of digits for calculations.

> evalf(Pi);

3.141592654

You can alter the number of digits either by changing the value of
Digits, or by specifying the number as an index to evalf. Note that
when you specify the number of digits as an index to evalf, the default,
Digits, remains unchanged.

> Digits := 20:
> evalf(Pi);

3.1415926535897932385

> evalf[200](Pi);

4.1 The Basics of evalf • 225

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
20899862803482534211706798214808651328\
23066470938446095505822317253594081284\
81117450284102701938521105559644622948\
9549303820

> evalf(sqrt(2));

1.4142135623730950488

> Digits := 10:

The number of digits you specify is the number of decimal digits
that Maple uses during calculations. Specifying a larger number of digits
is likely to give you a more accurate answer, and the maximum value
of Digits is sufficiently large to be considered infinite for practical pur-
poses. Unlike most hardware implementations of floating-point arithmetic,
Maple stores and performs software operations on floating-point numbers
in base 10.

Accuracy All floating-point computations are preferred in finite preci-
sion, with intermediate results generally being rounded to Digits pre-
cision. As such, it is possible for round-off errors to accumulate in long
computations. Maple ensures that the result of any single floating-point
arithmetic operation (+, −, ∗, /, or √) is fully accurate. Further, many
of the basic functions in Maple, such as the trigonometric functions and
their inverses, the exponential and logarithm functions, and some of the
other standards special functions for mathematics, are accurate to within
.6 units of last place (ulps), meaning that if the Digits + 1st digit
of the true result is a 4, Maple may round it up, or if it is a 6, Maple
may round it down. Most mathematical functions in Maple, including
numerical integration, achieve this accuracy on nearly all inputs.

Some definite integrals have no closed form solution in terms of stan-
dard mathematical functions. You can use evalf to obtain an answer via
numerical integration.

> r := Int(exp(x^3), x=0..1);

r :=

∫ 1

0
e(x

3) dx

226 • Chapter 4: Numerical Programming in Maple

> value(r);

∫ 1

0
e(x

3) dx

> evalf(r);

1.341904418

In other cases, Maple can find an exact solution, but the form of the
exact solution is almost incomprehensible. The following function Beta is
a special function that appears in mathematical literature.

> q := Int(x^99 * (1-x)^199 / Beta(100, 200), x=0..1/5);

q :=

∫ 1/5

0

x99 (1− x)199

B(100, 200)
dx

> value(q);

278522905457805211792552486504343059984\
03849800909690342170417622052715523897\
76190682816696442051841690247452471818\
79720294596176638677971757463413490644\
25727501861101435750157352018112989492\

972548449
/

217741280910371516468873\

84971552115934384961767251671031013243\
12241148610308262514475552524051323083\
13238717840332750249360603782630341376\
82537367383346083183346165228661133571\
76260162148352832620593365691185012466\
14718189600663973041983050027165652595\
68426426994847133755683898925781250000\

0
1

B(100, 200)

> evalf(q);

4.2 Hardware Floating-Point Numbers • 227

0.3546007367 10−7

The two previous examples use the Int command rather than int for
the integration. If you use int, Maple first tries to integrate the expres-
sion symbolically. Thus, when evaluating the following commands, Maple
determines a symbolic answer and then converts it to a floating-point
approximation, rather than performing direct numerical integration.

> evalf(int(x^99 * (1-x)^199 / Beta(100, 200), x=0..1/5));

0.3546007367 10−7

When performing numerical calculations, do not use commands like
int, limit, and sum that evaluate their arguments symbolically.

In general, results from evalf(Int(...)) , evalf(Sum(...)) , and
evalf(Limit(...)), are more accurate than results obtained from the
corresponding evalf(int(...)), evalf(sum(...)), and evalf(limit(...))

operations. Generally, symbolic evaluation can be suppressed by using
unevaluation quotes. For example, evalf(sin(Pi/3)) = evalf(1/2 *

3^(1/2)) while evalf(’sin’(Pi/3)) computes a floating-point approx-
imation to sin(evalf(Pi/3)).

4.2 Hardware Floating-Point Numbers

Maple offers an alternative to software floating-point numbers: computer
hardware floating-point arithmetic. Hardware floating-point calculations
are typically much faster than software floating-point calculations. How-
ever, hardware floating-point arithmetic accuracy depends on your com-
puter, and you cannot increase the precision.

The evalhf command evaluates an expression using hardware floating-
point arithmetic.

> evalhf(1/3);

0.333333333333333314

> evalhf(Pi);

3.14159265358979312

228 • Chapter 4: Numerical Programming in Maple

Generally, computers perform hardware floating-point arithmetic us-
ing a certain number of binary digits. The special construct, evalhf(Digits),
approximates the corresponding number of decimal digits.

> d := evalhf(Digits);

d := 15.

Therefore, evalhf and evalf return similar results if evalf uses a
setting of Digits that is close to evalhf(Digits). Maple usually dis-
plays two or three digits more than the value of evalhf(Digits) specifies.
When you perform hardware floating-point calculations, Maple must con-
vert all the base-10 software floating-point numbers to base-2 hardware
floating-point numbers, and then convert the result back to base 10. The
extra decimal digits allow Maple to reproduce the binary number precisely
if you use it again in a subsequent hardware floating-point calculation.

> expr := ln(2 / Pi * (exp(2)-1));

expr := ln(2
e2 − 1

π
)

> evalhf(expr);

1.40300383684168617

> evalf[round(d)](expr);

1.40300383684169

The results that evalhf returns, even including for evalhf(Digits),
are not affected by the value of Digits.

> Digits := 4658;

Digits := 4658

> evalhf(expr);

1.40300383684168617

4.2 Hardware Floating-Point Numbers • 229

> evalhf(Digits);

15.

> Digits := 10;

Digits := 10

You can use the evalhf(Digits) construct to determine whether
hardware floating-point arithmetic provides sufficient precision in a par-
ticular application. If Digits is less than evalhf(Digits), then you can
take advantage of the faster hardware floating-point calculations. Oth-
erwise, you should use software floating-point arithmetic to perform the
calculation, with sufficient digits. The following evaluate procedure takes
an unevaluated parameter, expr. Without the uneval declaration, Maple
would evaluate expr symbolically before invoking evaluate.

> evaluate := proc(expr::uneval)
> if Digits < evalhf(Digits) then
> evalf(evalhf(expr));
> else
> evalf(expr);
> end if;
> end proc:

The evalhf command evaluates many Maple functions, but not all.
For example, you cannot evaluate an integral using hardware floating-
point arithmetic.

> evaluate(Int(exp(x^3), x=0..1));

Error, (in evaluate) unable to evaluate function ‘Int‘
in evalhf

You can improve the evaluate procedure so that it traps such
errors and tries to evaluate the expression using software floating-point
numbers instead.

> evaluate := proc(expr::uneval)
> local result;
> if Digits < evalhf(Digits) then
> try
> return evalf(evalhf(expr));
> catch:
> end try;
> else
> evalf(expr);
> end if;

230 • Chapter 4: Numerical Programming in Maple

> end proc:

> evaluate(Int(exp(x^3), x=0..1));

The evaluate procedure provides a model of how to write procedures
that use hardware floating-point arithmetic whenever possible.

Newton’s Method
This section illustrates how to take advantage of hardware floating-point
arithmetic to calculate successive approximations using Newton’s method.
You can use Newton’s method to find numerical solutions to equations.
As section 1.2 describes, if xn is an approximate solution to the equation
f(x) = 0, then xn+1, given by the following formula, is typically a better
approximation.

xn+1 = xn − f(xn)

f ′(xn)

Example The iterate procedure takes a function, f, its derivative, df,
and an initial approximate solution, x0, as input to the equation f(x) = 0.
The iteration procedure calculates at most N successive Newton itera-
tions until the difference between the new approximation and the previous
one is small. The iterate procedure prints the sequence of approxima-
tions to show successive approximations.

> iterate := proc(f::procedure, df::procedure,
> x0::numeric, N::posint)
> local xold, xnew;
> xold := x0;
> xnew := evalf(xold - f(xold)/df(xold));
> to N-1 while abs(xnew-xold) > 10^(1-Digits) do
> xold := xnew;
> print(xold);
> xnew := evalf(xold - f(xold)/df(xold));
> end do;
> xnew;
> end proc:

The following procedure calculates the derivative of f and passes all
the necessary information to iterate.

> Newton := proc(f::procedure, x0::numeric, N::posint)
> local df;
> df := D(f);
> print(x0);
> iterate(f, df, x0, N);
> end proc:

4.2 Hardware Floating-Point Numbers • 231

Use Newton to solve the equation x2 − 2 = 0.

> f := x -> x^2 - 2;

f := x → x2 − 2

> Newton(f, 1.5, 15);

1.5

1.416666667

1.414215686

1.414213562

1.414213562

Example This version of Newton uses hardware floating-point arithmetic
if possible. Since iterate only tries to find a solution to an accuracy of
10^(1-Digits), Newton uses evalf to round the result of the hardware
floating-point computation to an appropriate number of digits.

> Newton := proc(f::procedure, x0::numeric, N::posint)
> local df, result;
> df := D(f);
> print(x0);
> if Digits < evalhf(Digits) then
> try
> return evalf(evalhf(iterate(f, df, x0, N)));
> catch:
> end try;
> else
> iterate(f, df, x0, N);
> end if;
> end proc:

Newton uses hardware floating-point arithmetic for the iterations and
rounds the result to software precision. Hardware floating-point num-
bers have more digits than the software floating-point numbers, given
the present setting of Digits.

> Newton(f, 1.5, 15);

232 • Chapter 4: Numerical Programming in Maple

1.5

1.41666666666666674

1.41421568627450988

1.41421356237468987

1.41421356237309514

1.414213562

Newton must use software floating-point arithmetic to find a root of
the following Bessel function.

> F := z -> BesselJ(1, z);

F := z → BesselJ(1, z)

> Newton(F, 4, 15);

4

Software arithmetic is used because evalhf does not recognize BesselJ
and the symbolic code for BesselJ uses the type command and remember
tables, which evalhf does not allow.

> evalhf(BesselJ(1, 4));

Error, unable to evaluate expression to hardware floats

Using a try-catch block as in the previous Newton procedure, allows
the procedure to work when evalhf fails.

The previous Newton procedure prints many digits when it is trying
to find a ten-digit approximation. The reason is that the print command
is located inside the iterate procedure which is inside a call to evalhf,
where all numbers are hardware floating-point numbers, and print as such.

Computing with Arrays of Numbers
Use the evalhf command for calculations with numbers. The only struc-
tured Maple objects allowed in a call to evalhf are arrays of numbers,
either table-based arrays or rtable-based Arrays. If an array has unas-
signed entries, evalhf initializes them to zero.

4.2 Hardware Floating-Point Numbers • 233

Example The following procedure calculates the polynomial 2+5x+4x2.

> p := proc(x)
> local a, i;
> a := array(0..2);
> a[0] := 2;
> a[1] := 5;
> a[2] := 4;
> sum(a[i]*x^i, i=0..2);
> end proc:

> p(x);

2 + 5x+ 4x2

If you intend to enclose p in a call to evalhf, you cannot define the lo-
cal array a using array(1..3, [2,5,4]) because lists are not supported
in evalhf. You can, however, enclose p in a call to evalhf if the parameter
x is a number.

> evalhf(p(5.6));

155.439999999999997

You can also pass an array of numbers as a parameter inside a call to
evalhf.

Example The following procedure calculates the determinant of a 2× 2
matrix. The (2,2) entry in the array a is unassigned.

> det := proc(a::array(2))
> a[1,1] * a[2,2] - a[1,2] * a[2,1];
> end proc:

> a := array([[2/3, 3/4], [4/9]]);

a :=







2

3

3

4
4

9
a2, 2







> det(a);

234 • Chapter 4: Numerical Programming in Maple

2

3
a2, 2 −

1

3

If you call det from inside a call to evalhf, Maple uses the value 0
for the unassigned entry, a[2,2].

> evalhf(det(a));

−0.333333333333333314

evalhf passes arrays by value, so the (2,2) entry of a is still unas-
signed.

> a[2,2];

a2, 2

If you want evalhf to modify an array that you pass as a parameter
to a procedure, you must enclose the name of the array in a var construct.
The var construct is special to evalhf and is necessary only if you want
evalhf to modify an array of numbers that is accessible at the session
level.

> evalhf(det(var(a)));

−0.333333333333333314

Now a is an array of floating-point numbers.

> eval(a);

[0.666666666666666629 , 0.750000000000000000]

[0.444444444444444420 , 0.]

The evalhf command always returns a single floating-point number,
but the var construct allows you to calculate a whole array of numbers
with one call to evalhf. 5.7 Generating Grids of Points illustrates
the use of var to calculate a grid of function values for plotting.

You can also create arrays of hardware floating-point values directly
with the Array command. Proper use of this command can save significant
amounts of time, especially in plotting routines, which rely heavily on

4.3 Floating-Point Models in Maple • 235

arrays of floating-point values. For details and examples, refer to ?Array,
?Matrix, and ?Vector.

4.3 Floating-Point Models in Maple

Maple can represent symbolic constants, such as π and γ, exact integers
and rational numbers, such as 37 and 3/4, and approximations to nu-
meric values, using its floating-point system. Numbers in this system
are represented by pairs of integers, (m,e). The first integer is called the
significand or mantissa. The second integer is called the exponent.
The number represented is

m× 10e.

Examples of floating-point numbers in Maple are 3.1415, 1.0, −0.0007,
1.0e0, and 2e1234567. The last two are examples of floating-point numbers
entered in scientific notation: the "e" separates the mantissa and expo-
nent of the number. Such numbers can also be used to represent complex
numbers (as can exact integers and rationals), for example, 1.0 + 2.7 ∗ I.

In some contexts, Maple distinguishes between software floats and
hardware floats. The evalhf evaluator (discussed in section 4.2), for ex-
ample, works with hardware floats, and Maple can construct certain kinds
of matrices and vectors with hardware float entries. Generally, however,
Maple works with software floats to perform approximate (but usually
very accurate) numerical calculations.

Floating-point number systems are approximations to the mathe-
matical set of real (and complex) numbers, and hence necessarily have
limitations. Most importantly, such systems have limited range (there are
largest and smallest representable numbers) and limited precision (the
set of representable floating-point numbers is finite). One very important
feature of the Maple software floating-point system is that you control
the precision: you can specify the precision Maple uses for floating-point
computations.

Some of the specific details of these computation systems are provided
in the next few sections.

Software Floats
Maple software floating-point computations are performed in base 10.
The precision of a computation is determined by the setting of Digits.
The maximum exponent, minimum exponent, and maximum value for

236 • Chapter 4: Numerical Programming in Maple

Digits are machine wordsize dependent. You can obtain the values for
these limits from the Maple_floats command.

This software floating-point system is designed as a natural extension
of the industry standard for hardware floating-point computation, known
as IEEE 754. Thus, there are representations for infinity and undefined

(what IEEE 754 calls a "NaN", meaning "Not a Number"). Complex num-
bers are represented by using the standard x + I*y format.

One important feature of this system is that the floating-point rep-
resentation of zero, 0., retains its arithmetic sign in computations. That
is, Maple distinguishes between +0. and -0. when necessary. In most
situations, this difference is irrelevant, but when dealing with functions
such as ln(x), which have a discontinuity across the negative real axis,
preserving the sign of the imaginary part of a number on the negative
real axis is important.

For more intricate applications, Maple implements extensions of the
IEEE 754 notion of a numeric event, and provides facilities for moni-
toring events and their associated status flags. To learn more about this
system, refer to ?numerics.

Roundoff Error
When you perform floating-point arithmetic, whether using software or
hardware floats, you are using approximate numbers rather than pre-
cise real numbers or expressions. Maple can work with exact (symbolic)
expressions. The difference between an exact real number and its floating-
point approximation is called the roundoff error . For example, suppose
you request a floating-point representation of π.

> pi := evalf(Pi);

π := 3.141592654

Maple rounds the precise value π to ten significant digits because
Digits is set to its default value of 10. You can approximate the roundoff
error above by temporarily increasing the value of Digits to 15.

> evalf[15](Pi - pi);

−0.41021 10−9

Roundoff errors arise from the representation of input data, and as
a result of performing arithmetic operations. Each time you perform an
arithmetic operation on two floating-point numbers, the infinitely-precise

4.3 Floating-Point Models in Maple • 237

result is generally not representable in the floating-point number system
and therefore the computed result also has an associated roundoff error.

For example, suppose you multiply two ten-digit numbers with Digits

= 10. The result can have nineteen or twenty digits, but Maple stores only
the first ten digits.

> 1234567890 * 1937128552;

2391516709101395280

> evalf(1234567890) * evalf(1937128552);

0.2391516709 1019

Whenever you apply one of the four basic arithmetic operations (addi-
tion, subtraction, multiplication, division, or square root) to two floating-
point numbers, the result is the correctly rounded representation of the
infinitely precise result, unless overflow or underflow occurs. Of course,
Maple may need to compute an extra digit or two behind the scenes to
ensure that the answer is correct.

Even so, sometimes a surprising amount of error can accumulate,
particularly when subtracting two numbers which are of similar mag-
nitude. In the following calculation, the accurate sum of x, y, and z is
y = 3.141592654.

> x := evalf(987654321);

x := 0.987654321 109

> y := evalf(Pi);

y := 3.141592654

> z := -x;

z := −0.987654321 109

> x + y + z;

3.1

238 • Chapter 4: Numerical Programming in Maple

This is known as catastrophic cancellation. During the subtraction
the eight leading digits cancel out, leaving only two significant digits in
the result.

One advantage of Maple software floats, in contrast to fixed-precision
floating-point numbers systems, is that the user can increase the precision
to reduce roundoff errors. For example, increasing Digits to 20 dramat-
ically improves the result.

> Digits := 20;

Digits := 20

> x + y + z;

3.141592654

Employ standard numerical analysis techniques to avoid large errors
accumulating in calculations. Often, reordering the operations leads to a
more accurate final result. For example, when computing a sum, add the
numbers with the smallest magnitudes first.

4.4 Extending the evalf Command

The evalf command can evaluate many functions and constants, such
as sin and Pi. You can also define custom functions or constants, and
extend evalf by adding information about how to compute such functions
or constants.

Defining New Constants
You can define a new constant and write procedures that manipulate this
constant symbolically. You can then write a procedure that calculates a
floating-point approximation of the constant to any number of digits. If
you assign the procedure a name of the form ‘evalf/constant/name‘,
Maple invokes the procedure when you use evalf to evaluate an expres-
sion containing the constant, name.

Example Let the name MyConst represent the following infinite series:

MyConst =
∞
∑

i=1

(−1)iπi

2ii!

4.4 Extending the evalf Command • 239

You can calculate approximations to the series in many ways; the following
procedure is one implementation. Note that if ai is the ith term in the
sum, then ai+1 = −ai(π/2)/i gives the next term.

• You can calculate an approximation to the series by adding terms
until the Maple model for software floating-point numbers cannot dis-
tinguish successive partial sums.

• Using numerical analysis, you can prove that this algorithm calcu-
lates an approximation of MyConst accurate to the number of digits
specified by Digits, if you use two extra digits inside the algorithm.

The following procedure increments Digits by two and uses evalf to
round the result to the proper number of digits before returning. The
procedure does not have to reset the value of Digits because Digits is
an environment variable, which is automatically reset after executing the
procedure.

> ‘evalf/constant/MyConst‘ := proc()
> local i, term, halfpi, s, old_s;
> Digits := Digits + 2;
> halfpi := evalf(Pi/2);
> old_s := 1;
> term := 1.0;
> s := 0;
> for i from 1 while s <> old_s do
> term := -term * halfpi / i;
> old_s := s;
> s := s + term;
> end do;
> evalf[Digits-2](s);
> end proc:

When you invoke evalf on an expression containing MyConst, Maple
invokes ‘evalf/constants/MyConst‘ to calculate an approximate value.

> evalf(MyConst);

−0.7921204237

> evalf[40](MyConst);

−0.7921204236492380914530443801650212299661

You can express the particular constant, MyConst, in closed form and,
in this case, you can use the closed-form formula to calculate approxima-
tions to MyConst more efficiently.

240 • Chapter 4: Numerical Programming in Maple

> Sum((-1)^i * Pi^i / 2^i / i!, i=1..infinity);

∞
∑

i=1

(−1)i πi

2i i!

> value(%);

1− e(1/2π)

e(1/2π)

> expand(%);

1√
eπ

− 1

> evalf(%);

−0.7921204237

Defining New Functions
If you define new functions, you can write procedures that calculate nu-
merical approximations to the function values. When you invoke evalf

on an expression containing an unevaluated call to a function F, Maple
calls the procedure ‘evalf/F‘ if such a procedure exists.

Consider the function x 7→ (x− sin(x))/x3.

> MyFcn := x -> (x - sin(x)) / x^3;

MyFcn := x → x− sin(x)

x3

This function is not defined at x = 0, but you can extend it as a
continuous function by placing the limiting value in the MyFcn remember
table.

> MyFcn(0) := limit(MyFcn(x), x=0);

MyFcn(0) :=
1

6

4.4 Extending the evalf Command • 241

For small values of x, sin(x) is almost equal to x, so the subtraction
x− sin(x) in the definition of MyFcn can lead to inaccuracies due to catas-
trophic cancellation. When you evaluate v below to ten digits, only the
first two are correct.

> v := ’MyFcn’(0.000195);

v := MyFcn(0.000195)

> evalf(v);

0.1618368482

> evalf(v, 2*Digits);

0.16666666634973617222

If you depend on accurate numerical approximations of MyFcn, you
must write a custom procedure to compute them. You could write such a
procedure by exploiting the series expansion of MyFcn.

> series(MyFcn(x), x=0, 11);

1

6
− 1

120
x2 +

1

5040
x4 − 1

362880
x6 +O(x8)

The general term in the series is

ai = (−1)i
x2i

(2i+ 3)!
, i ≥ 0.

Note that ai = −ai−1x
2/((2i+ 2)(2i+ 3)).

• For small values of x, you can then calculate an approximation to
MyFcn(x) by adding terms until the Maple model for software floating-
point numbers cannot distinguish successive partial sums.

• For larger values of x, catastrophic cancellation is not a problem, so
you can use evalf to evaluate the expression.

• Using numerical analysis, you can prove that this algorithm calculates
an approximation of the function value accurate to the number of
digits specified by Digits, if you use three extra digits inside the
algorithm.

242 • Chapter 4: Numerical Programming in Maple

The following procedure increments Digits by three and uses evalf
to round the result to the proper number of digits before returning.

> ‘evalf/MyFcn‘ := proc(xx::algebraic)
> local x, term, s, old_s, xsqr, i;
> x := evalf(xx);
> Digits := Digits+3;
> if type(x, numeric) and abs(x)<0.1 then
> xsqr := x^2;
> term := evalf(1/6);
> s := term;
> old_s := 0;
> for i from 1 while s <> old_s do
> term := -term * xsqr / ((2*i+2)*(2*i+3));
> old_s := s;
> s := s + term;
> end do;
> else
> s := evalf((x-sin(x))/x^3);
> end if;
> eval[Digits-3](s);
> end proc:

When you invoke evalf on an expression containing an unevaluated
call to MyFcn, Maple invokes ‘evalf/MyFcn‘.

> evalf(’MyFcn’(0.000195));

0.1666666663498

Recode the symbolic version of MyFcn so that it takes advantage of
‘evalf/MyFcn‘ if the argument is a floating-point number.

> MyFcn := proc(x::algebraic)
> if type(x, float) then
> evalf(’MyFcn’(x));
> else
> (x - sin(x)) / x^3;
> end if;
> end proc:

The evalf command automatically looks for ‘evalf/MyFcn‘ when
used in the evalf(‘MyFcn‘) syntax.

> MyFcn(0) := limit(MyFcn(x), x=0);

MyFcn(0) :=
1

6

4.5 Using the Matlab Package • 243

Now you can properly evaluate MyFcn with numeric as well as symbolic
arguments.

> MyFcn(x);

x− sin(x)

x3

> MyFcn(0.099999999);

0.1665833531735

> MyFcn(0.1);

0.1665833531700

1.5 Extending Maple describes how to extend many other Maple
commands.

4.5 Using the Matlab Package

Another way to accomplish numerical computations in Maple is to use
the Matlab package, which provides access to several MATLAB r© built-in
functions. Note: You must have a copy of MATLAB properly installed on
your computer. The mathematical functions provided are:

• chol: Cholesky factorization

• defined: test whether variable exists

• det: determinant

• dimensions: compute dimensions of matrix

• eig: eigenvalues and eigenvectors

• evalM: evaluate expression

• fft: discrete Fourier transforms

• getvar: get numeric array or matrix

• inv: matrix inverse

244 • Chapter 4: Numerical Programming in Maple

• lu: LU decomposition

• ode45: solve ordinary differential equation

• qr: QR orthogonal-triangular decomposition

• size: compute size of matrix

• square: determine whether matrix is square

• transpose: matrix transposition

Some support and utility commands are provided. MATLAB converts
all Maple structures to its representation of hardware floating-point arrays
before it performs any computations. The results are usually Arrays with
data type float[8] (that is, hardware float entries). For more information,
refer to ?Array and ?Matrix.

For more information on all these commands and the Matlab pack-
age in general, refer to ?Matlab. To learn how to start the MATLAB
application from a Maple session, refer to ?Matlab[openlink].

4.6 Conclusion

With numerical techniques, you can solve equations which are other-
wise unsolvable, investigate the properties of complicated solutions, and
quickly obtain numerical estimates.

Symbolic calculations give precise representations, but in some cases
can be expensive to compute even with a tool as powerful as Maple. At
the other extreme, hardware floating-point arithmetic allows you fast com-
putation directly from Maple. This involves, however, limited accuracy.
Software floating-point offers a balance. As well as sometimes being much
faster than symbolic calculations, you also have the option to control the
precision of your calculations, thus exerting control over errors.

Software floating-point calculations and representations mimic the
IEEE 754 standard representation closely, except for the great advan-
tage of arbitrary precision. The similarity with this popular standard
allows you to readily apply accumulation of error and numerical analysis
principles contained in numerous texts and papers.

5 Programming with Maple
Graphics

Maple Plots

Maple has a wide range of packages and procedures for generating 2-D
and 3-D plots. These include:

• The plot and plot3d procedures for generating basic 2-D and 3-D
plots, respectively

• The plots package for generating specialized plots, such as vector
field plots or contour plots

• The plottools package for generating graphical objects for inclusion
in plots

In addition to those listed above, many other Maple packages, such as
DEtools, Student, and stats, include specialized procedures for plotting
in specific contexts.
These procedures require as arguments information that allows the nu-
merical plot data values to be computed. They also accept options that
set attributes such as colour, shading, and axes style.

Creating Plotting Procedures

The purpose of this chapter is to present some of the Maple plotting pro-
cedures, describe the structure of their output, and describe ways in which
you can use them to create custom procedures. This chapter includes ba-
sic information about argument conventions, default settings, and option
processing.

In This Chapter

• Basic Plotting Procedures

245

246 • Chapter 5: Programming with Maple Graphics

• Programming with Plotting Library Procedures

• Maple Plot Data Structures

• Programming with Plot Data Structures

• Programming with the plottools Package

• Vector Field Plots

• Generating Grids of Points

• Animation

• Programming with Color

5.1 Basic Plotting Procedures

This section illustrates:

• Typical calling sequences of plotting procedures

• Properties that are common to plotting procedures

• Using operators or procedures versus expressions in the independent
variables to define plots

• Specifying optional information

Many Maple plotting procedures, including plot, plot3d, and some
commands in the plots package, accept input in one of two forms: ex-
pressions in one or two independent variables, or expressions involving
procedures and operators. For example, the input can be the expres-
sion a2b− b3+1 in variables a and b, or the expression p+ q, where p and
q are procedures.

The following command generates a 3-D plot of the surface defined
by sin(x) sin(y). The independent variables are x and y.

> plot3d(sin(x)*sin(y), x=0..4*Pi, y=-2*Pi..2*Pi);

5.1 Basic Plotting Procedures • 247

You can plot the same surface by first defining two procedures that
each take two arguments:

> p := (x, y) -> sin(x): q := (x, y) -> sin(y):

and then providing p∗q as the first argument to the plot3d command:

> plot3d(p * q, 0..4*Pi, -2*Pi..2*Pi);

In the first example, the plot3d procedure recognizes that the first
argument is an expression in x and y because the second and third argu-
ments have the forms x=range and y=range . In the second example, the
second and third arguments are simply ranges and contain no variable
names.

Working with expressions in independent variables is simple, but in
many cases, procedures and operators provide a better mechanism for
defining plots. We use the term operator form to refer to the form of the
calling sequence that accepts procedures and operators.

Example 1 The following procedure accepts a complex starting point
c = x+iy and computes the required number of iterations (to a maximum
of 10) for the sequence zn+1 = z2n + c to exit the disk of radius 2.

> mandelbrotSet := proc(x, y)
> local z, m;
> z := evalf(x + y*I);
> m := 0;
> to 10 while abs(z) < 2 do
> z := z^2 + (x+y*I);
> m := m + 1;
> end do:
> m;
> end proc:

248 • Chapter 5: Programming with Maple Graphics

You can use the procedure to compute a 3-D Mandelbrot set on a
50× 50 grid.

> plot3d(mandelbrotSet, -3/2..3/2, -3/2..3/2, grid=[50,50]);

Altering a Plot
After you issue a plotting command, the result is displayed on the default
plotting device (in the worksheet, generally, the current window). You can
use the tools available in the worksheet interface to interactively alter the
plot characteristics, such as drawing style, axes style, and orientation. You
can also specify this information using optional arguments to plot3d.

> plot3d(sin(x)*sin(y), x=-2*Pi..2*Pi, y=-2*Pi..2*Pi,
> style=patchnogrid, axes=frame);

–6
–4

–2
0

2
4

6
x

–6
–4

–2
0

2
4

6
y

–1
–0.5

0
0.5

1

> plot3d(mandelbrotSet, -1.5..1.5, -1.5..1.5, grid=[50,50],
> style=wireframe, orientation=[143,31]);

5.2 Programming with Plotting Library Procedures • 249

Most Maple plotting procedures accept optional arguments in the
form name=option . Some of these options, such as the grid option used
in previous examples, affect the numerical data generated by the plotting
commands. You can use other options to specify visual information such as
shading, line style, and coloring. For a description of all options available
for 2-D and 3-D plotting, refer to ?plot/options and ?plot3d/options.

It is recommended that any plotting procedure you create allow users
to specify a similar set of options. When writing programs that call ex-
isting Maple plotting procedures, simply pass the optional arguments di-
rectly to the Maple procedures.

5.2 Programming with Plotting Library
Procedures

This section gives examples of programming with Maple plotting proce-
dures.

Plotting a Loop
Consider the problem of plotting a loop from a list of data.

> L1 := [[5,29], [11,23], [11,36], [9,35]];

L1 := [[5, 29], [11, 23], [11, 36], [9, 35]]

The plot command draws lines between the listed points.

> plot(L1);

250 • Chapter 5: Programming with Maple Graphics

24

26

28

30

32

34

36

5 6 7 8 9 10 11

To draw a line from the last point to the first point, append the first
point in L1 to the end of L1.

> L2 := [op(L1), L1[1]];

L2 := [[5, 29], [11, 23], [11, 36], [9, 35], [5, 29]]

> plot(L2);

24

26

28

30

32

34

36

5 6 7 8 9 10 11

Example 1 The procedure loopplot automates the previous technique.

> loopplot := proc(L)
> plot([op(L), L[1]]);
> end proc;

loopplot := proc(L) plot([op(L), L1]) end proc

The loopplot procedure has two shortcomings.

• It should verify that the input, L, is a list of points, where each point
is a list of two constants. That is, it should verify that L is of type
list([constant, constant]).

5.2 Programming with Plotting Library Procedures • 251

• It should accept appropriate plotting options and pass them to the
plot procedure.

Example 2 Inside a procedure, args is the sequence of arguments
passed to the procedure, and nargs is the number of arguments. Thus,
args[2..nargs] is the sequence of options passed to loopplot. The
loopplot procedure should pass all but its first argument, L, directly
to plot.

> loopplot := proc(L::list([constant, constant]))
> plot([op(L), L[1]], args[2..nargs]);
> end proc:

This version of loopplot gives an informative error message if you
try to specify improper arguments. It also accepts plotting options.

> loopplot([[1, 2], [a, b]]);

Error, invalid input: loopplot expects its 1st
argument, L, to be of type list([constant, constant]),
but received [[1, 2], [a, b]]

> loopplot(L1, thickness=10);

24

26

28

30

32

34

36

5 6 7 8 9 10 11

Exercise
1. Improve the loopplot procedure so that it accepts the empty list as

input.

A Ribbon Plot Procedure
This section illustrates the creation of a ribbonplot procedure to gener-
ate a 3-D plot from a list of expressions in two variables or from a list of
procedures.

252 • Chapter 5: Programming with Maple Graphics

Example 3 The ribbonplot procedure uses the plots[display] pro-
cedure to display the plots. The ribbonplot procedure explicitly calls the
plots[display] procedure using its full name so that ribbonplot works
when the short forms of the procedure names in the plots package are
not loaded.

The examples in this section use the hasoption procedure to process
options. The hasoption command determines whether a certain option
is present. In the ribbonplot procedure, hasoption returns false if
numpoints is not among the options listed in opts. If opts contains a
numpoints option, then hasoption assigns the value of the numpoints

option to n, and returns the remaining options in the fourth argument (in
this case, modifying the value of the list opts).

> ribbonplot := proc(Flist, r1::name=range)
> local i, m, p, y, n, opts;
> opts := [args[3..nargs]];
> if not hasoption(opts, ’numpoints’, ’n’, ’opts’)
> then n := 25 # default numpoints
> end if;
>
> m := nops(Flist);
> # op(opts) is any additional options
> p := seq(plot3d(Flist[i], r1, y=(i-1)..i,
> grid=[n, 2], op(opts)),
> i=1..m);
> plots[display](p);
> end proc:

The ribbonplot procedure uses the number of grid points specified.

> ribbonplot([cos(x), cos(2*x), sin(x), sin(2*x)],
> x=-Pi..Pi, numpoints=16);

The input to ribbonplotmust be a list of expressions. You can extend
ribbonplot so that it also accepts a list of procedures. One difficulty with

5.2 Programming with Plotting Library Procedures • 253

this extension is that you must create two-argument procedures from one-
argument procedures, which was not required in ribbonplot in Example
3. To do this, create an auxiliary procedure, extend, that uses the unapply
command.

> extend := proc(f)
> local x,y;
> unapply(f(x), x, y);
> end proc:

For example, the extend procedure converts the one-argument pro-
cedure representing the R → R mathematical function x 7→ cos(2x) to a
two-argument procedure.

> p := x -> cos(2*x):
> q := extend(p);

q := (x, y) → cos(2x)

Example 4 The following is the new ribbonplot code.

> ribbonplot := proc(Flist, r1::{range, name=range})
> local i, m, p, n, opts, newFlist;
> opts := [args[3..nargs]];
> if type(r1, range) then
> # Operator-form input.
> if not hasoption(opts, ’numpoints’, ’n’, ’opts’)
> then n := 25 # default numpoints
> end if;
> m := nops(Flist);
> # Provide operator-form input to plot3d.
> p := seq(plot3d(extend(Flist[i]), r1, (i-1)..i,
> grid=[n,2], op(opts)),
> i=1..m);
> plots[display](p);
> else
> # Expressions in variable lhs(r1). Convert each to a
> # procedure.
> newFlist := map(unapply, Flist, lhs(r1));
> # Use lhs(r1) as the default x-axis label.
> opts := [’labels’=[lhs(r1), "", ""],
> args[3..nargs]];
> ribbonplot(newFlist, rhs(r1), op(opts))
> end if
> end proc:

The following is a ribbon plot of three functions.

> ribbonplot([cos, sin, cos + sin], -Pi..Pi);

254 • Chapter 5: Programming with Maple Graphics

5.3 Maple Plot Data Structures

Maple generates plots by sending the user interface a PLOT or PLOT3D data
structure, which is in fact an unevaluated function call. The information
included inside these structures specifies the objects to plot. Every Maple
plotting procedure creates such a structure. This process is described
below and shown schematically in figure 5.1.

1. A Maple command produces a PLOT structure and passes it to the
user interface.

2. In the user interface, Maple constructs primitive graphic objects based
on the PLOT structure.

3. Maple then passes these objects to the chosen device driver for display.

5.3 Maple Plot Data Structures • 255

Figure 5.1 How plots are displayed

You can assign the plot data structures to variables, transform them
into other structures, save them, or print them.

Example 1 Use the lprint command to line-print a plot structure.

> lprint(plot(2*x+3, x=0..5, numpoints=3, adaptive=false));

PLOT(CURVES([[0., 3.], [2.61565849999999989, 8.2313170\
0000000066], [5., 13.]],COLOUR(RGB,1.0,0.,0.)),
AXESLABELS("x",""),VIEW(0. .. 5.,DEFAULT))

The previous plot command generates a PLOT data structure that
includes the information for a single curve defined by three points. The
curve is colored with RGB values (1.0, 0, 0), which correspond to red. The
plot has a horizontal axis running from 0 to 5. Maple, by default, deter-
mines the scale along the vertical axes using the information that you
provide in the vertical components of the curve. The adaptive=false

and numpoints=3 options turn off adaptive sampling and ensure that the
curve consists of only three points.

Example 2 This example is the graph of z = xy over a 3× 4 grid. The
PLOT3D structure contains a grid of z values over the rectangular region
[0, 1]× [0, 2].

> lprint(plot3d(x*y, x=0..1, y=0..2, grid=[3,4]));

PLOT3D(GRID(0. .. 1.,0. .. 2.,Array(1 .. 3,1 .. 4,{(2,
2) = .333333333333333314, (2, 3) = .666666666666666629
, (2, 4) = 1., (3, 2) = .666666666666666629, (3, 3) =
1.33333333333333326, (3, 4) = 2.},datatype = float[8],
storage = rectangular,order = C_order)),AXESLABELS(x,y
,""))

256 • Chapter 5: Programming with Maple Graphics

The structure includes labels x and y for the x-axis and y-axis but no
label for the z-axis.

Example 3 This example is again the graph of z = xy but in cylindrical
coordinates. The PLOT3D structure now contains a mesh of points that
define the surface, along with the information that the plotting device
must display the surface in a point style.

> lprint(plot3d(x*y, x=0..1, y=0..2, grid=[3,2],
> coords=cylindrical, style=point));

PLOT3D(MESH(Array(1 .. 3,1 .. 2,1 .. 3,{(1, 2, 3) = 2.
, (2, 2, 1) = .877582561890372758, (2, 2, 2) = .479425\
538604203006, (2, 2, 3) = 2., (3, 2, 1) = 1.0806046117\
3627952, (3, 2, 2) = 1.68294196961579300, (3, 2, 3) =
2.},datatype = float[8],storage = rectangular,order =
C_order)),STYLE(POINT))

Because the plot is not in Cartesian coordinates and there are no de-
fault labels, the PLOT3D structure does not contain an AXESLABELS struc-
ture.

The PLOT Data Structure
You can construct and manipulate a plot data structure directly to create
2-D and 3-D plots. The data structure is an unevaluated PLOT or PLOT3D
function call with arguments containing information that determines the
objects that the plotting device displays. Maple evaluates the expression,
for example,

> PLOT(CURVES([[0,0], [2,1]]));

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

and passes it to the Maple interface, which determines that this is a plot
data structure. The Maple interface then dismantles the contents and
passes the information to a plot driver, which determines the graphical

5.3 Maple Plot Data Structures • 257

information that it renders to the plotting device. In the previous example
PLOT structure, the result is a single line from the origin to the point
(2, 1). The CURVES data structure consists of one or more lists of points
each representing a curve, along with optional arguments (for example,
line style or line thickness information). Thus, the commands

> n := 200:
> points := [seq([2*cos(i*Pi/n), sin(i*Pi/n)], i=0..n)]:
> PLOT(CURVES(evalf(points)));

0

0.2

0.4

0.6

0.8

1

–2 –1 1 2

generate the plot of a sequence of n + 1 points in the plane. The points
found inside the PLOT data structure must be numeric. If you omit the
evalf statement, then non-numeric objects within the PLOT structure,
such as sin(π/200), cause an error.

> PLOT(CURVES(points));

Plotting error, non-numeric vertex definition

> type(sin(Pi/n), numeric);

false

Hence, no plot is generated.

Arguments Inside a PLOT Structure
A PLOT structure has the following form:

(Objects, Options)

where Objects is a sequence of one or more plot objects of the form
ObjectName(ObjectData, Options) and Options is a sequence of zero or
more plot options of the form OptionName(OptionValue).

258 • Chapter 5: Programming with Maple Graphics

Note: Plot options can appear as arguments of the PLOT structures or
as arguments of plot object structures.

If a local option appears inside a plot object structure, it applies to
only that object and overrides any value of a global option of the same
name.

Plot Object Structures As shown previously, plot objects have the
form ObjectName(ObjectData, Options). ObjectName can be CURVES,
POLYGONS, POINTS, or TEXT, while ObjectData contains the basic nu-
merical data that defines the geometry of the object. In the following
description, point refers to a list of two numeric values, [x, y], represent-
ing x- and y-coordinates of a point in the plane.

• When ObjectName is CURVES, ObjectData consists of one or more
lists of points where each list specifies a single curve in the plane.

• When ObjectName is POLYGONS, ObjectData consists of one or more
lists of points where each list specifies the vertices of a single polygon
in the plane.

• When ObjectName is POINTS, ObjectData consists of one or more
points.

• When ObjectName is TEXT, ObjectData consists of a point followed
by a name representing the text string.

Plot Option Structures Plot options have the formOptionName(OptionValue).
Examples of option structures are AXESTYLE(BOX), COLOR(RGB, 0.0, 1.0,
0.0), and VIEW(-4..4, -1..1). For a complete list of the plot option struc-
tures and the values each structure accepts, refer to ?plot/structure.

Some plot options cannot be specified as a local option within a plot
object structure. For example, the AXESSTYLE option must be a global
option, while a different COLOR option can be specified for each plot object.

Example 4 This example demonstrates a simple way to generate a filled
histogram of sixty-three values of the function y = sin(x) from 0 to 6.3,
with each trapezoid colored individually by the HUE value corresponding
to y = | cos(x)|.

> p := i -> [[(i-1)/10, 0], [(i-1)/10, sin((i-1)/10)],
> [i/10, sin(i/10)], [i/10, 0]]:

The function p(i) returns the vertices of the ith trapezoid in a list. For
example, p(2) contains the vertices of the second trapezoid.

5.3 Maple Plot Data Structures • 259

> p(2);

[[
1

10
, 0], [

1

10
, sin(

1

10
)], [

1

5
, sin(

1

5
)], [

1

5
, 0]]

Define the procedure h to give the color of each trapezoid.

> h := i -> abs(cos(i/10)):
> PLOT(seq(POLYGONS(evalf(p(i)), COLOR(HUE, evalf(h(i)))),
> i = 1..63));

–1

–0.5

0

0.5

1

1 2 3 4 5 6

A Sum Plot
You can create procedures that directly build PLOT data structures. For
example, given an unevaluated sum, you can compute the partial sums
and place the values in a CURVES structure.

> s := Sum(1/k^2, k=1..10);

s :=
10
∑

k=1

1

k2

Use the typematch command to separate the unevaluated sum into
its components.

> typematch(s, ’Sum’(term::algebraic,
> n::name=a::integer..b::integer));

true

The typematch command assigns the parts of the sum to the given
names.

> term, n, a, b;

260 • Chapter 5: Programming with Maple Graphics

1

k2
, k, 1, 10

Now calculate the partial sums.

> sum(term, n=a..a+2);

49

36

The following defines a procedure, psum, that calculates a floating-
point value of the mth partial sum.

> psum := evalf @ unapply(Sum(term, n=a..(a+m)), m);

psum := evalf@

(

m →
1+m
∑

k=1

1

k2

)

Now create the necessary list of points.

> points := [seq([[i,psum(i)], [i+1,psum(i)]],
> i=1..(b-a+1))];

points := [[[1, 1.250000000], [2, 1.250000000]],

[[2, 1.361111111], [3, 1.361111111]],

[[3, 1.423611111], [4, 1.423611111]],

[[4, 1.463611111], [5, 1.463611111]],

[[5, 1.491388889], [6, 1.491388889]],

[[6, 1.511797052], [7, 1.511797052]],

[[7, 1.527422052], [8, 1.527422052]],

[[8, 1.539767731], [9, 1.539767731]],

[[9, 1.549767731], [10, 1.549767731]],

[[10, 1.558032194], [11, 1.558032194]]]

> points := map(op, points);

5.3 Maple Plot Data Structures • 261

points := [[1, 1.250000000], [2, 1.250000000],

[2, 1.361111111], [3, 1.361111111], [3, 1.423611111],

[4, 1.423611111], [4, 1.463611111], [5, 1.463611111],

[5, 1.491388889], [6, 1.491388889], [6, 1.511797052],

[7, 1.511797052], [7, 1.527422052], [8, 1.527422052],

[8, 1.539767731], [9, 1.539767731], [9, 1.549767731],

[10, 1.549767731], [10, 1.558032194], [11, 1.558032194]]

This list has the correct form.

> PLOT(CURVES(points));

1.25

1.3

1.35

1.4

1.45

1.5

1.55

2 4 6 8 10

The sumplot procedure automates this technique.

> sumplot := proc(s)
> local term, n, a, b, psum, m, points, i;
> if typematch(s, ’Sum’(term::algebraic,
> n::name=a::integer..b::integer)) then
> psum := evalf @ unapply(Sum(term, n=a..(a+m)), m);
> points := [seq([[i,psum(i)], [i+1,psum(i)]],
> i=1..(b-a+1))];
> points := map(op, points);
> PLOT(CURVES(points));
> else
> error "expecting a Sum structure as input"
> end if
> end proc:

The following is a sumplot of an alternating series.

> sumplot(Sum((-1)^k/k, k=1..25));

262 • Chapter 5: Programming with Maple Graphics

–0.8

–0.75

–0.7

–0.65

–0.6

–0.55

–0.5

5 10 15 20 25

The limit of this sum is − ln 2.

> Sum((-1)^k/k, k=1..infinity): % = value(%);

∞
∑

k=1

(−1)k

k
= −ln(2)

The PLOT3D Data Structure
The 3-D plotting data structure has a form similar to the PLOT data
structure. The following Maple expression generates a 3-D plot of three
lines and axes of type frame. Axes are generated using AXESSTYLE.

> PLOT3D(CURVES([[3, 3, 0], [0, 3, 1],
> [3, 0, 1], [3, 3, 0]]),
> AXESSTYLE(FRAME));

0
0.5

1
1.5

2
2.5

3

0
0.5

1
1.5

2
2.5

3

0
0.2
0.4
0.6
0.8

1

The following procedure creates the yellow sides of a box.

> yellowsides := proc(x, y, z, u)
> # (x,y,0) = coordinates of a corner.
> # z = height of box
> # u = side length of box

5.3 Maple Plot Data Structures • 263

> POLYGONS(
> [[x,y,0], [x+u,y,0], [x+u,y,z], [x,y,z]],
> [[x,y,0], [x,y+u,0], [x,y+u,z], [x,y,z]],
> [[x+u, y,0], [x+u,y+u,0], [x+u,y+u,z], [x+u,y,z]],
> [[x+u, y+u,0], [x,y+u,0], [x,y+u,z], [x+u,y+u,z]],
> COLOR(RGB,1,1,0));
> end proc:

The redtop procedure generates a red lid for the box.

> redtop := proc(x, y, z, u)
> # (x,y,z) = coordinates of a corner.
> # u = side length of square
> POLYGONS([[x,y,z], [x+u,y,z], [x+u,y+u,z], [x,y+u,z]],
> COLOR(RGB, 1, 0, 0));
> end proc:

To display the sides and the top, place them in a PLOT3D structure.

> PLOT3D(yellowsides(1, 2, 3, 0.5),
> redtop(1, 2, 3, 0.5),
> STYLE(PATCH));

Using yellowsides and redtop, you can create a 3-D histogram plot.
The following is the histogram corresponding to z = 1/(x + y + 4), for
0 ≤ x ≤ 4 and 0 ≤ y ≤ 4.

> sides := seq(seq(yellowsides(i, j, 1/(i+j+4), 0.75),
> j=0..4), i=0..4):
> tops := seq(seq(redtop(i, j, 1/(i+j+4), 0.75),
> j=0..4), i=0..4):

Histograms display well in box-style axes.

> PLOT3D(sides, tops, STYLE(PATCH), AXESSTYLE(BOXED));

264 • Chapter 5: Programming with Maple Graphics

0
1

2
3

4

0
1

2
3

4

0
0.05

0.1
0.15

0.2
0.25

To create a listbarchart3d procedure which, for a given list of lists
of heights, gives a 3-D bar chart for its output, modify the previous con-
struction.

Objects Inside a PLOT3D Data Structure
The format of a PLOT3D structure is similar to that of a PLOT structure.
The allowable plot objects include all the objects that can appear in PLOT

structures. Of course, points are specified by a list of three numerical
values, [x, y, z], instead of two. Three additional plot objects can appear
in a PLOT3D structure: GRID, MESH, and ISOSURFACE.

GRID is a structure that describes a functional grid. It consists of two
ranges defining a grid in the x–y plane and a list of lists of z values over
this grid.

Example 5 In this example, LL contains 4 lists each of length 3. There-
fore, the grid is 4×3, and x runs from 1 to 3 in increments of 2/3, whereas
y runs from 1 to 2 in increments of 1/2.

> LL := [[0,1,0], [1,1,1], [2,1,2], [3,0,1]]:

> PLOT3D(GRID(1..3, 1..2, LL), AXESLABELS(x,y,z),
> ORIENTATION(135, 45), AXES(BOXED));

5.3 Maple Plot Data Structures • 265

1
1.5

2
2.5

3

x

1
1.2

1.4
1.6

1.8
2

y

0
0.5

1
1.5

2
2.5

3

z

The MESH structure contains a list of lists of points, LL, describing a
surface in 3-D space.

The MESH structure represents the quadrilaterals spanned by

LLi,j , LLi,j+1, LLi+1,j , LLi+1,j+1

for all meaningful values of i and j.

Example 6 In this example, LL contains 3 lists each of length 4, that is,
twelve points defining six quadrilaterals.

> LL := [[[0,0,0], [1,0,0], [2,0,0], [3,0,0]],
> [[0,1,0], [1,1,0], [2.1, 0.9, 0],
> [3.2, 0.7, 0]],
> [[0,1,1], [1,1,1], [2.2, 0.6, 1],
> [3.5, 0.5, 1.1]]];

LL := [[[0, 0, 0], [1, 0, 0], [2, 0, 0], [3, 0, 0]],

[[0, 1, 0], [1, 1, 0], [2.1, 0.9, 0], [3.2, 0.7, 0]],

[[0, 1, 1], [1, 1, 1], [2.2, 0.6, 1], [3.5, 0.5, 1.1]]]

> PLOT3D(MESH(LL), AXESLABELS(x,y,z), AXES(BOXED),
> ORIENTATION(-140, 45));

0
0.5

1
1.5

2
2.5

3
3.5

x

0
0.2

0.4
0.6

0.8
1

y

0
0.2
0.4
0.6
0.8

1

z

266 • Chapter 5: Programming with Maple Graphics

The ISOSURFACE structure contains samples of a mathematical func-
tion f taken over a regular grid in 3-D space and is rendered as a 3-D
surface approximating the zero surface of f . The data is a nested list
containing values [x, y, z, f(x, y, z)] for each grid point (x, y, z).

The GRID, MESH, and ISOSURFACE structures allow the data to be
provided in a Maple Array instead of a list. Often, Array data leads to
faster processing.

For brevity, examples of ISOSURFACE structures and data in Array
form are not presented here. For a complete specification of PLOT3D ob-
jects, refer to ?plot3d/structure.

All the options available for PLOT are also available for PLOT3D.
There are additional 3-D options such as GRIDSTYLE, LIGHTMODEL, and
AMBIENTLIGHT. For a complete list of options, refer to ?plot3d/structure.

5.4 Programming with Plot Data Structures

This section describes tools for programming at the PLOT and PLOT3D

data structure level. Plotting data structures allows direct access to the
Maple plotting facilities. The examples in section 5.3 showed the extent
of the facilities’ power. This section provides examples that describe how
to program at this lower level.

Writing Graphic Primitives
You can write procedures that allow you to work with plot objects at
a more fundamental level. For example, the line and disk commands
in the plottools package provide a model for programming primitives
such as points, lines, curves, circles, rectangles, and arbitrary polygons in
both two and three dimensions. In all cases, you can specify options, such
as line or patch style and color, in the same format as in other plotting
procedures in Maple.

Example 1 In the procedure line, args[3..nargs] is the sequence of
arguments that follow x and y.

> line := proc(x::list, y::list)
> # x and y represent points in either 2-D or 3-D
> local opts;
> opts := [args[3..nargs]];
> opts := convert(opts, PLOToptions);
> CURVES(evalf([x, y]), op(opts));
> end proc:

5.4 Programming with Plot Data Structures • 267

The convert(..., PLOToptions) command converts user-level op-
tions to the format that PLOT requires.

> convert([axes=boxed, color=red], PLOToptions);

[AXESSTYLE(BOX), COLOUR(RGB , 1.00000000, 0., 0.)]

Example 2 The disk procedure is similar to the line procedure in Ex-
ample 1 except that you can specify the number of points that disk uses
to generate the disk. Therefore, disk must handle the option numpoints

separately.

> disk := proc(x::list, r::algebraic)
> # draw a disk of radius r centered at x in 2-D.
> local i, n, opts, vertices;
> opts := [args[3..nargs]] ;
> if not hasoption(opts, numpoints, n, ’opts’)
> then n := 50;
> end if;
> opts := convert(opts, PLOToptions);
> vertices := seq(evalf([x[1] + r*cos(2*Pi*i/n),
> x[2] + r*sin(2*Pi*i/n)]),
> i = 0..n);
> POLYGONS([vertices], op(opts));
> end proc:

To display two disks connected by a line, enter:

> with(plots):

Warning, the name changecoords has been redefined

> display(disk([-1, 0], 1/2, color=plum),
> line([-1, 1/2], [1, 1/2]),
> disk([1, 0], 1/2, thickness=3),
> scaling=constrained);

–0.4
–0.2

0.2
0.4

–1.5 –1 –0.5 0.5 1 1.5

268 • Chapter 5: Programming with Maple Graphics

The options to the individual objects apply to only those objects.

Plotting Gears
Example 3 shows how you can manipulate plotting data structures to
embed 2-D plots into a 3-D setting.

Example 3 The following procedure creates part of the boundary of a
2-D graph of a gear-like structure.

> outside := proc(a, r, n)
> local p1, p2;
> p1 := evalf([cos(a*Pi/n), sin(a*Pi/n)]);
> p2 := evalf([cos((a+1)*Pi/n), sin((a+1)*Pi/n)]);
> if r = 1 then p1, p2;
> else p1, r*p1, r*p2, p2;
> end if
> end proc:

For example:

> outside(Pi/4, 1.1, 16);

[0.9881327882, 0.1536020604],

[1.086946067, 0.1689622664],

[1.033097800, 0.3777683623],

[0.9391798182, 0.3434257839]

> PLOT(CURVES([%]), SCALING(CONSTRAINED));

0.15

0.2

0.25

0.3

0.35

0.93918 1.01306 1.08695

5.4 Programming with Plot Data Structures • 269

When you display the pieces together, you produce a gear. The op-
tion structure SCALING(CONSTRAINED), which corresponds to the option
scaling=constrained, ensures that the gear appears circular.

> points := [seq(outside(2*a, 1.1, 16), a=0..16)]:
> PLOT(CURVES(points), AXESSTYLE(NONE), SCALING(CONSTRAINED));

Fill this object using the POLYGONS object. Because Maple assumes
that the polygons are convex, you must draw each wedge-shaped section
of the gear as a triangular polygon.

> a := seq([[0, 0], outside(2*j, 1.1, 16)], j=0..15):
> b := seq([[0, 0], outside(2*j+1, 1, 16)], j=0..15):
> PLOT(POLYGONS(a,b), AXESSTYLE(NONE), SCALING(CONSTRAINED));

Adding STYLE(PATCHNOGRID) to the preceding structure and com-
bining it with the curve from the first picture creates a filled gear-like
structure. To embed this in three dimensions, at a thickness of t units,
use the utility procedures double:

> double := proc(L, t)
> local u;
> [seq([u[1], u[2], 0], u=L)],
> [seq([u[1], u[2], t], u=L)];
> end proc:

270 • Chapter 5: Programming with Maple Graphics

which takes a list of vertices and creates two copies in 3-D space, the first
at height 0 and the second at height t, and border:

> border := proc(L1, L2)
> local i, n;
> n := nops(L1);
> seq([L1[i], L2[i], L2[i+1], L1[i+1]], i = 1..n-1),
> [L1[n], L2[n], L2[1], L1[1]];
> end proc:

which accepts two lists of vertices and joins the corresponding vertices
from each list into vertices that comprise quadrilaterals. You can create
the top and bottom vertices of the gear embedded into 3-D space as
follows.

> faces :=
> seq(double(p,1/2),
> p=[seq([outside(2*a+1, 1.1, 16), [0,0]],
> a=0..16),
> seq([outside(2*a, 1,16), [0,0]], a=0..16)
>]):

The faces structure is a sequence of doubled outside values.

> PLOT3D(POLYGONS(faces));

Similarly, the following are points on the outline of a gear.

> points := [seq(outside(2*a, 1.1, 16), a=0..16)]:
> PLOT(CURVES(points), AXESSTYLE(NONE), SCALING(CONSTRAINED));

5.4 Programming with Plot Data Structures • 271

To create vertices of the polygons that comprise the border of the 3-D
gear, double these points.

> bord := border(double([seq(outside(2*a+1, 1.1, 16),
> a=0..15)], 1/2)):
> PLOT3D(seq(POLYGONS(b), b=bord));

To display the gear, combine these two PLOT3D structures into a single
structure. Use STYLE(PATCHNOGRID) as a local option to the top and
bottom of the gear so that they do not appear as several triangles.

> PLOT3D(POLYGONS(faces, STYLE(PATCHNOGRID)),
> seq(POLYGONS(b), b=bord),
> STYLE(PATCH), SCALING(CONSTRAINED));

272 • Chapter 5: Programming with Maple Graphics

Note: The global STYLE(PATCH) and SCALING(CONSTRAINED) options
apply to the whole PLOT3D structure, except where the local
STYLE(PATCHNOGRID) option to the top and bottom of the gear over-
rides the global STYLE(PATCH) option.

Polygon Meshes
MESH data structures, described on page 265, are generated when you use
plot3d to draw parameterized surfaces. Example 4 converts a mesh of
points to the set of vertices for the corresponding polygon. By using poly-
gons instead of a MESH structure, you can modify the individual polygons.

Example 4 The polygongrid procedure creates the vertices of a quad-
rangle at the (i, j)th grid value.

> polygongrid := proc(gridlist, i, j)
> gridlist[j][i], gridlist[j][i+1],
> gridlist[j+1][i+1], gridlist[j+1][i];
> end proc:

Use the makePolygongrid procedure to construct the appropriate
polygons.

> makePolygongrid := proc(gridlist)
> local m,n,i,j;
> n := nops(gridlist);
> m := nops(gridlist[1]);
> POLYGONS(seq(seq([polygongrid(gridlist, i, j)],
> i=1..m-1), j=1..n-1));
> end proc:

The following is a mesh of points in 2-D space.

> L := [seq([seq([i-1, j-1], i=1..3)], j=1..4)];

5.5 Programming with the plottools Package • 273

L := [[[0, 0], [1, 0], [2, 0]], [[0, 1], [1, 1], [2, 1]],

[[0, 2], [1, 2], [2, 2]], [[0, 3], [1, 3], [2, 3]]]

The makePolygongrid procedure creates the POLYGONS structure cor-
responding to L.

> grid1 := makePolygongrid(L);

grid1 := POLYGONS([[0, 0], [1, 0], [1, 1], [0, 1]],

[[1, 0], [2, 0], [2, 1], [1, 1]], [[0, 1], [1, 1], [1, 2], [0, 2]],

[[1, 1], [2, 1], [2, 2], [1, 2]], [[0, 2], [1, 2], [1, 3], [0, 3]],

[[1, 2], [2, 2], [2, 3], [1, 3]])

Put the polygons inside a PLOT structure to display them.

> PLOT(grid1);

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2

To convert GRID or MESH structures to polygons, you can also use
the convert(..., POLYGONS) command. For more information, refer to
?convert/POLYGONS. The convert(..., POLYGONS) command calls the
procedure ‘convert/POLYGONS‘ which, in the case of a MESH structure,
functions the same as the makePolygongrid procedure.

5.5 Programming with the plottools Package

While the plotting data structure allows direct access to all the function-
ality that the Maple plotting facilities provide, it does not allow you to
specify colors (such as red or blue) in an intuitive way. It also does not
allow you to use all the Maple representations of numeric data, such as π
or

√
2.

274 • Chapter 5: Programming with Maple Graphics

This section demonstrates how to work with basic graphic objects at
a level higher than that of the plotting data structures. The plottools

package provides commands for creating 2-D objects such as lines and
disks, and 3-D objects such as spheres, tori, and polyhedra. For example,
to draw a sphere of unit radius and a torus with a specified center using
a patch rendering style and a frame axis style, enter:

> with(plots): with(plottools):

Warning, the name changecoords has been redefined
Warning, the name arrow has been redefined

> display(sphere([0, 0, 2]), torus([0, 0, 0]),
> style=patch, axes=frame, scaling=constrained);

–3
–2

–1
0

1
2

3

–3
–2

–1
0

1
2

3

0

2

To rotate the plot or apply other transformations, use the procedures in
the plottools package.

> rotate(%, Pi/4, -Pi/4, Pi/4);

–2
–1

0
1

2

–3
–2

–1
0

1
2

3

–2
–1
0
1
2

5.5 Programming with the plottools Package • 275

A Pie Chart
You can write a plotting procedure to build a pie chart of a list of integer
data. The piechart procedure uses the following partialsum procedure,
which calculates the partial sums of a list of numbers up to a given term.

> partialsum := proc(d, i)
> local j;
> evalf(Sum(d[j], j=1..i))
> end proc:

The following is an example of a call to partialsum.

> partialsum([1, 2, 3, -6], 3);

6.

Example 1 The piechart procedure:

• Computes the relative weights of the data along with the centers of
each pie slice

• Uses a TEXT structure to place the data information at the center of
each pie slice

• Uses the pieslice command from the plottools package to generate
the pie slices

• Varies the colors of each slice by first defining a color procedure based
on hue coloring

> piechart := proc(data::list(integer))
> local b, c, i, n, x, y, total;
>
> n := nops(data);
> total := partialsum(data, n);
> b := 0, seq(evalf(2*Pi*partialsum(data, i)/total),
> i=1..n);
> x := seq((cos(b[i])+cos(b[i+1]))/3, i=1..n):
> y := seq((sin(b[i])+sin(b[i+1]))/3, i=1..n):
> c := (i, n) -> COLOR(HUE, i/(n + 1)):
> PLOT(seq(plottools[pieslice]([0, 0], 1,
> b[i]..b[i+1], color=c(i, n)),
> i=1..n),
> seq(TEXT([x[i], y[i]], convert(data[i], name)),
> i = 1..n),
> AXESSTYLE(NONE), SCALING(CONSTRAINED));
> end proc:

276 • Chapter 5: Programming with Maple Graphics

The AXESSTYLE(NONE) option ensures that Maple does not draw any
axes with the pie chart.

The following is a piechart with six slices.

> piechart([8, 10, 15, 10, 12, 16]);

16
12

10

15
10

8

A Dropshadow Procedure
You can use the existing procedures to create other types of plots that
are not part of the Maple plotting library. For example, the following
procedure computes the 3-D plot of a surface, z = f(x, y), that has a
dropshadow projection onto a plane located below the surface.

Example 2 The procedure uses the contourplot, contourplot3d, and
display commands from the plots package, and the transform com-
mand from the plottools package.

> dropshadowplot := proc(F::algebraic, r1::name=range,
> r2::name=range, r3::name=range)
> local minz, p2, p3, coption, opts, f, g, x, y;
>
> # set the number of contours (default 8)
> opts := [args[5..nargs]];
> if not hasoption(opts, ’contours’, coption, ’opts’)
> then coption := 8;
> end if;
>
> # determine the base of the plot axes
> # from the third argument
> minz := lhs(‘if‘(r3::range, r3, rhs(r3)));
> minz := evalf(minz);
>
>
> # create 2-D and 3-D contour plots for F.
> p3 := plots[contourplot3d](F, r1, r2,
> ’contours’=coption, op(opts));
> p2 := plots[contourplot](F, r1, r2,
> ’contours’=coption, op(opts));
>

5.5 Programming with the plottools Package • 277

> # embed contour plot into R^3 via plottools[transform]
> g := unapply([x,y,minz], x, y);
> f := plottools[transform](g);
> plots[display]([f(p2), p3]);
> end proc:

The filled=true option to contourplot and contourplot3d causes
these two commands to fill the regions between the level curves with a
color that indicates the level.

> expr := -5*x / (x^2+y^2+1);

expr := −5
x

x2 + y2 + 1

> dropshadowplot(expr, x=-3..3, y=-3..3, z=-4..3,
> filled=true, contours=3, axes=frame);

–3
–2

–1
0

1
2

3

x

–3
–2

–1
0

1
2

3

y

–4
–3
–2
–1
0
1
2

Summary

• The first section of the dropshadow procedure determines if there is
a contours option in the optional arguments (those after the fourth
argument) by calling the hasoption procedure.

• The next section of dropshadowplot determines the z value of the
base. Note that it checks for input in operator form.

• The remaining sections create the correct plotting objects which rep-
resent the two types of contour plots.

The dropshadowplot procedure embeds the 2-D contour plot into 3-D
space using the transformation

(x, y) 7→ [x, y,minz]

from R2 → R3. Finally, it displays the two plots in one 3-D plotting
object.

278 • Chapter 5: Programming with Maple Graphics

Note: You can provide an alternate number of levels or specify the pre-
cise contour locations by using the contours option. Thus,

> dropshadowplot(expr, x=-3..3, y=-3..3, z=-4..3,
> filled=true, contours=[-2,-1,0,1,2]);

produces a plot similar to the one just generated, except that it pro-
duces 5 contours at levels −2,−1, 0, 1, and 2.

Creating a Tiling
The plottools package provides a convenient environment for writing
plotting programs. For example, you can draw circular arcs in a unit
square.

> with(plots): with(plottools):

Warning, the name changecoords has been redefined
Warning, the name arrow has been redefined

> a := rectangle([0,0], [1,1]),
> arc([0,0], 0.5, 0..Pi/2),
> arc([1,1], 0.5, Pi..3*Pi/2):
> b := rectangle([1.5,0], [2.5,1]),
> arc([1.5,1], 0.5, -Pi/2..0),
> arc([2.5,0], 0.5, Pi/2..Pi):

You must use display from the plots package to show the objects that
rectangle and arc create.

> display(a, b, axes=none, scaling=constrained);

5.5 Programming with the plottools Package • 279

Example 3 You can tile the plane with a and b type rectangles. The
following procedure creates am×n tiling using a procedure g to determine
when to use an a tile and when to use a b tile. The function g returns
either 0, to use an a tile, or 1, to use a b tile.

> tiling := proc(g, m, n)
> local i, j, r, h, boundary, tiles;
>
> # define an a tile
> r[0] := plottools[arc]([0,0], 0.5, 0..Pi/2),
> plottools[arc]([1,1], 0.5, Pi..3*Pi/2);
> # define a b tile
> r[1] := plottools[arc]([0,1], 0.5, -Pi/2..0),
> plottools[arc]([1,0], 0.5, Pi/2..Pi);
> boundary := plottools[curve]([[0,0], [0,n],
> [m,n], [m,0], [0,0]]);
> tiles := seq(seq(seq(plottools[translate](h, i, j),
> h=r[g(i, j)]), i=0..m-1), j=0..n-1);
> plots[display](tiles, boundary, args[4..nargs]);
> end proc:

Example 4 Define the following procedure, which randomly returns ei-
ther 0 or 1.

> oddeven := proc() rand() mod 2 end proc:

Create a 20 × 10 tiling (called a Truchet tiling) with no axes and
constrained scaling.

> tiling(oddeven, 20, 10, scaling=constrained, axes=none);

280 • Chapter 5: Programming with Maple Graphics

When you use the same procedure again, the random tiling is differ-
ent.

> tiling(oddeven, 20, 10, scaling=constrained, axes=none);

A Smith Chart
You can use the commands in the plottools package to create graphs,
such as a Smith Chart, which is used in microwave circuit analysis.

> smithChart := proc(r)
> local i, a, b, c ;
> a := PLOT(seq(plottools[arc]([-i*r/4,0], i*r/4, 0..Pi),
> i = 1..4),
> plottools[arc]([0,r/2], r/2,
> Pi-arcsin(3/5)..3*Pi/2),
> plottools[arc]([0,r], r, Pi..Pi+arcsin(15/17)),
> plottools[arc]([0,2*r], 2*r,
> Pi+arcsin(3/5)..Pi+arcsin(63/65)),
> plottools[arc]([0,4*r], 4*r,
> Pi+arcsin(15/17)..Pi+arcsin(63/65))
>);
> b := plottools[transform]((x, y) -> [x,-y])(a);
> c := plottools[line]([0, 0], [-2*r, 0]):
> plots[display](a, b, c, axes = none,
> scaling = constrained, args[2..nargs]);
> end proc:

5.5 Programming with the plottools Package • 281

The following is a Smith Chart of radius 1.

> smithChart(1);

Exercise
1. Make a Smith Chart by building appropriate circular arcs above the

axes.

2. Create a copy reflected on the axis (using the plottools[transform]
procedure).

3. Add a final horizontal line. The parameter r denotes the radius of the
largest circle.

4. Modify the smithChart procedure to add text to mark appropriate
grid markers.

Modifying Polygon Meshes
You can construct new plot tools that work like those in the plottools

package.

Example 5 Create a procedure that removes the inside of a single face
of a polygon. Then, apply it to every face of a polygon.

> cutoutPolygon := proc(vlist::list, scale::numeric)
> local i, center, outside, inside, n, edges, polys;
>
> n := nops(vlist);
> center := add(i, i=vlist) / n;
> inside := seq(scale*(vlist[i]-center) + center, i=1..n);
> outside := seq([inside[i], vlist[i], vlist[i+1],
> inside[i+1]],
> i=1..n-1):
> polys := POLYGONS(outside,
> [inside[n], vlist[n], vlist[1], inside[1]],
> STYLE(PATCHNOGRID));

282 • Chapter 5: Programming with Maple Graphics

> edges := CURVES([op(vlist), vlist[1]],
> [inside, inside[1]]);
> polys, edges;
> end proc:

The following are the corners of a triangle.

> triangle := [[0,2], [2,2], [1,0]];

triangle := [[0, 2], [2, 2], [1, 0]]

The cutoutPolygon procedure converts triangle to three polygons
(one for each side) and two curves.

> cutoutPolygon(triangle, 1/2);

POLYGONS([[
1

2
,
5

3
], [0, 2], [2, 2], [

3

2
,
5

3
]],

[[
3

2
,
5

3
], [2, 2], [1, 0], [1,

2

3
]], [[1,

2

3
], [1, 0], [0, 2], [

1

2
,
5

3
]],

STYLE(PATCHNOGRID)),CURVES(

[[0, 2], [2, 2], [1, 0], [0, 2]], [[
1

2
,
5

3
], [

3

2
,
5

3
], [1,

2

3
], [

1

2
,
5

3
]])

Use the plots[display] command to show the triangle.

> plots[display](%, color=red);

0

0.5

1

1.5

2

0.5 1 1.5 2

The following cutout procedure applies cutoutPolygon to every face
of a polyhedron.

> cutout := proc(polyhedron, scale)
> local v;
> seq(cutoutPolygon(v, evalf(scale)), v=polyhedron);
> end proc:

5.5 Programming with the plottools Package • 283

The following command removes 3/4 of each face of a dodecahedron
and displays the result.

> display(cutout(dodecahedron([1, 2, 3]), 3/4),
> scaling=constrained);

Example 6 Raise or lower the barycenter of a polygon.

> stellateFace := proc(vlist::list, aspectRatio::numeric)
> local apex, i, n;
>
> n := nops(vlist);
> apex := add(i, i = vlist) * aspectRatio / n;
> POLYGONS(seq([apex, vlist[i], vlist[modp(i, n) + 1]],
> i=1..n));
> end proc:

The following are the corners of a triangle in 3-D space.

> triangle := [[1,0,0], [0,1,0], [0,0,1]];

triangle := [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

The stellateFace procedure creates three polygons, one for each side
of the triangle.

> stellateFace(triangle, 1);

POLYGONS([[
1

3
,
1

3
,
1

3
], [1, 0, 0], [0, 1, 0]],

[[
1

3
,
1

3
,
1

3
], [0, 1, 0], [0, 0, 1]], [[

1

3
,
1

3
,
1

3
], [0, 0, 1], [1, 0, 0]])

Because these polygons are 3-D objects, to display them, place the
POLYGONS structure inside a PLOT3D structure.

284 • Chapter 5: Programming with Maple Graphics

> PLOT3D(%);

As in Example 5, you can extend the stellateFace procedure to act
on arbitrary polyhedra with more than one face.

> stellate := proc(polyhedron, aspectRatio)
> local v;
> seq(stellateFace(v, evalf(aspectRatio)),
> v=polyhedron);
> end proc:

The following commands construct and display a stellated dodecahe-
dron.

> stellated := display(stellate(dodecahedron(), 3),
> scaling=constrained):
> display(array([dodecahedron(), stellated]));

You can use the convert(..., POLYGONS) command to convert a
GRID or MESH structure to the equivalent set of POLYGONS.

Example 7 This example uses a version of the Klein bottle created from
POLYGONS structures.

> kleinpoints := proc()
> local bottom, middle, handle, top, p, q;
>

5.5 Programming with the plottools Package • 285

> top := [(2.5 + 1.5*cos(v)) * cos(u),
> (2.5 + 1.5*cos(v)) * sin(u), -2.5 * sin(v)]:
> middle := [(2.5 + 1.5*cos(v)) * cos(u),
> (2.5 + 1.5*cos(v)) * sin(u), 3*v - 6*Pi]:
> handle := [2 - 2*cos(v) + sin(u), cos(u),
> 3*v - 6*Pi]:
> bottom := [2 + (2+cos(u))*cos(v), sin(u),
> -3*Pi + (2+cos(u)) * sin(v)]:
> p := plot3d({bottom, middle, handle, top},
> u=0..2*Pi, v=Pi..2*Pi, grid=[9,9]):
> p := select(x -> op(0,x)=MESH, [op(p)]);
> seq(convert(q , POLYGONS), q=p);
> end proc:
> display(kleinpoints(), style=patch,
> scaling=constrained, orientation=[-110,71]);

To alter the view of the Klein bottle, use polygon manipulation com-
mands.

> display(seq(cutout(k, 3/4), k=kleinpoints()),
> scaling=constrained);

286 • Chapter 5: Programming with Maple Graphics

5.6 Vector Field Plots

This section describes how to plot a vector field of 2-D vectors in the
plane. The examples illustrate the tools available for plot objects on grids
in 2-D and 3-D space.

The goal is to create a procedure that plots a vector field and has the
following syntax.

vectorfieldplot(F, r1, r2, options)

• The first argument, F, is a list of size two containing the expressions
that specify the horizontal and vertical components of the vector field.

• The arguments r1 and r2 describe the domain grid of the vectors.

• The three arguments F, r1, and r2 are similar in form to the arguments
required for the plot3d command.

• The optional information includes any relevant plotting option that
plot and plot3d recognize. Thus, options such as grid=[m,n],
style=patch, and color=colorfunction are valid.

Drawing a Vector
The first step is to draw a vector. Let [x, y] represent the starting point
of the arrow and [a, b] represent the components of the vector. Specify
the shape of an arrow with three independent parameters, t1, t2, and t3,
where t1 denotes the thickness of the arrow, t2 the thickness of the arrow
head, and t3 the ratio of the length of the arrow head to the length of the
arrow.

Example 1 The following myarrow procedure constructs seven vertices
of an arrow. It then builds the arrow by constructing two polygons: a
triangle (spanned by v5, v6, and v7) for the head of the arrow and a
rectangle (spanned by v1, v2, v3, and v4) for the tail. It then removes
boundary lines by setting the style option inside the polygon structure.
It also constructs the boundary of the entire arrow via a closed curve
through the vertices.

> myarrow := proc(point::list, vect::list, t1, t2, t3)
> local a, b, i, x, y, L, Cos, Sin, v, locopts;
>
> a := vect[1]; b := vect[2];
> if has(vect, ’undefined’) or (a=0 and b=0) then
> return POLYGONS([]);

5.6 Vector Field Plots • 287

> end if;
> x := point[1]; y := point[2];
> # L = length of arrow
> L := evalf(sqrt(a^2 + b^2));
> Cos := evalf(a / L);
> Sin := evalf(b / L);
> v[1] := [x + t1*Sin/2, y - t1*Cos/2];
> v[2] := [x - t1*Sin/2, y + t1*Cos/2];
> v[3] := [x - t1*Sin/2 - t3*Cos*L + a,
> y + t1*Cos/2 - t3*Sin*L + b];
> v[4] := [x + t1*Sin/2 - t3*Cos*L + a,
> y - t1*Cos/2 - t3*Sin*L + b];
> v[5] := [x - t2*Sin/2 - t3*Cos*L + a,
> y + t2*Cos/2 - t3*Sin*L + b];
> v[6] := [x + a, y + b];
> v[7] := [x + t2*Sin/2 - t3*Cos*L + a,
> y - t2*Cos/2 - t3*Sin*L + b];
> v := seq(evalf(v[i]), i= 1..7);
>
> # convert optional arguments to PLOT data structure form
> locopts := convert([style=patchnogrid, args[6..nargs]],
> PLOToptions);
> POLYGONS([v[1], v[2], v[3], v[4]],
> [v[5], v[6], v[7]], op(locopts)),
> CURVES([v[1], v[2], v[3], v[5], v[6],
> v[7], v[4], v[1]]);
> end proc:

Note: Because each polygon must be convex, you must build the poly-
gon structure for the arrow in two parts.

In the special case that the vector has both components equal to zero
or an undefined component, such as a value resulting from a non-numeric
value (for example, a complex value or a singularity point), the myarrow

procedure returns a trivial polygon. The following are four arrows.

> arrow1 := PLOT(myarrow([0,0], [1,1], 0.2, 0.4, 1/3,
> color=red)):
> arrow2 := PLOT(myarrow([0,0], [1,1], 0.1, 0.2, 1/3,
> color=yellow)):
> arrow3 := PLOT(myarrow([0,0], [1,1], 0.2, 0.3, 1/2,
> color=blue)):
> arrow4 := PLOT(myarrow([0,0], [1,1], 0.1, 0.5, 1/4,
> color=green)):

The display command from the plots package can show an array of
plots.

> with(plots):

Warning, the name changecoords has been redefined

288 • Chapter 5: Programming with Maple Graphics

> display(array([[arrow1, arrow2], [arrow3, arrow4]]),
> scaling=constrained);

1.

0. 1.0.

1.

0. 1.0.

1.

0. 1.0.

1.

0. 1.0.

Generating a Vector Plot Field
The remainder of this section presents a number of solutions to the pro-
gramming problem of generating a vector field plot, each more powerful
than its predecessors. The first and simplest solution requires the input be
in operator form. This solution uses three utility procedures that process
the domain information, generate a grid of function values, and place the
information in a PLOT3D structure.

Example 2 The procedure domaininfo determines the endpoints and
increments for the grid. It takes as input the two ranges r1 and r2 and the
two grid sizes m and n, and returns the grid information as an expression
sequence of four elements.

> domaininfo := proc(r1, r2, m, n)
> lhs(r1), lhs(r2),
> evalf((rhs(r1) - lhs(r1))/(m-1)),
> evalf((rhs(r2) - lhs(r2))/(n-1));
> end proc:

The following example uses multiple assignments to assign the four
values returned to separate variables.

> a, b, dx, dy := domaininfo(0..12, 20..100, 7, 9);

a, b, dx , dy := 0, 20, 2., 10.

Now a, b, dx, and dy have the following values.

> a, b, dx, dy;

5.6 Vector Field Plots • 289

0, 20, 2., 10.

Example 3 To convert to a grid of numerical points, use the extensibility
of the Maple convert command. The procedure ‘convert/grid‘ takes
a procedure f as input and applies it to the points in the grid which r1,
r2, m, and n specify.

> ‘convert/grid‘ := proc(f, r1, r2, m, n)
> local a, b, i, j, dx, dy;
> # obtain information about domain
> a,b,dx,dy := domaininfo(r1, r2, m, n);
> # output grid of function values
> [seq([seq(evalf(f(a + i*dx, b + j*dy)),
> i=0..m-1)], j=0..n-1)];
> end proc:

Now apply the undefined name, f , to a grid as follows.

> convert(f, grid, 1..2, 4..6, 3, 2);

[[f(1., 4.), f(1.500000000, 4.), f(2.000000000, 4.)],

[f(1., 6.), f(1.500000000, 6.), f(2.000000000, 6.)]]

Example 4 The final utility procedure determines the scaling that en-
sures that the arrows do not overlap. Then generateplot calls the
myarrow procedure to draw the vectors.

Note: generateplot centers each arrow over its grid-point.

> generateplot := proc(vect1, vect2, m, n, a, b, dx, dy)
> local i, j, L, xscale, yscale, mscale;
>
> # Determine scaling factor.
> L := max(seq(seq(vect1[j][i]^2 + vect2[j][i]^2,
> i=1..m), j=1..n));
> xscale := evalf(dx/2/L^(1/2));
> yscale := evalf(dy/2/L^(1/2));
> mscale := max(xscale, yscale);
>
> # Generate plot data structure.
> # Each arrow is centered over its point.
> PLOT(seq(seq(myarrow(
> [a + (i-1)*dx - vect1[j][i]*xscale/2,
> b + (j-1)*dy - vect2[j][i]*yscale/2],
> [vect1[j][i]*xscale, vect2[j][i]*yscale],
> mscale/4, mscale/2, 1/3), i=1..m), j=1..n));
> # Thickness of tail = mscale/4
> # Thickness of head = mscale/2
> end proc:

290 • Chapter 5: Programming with Maple Graphics

Example 5 With these utility functions, you can write the vectorfieldplot
command.

> vectorfieldplot := proc(F, r1, r2, m, n)
> local vect1, vect2, a, b, dx, dy;
>
> # Generate each component over the grid of points.
> vect1 := convert(F[1], grid, r1, r2 ,m, n);
> vect2 := convert(F[2], grid, r1, r2 ,m, n);
>
> # Obtain the domain grid information from r1 and r2.
> a,b,dx,dy := domaininfo(r1, r2, m, n);
>
> # Generate the final plot structure.
> generateplot(vect1, vect2, m, n, a, b, dx, dy)
> end proc:

Try the procedure on the vector field (cos(xy), sin(xy)).

> p := (x,y) -> cos(x*y): q := (x,y) -> sin(x*y):
> vectorfieldplot([p, q], 0..Pi, 0..Pi, 15, 20);

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

The vectorfieldplot code shows how to write a procedure that gen-
erates vector field plots based on alternative descriptions of the input.

Example 6 You can create the listvectorfieldplot procedure, which
accepts input consisting of a list of m lists, each of which consists of n
lists with two elements. The pairs of elements specify the components of a
vector. The domain grid is 1, . . . ,m in the horizontal direction and 1, . . . , n
in the vertical direction (as with the plots[listplot3d] command).

> listvectorfieldplot := proc(F)
> local m, n, vect1, vect2;
>
> n := nops(F); m := nops(F[1]);
> # Generate the 1st and 2nd components of F.
> vect1 := map(u -> map(v -> evalf(v[1]), u), F);
> vect2 := map(u -> map(v -> evalf(v[2]), u), F);
>

5.6 Vector Field Plots • 291

> # Generate the final plot structure.
> generateplot(vect1, vect2, m, n, 1, 1, m-1, n-1)
> end proc:

The following is an example of a call to listvectorfieldplot.

> l := [[[1,1], [2,2], [3,3]],
> [[1,6], [2,0], [5,1]]]:
> listvectorfieldplot(l);

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5

There are problems with the vectorfieldplot procedure.

• The procedure only works with operator form. You can solve this
problem by converting expressions to procedures, and then recursively
calling the vectorfieldplot procedure with the converted input (as
in the ribbonplot procedure in section 5.2).

• The procedure only works with lists as input, not Arrays.

To overcome such problems, first convert all input procedures to pro-
cedures that generate only a numeric real value or the value undefined,
the only type of data that can appear in a Maple plot data structure. It
is recommended that you use the more efficient hardware floating-point
calculations rather than software floating-point operations, whenever pos-
sible. For more information, see the examples in 5.7 Generating Grids
of Points.

Instead of writing a procedure for computing the grid, use the library
function convert(..., gridpoints) which, in the case of a single input,
generates a structure of the following form.

[a.. b, c.. d, [[z11, ... , z1n], ... ,

[zm1 , ... , zmn]]]

292 • Chapter 5: Programming with Maple Graphics

It uses either expressions or procedures as input. The output gives the
domain information a..b and c..d along with the z values of the input
that it evaluates over the grid.

> convert(sin(x*y), ’gridpoints’,
> x=0..Pi, y=0..Pi, grid=[2, 3]);

[0...3.14159265358979, 0...3.14159265358979, [

[0., 0., 0.],

[0., −0.975367972083633571, −0.430301217000074065]]]

When xy > 0, then ln(−xy) is complex, so the grid contains the value
undefined.

> convert((x,y) -> log(-x*y), ’gridpoints’,
> 1..2, -2..1, grid=[2,3]);

[1...2., −2...1., [[0.693147180559945286,

−0.693147180559945286, undefined],

[1.386294361, 0., undefined]]]

Example 7 This version of the vectorfieldplot procedure accepts a
number of options. In particular, it allows a grid = [m,n] option. To
accomplish this, pass the options to convert(..., gridpoints). The
utility procedure makevectors handles the interface to convert(...,

gridpoints).

> makevectors := proc(F, r1, r2)
> local v1, v2;
>
> # Generate the numerical grid
> # of components of the vectors.
> v1 := convert(F[1], ’gridpoints’, r1, r2,
> args[4 .. nargs]);
> v2 := convert(F[2], ’gridpoints’, r1, r2,
> args[4 .. nargs]);
>
> # The domain information is contained in first
> # two operands of v1. The function values in
> # the 3rd components of v1 and v2.
> [v1[1], v1[2], v1[3], v2[3]]
> end proc:

The new version of vectorfieldplot is:

5.6 Vector Field Plots • 293

> vectorfieldplot := proc(F, r1, r2)
> local R1, R2, m, n, a, b, v1, v2, dx, dy, v;
>
> v := makevectors(F, r1, r2, args[4..nargs]);
> R1 := v[1]; R2 := v[2]; v1 := v[3]; v2 := v[4];
>
> n := nops(v1); m := nops(v1[1]);
> a, b, dx, dy := domaininfo(R1, R2, m, n);
>
> generateplot(v1, v2, m, n, a, b, dx, dy);
> end proc:

Test this procedure.

> p := (x,y) -> cos(x*y):
> q := (x,y) -> sin(x*y):
> vectorfieldplot([p, q], 0..Pi, 0..Pi, grid=[3, 4]);

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5

All the previous versions of vectorfieldplot scale all vectors by the
same factor so that each vector fits into a single grid box. No overlapping
of arrows occurred. However, the length of the arrows is dependent on the
size of the grid boxes. This can produce graphs that have a large number
of very small, almost indiscernible vectors. For example, the following plot
of the gradient field of F = cos(xy) exhibits this behavior.

> vectorfieldplot([y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi, grid=[15,20]);

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

294 • Chapter 5: Programming with Maple Graphics

The final version of vectorfieldplot differs in that all the arrows
have the same length—the color of each vector indicates its magnitude.
First create a utility procedure that generates a grid of colors from the
function values.

Example 8 Utility Procedure

> ‘convert/colorgrid‘ := proc(colorFunction)
> local colorinfo, i, j, m, n;
>
> colorinfo := op(3, convert(colorFunction,
> ’gridpoints’, args[2..nargs]));
> map(x -> map(y -> COLOR(HUE, y), x), colorinfo);
> end proc:

This procedure uses the convert(... , gridpoints) procedure to
generate a list of lists of function values that specify the colors (using hue
coloring).

> convert(sin(x*y), ’colorgrid’, x=0..1, y=0..1, grid=[2,3]);

[[COLOR(HUE , 0.), COLOR(HUE , 0.), COLOR(HUE , 0.)

], [COLOR(HUE , 0.),

COLOR(HUE , 0.479425538604203006),

COLOR(HUE , 0.841470984807896505)]]

Example 9 The final version of the vectorfieldplot procedure is:

> vectorfieldplot := proc(F, r1, r2)
> local v, m, n, a, b, dx, dy, opts, p, v1, v2,
> L, i, j, norms, colorinfo,
> xscale, yscale, mscale;
>
> v := makevectors(F, r1, r2, args[4..nargs]);
> v1 := v[3]; v2 := v[4];
> n := nops(v1); m := nops(v1[1]);
>
> a,b,dx,dy := domaininfo(v[1], v[2], m, n);
>
> # Determine the function used for coloring the arrows.
> opts := [args[4..nargs]];
> if not hasoption(opts, color, colorinfo, ’opts’) then
> # Default coloring will be via
> # the scaled magnitude of the vectors.
> L := max(seq(seq(v1[j][i]^2 + v2[j][i]^2,
> i=1..m), j=1..n));
> colorinfo := (F[1]^2 + F[2]^2)/L;
> end if;
>

5.6 Vector Field Plots • 295

> # Generate the information needed to color the arrows.
> colorinfo := convert(colorinfo, ’colorgrid’,
> r1, r2, op(opts));
>
> # Get all the norms of the vectors using zip.
> norms := zip((x,y) -> zip((u,v)->
> if u=0 and v=0 then 1 else sqrt(u^2 + v^2) end if,
> x, y), v1, v2);
> # Normalize v1 and v2 (again using zip).
> v1 := zip((x,y) -> zip((u,v)-> u/v, x, y), v1, norms);
>
> v2 := zip((x,y) -> zip((u,v)-> u/v, x, y), v2, norms);
>
> # Generate scaling information and plot data structure.
> xscale := dx/2.0; yscale := dy/2.0;
> mscale := max(xscale, yscale);
>
> PLOT(seq(seq(myarrow(
> [a + (i-1)*dx - v1[j][i]*xscale/2,
> b + (j-1)*dy - v2[j][i]*yscale/2],
> [v1[j][i]*xscale, v2[j][i]*yscale],
> mscale/4, mscale/2, 1/3,
> ’color’=colorinfo[j][i]
>), i=1..m), j=1..n));
> end proc:

This version produces the following plots.

> vectorfieldplot([y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi,grid=[15,20]);

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

You can color the vectors via a function, such as sin(xy).

> vectorfieldplot([y*cos(x*y), x*sin(x*y)],
> x=0..Pi, y=0..Pi, grid=[15,20], color=sin(x*y));

296 • Chapter 5: Programming with Maple Graphics

0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

Other vector field routines can be derived from the preceding routines.
For example, you can also write a complex vector field plot that takes
complex number locations and complex number descriptions of vectors as
input. Simply generate the grid of points in an alternate manner.

The arrow procedure, in the plots package, generates arrows and vec-
tors. The arrow procedure is more versatile than the procedures described
in this section.

5.7 Generating Grids of Points

Section 5.6 illustrated the steps involved in the simple operation of ob-
taining an Array of grid values from a given procedure. You must consider
efficiency, error conditions, and non-numeric output. To handle the case in
which the input is an expression in two variables, you can use the method
from the ribbonplot procedure in Example 4 of section 5.2. Thus, for
simplicity of presentation, this section deals with only operator form in-
put.

The goal is to compute an Array of values for f at each point on a
m× n rectangular grid. That is, at the locations

xi = a+ (i− 1)δx and yj = c+ (j − 1)δy

where δx = (b − a)/(m − 1) and δy = (d − c)/(n − 1). Here i and j vary
from 1 to m and 1 to n, respectively. The final procedure that is created in
this section (in Example 3) is similar to the convert(..., gridpoints)

library procedure, except that it produces an Array instead of a list of
lists.

Consider the function f : (x, y) 7→ 1/ sin(xy). You need to evaluate f
over the m× n grid with the ranges a..b and c..d.

5.7 Generating Grids of Points • 297

> f := (x,y) -> 1/sin(x*y);

f := (x, y) → 1

sin(x y)

Example 1 The first step is to convert the function f to a numeric
procedure. Because Maple requires numeric values (rather than symbolic)
for plots, convert f to a procedure that returns numerical answers or the
special value undefined.

> fnum := convert(f , numericproc);

fnum := proc(x, y)

local r;

try r := evalhf(f(x, y)) catch : end try ;

if not type(r, ’numeric ’) then

try r := evalf(f(x, y)) catch : end try

end if;

‘if‘(type(r, ’numeric ’), r, ’undefined ’)

end proc

The fnum procedure, which is the result of this conversion, attempts to
calculate the numerical values as efficiently as possible. Hardware floating-
point arithmetic, although of limited precision, is more efficient than soft-
ware floating-point and is frequently sufficient for plotting. Thus, the fnum
procedure tries the evalhf function first. If evalhf generates an error or
returns a non-numeric result, the fnum procedure attempts the calculation
again by using software floating-point arithmetic and then calling evalf.
Even this calculation is not always possible. For example, the function f
is undefined whenever x = 0 or y = 0. In such cases, the procedure fnum

returns the name undefined. The Maple plot display routines recognize
this special name.

At the point (1, 1), the function f has the value 1/ sin(1) and so fnum

returns a numerical estimate.

> fnum(1,1);

1.18839510577812123

However, if you try to evaluate f at (0, 0), Maple returns that the
function is undefined at these coordinates.

298 • Chapter 5: Programming with Maple Graphics

> fnum(0,0);

undefined

Summary Creating such a procedure is the first step in creating the grid
of values. For efficiency, when possible, compute the function values and
the grid points by using hardware floating-point arithmetic. In addition,
it is recommended that you perform as much computation as possible in a
single call to evalhf. For hardware floating-point arithmetic, Maple must
first convert the expression to a series of commands involving hardware
floating-point numbers, and then convert the results back to the Maple
format for numbers. For more information on numerical calculations, see
chapter 4.

Example 2 The following procedure generates the coordinates of the
grid in the form of an Array. Because the procedure plots surfaces, the
Array is two dimensional. The procedure returns an Array z of function
values.

> evalgrid := proc(F, z, a, b, c, d, m, n)
> local i, j, dx, dy;
>
> dx := (b-a)/m; dy := (d-c)/n;
> for i to m do
> for j to n do
> z[i, j] := F(a+(i-1)*dx, c+(j-1)*dy);
> end do;
> end do;
> end proc:

This evalgrid procedure is purely symbolic and does not handle error
conditions.

> A := Array(1..2, 1..2):
> evalgrid(f, ’A’, 1, 2, 1, 2, 2, 2):
> A;













1

sin(1)

1

sin(
3

2
)

1

sin(
3

2
)

1

sin(
9

4
)













> evalgrid(f, ’A’, 0, Pi, 0, Pi, 2, 2):

5.7 Generating Grids of Points • 299

Error, (in f) numeric exception: division by zero

Example 3 The gridpoints procedure uses the evalgrid procedure.
The procedure accepts a procedure, two ranges, and the number of grid
points to generate in each dimension. Like the procedure fnum which
Maple generated from the previously defined procedure f , this routine
attempts to create the grid using hardware floating-point arithmetic. Only
if this fails, does gridpoints use software floating-point arithmetic.

> gridpoints := proc(f, r1, r2, m, n)
> local u, x, y, z, a, b, c, d;
>
> # Domain information:
> a := lhs(r1); b := rhs(r1);
> c := lhs(r2); d := rhs(r2);
>
> if Digits <= evalhf(Digits) then
> try
> # Try to use hardware floats.
> z := Array(1..m, 1..n, datatype=float[8]);
> evalhf(evalgrid(f, z, a, b, c, d, m, n));
> catch:
> # Use software floats, first converting f to
> # a software float function.
> z := Array(1..m, 1..n);
> evalgrid(convert(f, numericproc), z, a, b, c, d, m, n);
> end try;
> else
> # Use software floats, first converting f to
> # a software float function.
> z := Array(1..m, 1..n);
> evalgrid(convert(f, numericproc), z, a, b, c, d, m, n);
> end if;
> z;
> end proc:

Testing the Procedures The gridpoints procedure can use hardware
floating-point arithmetic to calculate two of the numbers, but it must use
software calculations in four cases where the function is undefined.

> gridpoints((x,y) -> 1/sin(x*y) , 0..3, 0..3, 2, 3);

[undefined , undefined , undefined]

[undefined , 1.00251130424672485 ,

7.08616739573718667]

300 • Chapter 5: Programming with Maple Graphics

In the following example, gridpoints can use hardware floating-point
for all the calculations. Therefore, this calculation is faster, although the
difference is not apparent unless you try a much larger example.

> gridpoints((x,y) -> sin(x*y), 0..3, 0..3, 2, 3);

[0. , 0. , 0.]

[0. , 0.997494986604054445 , 0.141120008059867213]

If you ask for more digits than hardware floating-point arithmetic can
provide, then gridpoints uses software floating-point operations.

> Digits := 22:
> gridpoints((x,y) -> sin(x*y), 0..3, 0..3, 2, 3);

[0. , 0. , 0.]

[0. , 0.9974949866040544309417 ,

0.1411200080598672221007]

> Digits := 10:

When hardware floating-point calculations are possible, the data is re-
turned in an Array with datatype=float[8], in which case you can dis-
play it by enclosing it in a GRID structure in a PLOT3D structure.

> PLOT3D(GRID(0..3, 0..3, gridpoints((x,y) -> sin(x*y), 0..3,
> 0..3, 10, 10)), AXES(BOXED));

0
0.5

1
1.5

2
2.5

3

0
0.5

1
1.5

2
2.5

3

–1
–0.5

0
0.5

1

Otherwise, the data is returned in an Array with the default
datatype=anything, which must be converted to an Array with
datatype=float[8] before being placed inside a plot data structure.

5.8 Animation • 301

5.8 Animation

Maple can generate animations in two or three dimensions. As with all
Maple plotting facilities, such animations produce user-accessible data
structures. Data structures of the following type represent animations.

PLOT(ANIMATE(...))

or

PLOT3D(ANIMATE(...))

Inside the ANIMATE function is a sequence of frames; each frame is a
list of the same plotting objects that can appear in a single plotting struc-
ture. Every procedure that creates an animation builds such a sequence
of frames. For example, print the output of such a procedure using the
following Maple command (output not shown).

> lprint(plots[animate](plot, [x*t, x=-1..1], t = 1..3,
> numpoints=3, frames = 3));

The function points is a parameterization of the curve (x, y) = (1 +
cos(tπ/180)2, 1 + cos(tπ/180) sin(tπ/180)).

> points := t -> evalf(
> [(1 + cos(t/180*Pi)) * cos(t/180*Pi),
> (1 + cos(t/180*Pi)) * sin(t/180*Pi)]):

For example,

> points(2);

[1.998172852, 0.06977773357]

You can plot a sequence of points.

> PLOT(POINTS(seq(points(t), t=0..90)));

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2

302 • Chapter 5: Programming with Maple Graphics

You can now make an animation. Make each frame consist of the
polygon spanned by the origin, (0, 0), and the sequence of points on the
curve.

> frame := n -> [POLYGONS([[0, 0],
> seq(points(t), t = 0..60*n)],
> COLOR(RGB, 1.0/n, 1.0/n, 1.0/n))]:

The animation (not shown) consists of six frames.

> PLOT(ANIMATE(seq(frame(n), n = 1..6)));

Animation in Static Form
The display command from the plots package can show an animation
in static form.

> with(plots):

Warning, the name changecoords has been redefined

> display(PLOT(ANIMATE(seq(frame(n), n = 1..6))));

1.

0.

–1.

2.0.

1.

0.

–1.

2.0.

1.0

.5

0. 2.0.

1.0

.5

0. 2.0.

1.0

.5

0. 2.0.

1.0

.5

0. 2.0.

Graphical Object as Input
The varyAspect procedure illustrates how a stellated surface varies with
the aspect ratio.

Example 1 The procedure takes a graphical object as input and creates
an animation in which each frame is a stellated version of the object with
a different aspect ratio.

> with(plottools):

Warning, the name arrow has been redefined

5.8 Animation • 303

> varyAspect := proc(p)
> local n, opts;
> opts := convert([args[2..nargs]], PLOT3Doptions);
> PLOT3D(ANIMATE(seq([stellate(p, n/sqrt(2))],
> n=1..4)),
> op(opts));
> end proc:

Try the procedure on a dodecahedron.

> varyAspect(dodecahedron(), scaling=constrained);

The static version is:

> display(varyAspect(dodecahedron(),
> scaling=constrained));

Methods for Creating Animations
The Maple library provides two methods for creating animations: the
animate command in the plots package and the display command with
the insequence = true option. For example, you can show how a Fourier
series approximates a function, f , on an interval [a, b] by visualizing the
function and successive approximations as the number of terms increase
with each frame. You can derive the nth partial sum of the Fourier series
by using fn(x) = c0/2 +

∑n
k=1 ck cos(

2π
b−akx) + sk sin(

2π
b−akx), where

ck =
2

b− a

∫ b

a
f(x) cos

(

2π

b− a
kx

)

dx

and

sk =
2

b− a

∫ b

a
f(x) sin

(

2π

b− a
kx

)

dx.

304 • Chapter 5: Programming with Maple Graphics

Example 2 The fourierPicture procedure first calculates and plots the
kth Fourier approximation for k up to n. Then fourierPicture generates
an animation of these plots, and finally it adds a plot of the function as
a backdrop.

> fourierPicture :=
> proc(func, xrange::name=range, n::posint)
> local x, a, b, l, k, j, p, q, partsum;
>
> a := lhs(rhs(xrange));
> b := rhs(rhs(xrange));
> l := b - a;
> x := 2 * Pi * lhs(xrange) / l;
>
> partsum := 1/l * evalf(Int(func, xrange));
> for k from 1 to n do
> # Generate the terms of the Fourier series of func.
> partsum := partsum
> + 2/l * evalf(Int(func*sin(k*x), xrange))
> * sin(k*x)
> + 2/l * evalf(Int(func*cos(k*x), xrange))
> * cos(k*x);
> # Plot k-th Fourier approximation.
> q[k] := plot(partsum, xrange, color=blue,
> args[4..nargs]);
> end do;
> # Generate sequence of frames.
> q := plots[display]([seq(q[k], k=1..n)],
> insequence=true);
> # Add the function plot, p, to each frame.
> p := plot(func, xrange, color = red, args[4..nargs]);
> plots[display]([q, p]);
> end proc:

You can now use fourierPicture to plot, for example, the first six
Fourier approximations of ex.

> fourierPicture(exp(x), x=0..10, 6):

The static version is:

> display(fourierPicture(exp(x), x=0..10, 6));

5.8 Animation • 305

.2e5

.1e5

0. .1e20.

.2e5

.1e5

0. .1e20.

.2e5

.1e5

0. .1e20.

.2e5

.1e5

0. .1e20.

.2e5

.1e5

0. .1e20.

.2e5

.1e5

0. .1e20.

xxx

xxx

The following are the first six Fourier approximations of x -> signum(x-1).
Because the signum function is discontinuous, the discont=true option
is required.

> fourierPicture(2*signum(x-1), x=-2..3, 6,
> discont=true);

The static version is:

> display(fourierPicture(2*signum(x-1), x=-2..3, 6,
> discont=true));

xxx

xx
x

2.

0.

–2.

2.0.–2.

2.

0.

–2.

2.0.–2.

2.

0.

–2.

2.0.–2.

2.

0.

–2.

2.0.–2.

2.

0.

–2.

2.0.–2.

2.

0.

–2.

2.0.–2.

You can also create similar animations with other series approxima-
tions, such as Taylor, Padé, and Chebyshev–Padé, with the generalized
series structures that Maple uses.

Two and Three Dimensions
Animation sequences exist in both two and three dimensions.

Example 3 The following procedure ties a trefoil knot by using the
tubeplot function in the plots package.

306 • Chapter 5: Programming with Maple Graphics

> TieKnot := proc(n:: posint)
> local i, t, curve, picts;
> curve := [-10*cos(t) - 2*cos(5*t) + 15*sin(2*t),
> -15*cos(2*t) + 10*sin(t) - 2*sin(5*t),
> 10*cos(3*t)]:
> picts := [seq(plots[tubeplot](curve,
> t=0..2*Pi*i/n, radius=3),
> i=1..n)];
> plots[display](picts, insequence=true, style=patch);
> end proc:

You can tie the knot in, for example, six stages.

> TieKnot(6);

The static version is:

> display(TieKnot(6));

Demonstrating Physical Objects in Motion
You can combine the graphical objects from the plottools package with
the display in-sequence option to animate physical objects in motion.

Example 4 The springPlot procedure creates a spring from a 3-D plot
of a helix. The springPlot procedure also creates a box and a copy of this
box. It moves one of the boxes to various locations depending on a value
of u. For every u, locate these boxes above and below the spring. The
springPlot procedure then makes a sphere and translates it to locations
above the top box with the height varying with a parameter. It produces
the entire animation by organizing a sequence of positions and showing
them in sequence by using display.

> springPlot := proc(n)
> local u, curve, springs, box, tops, bottoms,
> helix, ball, balls;
> curve := (u,v) -> spacecurve(
> [cos(t), sin(t), 8*sin(u/v*Pi)*t/200],
> t=0..20*Pi,

5.8 Animation • 307

> color=black, numpoints=200, thickness=3):
> springs := display([seq(curve(u,n), u=1..n)],
> insequence=true):
> box := cuboid([-1,-1,0], [1,1,1], color=red):
> ball := sphere([0,0,2], grid=[15, 15], color=blue):
> tops := display([seq(
> translate(box, 0, 0, sin(u/n*Pi)*4*Pi/5),
> u=1..n)], insequence=true):
> bottoms := display([seq(translate(box, 0, 0, -1),
> u=1..n)], insequence=true):
> balls := display([seq(translate(ball, 0, 0,
> 4*sin((u-1)/(n-1)*Pi) + 8*sin(u/n*Pi)*Pi/10),
> u=1..n)], insequence=true):
> display(springs, tops, bottoms, balls,
> style=patch, orientation=[45,76],
> scaling=constrained);
> end proc:

The code in the springPlot procedure uses the short names of com-
mands from the plots and plottools packages to improve readability. In
general, it is recommended that you use long names. To use this version of
the springPlot procedure, you must first load the plots and plottools

packages.

> with(plots): with(plottools):
> springPlot(6);
> display(springPlot(6));

For information on the commands in the plottools package related
to graphics procedures, see 5.5 Programming with the plottools

Package.

308 • Chapter 5: Programming with Maple Graphics

5.9 Programming with Color

You can color each type of object in plot data structures, and add colors
to plotting routines. The color option allows you to use a:

• Solid color by specifying a name, RGB value, or HUE value

• Color function by specifying a Maple formula or function

Try the following commands (output not shown).

> plot3d(sin(x*y), x=-3..3, y=-3..3, color=red);
> plot3d(sin(x*y), x=-3..3, y=-3..3,
> color=COLOUR(RGB, 0.3, 0.42, 0.1));

> p := (x,y) -> sin(x*y):
> q := (x,y) -> if x < y then 1 else x - y end if:

> plot3d(p, -3..3, -3..3, color=q);

Although usually less convenient, you can also specify the color at-
tributes at the lower level of graphics primitives. At the lowest level, you
can color a graphical object by including a COLOUR function as one of the
options inside the object.

> PLOT(POLYGONS([[0,0], [1,0], [1,1]],
> [[1,0], [1,1], [2,1], [2,0]],
> COLOUR(RGB, 1/2, 1/3, 1/4)));

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

You can use different colors for each polygon by using

PLOT(POLYGONS(P1, ... , Pn ,

COLOUR(RGB, p1, ..., pn)))

or

5.9 Programming with Color • 309

PLOT(POLYGONS(P1, COLOUR(RGB, p1)), ... ,

POLYGONS(Pn, COLOUR(RGB, pn)))

For example, the following two PLOT structures represent the same
picture of a red and a green triangle.

> PLOT(POLYGONS([[0,0], [1,1], [2,0]],
> COLOUR(RGB, 1, 0, 0)),
> POLYGONS([[0,0], [1,1], [0,1]],
> COLOUR(RGB, 0, 1, 0)));

> PLOT(POLYGONS([[0,0], [1,1], [2,0]],
> [[0,0], [1,1], [0,1]],
> COLOUR(RGB, 1, 0, 0, 0, 1, 0)));

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

The three RGB values must be numbers between 0 and 1.

Generating Color Tables
The following procedure generates an m× n color table of RGB values.

Example 1 The colormap procedure returns a sequence of two elements:
a POLYGONS structure and a TITLE.

> colormap := proc(m, n, B)
> local i, j, points, colors, flatten;
> # points = sequence of corners for rectangles
> points := seq(seq(evalf(
> [[i/m, j/n], [(i+1)/m, j/n],
> [(i+1)/m, (j+1)/n], [i/m, (j+1)/n]]
>), i=0..m-1), j=0..n-1):
> # colors = listlist of RGB color values
> colors := [seq(seq([i/(m-1), j/(n-1), B],
> i=0..m-1), j=0..n-1)] ;
> # flatten turns the colors listlist into a sequence
> flatten := a -> op(map(op, a));
> POLYGONS(points,
> COLOUR(RGB, flatten(colors))),
> TITLE(cat("Blue=", convert(B, string)));

310 • Chapter 5: Programming with Maple Graphics

> end proc:

The following is a 10× 10 table of colors; the blue component is 0.

> PLOT(colormap(10, 10, 0));

Blue=0

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Using Animation
You can use animation to vary the blue component of the previous table.

Example 2 The following colormaps procedure uses animation to gen-
erate an m× n× f color table.

> colormaps := proc(m, n, f)
> local t;
> PLOT(ANIMATE(seq([colormap(m, n, t/(f-1))],
> t=0..f-1)),
> AXESLABELS("Red", "Green"));
> end proc:

For example, the following function produces a 10×10×10 color table
(not shown).

> colormaps(10, 10, 10);

You can create a color scale for HUE coloring as follows.

> points := evalf(seq([[i/50, 0], [i/50, 1],
> [(i+1)/50, 1], [(i+1)/50, 0]],
> i=0..49)):

> PLOT(POLYGONS(points, COLOUR(HUE, seq(i/50, i=0..49))),
> AXESTICKS(DEFAULT, 0), STYLE(PATCHNOGRID));

5.9 Programming with Color • 311

0.2 0.4 0.6 0.8 1

The AXESTICKS(DEFAULT, 0) specification eliminates the axes label-
ing along the vertical axis but leaves the default labeling along the hori-
zontal axis.

You can create a colormapHue procedure that creates the color scale
for any color function based on HUE coloring.

> colormapHue := proc(F, n)
> local i, points;
> points := seq(evalf([[i/n, 0], [i/n, 1],
> [(i+1)/n, 1], [(i+1)/n, 0]]
>), i=0..n-1):
> PLOT(POLYGONS(points,
> COLOUR(HUE, seq(evalf(F(i/n)), i=0.. n-1))),
> AXESTICKS(DEFAULT, 0), STYLE(PATCHNOGRID));
> end proc:

The basis of this color scale is y(x) = sin(πx)/3 for 0 ≤ x ≤ 40.

> colormapHue(x -> sin(Pi*x)/3, 40);

0.2 0.4 0.6 0.8 1

To create the grayscale coloring, use an arbitrary procedure, F , be-
cause gray levels have equal parts of red, green, and blue.

> colormapGraylevel := proc(F, n)
> local i, flatten, points, grays;

312 • Chapter 5: Programming with Maple Graphics

> points := seq(evalf([[i/n, 0], [i/n, 1],
> [(i+1)/n, 1], [(i+1)/n, 0]]),
> i=0..n-1):
> flatten := a -> op(map(op, a));
> grays := COLOUR(RGB, flatten(
> [seq(evalf([F(i/n), F(i/n), F(i/n)]),
> i=1.. n)]));
> PLOT(POLYGONS(points, grays),
> AXESTICKS(DEFAULT, 0));
> end proc:

The identity function, x 7→ x, yields the basic gray scale.

> colormapGraylevel(x->x, 20);

0.2 0.4 0.6 0.8 1

Adding Color Information to Plots
You can add color information to an existing plot data structure.

Example 3 The procedure addCurvecolor colors each curve in a CURVES
function via the scaled y coordinates.

> addCurvecolor := proc(curve)
> local i, j, N, n , M, m, curves, curveopts, p, q;
>
> # Get existing point information.
> curves := select(type, [op(curve)],
> list(list(numeric)));
> # Get all options but color options.
> curveopts := remove(type, [op(curve)],
> { list(list(numeric)),
> specfunc(anything, COLOR),
> specfunc(anything, COLOUR) });
>
> # Determine the scaling.
> # M and m are the max and min of the y-coords.
> n := nops(curves);
> N := map(nops, curves);
> M := [seq(max(seq(curves[j][i][2],
> i=1..N[j])), j=1..n)];
> m := [seq(min(seq(curves[j][i][2],

5.9 Programming with Color • 313

> i=1..N[j])), j=1..n)];
> # Build new curves adding HUE color.
> seq(CURVES(seq([curves[j][i], curves[j][i+1]],
> i=1..N[j]-1),
> COLOUR(HUE, seq((curves[j][i][2]
> - m[j])/(M[j] - m[j]),
> i=1..N[j]-1)),
> op(curveopts)), j=1..n);
> end proc:

For example:

> c := CURVES([[0,0], [1,1], [2,2], [3,3]],
> [[2,0], [2,1], [3,1]]);

c := CURVES([[0, 0], [1, 1], [2, 2], [3, 3]],

[[2, 0], [2, 1], [3, 1]])

> addCurvecolor(c);

CURVES([[0, 0], [1, 1]], [[1, 1], [2, 2]], [[2, 2], [3, 3]],

COLOUR(HUE , 0,
1

3
,
2

3
)),CURVES([[2, 0], [2, 1]],

[[2, 1], [3, 1]], COLOUR(HUE , 0, 1))

To apply the new coloring to a plot, map the addCurvecolor proce-
dure over all the CURVES objects of an existing plot structure.

> addcolor := proc(aplot)
> local recolor;
> recolor := x -> if op(0,x)=CURVES then
> addCurvecolor(x)
> else x end if;
> map(recolor, aplot);
> end proc:

Try addcolor on a plot of sin(x) + cos(x).

> p := plot(sin(x) + cos(x), x=0..2*Pi,
> linestyle=2, thickness=3):
> addcolor(p);

314 • Chapter 5: Programming with Maple Graphics

–1

–0.5

0

0.5

1

1 2 3 4 5 6
x

If you specify color for two curves in the same display, the two colorings
are independent.

> q := plot(cos(2*x) + sin(x), x=0..2*Pi):
> addcolor(plots[display](p, q));

–2

–1.5

–1

–0.5

0

0.5

1

1 2 3 4 5 6x

The addcolor procedure also works on 3-D space curves.

> spc := plots[spacecurve]([cos(t), sin(t), t], t=0..8*Pi,
> numpoints=100, thickness=2, color=black):
> addcolor(spc);

5.9 Programming with Color • 315

You can alter the coloring of an existing plot by using coloring func-
tions. Coloring functions must be of the form CHue:R

2 → [0, 1] (for Hue
coloring) or of the form CRGB:R

2 → [0, 1]× [0, 1]× [0, 1] (for RGB color-
ing).

Example 3 uses the color function CHue(x, y) = y/max(yi).

Creating A Chess Board Plot
Example 4 shows how to make a chess board type grid with red and white
squares in a 3-D plot.

Note: Do not simply assign a coloring function as an argument to
plot3d. A coloring function, in such a case, provides colors for the vertices
of the grid instead of the color patches.

Example 4 You must first convert the grid or mesh to polygonal form.
The remainder of the procedure assigns either a red or white color to a
polygon, depending on which grid area it represents.

> chessplot3d := proc(f, r1, r2)
> local m, n, i, j, plotgrid, p, opts, coloring, size;
>
> # obtain grid size
> # and generate the plotting data structure
> if hasoption([args[4..nargs]], grid, size) then
> m := size[1];
> n := size[2];
> else # defaults
> m := 25;
> n := 25;
> end if;
>
> p := plot3d(f, r1, r2, args[4..nargs]);
>
> # convert grid data (first operand of p)
> # into polygon data
> plotgrid := op(convert(op(1, p), POLYGONS));
> # make coloring function - alternating red and white
> coloring := (i, j) -> if modp(i-j, 2)=0 then
> convert(red, colorRGB)
> else
> convert(white, colorRGB)
> end if;
> # op(2..-1, p) is all the operands of p but the first
> PLOT3D(seq(seq(POLYGONS(plotgrid[j + (i-1)*(n-1)],
> coloring(i, j)),
> i=1..m-1), j=1..n-1),
> op(2..-1, p));
> end proc:

316 • Chapter 5: Programming with Maple Graphics

The following is a chess board plot of sin(x) sin(y).

> chessplot3d(sin(x)*sin(y), x=-Pi..Pi, y=-Pi..Pi,
> style=patch, axes=frame);

–3
–2

–1
0

1
2

3

x

–3
–2

–1
0

1
2

3

y

–1
–0.5

0
0.5

1

Note: The chessplot3d procedure works when the plot structure from
plot3d is of GRID or MESH output type. The MESH output type is used for
parametric surfaces or surfaces that use alternate coordinate systems, for
example,

> chessplot3d((4/3)^x*sin(y), x=-1..2*Pi, y=0..Pi,
> coords=spherical, style=patch,
> lightmodel=light4);

5.10 Conclusion

In this chapter, you have learned how to make graphics procedures based
on the plot and plot3d commands, as well as the commands found in the
plots and plottools packages. However, for greater control, you must
create PLOT and PLOT3D data structures directly; these are the primitive

5.10 Conclusion • 317

specifications of all Maple plots. Inside PLOT data structures, you can
specify, for example, point, curve, and polygon objects. Inside PLOT3D

data structures, you can specify the objects used in PLOT structures as
well as, for example, grids of values and meshes of points. You have also
learned how to handle plot options, create numerical plotting procedures,
work with grids and meshes, manipulate plots and animations, and apply
non-standard coloring to graphics.

318 • Chapter 5: Programming with Maple Graphics

6 Advanced Connectivity

In This Chapter
• Code Generation

• External Calling: Using Compiled Code in Maple

• OpenMaple: Using Maple in Compiled Code

Code Generation
The CodeGeneration package provides utilities for translating Maple code
into other programming languages such as C, Fortran, Java, MATLAB,
and Visual Basic r©. The resulting code can be compiled and used inde-
pendent of Maple.

External Calling: Using Compiled Code in Maple
Compiled code can be seamlessly integrated into Maple. Maple can ex-
ecute functions written in C, Fortran, or Java, passing parameters and
returning values as if the external function were a native Maple pro-
cedure. Using compiled code truly extends the Maple kernel. The kernel
extension must be reliable because it can affect the entire Maple program.

OpenMaple: Using Maple in Compiled Code
Maple can be used by compiled C or C++ code using OpenMapleTM. The
OpenMaple Application Programming Interface (API) provides access to
Maple algorithms and data structures.

6.1 Code Generation

The CodeGeneration Package

Conversion of Maple code to other programming languages can be per-
formed using the CodeGeneration package. Translators to several pro-

319

320 • Chapter 6: Advanced Connectivity

gramming languages are available. For a complete list, refer to ?Code-
Generation. You can use the Maple symbolic environment to develop a
numeric algorithm, and then translate it to another language for inclusion
in an existing program or for faster execution. To perform a translation to
one of the supported languages, use the CodeGeneration package function
of the same name, or the context-sensitive menu options in the worksheet
environment. You can also extend the predefined translators or create
translators for other programming languages.

Important: You may be familiar with the C and fortran functions
in the codegen package. It is recommended that you use the newer
CodeGeneration package instead. However, the codegen package also
contains a number of support functions not currently available in the
CodeGeneration package, which can be used to preprocess the Maple
input before translation with the CodeGeneration functions.

Calling CodeGeneration Functions

Call the CodeGeneration functions using the following syntax, where L
is one of the supported languages, for example, C.

CodeGeneration[L](expression, options)

The expression can take one of the following forms.

• A single algebraic expression: Maple generates a statement in the
target language assigning this expression to a variable.

• A list of equations of the form name=expression : Maple interprets
this as a sequence of assignment statements. Maple generates the
equivalent sequence of assignment statements in the target language.

• A list, array, or rtable: Maple generates a statement or sequence of
statements assigning the elements to an array in the target language.

• A Maple procedure or module: Maple generates an equivalent struc-
ture in the target language. For example, to translate a procedure
to C, Maple generates a function along with any necessary directives
for library inclusion. To translate a module to Java, Maple gener-
ates a Java class declaration with exports translated to public static
methods and module locals translated to private static methods. For
detailed information on translation to a specific language, refer to the
help pages for that language, for example, ?CodeGeneration[C] and
?CodeGeneration/General/CDetails.

6.1 Code Generation • 321

You can use many options with the CodeGeneration functions. For
detailed information, refer to the ?CodeGenerationOptions help page.
Some of the more commonly used options follow.

• optimize=value: This option specifies whether optimization is per-
formed. The default value is false. When the value is true, the
codegen[optimize] function is used to optimize the Maple code be-
fore it is translated.

• output=value: This option specifies the form of the output. By de-
fault, formatted output is printed to the terminal. If a name (different
from the name string) or a string is specified as the value, the result
is appended to a file of that name. If the value is the name string,
a string containing the result is returned. This string can then be
assigned and manipulated.

• reduceanalysis=value: This option specifies whether a reduced
form of type analysis is performed in the case that the Maple in-
put is a list of equations representing a computation sequence. Us-
ing the default value, reduceanalysis=false, can reduce the num-
ber of type mismatches in the translated code. However, using the
reduceanalysis=true option can significantly reduce the time and
memory required for translation.

Notes on Code Translation Because the Maple language differs sub-
stantially from the target languages supported by CodeGeneration, the
translation capabilities are limited, and the generated output may not be
the exact equivalent of the input code. The ?CodeGenerationDetails

help page provides more information on the translation process and
hints on how to take full advantage of the facilities. In addition, there
are help pages containing notes relevant to specific languages. For de-
tails refer to the help pages for the corresponding language, for example,
?CodeGeneration/General/CDetails.

Translation Process
The CodeGeneration functions recognize only a subset of the Maple
types. These are listed on the ?CodeGenerationDetails help page. The
Maple types are translated to appropriate types in the target language.
Compatibility of types is checked before operations are translated, and
type coercions are performed if necessary. The CodeGeneration func-
tions attempt to deduce the type of any untyped variable. You can
exercise greater control over type analysis and deduction by using the

322 • Chapter 6: Advanced Connectivity

coercetypes, declare, deducetypes and defaulttype options, as de-
scribed on the ?CodeGenerationOptions help page.

The CodeGeneration functions can translate a subset of the Maple
functions. These are listed on the ?CodeGenerationDetails help page.
Some functions are translated only to certain target languages. For more
information about a specific language, refer to its detailed help page, for
example, ?CodeGeneration/General/CDetails.

The return type of a procedure is deduced if you do not declare it.
If more than one return statement is present, the types of all objects
returned must be compatible in the target language. If a return statement
contains a sequence of objects, the sequence is translated to an array.
Implicit returns are recognized in some situatiions, but translations to
explicit returns can be suppressed with the deducereturn=false option.
When necessary, an automatically generated return variable is used to
hold a return value.

Lists, Maple objects of type array, and rtables are translated to arrays
in the target language. Type analysis and deduction capabilities with
respect to arrays are very limited. It is recommended that you declare
the type and ranges for all arrays. In some target languages, arrays are
reindexed to begin at index 0.

Example 1 The following example demonstrates the translation of a
procedure to Java.

> f := proc(x)
> local y;
> y := ln(x)*exp(-x);
> printf("The result is %f", y);
> end proc:
> CodeGeneration[Java](f);

import java.lang.Math;

class CodeGenerationClass {
public static void f (double x)
{

double y;
y = Math.log(x) * Math.exp(-x);
System.out.print("The result is " + y);

}
}

Example 2 The following example demonstrates the translation of a
procedure to C. The defaulttype option sets the default type to integer,

6.1 Code Generation • 323

and the output option specifies that a string is returned. In this case, the
output is assigned to the variable s.

> g := proc(x, y, z)
> return x*y-y*z+x*z;
> end proc:
> s := CodeGeneration[‘C‘](g, defaulttype=integer, output=string);

s := “int g (int x, int y, int z)\
{\
return(x * y - y * z + x * z);\

}\
”

Example 3 The following example demonstrates the translation of a
procedure to Fortran. Because Fortran 77 is case-insensitive, the variable
X is renamed to avoid a conflict with the variable x.

> h := proc(X::numeric, x::Array(numeric, 5..7))
> return X+x[5]+x[6]+x[7];
> end proc:
> CodeGeneration[Fortran](h);

Warning, The following variable name replacements were
made: [cg] = [X]

doubleprecision function h (cg, x)
doubleprecision cg
doubleprecision x(5:7)
h = cg + x(5) + x(6) + x(7)
return

end

The Intermediate Code All Maple input to CodeGeneration transla-
tors is processed and converted to an inert intermediate form known as the
intermediate code. The intermediate code is the basic object upon which
all CodeGeneration translators operate. For information about the inter-
mediate code, refer to ?CodeGeneration/General/IntermediateCodeStructure.

The names appearing in intermediate code expressions are members
of the subpackage CodeGeneration:-Names.

Error and warning messages issued from CodeGeneration package
functions sometimes refer to the intermediate form of the Maple expres-
sion that triggered the message.

When determining the cause of an error message or writing and debug-
ging custom language definitions, it is recommended that you determine

324 • Chapter 6: Advanced Connectivity

the intermediate form of a Maple expression input. In general you can de-
termine the intermediate form with the CodeGeneration:-IntermediateCode
translator. However, because some aspects of the intermediate code are
specific to the language to which you are translating, it may help to see
the intermediate code for a specific translator. This can be done by setting
infolevel[CodeGeneration] to a value greater than 3 and performing
a translation.

Example 4 shows the intermediate code for the expression 2x2 − 1.
The first argument of the Scope structure is the name of a type table
used internally during the translation process.

Example 4 The following example shows the intermediate form of the
expression 2x2 − 1.

> CodeGeneration[IntermediateCode](2*x^2-1);

Scope(nametab,
StatementSequence(

Assignment(GeneratedName("cg"), Sum(Product(Integer(2),
Power(Name("x"), Integer(2))), Negation(Integer(1))))

)
)

Extending the CodeGeneration Translation Facilities
The CodeGeneration package is distributed with translators for sev-
eral programming languages. In addition, you can define new transla-
tors to enable CodeGeneration to generate code for other languages.
Tools for this task are available in the LanguageDefinition subpack-
age of CodeGeneration.

Custom translators can define a language in its entirety, or extend ex-
isting language definitions, overriding and extending only those language
components that need to be changed.

To see a list of languages currently recognized by CodeGeneration,
and thus available for extending, use the
CodeGeneration:-LanguageDefinition:-ListLanguages command.

The Printing Phase As noted previously, the CodeGeneration package
first processes the Maple input and translates it to an intermediate form.
This is followed by the printing phase, which translates the intermediate
form to a Maple string according to transformation rules specific to the
target language.

For each name used in the intermediate form, there is a print handler
procedure. During the printing phase, Maple traverses the intermediate

6.1 Code Generation • 325

form recursively. For each subexpression of the intermediate form, Maple
calls the print handler associated with that class of expressions.

Defining a Custom Translator
This section explains the process of defining a translator for a target
language.

Using a Printer Module With each CodeGeneration language defini-
tion there is an associated Maple module, called a Printer module, which
contains language-specific print handlers and data. A Printermodule has
a number of functions, which set and reference language-specific printing
data.

There are two ways to obtain a Printer module. The
LanguageDefinition:-GenericPrinter() returns a generic Printer

module containing no language-specific data, and the
LanguageDefinition:-Get(language_name):-Printer command returns
a copy of the Printer module used for a previously defined language
language_name.

The most frequently-used Printer package function is the Print com-
mand. Given a string, Print prints the string to a buffer. Given an
intermediate-form expression, Print invokes the print handler appro-
priate for the expression. In this manner, Print recurses through the
intermediate form until it is printed in its entirety to the buffer. At this
point, translation is complete.

Table 6.1 lists important Printer functions. For a complete listing and
more detailed information, refer to
?CodeGeneration/LanguageDefinition/Printer.

Example 5 This example illustrates how data is stored and retrieved
from a Printer module.

> with(CodeGeneration:-LanguageDefinition):
> Printer := GenericPrinter();

326 • Chapter 6: Advanced Connectivity

Table 6.1 Select Printer Functions

AddFunction Define a translation for a function name and type
signature

AddOperator Define a translation for a unary or binary operator
AddPrintHandler Set a procedure to be the print handler for an

intermediate form name
GetFunction Get a translation for a function name and type

signature
GetOperator Get a translation for a unary or binary operator
GetPrintHandler Get the current ‘print handler’ procedure for an

intermediate form name
Indent Indent a printed line when supplied as an

argument to Print

Print Print arguments to buffer
PrintTarget Initiate printing of an intermediate form

Printer := module()

exportPrintTarget , GetFunctionSignature , AddLibrary ,

AddOperator , GetOperator , AddType , GetType ,

AddPrintHandler , GetPrintHandler ,

SetLanguageAttribute , ApplyLanguageAttribute ,

GetLanguageAttribute , AddFunction, AddFunctions ,

GetFunction, SetPrecedence , GetPrecedence ,

GetIncludes , GetExpressionType , GetScopeName ,

GetScopeStructure , Indent , PopIndentation,

PushIndentation, Endline , Linebreak , Print ,

PrintBinary , PrintParentheses , PrintStatementBlock ,

PrintDelimitedList , PrintUnary ;
. . .

end module
> Printer:-AddOperator(Addition = "+");

“+”

> Printer:-AddFunction("sin", [numeric]::numeric, "sine");

[“sine”, {}]

6.1 Code Generation • 327

> Printer:-GetOperator(Addition);

“+”

> Printer:-GetFunction("sin", [numeric]::numeric);

[“sine”, {}]

Within a language definition, the Printer module associated with
the language definition can be referenced by the name Printer. (Note:
This applies for both language definition methods described in the next
section.)

Language Translator Definition There are two distinct methods of
defining a language translator for use by CodeGeneration: using the
LanguageDefinition:-Define command and creating a language defi-
nition module.

For simple languages or small extensions of existing languages, use
the LanguageDefinition:-Define method. To produce a translator that
preprocesses or postprocesses the generated output, or makes frequent use
of a utility function in translations, create a language definition module.

Note: The translators supplied with the CodeGeneration package, for
example, C, VisualBasic, and Java, are implemented using language def-
inition modules.

Using the Define command The Define command takes a series of
function call arguments f1, f2, ... where the function names are, for
example, AddFunction, AddFunctions, AddOperator, AddPrintHandler,
AddType, and SetLanguageAttribute.

These function calls accept identical syntax and perform the same
actions as the Printer functions of the same name. That is, they define
print handlers and other data specific to the language translation you
are defining. For more information on their purpose and accepted syntax,
refer to ?CodeGeneration/LanguageDefinition/Printer.

Note: The Define command automatically creates a Printer module
for the language. You do not need to create one using
LanguageDefinition:-GenericPrinter or LanguageDefinition:-Get.

328 • Chapter 6: Advanced Connectivity

Example 6 This example illustrates a C translator, in which the trans-
lated code uses a specialized library function my_mult for multiplication
instead of the built-in * operator.

> CodeGeneration:-LanguageDefinition:-Define("MyNewLanguage",
> extend="C",
> AddPrintHandler(
> CodeGeneration:-Names:-Product = proc(x,y)
> Printer:-Print("mymult(", args[1], ", ", args[2],
> ")");
> end proc
>)
>):

Note: In the previous example, one of the arguments of the
LanguageDefinition:-Define command is the function call
AddPrintHandler, which takes a name and a procedure as arguments.
This makes the supplied procedure responsible for printing any Product

subexpression of the intermediate form. The call to Printer:-Print spec-
ifies that the translator uses the automatically-generated Printer mod-
ule.

Example 7 This example defines a language MyLanguage. It specifies,
among other instructions, that the addition operation should be trans-
lated as plus, the multiplication operation as times, and the assignment
operation as :=. Once defined, the translator is used to convert a simple
Maple expression to MyLanguage.

> CodeGeneration:-LanguageDefinition:-Define("MyLanguage",
> AddOperator(
> CodeGeneration:-Names:-Addition = "plus",
> CodeGeneration:-Names:-Division = "divided by",
> CodeGeneration:-Names:-Multiplication = "times",
> CodeGeneration:-Names:-Negation = "-",
> CodeGeneration:-Names:-Subtraction = "minus"
>),
> SetLanguageAttribute(
> "Indent_Char" = " ", "Indent_Base"=2, "Indent_Increment"=2
>),
> AddOperator(CodeGeneration:-Names:-Assignment = ":=")
>);
> CodeGeneration:-Translate(-x+y*z, language="MyLanguage");

cg0 := -x plus y times z;

6.1 Code Generation • 329

Example 8 This example extends the C translator to translate Maple
print statements to C++-style cout commands.

> CodeGeneration:-LanguageDefinition:-Define("MyExtensionLanguage",
> extend="C",
> AddFunction("print", anything::void,
> proc(x)
> Printer:-Print("cout << ");
> Printer:-PrintDelimitedList([args], " << ");
> Printer:-Print(" << endl");
> end proc
>)
>);
> p1 := proc() print("abcde") end proc:
> CodeGeneration:-Translate(p1, language="MyExtensionLanguage");

void p1 (void)
{

cout << "abcde" << endl;
}

Creating a Language Definition Module A language definition module
is a Maple module with exports PrintTarget and Printer. The module
exports must satisfy the following criteria.

• Printer - A Printermodule, that is, either a generic Printermodule
returned by CodeGeneration:-LanguageDefinition:-GenericPrinter
or a Printer module obtained from another language definition mod-
ule using LanguageDefinition:-Get("language_name"):-Printer.

• PrintTarget - Returns a string, the translated output. In most cases,
PrintTarget simply calls Printer:-PrintTarget.

The body of the module definition must contain a sequence of calls
to Printer functions that define language-specific data and utility proce-
dures.

Once defined, a language definition module can be added to to the set
of languages recognized by CodeGeneration by using the
CodeGeneration:-LanguageDefinition:-Add command.

Note: When creating your language definition module, you must delay
the evaluation of the module by using single quotes before adding it using
LanguageDefinition:-Add. That is, the language definition module must
be added as a module definition, not as a module.

330 • Chapter 6: Advanced Connectivity

Example 9 This example adds a definition module. Note the use of
delayed-evaluation quotes around the module definition.

> UppercaseFortran77 := ’module()
> export Printer, PrintTarget;
> Printer := eval(CodeGeneration:-LanguageDefinition:-Get(
> "Fortran")):-Printer;
> PrintTarget := proc(ic, digits, prec, func_prec, namelist)
> Printer:-SetLanguageAttribute("Precision" = prec);
> StringTools:-UpperCase(Printer:-PrintTarget(args));
> end proc:
> end module’:
> CodeGeneration:-LanguageDefinition:-Add("UppercaseFortran",
> UppercaseFortran77);

Using a New Translator After adding the definition of the language us-
ing either the LanguageDefinition:-Define or LanguageDefinition:-Add
commands, translate to the new language using the CodeGeneration:-Translate
command.

Example 10 This example demonstrates the use of a new translator.
Compare the output of the Fortran command with that of the new trans-
lator.

> p1 := proc() sin(x+y*z)+trunc(x); end proc:
> CodeGeneration:-Fortran(p1);

doubleprecision function p1 ()
p1 = sin(x + y * z) + dble(int(aint(x)))
return

end

> CodeGeneration:-Translate(p1, language="UppercaseFortran");

DOUBLEPRECISION FUNCTION P1 ()
P1 = DSIN(X + Y * Z) + DBLE(INT(DINT(X)))
RETURN

END

6.2 External Calling: Using Compiled Code in
Maple

The following three calling methods are presented in this section.

6.2 External Calling: Using Compiled Code in Maple • 331

• Calling External Functions

• Generating Wrappers

• Customizing Wrappers

Any of the following three methods can be used to call an external
function. Typically, method 1 is sufficient. Methods 2 and 3 can be used
when more control over type conversions or greater access to Maple data
structures is needed. Each method builds upon the previous one. When
considering method 3, read about methods 1 and 2 first.

Method 1: Calling External Functions In most cases, compiled func-
tions use only standard hardware types like integers, floating-point num-
bers, strings, pointers (to strings, integers, and floating-point numbers),
matrices, and vectors. In these cases, the Maple software automatically
translates between its internal representation and the hardware represen-
tation. This method is efficient and easy to use because it does not require
the use of a compiler. This method of directly calling the external code
allows the use of an external library without modification.

Method 2: Generating Wrappers Method 1 can use only standard data
types. When dealing with complicated compound types or passing func-
tions or records as parameters, a compiled wrapper is needed. Java and
Fortran do not use these data structures; this method applies only to C
routines. The wrapper performs the conversion between the Maple inter-
nal representation and the hardware representation. Maple automatically
generates and compiles wrappers (based on your specifications) to inter-
face with libraries of compiled code. Compared to directly calling the
external function, you can use a more diverse set of external libraries.
External calls that use these wrappers require a C compiler.

Method 3: Customizing Wrappers For flexibility beyond the other
methods, an external API allows you to augment existing wrappers or
write custom wrappers . You can write the wrapper in C or Fortran.
This powerful method also allows direct access to Maple data structures
from the wrapper.

Calling Methods Summary

• Any of the methods(1 - 3) can be used to call a C function.

• Methods 1 or 3 can be used to call a Fortran function. Method 2 is
not applicable to Fortran functions.

332 • Chapter 6: Advanced Connectivity

• Only method 1 is available for calling a Java method (Only static
methods can be called).

Method 1: Calling External Functions
To understand the Maple external calling facility, consider the following
C code that adds two numbers and returns the result. Note that such a
function would never be used because the Maple + operator exists, but
working through this example demonstrates the steps required to use
compiled code in Maple.

int add(int num1, int num2)

{

return num1+num2;

}

There are 3 basic steps required to call an external function.

Step 1: DLL Creation First, this function must be compiled into a Dy-
namic Link Library (Windows XXX.DLL), or Shared Library (UNIX
libXXX.so or Macintosh XXX.dylib). For the rest of this chapter, the
compiled library is referred to as a DLL. If the sources are downloaded
from the internet or purchased, a DLL may already have been built. Oth-
erwise, consult the compiler’s documentation for help on how to build a
DLL. When building the DLL, ensure that you export the function that
Maple is intended to be able to call. In this case, the function name is
add.

This is the only step that requires the user to have knowledge of
a specific compiler. For the remaining steps, it does not matter if the
function was written in C, Fortran, or Java.

For Maple, the external library functions must be compiled by using
the _stdcall calling convention, which is the default under UNIX but
must be specified when using most Windows compilers.

Step 2: Function Specification To make the appropriate argument con-
versions, Maple requires information about the function that it calls. At
a minimum, Maple requires the following.

• Name of the function

• Type of parameters the function passes and returns

• Name of the DLL containing the function

The specification of the parameter types are independent of the com-
piler. The same specification can be used regardless of the language used

6.2 External Calling: Using Compiled Code in Maple • 333

to compile the DLL. The example uses the C type int. In Maple, this is
specified as integer[4]. The 4 in the square brackets denotes the number
of bytes used to represent the integer. Most C compilers use 4-byte ints,
but some older compilers may use 2-byte ints. The Maple type specifica-
tion supports both types of compiler integer sizes. For a map of the most
common type relations, see Table 6.2 on page 336.

Since num1 and num2 are both ints, they can be specified as the fol-
lowing in Maple.

num1::integer[4]

num2::integer[4]

The return type does not have a name so the keyword RETURN is used.

RETURN::integer[4]

Using all of this information, the complete function can be defined by
calling the Maple function define_external.

> myAdd := define_external(
> ’add’,
> ’num1’::integer[4],
> ’num2’::integer[4],
> ’RETURN’::integer[4],
> ’LIB’="mylib.dll"
>);

Important: Specify the function exactly, and ensure that the arguments
are in the correct order. Failure to do this may result in strange behavior
or program crashes when executing Step 3.

Step 3: Function Invocation Executing the define_external call for
myAdd returns a Maple procedure that translates Maple types to hardware
types that can work with an external function. This procedure can be used
the same way as other Maple procedures.

> myAdd(1,2);

3

> a := 33:
> b := 22:

334 • Chapter 6: Advanced Connectivity

> myAdd(a,b);

55

> r:= myAdd(a,11);

r := 44

Important: Procedures generated in this manner contain run-time infor-
mation and thus cannot be saved. The define_external command must
be reissued after exiting or restarting Maple.

The following subsections provide additional information for Step 2,
the function specification.

External Definition
The define_external function constructs and returns another function
which can be used to make the actual call. The define_external function
is called as follows.

define_external(functionName, LANGUAGE, arg1::type1, ...,

argN::typeN, options, ‘LIB‘=dllName)

define_external(functionName, ‘MAPLE‘,

options, ‘LIB‘=dllName)

• The functionName parameter specifies the name of the actual external
function to be called. This name can be specified as a Maple string or
name.

• The LANGUAGE parameter denotes the programming language used
to compile the DLL. The default is C. Other recognized languages are
JAVA and FORTRAN.

• The parameters arg1 through argN describe the arguments of the
function to be called. These should be specified in the order they
appear in the documentation or source code for the external func-
tion, without regard to issues such as actual passing order (left to
right versus right to left). The intent is that the Maple procedure
define_external returns has the same calling sequence as the actual

6.2 External Calling: Using Compiled Code in Maple • 335

external function when used in the language for which it was writ-
ten. The only exception is that one argument may be given the name
RETURN. This specifies the type returned by the function rather than
a parameter passed to the function. For more information about how
each argi is specified, see the following Type Specification subsec-
tion.

• The options are used to specify argument passing conventions, li-
braries, or calling methods. For details, see the appropriate sections
of this chapter.

• If instead of the arg parameters, the single word MAPLE is specified, the
external function is assumed to accept the raw Maple data structures
passed without conversion. This assumes that the wrapper has been
manually generated and compiled into a DLL. Various support func-
tions for writing such external functions are described in Method
3: Customizing Wrappers on page 350. Using MAPLE instead of
specifying arguments is the basis of method 3.

• The name of the DLL containing the external function is specified by
using the LIB option to define_external. The dllName is a string
that specifies the filename of the library in which the function is to be
found. The format of this name is highly system dependent. Likewise,
whether a full pathname is required depends on the system. In general,
the name should be in the same format as would be specified to a
compiler on the same system. When calling a Java method, dllName
is the name of the class containing the method.

Type Specification
Step two of the introductory example indicated how to specify types using
Maple notation. Maple uses its own notation to provide a generic well-
defined interface for calling compiled code in any language.

The format of each arg parameter is as follows.

argumentIdentifier :: dataDescriptor

The return value description is also described by using a data de-
scriptor, with the name RETURN as the argumentIdentifier. If the function
returns no value, no RETURN parameter is specified. Also, if no parameters
are passed, no argument identifiers are required.

336 • Chapter 6: Advanced Connectivity

Table 6.2 Basic Type Translations

Maple Data C Type Fortran Type Java Type
Descriptor
integer[1] char BYTE byte

integer[2] short INTEGER*2 short

integer[4] int INTEGER int

long1 INTEGER*4

integer[8] long1 INTEGER*8 long

long long INTEGER*8

float[4] float REAL float

REAL*4

float[8] double DOUBLE PRECISION double

REAL*8

char[1] char CHARACTER char

boolean[1] char LOGICAL*1 boolean

boolean[2] short LOGICAL*2

boolean[4] int LOGICAL

long LOGICAL*4

boolean[8] long LOGICAL*8

long long LOGICAL*8
1 The C type long is typically (but not necessarily) 4-bytes on

32-bit machines and 8-bytes on 64-bit machines. Use the sizeof

operator or consult your compiler manual to verify sizeof(long).

Scalar Data Formats
External libraries generally deal with scalar data supported directly by the
underlying machine. All array, string, and structured formats are built up
from these. The data descriptors used to represent scalar formats usually
contain a type name and size. The size represents the number of bytes
needed to represent the given hardware type. Table 6.2 lists the basic type
translations for standard C, Fortran, and Java compilers.

Structured Data Formats
In addition to the basic types listed in Table 6.2, Maple also recognizes
some compound types that can be derived from the basic types, such as
arrays and pointers. These compound types are listed in Table 6.3 on
page 393.

6.2 External Calling: Using Compiled Code in Maple • 337

Character String Data Formats Strings are similar to both scalar and
array data. A string in C is an array of characters, but it is often manip-
ulated as if it were an object. A string in Maple is an atomic object, but
it can be manipulated as if it were an array of characters.

Parameter n in string[n] indicates that the called function is expecting
a fixed size string. Otherwise, a pointer to a character buffer (char*) is
used.

Strings are implicitly passed by reference (only a pointer to the string
is passed), but any changes made to the string are not copied back to
Maple unless the string is declared with a size. Declaring a size on a
string to be passed to a Java method has no effect. The string size will
not be limited, and modifications are not copied back.

Array Data Formats An array of data is a homogeneous, n-rectangular
structure matching the Maple rtable formats. Any datatype that is ac-
cepted by the Maple Array, Matrix, or Vector constructor are accepted.

The options are used to specify array conventions. They are the same
optional arguments that can be passed to the Array constructor in Maple.
The only significant difference is that indexing functions must be specified
with indfn= (and are not allowed unless using custom wrapper external
calling). These options override any defaults normally assumed by the
Array constructor.

datatype=... Only hardware datatypes are allowed. This field is re-
quired, but the equation form of entry is not necessary. For example,
simply specifying integer[4] is sufficient.

order=... This can be unspecified for vectors because Fortran and C
representation is the same. Otherwise, this defaults to Fortran_order
when calling a Fortran library and C_order when calling a C or Java
library.

storage=... If this is not specified, the default is full rectangular storage

subtype=... This is optional and restricts the subtype to Array, Matrix,
Vector[row], or Vector[column].

indfn=(..., ...) This specifies the indexing functions of the Array, Matrix,
or Vector.

Other Compound Types There are other types, including records
(structs), and procedures that are supported when using wrapper gen-
erated external linking. These data descriptors are described in Method
2: Generating Wrappers on page 338.

338 • Chapter 6: Advanced Connectivity

Specifying Argument Passing Conventions
Different programming languages have different conventions for parameter
passing. C always uses pass-by-value ; pass-by-reference must be done
explicitly by passing an address. Fortran uses pass-by-reference. Pascal
uses either, depending on how the parameter was declared.

The Maple external calling mechanism currently supports C, For-
tran, and Java calling conventions. Automatic wrapper generation is
only supported for C. There is an external API for writing custom wrap-
pers for C and Fortran but not Java. The default convention used is
C. To use Fortran calling, specify the name FORTRAN as a parameter to
define_external.

> f := define_external(‘my_func‘,‘FORTRAN‘, ...);

To use Java calling, specify the name JAVA as a parameter to
define_external. Also, specify the CLASSPATH= option to point to classes
used.

> f := define_external(‘my_func‘,‘JAVA‘, CLASSPATH="...", ...);

Some other compiler implementations (such as Pascal and C++) can
work with C external calling by using the correct definitions and order of
passed parameters.

Method 2: Generating Wrappers
Some types in Maple are not suitable for automatic conversions. Two
of these types are procedures (callbacks), and records (structs). Maple
provides an alternate mechanism for handling this kind of data.

For a description of the steps required to use compiled code in Maple,
see Method 1: Calling External Functions on page 332. The same
three basic steps (DLL creation, function specification, and function in-
vocation as described on pages 332-334) are used in this method. The
information in this section extends the basic information by describing
the use of wrappers.

Specifying the keyword WRAPPER in the call to define_external

causes Maple to generate code for data translations. Maple compiles
this code into a DLL and dynamically links to the new library. Subse-
quently invoking the procedure returned by define_external calls the
newly generated conversion routine before calling the external function in
the library you provided.

The C code generated by Maple wraps the Maple data structures by
translating them to hardware equivalent types. Hence, the code file is

6.2 External Calling: Using Compiled Code in Maple • 339

called the wrapper, and the library generated by this code is called the
wrapper library.

Additional Types and Options
Generating a wrapper file allows Maple to translate more complicated
types that are difficult to handle without compilation technology. It also
allows greater flexibility when dealing with pointers and passed data that
do not exactly match the required type.

Table 6.4 on page 394 lists additional types that are supported when
the keyword WRAPPER is specified.

Structured Data Formats
A structure is a non-homogeneous collection of members, corresponding
to a struct in C, or a record in Pascal. A union is similar, except that
all the members start at the same memory address.

Each member :: descriptor pair describes one member of the structure
or union. The descriptor is any of the types described in this chapter.

The options are used to specify what kind of datatype the wrap-
per should expect for conversion purposes. The following two options are
supported.

TABLE Tables are used as the corresponding Maple type. Using tables
is the default behavior, and they are easier to use than lists. When
tables are used, the member names correspond to table indices.

LIST Lists are used as the corresponding Maple type. Lists are primarily
used in a read-only basis. Lists cannot be modified in-place, so making
updates to a list structure in external code requires a copy to be made.
When structures must be passed back to Maple, or if they contain
pointer types, it is better to use tables.

Lists and tables cannot be used interchangeably. Once the wrapper
has been generated, it accepts only the declared type, not both.

Enumerated Types
The Maple external calling mechanism does not directly support enumer-
ated types (such as enum in C). Instead, use the integer[n] type with
n of an appropriate size to match the size of the enumerated type of the
compiler with which the external function was compiled (usually this is
the same size as the int type).

340 • Chapter 6: Advanced Connectivity

Procedure Call Formats
Some languages, like C, support passing functions as arguments. A Maple
procedure can be passed to an external function in the same way. The
wrapper sets up a C style procedure to call Maple to execute the passed
procedure with the given arguments. This C callback is given to the ex-
ternal call to be used like any other C function.

Each member :: descriptor pair describes one parameter of the proce-
dure. The descriptor is any of the types described in this chapter.

It is not permitted to declare a procedure that itself takes a procedure
parameter. In other words, a callback cannot itself call back to the external
code.

Call by Reference
Unless overridden, each argument is passed by value. The REF modifier
can be used to override this.

argumentIdentifer :: REF(dataDescriptor, options)

The REF modifier can take the following options.

ANYTHING This option must be first in the list of options. Use this
option to declare the equivalent of a C void* parameter. The wrapper
code attempts to convert passed arguments to simple types, (4-byte
integer, 8-byte float, complex, or string), when encountered. If no
conversion to one of these types is possible, NULL is passed to the
external function.

CALL_ONLY This option specifies that although the object is to be
passed by reference, any changes made by the external function are
not written to the Maple symbol that was passed. This can be used
both to protect the objects passed (see the following Array Options
section), and to reduce overhead (as no translation back to Maple
data structures need be made).

RETURN_ONLY This option specifies that no data is actually passed
to the external function. Instead, only a reference to the allocated
space is passed, and the external function is expected to fill the space
with data. The result is converted into an appropriate Maple object.

Array Options
If an ARRAY argument is declared as CALL_ONLY and an Array, Matrix, or
Vector with proper settings is passed to the external function (so that no

6.2 External Calling: Using Compiled Code in Maple • 341

copying is required), CALL_ONLY has no effect and thus does not prevent
the called function from overwriting the original array. To prevent this
from occurring, include the option COPY in the ARRAY descriptor.

The ARRAY descriptor accepts extra options when used with wrapper
generation. These options can be specified as follows.

ARRAY(dim1, ..., dimN, datatype=typename,

order=..., ..., options)

The dim1 through dimN parameters are integer ranges, specifying the
range of each dimension of the array. Any of the upper or lower bounds
may be the name of another argument, in which case the value of that
argument specifies the corresponding array bound at run time.

The options are used to specify how an array is passed. The following
are valid options.

COPY Do not operate in-place on the given array. That is, make a copy
first, and use the copy for passing to and from the external function.

NO_COPY This ensures that a copy of the data is never made. Usually,
when using a wrapper generated external call, if the Array, Matrix, or
Vector is of the wrong type, (say the order is wrong), a copy is made
with the correct properties before passing it to the external function.
Using NO_COPY prevents this. Also, the returned array has the prop-
erties of the copy. If NO_COPY is specified, and an Array, Matrix, or
Vector with incorrect options is passed, an exception is raised. Ar-
rays are always passed by reference. If no options are given (via a REF

descriptor), they are passed by using the CALL_ONLY behavior of REF
with the noted exception described at the beginning of this section.

Non-passed Arguments
Sometimes it is necessary to pass additional arguments to the Maple wrap-
per that should not be passed on to the external function. For example,
consider the following hypothetical C function:

int sum(int *v1, int *v2)

This function takes two integer vectors, v1 and v2, and adds the el-
ements of v2 to v1, stopping when it finds an entry that is zero. The
generated wrapper can be made to verify whether the vectors are the
same size. The Maple definition for this function is as follows.

342 • Chapter 6: Advanced Connectivity

> Sum := define_external(‘sum‘,
> v1 :: ARRAY(1..size,integer[4]),
> v2 :: ARRAY(1..size,integer[4]),
> size :: NO_PASS(integer[4]),
> RETURN :: integer[4],
> LIB="libsum.dll");

The NO_PASS modifier specifies that the size argument should not be
passed to the external function. The Sum function is then called by the
following statement,

> Sum(v1,v2,op(1,v1));

where v1 and v2 are vectors. Maple passes the vector data, or a copy of
the vector data, to the external sum function. It does not pass the size

element to the external function, but size is used for argument checking
(because the NO_CHECK option was not specified).

Note that this option can only be used for top-level arguments. That
is, it is invalid to declare a callback procedure’s arguments as NO_PASS.

Argument Checking and Efficiency Considerations
It is intended that the time and space costs of calling an external function
not be any higher than the costs for calling an equivalent built-in function
with the same degree of argument type checking. The amount of type
checking done by a generated Maple language wrapper exceeds that done
by most internal functions, so there is some additional overhead.

The define_external function has an option NO_CHECK which, if
used, disables the type checking done by the Maple-language wrapper.
For frequently called external functions that perform simple operations
this can significantly improve performance. However, there is a risk asso-
ciated with using the NO_CHECK option. If you pass an object of the wrong
type, the generated C-language wrapper might misinterpret what it has
received, resulting in erroneous translations to external types, and hence
unpredictable behavior of the external function.

Conversions
When the procedure returned by define_external is called, the Maple
arguments that are passed are converted to the corresponding arguments
of the external function. Likewise, the value returned from the external
function is converted to the corresponding Maple type.

The following table describes the external types and the Maple types
that can be converted. The first listed Maple type is the one to which a
result of the corresponding external type is converted into.

6.2 External Calling: Using Compiled Code in Maple • 343

External Type Allowed Maple Type(s)
boolean[n] boolean

integer[n] integer

float[n] float, rational, integer, numeric
complex[n] complex, numeric, float, rational, integer
char[n] one-character string
string[n] string, symbol, 0
ARRAY() Array, Vector, Matrix, name, 0
STRUCT() list, table
UNION() table

PROC() procedure

For STRUCTs, either lists or tables are valid for a particular declaration.
Once declared, only one of the types (a list or a table) is acceptable. They
cannot be used interchangeably unless the wrapper is regenerated. For
UNIONs, only tables are permitted, and the table must contain exactly one
entry when passed (corresponding to one of the members of the union).

If an argument of an incompatible type is passed, an error occurs,
and the external function is not called. Likewise, if a value is passed that
is out of range for the specified type (for example, integer too large), an
error occurs. When passing floating-point values, precision in excess of
that supported by the external type is discarded, provided the magnitude
of the value is within the range of the external type.

Arguments that were declared as REFerences, that is, passed by-
reference, can be passed either a name, a zero, or the declared kind of
Maple expression.

• If a name is passed, it is evaluated, and the value is passed by refer-
ence to the external function. After the external function returns, the
revised value is converted back to the type specified for the argument
and assigned back to the name.

• If the name passed has no value, then either NULL is passed, or a
pointer to newly allocated space for the structure is passed. This be-
havior is determined by the presence or absence of ALLOC in the REF
declaration.

• If a zero is passed, NULL is passed to the external function.

• If any other Maple expression is passed, its value is passed by refer-
ence, and the revised value is discarded.

344 • Chapter 6: Advanced Connectivity

Compiler Options
To compile the wrapper library, Maple requires the use of a C compiler
installed on the same machine that is running Maple. Maple generates
a system command to call the compiler. The compiler must be recog-
nized by the system. It should be in the system PATH and all associated
environment variables must be set.

The compile and link commands are completely customizable provided
that your compiler has a command-line interface. Default configurations
are provided, which should make most cases work “out of the box.” Maple
is preprogrammed to use the vendor-supplied C compiler to compile wrap-
pers on most platforms.1

All default compile and link options are stored in a module that can be
obtained by using the command define_external(‘COMPILE_OPTIONS‘).
When the module returned by this command is modified, the modifica-
tion affects all wrapper generation commands via define_external for
the remainder of the session. Any of the names exported by the compile
options module can also be specified as a parameter to define_external.
When specified as a parameter, the effect lasts only for the duration of
that call.

The compile and link commands are assembled by calling the
COMPILE_COMMAND and LINK_COMMAND procedures defined in the compile
options module. These procedures make use of the definitions in the com-
pile options module to formulate a command string that is executed using
ssystem.2

To customize the compile and link commands, you can modify the
following options. All option values must be strings or NULL, except for
COMPILE_COMMAND and LINK_COMMAND, which must be procedures or NULL.

COMPILER This specifies the name of the compiler executable.

CFLAGS This specifies miscellaneous flags passed to the compiler.

COMPILE_ONLY_FLAG This flag indicates that the file is only to
be compiled. On most platforms it is “-c”, which causes the compiler
to generate an object file, but not link it to form any executable or
library. A separate command performs the linking.

1In Microsoft Windows, Maple uses the Microsoft Visual C Compiler.
2If using the Microsoft C compiler, the LINK_COMMAND is set to NULL because the

COMPILE_COMMAND does both the compiling and linking.

6.2 External Calling: Using Compiled Code in Maple • 345

COBJ_FLAG This is the flag used by the compiler to specify the ob-
ject filename. The compiler command uses COBJ_FLAG || FILE ||

OBJ_EXT to name the object file. On most platforms it is “-o”.

LOBJ_FLAG This is the flag used by the linker to specify the tar-
get library name. The link command uses LOBJ_FLAG || FILE ||

DLL_EXT to name the shared library.

FILE This is the base name of the file to be compiled. The file extension
must not be included in this name. For example, to compile “foo.c”,
set FILE="foo" and FILE_EXT=".c". When FILE is set to NULL the
system generates a file name based on the function name.

FILE_EXT This is the program file extension. If you want to compile
“foo.c”, set FILE_EXT=".c", and FILE="foo".

OBJ_EXT This is the object file extension. Common extensions are
“.o” and “.obj”.

DLL_EXT This is the dynamic library extension. Common extensions
are “.dll” and “.so”.

INC_FLAG This precedes directories in the INC_PATH. On most plat-
forms it is “-I”.

INC_PATH This specifies the directories to search for header files.
Use an expression sequence to specify more than one directory,
for example, INC_PATH=("/usr/local/maple/extern/include",

"/users/jdoe/include").

COMPILE_COMMAND This is set to the procedure that generates
the compiler command. The procedure must return a string. In gen-
eral, it is not necessary to change the default.

LINKER This specifies the name of the linker executable.

LINK_FLAGS This specifies miscellaneous flags passed to the linker,
including those that cause the linker to build a dynamic (shared)
library.

LIB_FLAG This precedes directories in the LIB_PATH. On most plat-
forms it is “-L”.

LIB_PATH This specifies the directories to search for libraries. Use an
expression sequence to specify more than one directory, for example,
LIB_PATH=("/usr/local/maple/extern/lib","/users/jdoe/lib").

346 • Chapter 6: Advanced Connectivity

LIB This names the library which contains the external function to call.
This option must be specified in every call to define_external.

LIBS This specifies other libraries that need to be linked with the wrap-
per library to resolve all external symbols. Use an expression sequence
to specify more than one library, for example, LIBS=("/usr/local/
maple/extern/lib/libtest.so","/users/jdoe/libdoe.so").

SYS_LIBS This specifies system libraries to link with the wrapper li-
brary to resolve all external symbols. Use an expression sequence to
specify more than one library, for example, LIBS=("-lc","-lm").

EXPORT_FLAG This flag is used in combination with the FUNCTION

option to name the function to be exported from the shared library.
This is unassigned or set to NULL on platforms that export all symbols
by default.

FUNCTION This is the name of the external function defined in the
wrapper library. The system generates a FUNCTION name if this is left
unassigned or set to NULL.

LINK_COMMAND This is set to the procedure that generates the
linker command. The procedure must return a string. Set this to NULL

if the compile command also does the linking.

A common use of these options as parameters to define_external

with a standard compiler would be to specify the filename. For example,
the following generates a wrapper file named “foo.c”.

> f := define_external(‘myfunc‘,‘WRAPPER‘,‘FILE‘="foo",‘LIB‘=
> "mylib.dll"):

To use a non-standard compiler or to alter compile flags, assign di-
rectly to the compile options module.

Example The following example shows how to set up the GNU compiler
on a machine running Solaris.

> p := define_external(‘COMPILE_OPTIONS‘):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o ":
> define_external(‘mat_mult‘,‘WRAPPER‘,‘LIB‘="libcexttest.so"):

The gcc requires a space between -o and the object name. Modifying
the COBJ_FLAG allows this to be easily done. All other option default
values are acceptable.

6.2 External Calling: Using Compiled Code in Maple • 347

To view the executed commands, set the infolevel for define_external
to 3 or higher. Repeating the previous example you might see the follow-
ing.

> p := define_external(‘COMPILE_OPTIONS‘):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o ":
> infolevel[define_external] := 3:
> define_external(‘mat_mult‘,‘WRAPPER‘,‘LIB‘="libcexttest.so"):

"COMPILE_COMMAND"

"gcc -g -c -I/user/local/maple/extern/include -o \

mwrap_mat_mult.o mwrap_mat_mult.c"

"LINK_COMMAND"

"ld -znodefs -G -dy -Bdynamic

-L/user/local/maple/bin/bin.SUN_SPARC_SOLARIS \

-omwrap_mat_mult.so mwrap_mat_mult.o -lc -lmaplec"

Another way to view the compile and link commands is to call the
command-builder procedures directly. Ensure to set or unassign the vari-
ables that will be assigned, otherwise they are blank.

> p := define_external(‘COMPILE_OPTIONS‘):
> p:-COMPILER := "gcc";
> p:-COBJ_FLAG := "-o ":
> p:-COMPILE_COMMAND();

"gcc -g -c -I/u/maple/extern/include -o .o .c"

> unassign(’p:-FILE’);
> p:-COMPILE_COMMAND();

"gcc -g -c -I/u/maple/extern/include -o FILE.o FILE.c"

Example The following example shows two calls to define_external

separated by the restart command. The first call does not use the
WRAPLIB option and thus generates quad.c and compiles the wrapper
library quad.dll. The second call uses the WRAPLIB option to reuse the
existing quad.dll. No compilation or wrapper generation is done in the
second call.

348 • Chapter 6: Advanced Connectivity

> quadruple_it := define_external(’quadruple_it’,
> WRAPPER,FILE="quad",
> x::float[4],
> RETURN::float[4],
> LIB="test.dll"):
> quadruple_it(2.2);

8.80000019073486328

> restart;
> quadruple_it := define_external(’quadruple_it’,
> WRAPPER,FILE="quad",
> x::float[4],
> RETURN::float[4],
> WRAPLIB="quad.dll",
> LIB="test.dll"):
> quadruple_it(2.2);

8.80000019073486328

When DLLs are created and compiled at runtime it is important not
to duplicate the name of a previously generated DLL without restarting
Maple (either by exiting Maple or issuing the restart command). Maple
maintains an open connection with the first DLL opened with any given
name. Attempting to create a new DLL of the same name without restart-
ing can lead to unexpected results. The Maple command dlclose can be
used to avoid restarting, but subsequently calling any external function in
that closed DLL without reissuing the define_external command will
likely crash Maple.

Evaluation Rules
External functions follow normal Maple evaluation rules in that the ar-
guments are evaluated during a function call. It therefore may be nec-
essary to enclose assigned names in right single quotes when passing-by-
reference. For example, consider the following function that multiplies a
number by two in-place.

void double_it(int *i)

{

if(i == NULL) return;

*i *= 2;

}

In Maple, the wrapperless definition of this function might appear as
follows.

6.2 External Calling: Using Compiled Code in Maple • 349

> double_it := define_external(’double_it’, i::REF(integer[4]),
> LIB="libtest.dll");

When executing this function, the argument ’i’ is converted from the
Maple internal representation of an integer to a 4-byte hardware integer.
A pointer to the hardware integer is then passed to the external function,
’double_it’. Though ’i’ is declared as a pointer to an integer, it is
acceptable to call ’double_it’ with non-pointer input.

> double_it(3);

In this case, a pointer to the hardware integer 3 is sent to ’double_it’.
The modified value is not accessible from Maple. To access the modified
value, the parameter must be named. The name must be enclosed in right
single quotes to prevent evaluation.

> n:=3;
> double_it(n); # n is evaluated first, so 3 is passed
> n;

3

> double_it(’n’); # use unevaluation quotes to pass ’n’
> n;

6

For numeric data, the string "NULL" can be passed as a parameter to
represent the address 0 (the C NULL). For strings, because "NULL" is a
valid string, the integer 0 represents address 0.

> double_it("NULL");
>
> concat := define_external(’concat’,
> RETURN::string, a::string, b::string,
> LIB="libtest.dll"):
> concat("NULL","x");

"NULLx"

350 • Chapter 6: Advanced Connectivity

> concat(0,0);

0

In the concat example, the C code might look like the following. Note
that this function does not clean memory as it should.

char * concat(char* a, char *b)

{

char *r;

if(!a || !b) return(NULL);

r = (char*)malloc((strlen(a)+strlen(b)+1)*sizeof(char));

strcpy(r,a);

strcat(r,b);

return(r);

}

Method 3: Customizing Wrappers
For complete control over data conversions, Maple allows modification of
existing wrappers and creation of custom wrappers. There are numerous
C and Fortran functions available for translating and manipulating Maple
data structures.

To use this method, you must be familiar with the steps required to
use compiled code in Maple, described in Method 1: Calling External
Functions on page 332. For this method, you do not declare a func-
tion specification because Maple passes one data structure containing all
the passed information. Therefore, there are only two basic steps (DLL
creation and function invocation as described on pages 332-333) in ad-
dition to wrapper generation. Wrappers were introduced in Method 2:
Generating Wrappers on page 338.

External Function Entry Point
Maple finds the symbol name given as the first argument to define_external
in the DLL specified in the LIB= argument. Maple also finds the
MWRAP_symbolName in the wrapper library. This MWRAP_symbolName func-
tion prototype has the following format.

ALGEB MWRAP_quadruple_it(

6.2 External Calling: Using Compiled Code in Maple • 351

MKernelVector kv,

FLOAT32 (*fn) (FLOAT32 a1),

ALGEB fn_args

);

This prototype is taken from the wrapper quad.c described in the
previous section. The first argument kv is a handle to the Maple kernel
function vector. The second argument fn is a function pointer assigned
the symbol found in the external DLL. In this case, fn is assigned the
quadruple_it external function. The last argument is a Maple expres-
sion sequence data structure containing all the arguments passed to the
function during any given call to the Maple procedure generated by the
define_external command.

The entry point is the format used when wrappers are automatically
generated, and when WRAPLIB is specified. An alternate external entry
point that excludes the function pointer is available when the parameter
MAPLE is specified instead of WRAPPER or WRAPLIB.

ALGEB MWRAP_quadruple_it(

MKernelVector kv,

ALGEB fn_args

);

The API function prototypes for manipulating Maple data structures
are in $MAPLE/extern/include where $MAPLE is the path of the Maple
installation. The header file maplec.h should be included when writ-
ing custom C wrappers. One of the header files, maplefortran.hf or
maplefortran64bit.hf, should be included when writing custom For-
tran wrappers. Other header files, mplshlib.h, and mpltable.h contain
macros, types, and data structures that are needed for direct manipula-
tion of Maple data structures.

Maple uses directed acyclic graphs (dags) to represent all objects,
such as integers, floating point numbers, sums, modules, or procedures.
(For more information about Maple internal representation of objects,
see Appendix A.) These dags have the type ALGEB in C wrappers, and
INTEGER or INTEGER*8 in Fortran wrappers. Fortran 77 has no user type
definition semantics so ALGEB pointers must be “faked” by using ma-
chine word-sized integers. If the machine word size is 64-bit (for example,
as on a DEC Alpha), the header maplefortran64bit.hf must be used
and INTEGER*8 must be used as the dag datatype. Execute the Maple
command kernelopts(wordsize) to determine whether you need to use
32-bit or 64-bit integer-dag types in Fortran. When working with C, the
datatype is ALGEB regardless of the machine word size.

352 • Chapter 6: Advanced Connectivity

You do not have to know the internal details of dags to manipulate
and use them. The only exception is the argument sequence passed to
the wrapper entry point. This is an expression seqence (EXPSEQ) dag, and
can be treated as an array of dags starting at index 1 (not 0). Thus,
fn_args[1] is the first parameter passed to the external function. Use
MapleNumArgs to determine the number of arguments passed. Note that
the Fortran API uses a slightly different naming convention. The equiva-
lent Fortran call is maple_num_args. The C API names are used for the
remainder of this chapter. To find equivalent Fortran names, refer to the
API listing.

Inspecting Automatically Generated Wrappers
The easiest way to start writing custom wrappers is to inspect auto-
matically generated wrappers. Consider the add function that was intro-
duced at the beginning of this chapter. Use the WRAPPER option to tell
define_external to generate a wrapper. Also use the NO_COMPILE op-
tion with define_external so as not to compile the generated wrapper.
The name of the generated file is returned.

> myAdd := define_external(
> ’add’,
> ’WRAPPER’,
> ’NO_COMPILE’,
> ’num1’::integer[4],
> ’num2’::integer[4],
> ’RETURN’::integer[4]
>);

myAdd := "mwrap_add.c"

The file mwrap_add.c resembles the following.

/* MWRAP_add Wrapper

Generated automatically by Maple

Do not edit this file. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <mplshlib.h>

#include <maplec.h>

MKernelVector mapleKernelVec;

typedef void *MaplePointer;

6.2 External Calling: Using Compiled Code in Maple • 353

ALGEB *args;

/* main - MWRAP_add */

ALGEB MWRAP_add(MKernelVector kv,

INTEGER32 (*fn) (INTEGER32 a1, INTEGER32 a2),

ALGEB fn_args)

{

INTEGER32 a1;

INTEGER32 a2;

INTEGER32 r;

ALGEB mr;

int i;

mapleKernelVec = kv;

args = (ALGEB*) fn_args;

if(MapleNumArgs(mapleKernelVec,(ALGEB)args) != 2)

MapleRaiseError(mapleKernelVec,"Incorrect number

of arguments");

/* integer[4] */

a1 = MapleToInteger32(mapleKernelVec,args[1]);

/* integer[4] */

a2 = MapleToInteger32(mapleKernelVec,args[2]);

r = (*fn)(a1, a2);

mr = ToMapleInteger(mapleKernelVec,(long) r);

return(mr);

}

The generated wrapper is a good starting point for creating wrappers.
There may be some extra variables and declarations used because the
wrapper generation is generic. For example, the use of args rather than
fn_args avoids the need for a cast with args[1], but it also is a static
global which is useful when working with callbacks that need access to
the argument sequence outside the main entry point.

Remember that the add function simply added the arguments a1 and
a2 and returned the result. This can be done directly in the wrapper. By
removing the second argument fn so the MAPLE option can be used, plus
inlining the a1+a2 functionality and cleaning up the code, the wrapper
resembles the following.

354 • Chapter 6: Advanced Connectivity

/* Program to add two numbers from Maple */

#include <stdio.h>

#include <stdlib.h>

#include <maplec.h>

/* main entry point - MWRAP_add */

ALGEB myAdd(MKernelVector kv, ALGEB fn_args)

{

INTEGER32 a1; /* INTEGER32 => int (defined in */

/* mpltable.h) */

INTEGER32 a2;

INTEGER32 r;

if(MapleNumArgs(kv,fn_args) != 2)

MapleRaiseError(kv,"Incorrect number of arguments");

/* convert from Maple integer to C int */

a1 = MapleToInteger32(kv,((ALGEB*)fn_args)[1]);

/* convert from Maple integer to C int */

a2 = MapleToInteger32(kv,((ALGEB*)fn_args)[2]);

r = a1 + a2;

return(ToMapleInteger(kv,(long) r));

}

This program first verifies if the Maple function call passed exactly
two arguments. It then converts the two arguments to hardware integers
and adds them. The result is converted to a Maple integer and returned.

This program can be compiled into a DLL using your favorite C com-
piler. Ensure that you link with the Maple API shared library. The DLL
can be placed into the Maple bin.$SYSTEM directory, or somewhere else
in the PATH. When using DLLs outside of bin.$SYSTEM directory, you
may need to specify the full path to the DLL in the LIB argument to
define_external. UNIX developers may need to set their load-library-
path.

Table 6.5 on page 395 lists the Maple API Libraries for C and Fortran.
After compiling the DLL, the function can be used in Maple. No type

desciptors are needed in the define_external call because Maple does

6.2 External Calling: Using Compiled Code in Maple • 355

no conversion on arguments passed to the custom wrapper.

> myAdd := define_external(’myAdd’,’MAPLE’,’LIB’=
> "myAdd.dll"):
> myAdd(2,3);

5

> myAdd(2.2,1);

Error, (in myAdd) integer expected for integer[4] parameter

> myAdd(2^80,2^70);

Error, (in myAdd) integer too large in context

The equivalent Fortran wrapper would look like the following.

Program to add two numbers from Maple

INTEGER FUNCTION myAdd(kv, args)

INCLUDE "maplefortran.hf"

INTEGER kv

INTEGER args

INTEGER arg

INTEGER a1, a2, r

CHARACTER ERRMSG*20

INTEGER ERRMSGLEN

ERRMSGLEN = 20

IF (maple_num_args(kv, args) .NE. 2) THEN

ERRMSG = ’Incorrect number of arguments’

CALL maple_raise_error(kv, ERRMSG, ERRMSGLEN)

myAdd = to_maple_null(kv)

RETURN

ENDIF

356 • Chapter 6: Advanced Connectivity

arg = maple_extract_arg(kv, args, 1)

a1 = maple_to_integer32(kv, arg)

arg = maple_extract_arg(kv, args, 2)

a2 = maple_to_integer32(kv, arg)

r = a1 + a2

myAdd = to_maple_integer(kv, r)

END

Once compiled into a DLL, the same syntax can be used in Maple
to access the function. The only difference is the additional keyword
’FORTRAN’ in the define_external call.

> myAdd := define_external(’myAdd’,’MAPLE’,’FORTRAN’,’LIB’=
> "myAdd.dll"):
> myAdd(2,3);

5

External API
An external API is provided for users who want to augment existing
wrappers or write their own custom wrappers. This section describes the
functions available when linking with the Maple API library (see Table 6.5
on page 395) and including either maplec.h or maplefortran.hf.

Argument Checking The following C function can be used to query
the number of arguments contained in the argument expression sequence
passed as the last argument to the external function entry point. The
expression sequence passed to this entry point can be queried directly (for
example, ((ALGEB*)expr)[1]). If n = MapleNumArgs(kv,expr), the last
argument is ((ALGEB*)expr[n].

M_INT MapleNumArgs(MKernelVector kv, ALGEB expr);

The arguments passed to the Fortran entry point cannot be queried
directly. The maple_extract_arg function must be used to access the
argument data (for example, arg1 = maple_extract_arg(kv,args,1)).
If n = maple_num_args(kv,s), then the last argument is
maple_extract_arg(kv,args,n).

6.2 External Calling: Using Compiled Code in Maple • 357

INTEGER maple_num_args(kv, s)

INTEGER maple_extract_arg(kv, s, i)

The following functions indicate the type of the given Maple object.

M_BOOL IsMapleAssignedName(MKernelVector kv, ALGEB s);

M_BOOL IsMapleComplexNumeric(MKernelVector kv, ALGEB s);

M_BOOL IsMapleNumeric(MKernelVector kv, ALGEB s);

M_BOOL IsMapleInteger(MKernelVector kv, ALGEB s);

M_BOOL IsMapleInteger8(MKernelVector kv, ALGEB s);

M_BOOL IsMapleInteger16(MKernelVector kv, ALGEB s);

M_BOOL IsMapleInteger32(MKernelVector kv, ALGEB s);

M_BOOL IsMapleInteger64(MKernelVector kv, ALGEB s);

M_BOOL IsMapleName(MKernelVector kv, ALGEB s);

M_BOOL IsMapleNULL(MKernelVector kv, ALGEB s);

M_BOOL IsMaplePointer(MKernelVector kv, ALGEB s);

M_BOOL IsMaplePointerNULL(MKernelVector kv, ALGEB s);

M_BOOL IsMapleProcedure(MKernelVector kv, ALGEB s);

M_BOOL IsMapleRTable(MKernelVector kv, ALGEB s);

M_BOOL IsMapleString(MKernelVector kv, ALGEB s);

M_BOOL IsMapleTable(MKernelVector kv, ALGEB s);

M_BOOL IsMapleUnassignedName(MKernelVector kv, ALGEB s);

M_BOOL IsMapleUnnamedZero(MKernelVector kv, ALGEB s);

Equivalent Fortran functions are as follows. The C functions,
IsMaplePointer, IsMaplePointerNULL, and IsMapleUnnamedZero are
not available in the Fortran API.

INTEGER is_maple_assigned_name(kv, s)

INTEGER is_maple_complex_numeric(kv, s)

INTEGER is_maple_numeric(kv, s)

INTEGER is_maple_integer(kv, s)

INTEGER is_maple_integer8(kv, s)

INTEGER is_maple_integer16(kv, s)

INTEGER is_maple_integer32(kv, s)

INTEGER is_maple_integer64(kv, s)

INTEGER is_maple_name(kv, s)

INTEGER is_maple_null(kv, s)

INTEGER is_maple_procedure(kv, s)

INTEGER is_maple_rtable(kv, s)

INTEGER is_maple_string(kv, s)

INTEGER is_maple_table(kv, s)

INTEGER is_maple_unassigned_name(kv, s)

358 • Chapter 6: Advanced Connectivity

These functions all return TRUE (1) when the Maple dag s fits the de-
scription given by the function name. If s is not of the correct type, FALSE
(0) is returned. The Maple NULL is not the same as a C Pointer-NULL.
The former is the empty expression sequence in the Maple language. The
latter is a pointer variable set to the address zero. Since there is no concept
of real pointers in the Maple Language, the idea of Pointer-NULL in this
context means the Maple integer zero, or an unassigned Maple name. The
IsMaple...Numeric routines use the Maple type numeric definition. All
other checks use the dag type definition. For example, type(t[1],name)
returns true in Maple, but IsMapleName checks for a NAME dag and re-
turns FALSE because t[1] is internally represented as a TABLEREF dag.
Integer query routines with the bit size specified in the name check to
ensure the given Maple object s is a Maple integer and also that it could
fit into the specified number of bits if converted to a hardware integer.

Conversions From Maple Objects The following functions return the
specified type when given a dag s that can be converted to that type.

COMPLEXF32 MapleToComplexFloat32(MKernelVector kv, ALGEB s);

COMPLEXF64 MapleToComplexFloat64(MKernelVector kv, ALGEB s);

CXDAG MapleToComplexFloatDAG(MKernelVector kv, ALGEB s);

FLOAT32 MapleToFloat32(MKernelVector kv, ALGEB s);

FLOAT64 MapleToFloat64(MKernelVector kv, ALGEB s);

INTEGER8 MapleToInteger8(MKernelVector kv, ALGEB s);

INTEGER16 MapleToInteger16(MKernelVector kv, ALGEB s);

INTEGER32 MapleToInteger32(MKernelVector kv, ALGEB s);

INTEGER64 MapleToInteger64(MKernelVector kv, ALGEB s);

M_BOOL MapleToM_BOOL(MKernelVector kv, ALGEB s);

M_INT MapleToM_INT(MKernelVector kv, ALGEB s);

void* MapleToPointer(MKernelVector kv, ALGEB s);

char* MapleToString(MKernelVector kv, ALGEB s);

The following are the equivalent Fortran routines. Note that complex
and string conversion are done by reference. That is, the third argument
passed to the function is set to the converted value rather than the func-
tion returning the value. Equivalent functions for MapleToComplexFloatDAG
and MapleToPointer are not available.

SUBROUTINE maple_to_complex_float32(kv, s, c)

SUBROUTINE maple_to_complex_float64(kv, s, c)

REAL maple_to_float32(kv, s)

DOUBLEPRECISION maple_to_float64(kv, s)

6.2 External Calling: Using Compiled Code in Maple • 359

INTEGER maple_to_integer8(kv, s)

INTEGER maple_to_integer16(kv, s)

INTEGER maple_to_integer32(kv, s)

INTEGER*8 maple_to_integer64(kv, s)

INTEGER maple_to_m_bool(kv, s)

INTEGER maple_to_m_int(kv, s)

INTEGER maple_to_string(kv, s, string)

Floating Point numbers may lose precision during the conversion to
hardware size data.

Conversion from a STRING dag to an integer returns the ASCII value
of the first character in that string. Conversion from a Maple Boolean to
an integer returns 1 for true or 0 for false.

Conversions from a STRING dag to a string should not be modified
in-place. A copy should be made if any modifications are necessary.

The MapleToPointer conversion returns the pointer value stored in a
Maple BINARY dag.

Conversions To Maple Objects The following functions return a dag
of the specified dag type when given a dag the corresponding hardware
data.

ALGEB ToMapleBoolean(MKernelVector kv, long b);

ALGEB ToMapleChar(MKernelVector kv, long c);

ALGEB ToMapleComplex(MKernelVector kv, double re,

double im);

ALGEB ToMapleComplexFloat(MKernelVector kv, ALGEB re,

ALGEB im);

ALGEB ToMapleExpressionSequence(MKernelVector kv, int

nargs, /* ALGEB arg1, ALGEB arg2, */ ...);

ALGEB ToMapleInteger(MKernelVector kv, long i);

ALGEB ToMapleInteger64(MKernelVector kv, INTEGER64 i);

ALGEB ToMapleFloat(MKernelVector kv, double f);

ALGEB ToMapleName(MKernelVector kv, char *n, M_BOOL

is_global);

ALGEB ToMapleNULL(MKernelVector kv);

ALGEB ToMapleNULLPointer(MKernelVector kv);

ALGEB ToMaplePointer(MKernelVector kv, void *v, M_INT

type);

ALGEB ToMapleRelation(MKernelVector kv, const char *rel,

ALGEB lhs, ALGEB rhs);

ALGEB ToMapleString(MKernelVector kv, char *s);

360 • Chapter 6: Advanced Connectivity

ALGEB ToMapleUneval(MKernelVector kv, ALGEB s);

The equivalent Fortran routines are as follows. The Fortran API
does not support ToMapleExpressionSequence, ToMapleNULLPointer,
ToMaplePointer, ToMapleRelation, or ToMapleUneval.

to_maple_boolean(kv, b)

to_maple_char(kv, c)

to_maple_complex(kv, re, im)

to_maple_complex_float(kv, re, im)

to_maple_integer(kv, i)

to_maple_integer64(kv, i)

to_maple_float(kv, f)

to_maple_name(kv, s, s_len)

to_maple_null(kv)

to_maple_string(kv, s, s_len)

ToMapleBoolean is three valued. When b is zero, it returns the Maple
false dag. If n is -1, the Maple FAIL dag is returned. If n is non-zero
(and not -1), the Maple true dag is returned.

ToMapleChar returns a single character Maple string dag.
ToMapleComplex converts the pair of doubles, re and im, to the Maple

expression re + I*im, and returns this dag.
ToMapleComplexFloat converts a pair of FLOAT dags to the Maple

expression re + I*im, and returns this dag.
ToMapleExpressionSequence create and returns a Maple expression

sequence and fills it with the N algebraics, arg1, arg2, ..., argN.
ToMapleName returns a Maple NAME dag with the name n. If is_global

is set to TRUE, the name is global in the Maple name space. Otherwise, if
is_global is FALSE, the name is a unique exported local.

ToMapleNULL returns the Maple NULL dag (an empty EXPSEQ).
ToMapleNULLPointer returns the Maple zero dag. This is the wrapper

representation of a NULL pointer passed to a procedure. Do not confuse
this with the value returned by ToMapleNULL.

ToMapleString copies the character string s to a Maple STRING dag
and returns it. When using the Fortran API, the length of the given string
must also be passed.

Rectangular Table (Vector, Matrix, Array) Manipulation Rtables3

are the container class of Vector, Matrix, and Array data structures
in Maple. The basic access functions are as follows.

3For information on rtables, refer to ?rtable.

6.2 External Calling: Using Compiled Code in Maple • 361

ALGEB RTableCreate(MKernelVector kv, RTableSettings *s,

void *pdata, M_INT *bounds);

void* RTableDataBlock(MKernelVector kv, ALGEB rt);

M_INT RTableNumElements(MKernelVector kv, ALGEB rt);

M_INT RTableNumDimensions(MKernelVector kv, ALGEB rt);

M_INT RTableLowerBound(MKernelVector kv, ALGEB rt,

M_INT dim);

M_INT RTableUpperBound(MKernelVector kv, ALGEB rt,

M_INT dim);

M_BOOL RTableIsReal(MKernelVector kv, ALGEB rt);

The Fortran API contains the following functions.

SUBROUTINE copy_to_array(kv, rt, a, num_rdims,

rbounds, num_fdims, fbounds, data_type)

SUBROUTINE copy_to_rtable(kv, a, rt, num_fdims,

fbounds, num_rdims, rbounds, data_type)

INTEGER convert_to_rtable(kv, a, num_rdims,

rbounds, num_fdims, fbounds, data_type)

INTEGER rtable_num_elements(kv, s)

INTEGER rtable_num_dimensions(kv, s)

INTEGER rtable_lower_bound(kv, s, dim)

INTEGER rtable_upper_bound(kv, s, dim)

INTEGER rtable_is_real(kv, s)

RtableDataBlock returns a pointer to the data block of a given
rtable. The returned value should be casted to the known data type
of the rtable. The data block can be manipulated directly instead of
using RtableAssign or RtableSelect. Users who directly manipulate
the data block must be aware of the storage type, order, data type, and
presence of indexing functions to do this properly.

In Fortran, there is no way to return an ARRAY pointer. To work
with an array created in Maple, the data-block must be copied to a pre-
allocated Fortran data block using the copy_to_array function. It copies
the contents of the rtable rt to the ARRAY, a. For a complete explanation
of the parameters that are passed, refer to the maplefortran.hf file. To
copy an array back to Maple, the copy_to_rtable function can be used.

RtableCreate returns a newly created RTABLE as specified by:

1. The definitions given in the RtableSettings structure s.

2. A pointer to an existing block of data. If pdata is NULL, a data-block
is allocated and initialized to s->fill. When providing an already

362 • Chapter 6: Advanced Connectivity

created block of data, it is important that s->foreign is set to TRUE.
Size, storage, data type, order, and indexing functions should all be
considered when managing your data block. Generally, let Maple cre-
ate the data-block, then use RtableDataBlock to gain access to it.

3. The bounds array, bounds. An m x n matrix must have bounds =

1,m,1,n (that is, both the upper and lower bounds must be specified).

The Fortran equivalent function is convert_to_rtable. It creates an
rtable from an existing Fortran array. The data is not copied into the
table. Instead, the rtable maintains a pointer to the external data.

RtableNumElements returns the number of elements in a given
rtable. This may be different in sparse versus dense rtables.

1. For dense rtables, return the number of elements of storage allocated
for this rtable.

2. If rt is in NAG-sparse format, then this returns the number of ele-
ments in the data vector specified for the rtable, (which is the same
as the length of each index vector). Note that the number returned
here represents the number of data elements that are actually filled
in, not the number of elements allocated. Some of the elements may
have the value zero.

3. For Maple-sparse rtables, this always returns zero.

RtableNumDimensions returns the number of dimensions in a given
rtable.

RtableUpperBound and RtableLowerBound give the upper and lower
bound of the dimth dimension of the RTABLE, rt. For a 2 x 3 matrix,
RtableLowerBound(rt,1) returns 1 because the first dimension bounds
are 1..2, and the lower bound is 1.

RtableIsReal checks the elements of the RTABLE rt to verify whether
they are all real. If datatype=complex, it returns FALSE. If datatype is
a hardware type with no indexing function, for example, float[8], it
returns TRUE. Otherwise, it scans the rtable and returns FALSE when the
first complex entry is found or TRUE if no complex entries are found.

In addition to the above functions, there is an extensive C API for
working with rtable data types.

void RTableAppendAttribute(MKernelVector kv, RTableSettings

*s, char *name);

void RTableAppendIndFn(MKernelVector kv, RTableSettings

6.2 External Calling: Using Compiled Code in Maple • 363

*s, ALGEB indfn);

void RTableGetDefaults(MKernelVector kv, RTableSettings

*s);

void RTableGetSettings(MKernelVector kv, RTableSettings

*s, ALGEB rt);

M_INT RTableIndFn(MKernelVector kv, ALGEB rt, M_INT num);

ALGEB RTableIndFnArgs(MKernelVector kv, ALGEB rt, M_INT num);

void RTableSetAttribute(MKernelVector kv, RTableSettings

*s, char *name);

void RTableSetIndFn(MKernelVector kv, RTableSettings *s,

ALGEB indfn);

void RTableSetType(MKernelVector kv, RTableSettings *s,

M_INT id, char *name);

RTableData RTableSelect(MKernelVector kv, ALGEB rt, M_INT

*index);

RTableData RTableAssign(MKernelVector kv, ALGEB rt, M_INT

*index, RTableData val);

void RTableSparseCompact(MKernelVector kv, ALGEB rt);

NAG_INT* RTableSparseIndexRow(MKernelVector kv, ALGEB rt,

M_INT dim);

ALGEB RTableSparseIndexSort(MKernelVector kv, ALGEB rt,

M_INT by_dim);

void RTableSparseSetNumElems(MKernelVector kv, ALGEB rt,

M_INT num);

M_INT RTableSparseSize(MKernelVector kv, ALGEB rt);

ALGEB RTableCopy(MKernelVector kv, RTableSettings *s,

ALGEB rt);

ALGEB RTableCopyImPart(MKernelVector kv, RTableSettings

*s, ALGEB rt);

ALGEB RTableCopyRealPart(MKernelVector kv, RTableSettings

*s, ALGEB rt);

ALGEB RTableZipReIm(MKernelVector kv, RTableSettings *s,

ALGEB rt_re, ALGEB rt_im);

Most Rtable access functions use the RtableSettings structure de-
fined in mpltable.h. This struct corresponds directly to the options avail-
able to the rtable constructor in Maple.

RtableAppendAttribute appends the name attribute to the list of
attributes in the RtableSettings structure.

364 • Chapter 6: Advanced Connectivity

RtableAppendIndFn appends the indexing function, infn to the list
of indexing functions in the RtableSettings structure. Note that infn

must be a valid Maple name or table reference. For example,

RTableAppendIndFn(kv,&settings,ToMapleName(kv,"symmetric",

TRUE));

RTableAppendIndFn(kv,&settings,EvalMapleStatement(kv,

"triangular[upper]"));

RtableGetDefaults fills the RtableSettings structure s with stan-
dard default values. These defaults are as follows.

data_type = RTABLE_DAG

maple_type = ’anything’ (Maple name ’anything’)

subtype = RTABLE_ARRAY

storage = RTABLE_RECT

p1 = -1, p2 = -1

order = RTABLE_FORTRAN

read_only = FALSE

foreign = FALSE

num_dimensions = -1

index_functions = ’NULL’ (Maple NULL)

attributes = ’NULL’ (Maple NULL)

transpose = FALSE

fill = 0

RtableGetSettings fills the RtableSettings structure s with the
settings held by the RTABLE, rt.

RtableIndFn returns the i th indexing function code. The indexing
codes are defined in mpltable.h in the form RTABLE_INDEX_XXXX. If there
are no indexing functions, this gives an error for any value of i. If there
is one indexing function, then rtableIndFun(rt,1) returns the code for
the only indexing function. Use MapleNumArgs to determine the number
of indexing functions.

RtableIndFnArgs returns the argument expression sequence for in-
dexing function ’num’ in rtable ’rt’. If there are no arguments, Maple
’NULL’ is returned. The result can be further converted to a hardware type
using the MapleToXXX function(s). The number of arguments returned can
be determined using MapleNumArgs. Note that some knowledge about
the indexing functions is required to convert the return value to the ap-
propriate hardware type. For example, RTableIndFnArgs(kv,rt,1) of
a band[b1,b2] rtable returns the b1 part of the expression sequence

6.2 External Calling: Using Compiled Code in Maple • 365

(b1,b2). The user must know that b1 and b2 are always integers.
Conversely, c in constant[c] is always the same type as the rtable’s
datatype. Thus for float[8] rtables, to convert to a hardware type use
MapleToFloat64.

RtableSetAttribute sets all the attributes of the RtableSettings

structure s to the single NAME attribute, name.
RtableSetIndFn sets all the indexing functions of the RtableSettings

structure s and resets it to the single indexing function infn.
RtableSetType sets the data_type field in the given RtableSettings

structure s to id, and when id=RTABLE_DAG, sets the maple_type to name.
For example, to set the data type to float[8], RTableSetType(kv,&s,
RTABLE_FLOAT,NULL) is called. To set the type to numeric,
RTableSetType(kv,&s,RTABLE_DAG,"numeric") is called. Basic type ids
are defined in mpltable.h. To set compound types, the RtableSettings
data structure can be manipulated directly as follows.

settings.data_type = RTABLE_DAG;

settings.maple_type = EvalMapleStatement(kv,

"complex(numeric)");

RtableSelect returns the value rt[index], where rt is an RTABLE,
and index is an integer array.

RtableAssign assigns the value val to rt[index]. This function must
be used instead of assigning directly to the rtable data-block whenever
the given rtable has an indexing function or unusual storage format (for
example, sparse). The index is an integer array. For example, the fol-
lowing code assigns the value 3.14 to the [2,1] element of the given
datatype=float[8] rtable.

RTableData val;

M_INT *index;

index[0] = 2;

index[1] = 1;

val.float64 = 3.14;

RTableAssign(kv,rt,index,val);

RtableSparseCompact removes any zeros in the sparse rtable data
block. This should be called after an external routine that modifies the
sparse data block directly.

RtableSparseIndexRow returns the vector of indices for the i th di-
mension of rt. The rt must be a NAG sparse rtable.

366 • Chapter 6: Advanced Connectivity

RtableSparseIndexSort sorts the N th index vector for the NAG
sparse rtable rt. This is done in-place, and the other index vectors are
adjusted accordingly so that the index/value mapping is preserved.

RtableSparseSetNumElems sets the number of non-zero entries in the
NAG sparse rtable rt to N. This should be done only if the number of
elements has changed.

RtableSparseSize returns the number of entries allocated to store
data in the NAG sparse rtable rt. This is not necessarily the same as
RtableNumElems.

RtableCopy returns a copy of the rtable rt with new settings as given
by the RtableSettings structure s.

RtableCopyImPart returns a copy of the imaginary part of the rtable
rt with new settings as given by the RtableSettings structure s. The
copy returned is purely real, but contains only the imaginary parts of the
given rtable.

RtableCopyRealPart returns a copy of the real part of the rtable rt

with new settings as given by the RtableSettings structure s.
RtableZipReIm combines two real RTABLEs, rt_re and rt_im, into

a complex rtable of the form rt_re + I*rt_im. The settings of the new
rtable that is returned are determined by the RtableSettings structure
s.

List Manipulation To work with Maple lists, the following API functions
can be used. These functions are only available using the C API.

ALGEB MapleListAlloc(MKernelVector kv, M_INT num_members);

void MapleListAssign(MKernelVector kv, ALGEB list,

M_INT i, ALGEB val);

ALGEB MapleListSelect(MKernelVector kv, ALGEB list,

M_INT i);

MapleListAlloc creates a LIST dag with space for num_members ele-
ments. This list must be filled before it can be passed to Maple.

MapleListAssign sets the i th element of the given list to the value
val. That is, list[i] := val.

MapleListSelect returns the i th element of the given list.

Table Manipulation To use Maple tables, the following API functions
can be used. These functions are only available using the C API.

ALGEB MapleTableAlloc(MKernelVector kv);

void MapleTableAssign(MKernelVector kv, ALGEB table,

ALGEB ind, ALGEB val);

6.2 External Calling: Using Compiled Code in Maple • 367

ALGEB MapleTableSelect(MKernelVector kv, ALGEB table,

ALGEB ind);

void MapleTableDelete(MKernelVector kv, ALGEB table,

ALGEB ind);

M_BOOL MapleTableHasEntry(MKernelVector kv, ALGEB table,

ALGEB ind);

MapleTableAlloc creates a TABLE dag. The table is initially empty.
MapleTableAssign sets the ind element of the given table to the

value val. That is, table[ind] := val, where ind can be a NAME or an
expression sequence of numbers, or any other valid index into a Maple
table.

MapleTableSelect returns the ind element of the given table.
MapleTableDelete removes the ind element from the table.
MapleTableHasEntry queries the table to determine whether it con-

tains an element at index ind. If it does, TRUE is returned; otherwise,
FALSE is returned.

Data Selection The following functions are available when using the
C API only and deal with selecting from various kinds of Maple data
structures.

ALGEB MapleSelectImaginaryPart(MKernelVector kv, ALGEB s);

ALGEB MapleSelectRealPart(MKernelVector kv, ALGEB s);

ALGEB MapleSelectIndexed(MKernelVector kv, ALGEB s, M_INT

dim, M_INT *ind);

MapleSelectImaginaryPart and MapleSelectRealPart return the
imaginary and real parts of a complex number dag, respectively.

MapleSelectIndexed returns a value from any indexable object in
Maple, such as list, array, or set. The index is specified by filling the
ind array with the desired index. The second parameter dim is the number
of dimensions in the array s (also the number of elements in ind).

For example, to lookup a[1,2,3], the following code could be used
(assuming arg1 points to the array a).

ALGEB val;

M_INT ind[3];

ind[0] = 1;

ind[1] = 2;

ind[2] = 3;

368 • Chapter 6: Advanced Connectivity

val = k->selectIndexed(arg1, 3, ind);

Unique Data The following function is available only in the C API.

ALGEB MapleUnique(MKernelVector kv, ALGEB s);

This function processes the given Maple expression s, and returns
the unique copy of that expression from the Maple simpl table. For
example, if you create the number num = one-billion, then you com-
pute the number val = 2*500-million. An address comparison of num
and val does not indicate equality. After calling simplify as in num =

MapleUnique(kv,num), both num and val point to the same memory.

Error Handling The following functions raise a Maple software-style er-
ror message.

void MapleRaiseError(MKernelVector kv, char *msg);

void MapleRaiseError1(MKernelVector kv, char *msg,

ALGEB arg1);

void MapleRaiseError2(MKernelVector kv, char *msg,

ALGEB arg1, ALGEB arg2);

The Fortran equivalent is:

SUBROUTINE maple_raise_error(kv, msg, len)

These functions display the message msg, stop execution, and return
to the Maple input loop. A call to MapleRaiseError does not return.

The character string msg can contain wildcards of the form %N, where N
is a non-zero integer. These wildcards are replaced by the extra argument,
arg1 or arg2, before displaying the message. If %-N is specified, then the
optional argument is displayed with st, nd, rd, or th appended to it. For
example:

MapleRaiseError2(kv, "the %-1 argument, ’%2’, is not valid",

ToMapleInteger(i), args[i]);

This, if invoked, raises the error, "the 4th argument, ’foo’, is not
valid", assuming i=4, and args[i] is set to the Maple name foo.4

The only option not allowed is %0 because the function cannot deter-
mine the number of unparsed optional arguments.

The C API also provides a mechanism for trapping errors raised by
Maple.

4For more information, refer to ?error.

6.2 External Calling: Using Compiled Code in Maple • 369

void* MapleTrapError(MKernelVector kv, void *(*proc)

P((void *data)), void *data, M_BOOL *errorflag);

MapleTrapError executes the C function proc, passing it the data,
data. If an error occurs, errorflag is set to TRUE and traperror returns
immediately. If no error occurs, the result of proc(data) is returned and
errorflag is FALSE.

For example, the following code attempts to execute a Maple proce-
dure. If an error occurs, a separate branch of code is taken.

typedef struct {

MKernelVector k;

ALGEB fn, arg1, arg2;

} CallbackArgs;

void *tryCallback(void *data)

{

/* calls the maple procedure ’fn’ with arguments ’arg1’ */

/* and ’arg2’ */

return (void*)

EvalMapleProc(((CallbackArgs*)data)->k,

((CallbackArgs*)data)->fn, 2,

((CallbackArgs*)data)->arg1,

((CallbackArgs*)data)->arg2);

}

void MainProc(MKernelVector k, ALGEB fn)

{

M_BOOL errorflag;

ALGEB result;

CallbackArgs a;

a.k = k;

a.fn = fn;

a.arg1 = ToMapleFloat(k,3.14);

a.arg2 = ToMapleInteger(k,44);

result = (ALGEB)MapleTrapError(k,tryCallback,&a,&errorflag);

if(errorflag) {

/* do something */

}

else {

370 • Chapter 6: Advanced Connectivity

/* do something else */

}

}

Hardware Float Evaluation The following procedures evaluate a Maple
procedure or statement using hardware floats.

double MapleEvalhf(MKernelVector kv, ALGEB s);

double EvalhfMapleProc(MKernelVector kv, ALGEB fn,

int nargs, double *args);

The equivalent Fortran functions are as follows.

DOUBLEPRECISION maple_evalhf(kv, s)

DOUBLEPRECISION evalhf_maple_proc(kv, fn, nargs, args)

MapleEvalhf applies evalhf to the given dag s. Then evalhf either
evaluates an expression, using hardware floats to produce a hardware float
result, or returns the handle to an evalhfable rtable that can be used
as a parameter to EvalhfMapleProc.

EvalhfMapleProc calls the evalhf computation engine directly to
evaluate the given procedure fn without converting the hardware float
parameters to software floats. The procedure fn is a valid Maple PROC

dag, nargs is the number of parameters to pass to fn, and args is the list
of parameters. Note that args starts at 1; args[1] is the first parameter,
args[nargs] is the last, and args[0] is not used.

Setting up a callback may require static local variables in the wrapper
module so that the callback has access to the kernel vector (unless it is
passed via a data parameter that the callback receives). The following
is an example of a wrapper that uses EvalhfMapleProc to evaluate a
function that takes an hfarray and some numeric values.

#include "maplec.h"

static MKernelVector kv; /* kernel vector */

static ALGEB fn; /* function handle */

static double hfparams[HF_MAX_PARAMS+1]; /* parameters */

void callback(int N, double X, double Y[])

{

hfparams[1] = (double)N;

hfparams[2] = X;

/* hfparams[3] is already set */

6.2 External Calling: Using Compiled Code in Maple • 371

EvalhfMapleProc(kv,fn,3,hfparams);

}

/* main wrapper function called from Maple */

ALGEB test(MKernelVector k, ALGEB args)

{

/* skip arg checking for the sake of brevity */

kv = k; /* save kernel vector */

/* get the hfarray handle */

hfparams[3] = MapleEvalhf(DAG(args[1]));

fn = DAG(args[2]); /* save the function handle */

do_stuff(callback); /* start the routine that */

/* calls callback() */

return(k->toMapleNULL());

}

In Maple, the external routine is accessed like any other, except an
error is raised if the given procedure is not able to use evalhf.

> f := proc(n,x,y) y[1] := n*sin(x); end:
> y := Vector([1,2],datatype=float[8]):

> p := define_external(’test’,MAPLE,LIB="libtest.so"):
> p(y,f):

General Evaluation The following procedures evaluate Maple proce-
dures or statements. These routines are not available in the Fortran API.

ALGEB MapleEval(MKernelVector kv, ALGEB s);

ALGEB EvalMapleProc(MKernelVector kv, ALGEB fn, int nargs,

/* ALGEB arg1, ALGEB arg2, */ ...);

ALGEB EvalMapleStatement(MKernelVector kv, char *statement);

EvalMapleProc is a callback to Maple. The first argument fn is a
Maple PROC or FUNCTION dag, which is evaluated with the arguments,
arg1 .. argN. For example, consider the following Maple function.

> f := proc(x) x^2; end:

If this function is passed to the external function as args[1], the
following code executes the given function at x := 3.14.

372 • Chapter 6: Advanced Connectivity

ALGEB a1, MapleResult;

double CResult;

a1 = ToMapleFloat(kv,3.14);

MapleResult = EvalMapleProc(kv,args[1],1,a1);

CResult = MapleToFloat64(kv,MapleResult);

EvalMapleStatement enables you to enter a single parsable Maple
statement and evaluate it. For example, the following call evaluates the
integral of x3 in the range x = 0..1.

ALGEB MapleResult;

double CResult;

MapleResult = EvalMapleStatement(kv,"int(x^3,x=0..1)");

CResult = mapleToFloat64(kv,MapleResult);

MapleEval evaluates a Maple expression. It is especially useful for
determining the value of an assigned name.

Assignment to Maple Variables The following assignment functions are
available only when using the C API.

ALGEB MapleAssign(MKernelVector kv, ALGEB lhs, ALGEB rhs);

ALGEB MapleAssignIndexed(MKernelVector kv, ALGEB lhs,

M_INT dim, M_INT *ind, ALGEB rhs);

MapleAssign sets the value dag rhs to the name dag lhs. This is
equivalent to the Maple statement

> lhs := rhs;

MapleAssignIndexed sets the value rhs to the indexed variable lhs.
The second parameter dim indicates the number of dimensions in the
array (or 1 if lhs is a table). The third parameter ind is a hardware
array of indices.

For example, to make the assignment a[1][2][3] = 3.14, the fol-
lowing code could be used (assuming arg1 points to the array a).

ALGEB rhs;

M_INT ind[3];

ind[0] = 1;

ind[1] = 2;

6.2 External Calling: Using Compiled Code in Maple • 373

ind[3] = 3;

rhs = ToMapleFloat(kv,3.14);

MapleAssignIndexed(kv,arg1,3,ind,rhs);

User Information The MapleUserInfo command displays "msg" when
infolevel[’name’] is set to level. This command is only available in
the C API.

void MapleUserInfo(MKernelVector kv, int level, char

*name, char *msg);

Memory Management The following functions are available only when
using the C API.

void* MapleAlloc(MKernelVector kv, M_INT nbytes);

void MapleDispose(MKernelVector kv, ALGEB s);

void MapleGcAllow(MKernelVector kv, ALGEB a);

void MapleGcProtect(MKernelVector kv, ALGEB a);

MapleAlloc allocates nbytes bytes of memory and returns a pointer
to it. Garbage collection of this memory is handled by Maple. Note that
to allocate this memory, a new BINARY dag structure is created, and a
pointer to the data part of the dag is returned.

The following code snapshot might be seen in a wrapper that converts
an integer reference (a name) in Maple to C.

ALGEB arg1;

INTEGER32 *i;

i = MapleAlloc(kv,sizeof(INTEGER32));

*i = MapleToInteger32(kv,arg1);

MapleDispose frees the memory allocated to the structure s. This
should only be used on data structures created using MapleAlloc, or
those that were created externally and are guaranteed not to be pointed
to by any other Maple structure. The Maple garbage collector reclaims
any memory not pointed to by any other data structure, so in typical
cases it is not necessary to use MapleDispose.

MapleGcProtect prevents the algebraic a from being collected by the
Maple garbage collector. The memory pointed to (by a) is not freed until
Maple exits, or a call to MapleGcAllow is issued. Any dags that must
persist between external function invocations must be protected. This

374 • Chapter 6: Advanced Connectivity

includes any external global or static ALGEB variables that will be referred
to in a later external call. Failure to protect such a persistent variable leads
to unexpected results if the Maple garbage collector removes it between
function calls.

MapleGcAllow allows the algebraic structure a to be collected by the
Maple garbage collector. Any algebraic structure that is not referenced
by another algebraic structure is automatically destroyed and its memory
reclaimed. Algebraics are protected from garbage collection if they are
used somewhere (that is, the value of a global name or part of an array’s
data). The normal state of an algebraic is to have garbage collection
enabled on it.

System Integrity
The Maple kernel has no control over the quality or reliability of external
functions. If an external function performs an illegal operation, such as
accessing memory outside of its address space, that operation can result
in a segmentation fault or system error. The external routine crashes,
causing Maple to crash too.

If an external routine accesses memory outside of its address space but
inside the Maple address space, the external routine will likely not crash,
but Maple will become corrupted, resulting in inexplicable behavior or a
crash later in the Maple session. Similarly, an external routine that deals
directly with Maple data structures can corrupt Maple by misusing the
data structure manipulation facilities.

Therefore, use external calling at your own risk. Whether an external
routine is one that you have written, or is one supplied by a third party
to which you have declared an interface (via define_external), Maple
must rely on the integrity of the external routine when it is called.

6.3 OpenMaple: Using Maple in Compiled Code

This section describes the Application Programming Interface (API) to
the OpenMaple kernel. OpenMaple is a suite of functions that allows you
to access Maple algorithms and data structures in your compiled C or
C++ program. To run your application, Maple 9 must be installed. You
can distribute your application to any licensed Maple 9 user.

The information in this document is hardware independent. Unless
otherwise noted, the information is also operating system architecture
independent.

6.3 OpenMaple: Using Maple in Compiled Code • 375

Interface Overview
The programming interface (API) is built on the existing external call-
ing mechanism. Using OpenMaple provides direct access to many of the
Maple internal data types. This is similar to the access define_external
provides to the author of an external wrapper. For more information on
external calling, see 6.2 External Calling: Using Compiled Code in
Maple or refer to ?external_calling and ?CustomWrapper.

OpenMaple provides the ability to start the Maple kernel and control
output. By default, output is sent to stdout. Setting up call-back functions
allows you to direct output to, for example, a text box or a string. For
more information on call-back functions, see Call-back Functions on
page 380.

Data Types Maple defines a few low-level data types to improve porta-
bility between architectures. Some types are used as parameters or return
values for OpenMaple API functions.

M_INT An integer that is the same size as a pointer on the architecture.
On most architectures, for example, Windows, this is equivalent to
int. On some architectures, this is equivalent to long int.

M_BOOL An integer that can take one of two values, TRUE or FALSE. The
size of this type is the same as M_INT.

ALGEB A Maple expression in native internal format. The format is not
documented, but some functions (such as MapleEval) use such an
expression for further processing by other API functions. The data
type definitions are in mplshlib.h and mpltable.h.

INTEGER8, INTEGER16, INTEGER32, INTEGER64, FLOAT32, FLOAT64 These
macros aid in developing platform-independent code. The macro re-
solves to the correct byte-sized integer type recognized by the under-
lying compiler.

All API functions are declared with the modifier M_DECL and EXT_DECL.
When using Microsoft Visual C/C++ (MSVC), M_DECL is defined us-
ing #define as __stdcall and EXT_DECL is defined using #define as
__declspec(dllimport) (to specify calling conventions and dll symbol
exports). For other compilers, these are defined using #define as noth-
ing. When not using MSVC on Windows, ensure that you define them
appropriately.

376 • Chapter 6: Advanced Connectivity

Basic API Functions The OpenMaple API consists of all the standard
functions available in the external call API, plus StartMaple, StopMaple,
and RestartMaple functions. For more information on external calling,
see 6.2 External Calling: Using Compiled Code in Maple or refer
to ?external_calling.

The sequence for calling the basic API functions is as follows.

1. Call StartMaple. For more information, see the following Initializing
Maple subsection.

2. Execute a string command in Maple by calling EvalMapleStatement

or use any of the other functions listed in maplec.h. For more infor-
mation, see Evaluating Maple Input on page 377.

3. Reset Maple by calling RestartMaple (if necessary). To execute ad-
ditional commands in this session, return to step 2. For more infor-
mation on restarting Maple, see Reinitializing Maple on page 379.

4. Call StopMaple. Once you stop the Maple kernel, you cannot restart
it. For more information on stopping Maple, seeTerminating Maple
on page 379.

The call-back functions are declared in maplec.h and defined in the
following subsections.

Initializing Maple The StartMaple function:

• Creates a Maple kernel

• Passes command-line parameters to this kernel (a subset of those that
can be passed to the stand-alone version of Maple)

• Prepares the kernel for computation

The calling sequence is as follows.

MKernelVector StartMaple(int argc, char *argv[],

MCallBackVector cb, void *user_data, void *info,

char *errstr);

• The argc parameter indicates the number of command-line arguments
passed in argv.

6.3 OpenMaple: Using Maple in Compiled Code • 377

• The argv parameter is an array of string pointers giving the command-
line parameters. This array must have at least argc + 1 elements, the
first of which (argv[0]) must be the name of the application or the
string "maple". If argv is NULL, argc and argv are ignored.

The OpenMaple kernel supports a subset of the command-line options
supported by the command-line version of Maple. Options that take
arguments (such as "-b") can be passed as either:

– A single parameter, in which the argument immediately follows the
option with no intervening space, for example, "-b/usr/maple/lib"

– A pair of parameters, for example, "-b" and "/usr/maple/lib"

Options that are not supported include preprocessor directives (-D, -I,
-U) and filter modes (-F, -l, -P). Options specific to only the graphical
interface are also not supported.

• The cb parameter specifies a collection of functions that Maple uses to
return results to your application. For more information on call-back
functions, see Call-back Functions on page 380.

• The user_data parameter is an arbitrary user-supplied value. It is
the first argument passed to the call-back functions.

• The info parameter is currently used only for internal purposes. It
must be set to NULL.

• The errstr parameter is a preallocated string buffer. The error pa-
rameter points to a memory area where an error is written if ini-
tialization fails. The error message will not exceed 2048 characters
(including the nul terminator).

The StartMaple function returns a Maple kernel handle if successful.
This handle is needed as an argument to all other functions listed in
maplec.h. If MapleInitialize fails (for example, if incorrect arguments
are passed), it returns a zero and an error message is written in the
memory pointed to by the errstr parameter. Currently, multiple kernels
are not supported.

Evaluating Maple Input The most general evaluation function,
EvalMapleStatement takes an input string, parses it, and then executes
it as if it were entered in stand-alone Maple. The result and interme-
diate output can be displayed using the call-back functions supplied to
StartMaple.

378 • Chapter 6: Advanced Connectivity

The structure representing the final result is also returned and can be
manipulated by other functions that work with ALGEB types.

The EvalMapleStatement function is defined as follows.

ALGEB M_DECL EvalMapleStatement(MKernelVector kv, char

*statement);

• The kv parameter specifies the handle to the Maple kernel. This is
the handle returned by StartMaple.

• The statement parameter specifies the statement to be evaluated,
expressed in Maple syntax. If the expression contains a syntax error,
EvalMapleStatement calls the errorCallBack with two parameters:
a syntax error message and the offset into statement at which the
error occurred. For more information on the errorCallBack func-
tion, see Error Call-back Function on page 382. As in stand-alone
Maple, statements ending in a colon (:) do not generate output. Out-
put caused by print or lprint commands, by errors, or by help
requests is always displayed.

Raising a Maple Exception The MapleRaiseError function can be
called from any call-back function to cause a Maple error, as if the
Maple error statement had been called. If a Maple try-catch5 is in
effect, it catches the error, and Maple code continues to execute after
the try-catch call. Otherwise, computation stops, and a Maple error
message is generated and sent to errorCallBack function. For more infor-
mation on the errorCallBack function, see Error Call-back Function
on page 382.

The MapleRaiseError family of functions is defined as follows.

void MapleRaiseError(MKernelVector kv, char *msg);

void MapleRaiseError1(MKernelVector kv, char *msg,

ALGEB arg1);

void MapleRaiseError2(MKernelVector kv, char *msg,

ALGEB arg1, ALGEB arg2);

• The kv parameter specifies the handle to the Maple kernel.

• The msg parameter is the text of the error message to produce (unless
the exception is caught).

5For more information on the try-catch statement, refer to chapter 6 of the Intro-
ductory Programming Guide or ?try.

6.3 OpenMaple: Using Maple in Compiled Code • 379

• The arg parameters are one or more arbitrary Maple objects that
are substituted into numbered parameter locations in the msg string
when the exception is displayed. For information on using optional
arguments, refer to ?error.

Reinitializing Maple The RestartMaple function can be called any time
to reinitialize the state of a Maple kernel. Reinitializing the kernel is
equivalent to restarting the application, except that any existing allocated
memory is allocated to the kernel internal free storage lists; the memory
is not returned to the operating system. Calling RestartMaple when no
computation is active is equivalent to sending the statement "restart;"
to the EvalMapleStatement function.

The RestartMaple function is defined as follows.

M_BOOL RestartMaple(MKernelVector kv, char *errstr);

• The kv parameter specifies the handle to the Maple kernel to be
restarted.

• The errstr parameter is a preallocated string buffer. The error pa-
rameter points to a memory area where an error is written if reini-
tialization fails. The error message will not exceed 2048 characters,
including the nul terminator.

• If an error occurs when the RestartMaple function is called and no
computation is active, RestartMaple returns FALSE, and an error mes-
sage is written in the memory pointed to by the errstr parameter.
If no error occurs, it returns TRUE.

Terminating Maple To terminate the Maple kernel (for example, prior
to exiting your application), call the StopMaple function to free memory
that has been allocated by Maple. The StopMaple function also closes
open files and performs other cleanup operations.

The StopMaple function is defined as follows.

void StopMaple(MKernelVector kv);

The kv parameter specifies the handle to the Maple kernel to termi-
nate.

Note: After calling the StopMaple function, you cannot call OpenMaple
API functions (including StartMaple).

380 • Chapter 6: Advanced Connectivity

Call-back Functions
Results are returned from a Maple computation using your call-back func-
tions. The output is passed to a call-back function. Otherwise, the results
go to standard output, stdout.

You must pass the call-back functions to the StartMaple function
in a structure of type MCallBackVector. The MCallBackVector type is
defined as follows.

typedef struct {

void (M_DECL *textCallBack)(void *data, int tag,

char *output);

void (M_DECL *errorCallBack)(void *data, M_INT

offset, char *msg);

void (M_DECL *statusCallBack)(void *data, long

kilobytesUsed, long kilobytesAlloc, double

cpuTime);

char * (M_DECL *readLineCallBack)(void *data,

M_BOOL debug);

M_BOOL (M_DECL *redirectCallBack)(void *data, char

*name, char *mode);

char * (M_DECL *streamCallBack)(void *data, char

*name, M_INT nargs, char **args);

M_BOOL (M_DECL *queryInterrupt)(void *data);

char * (M_DECL *callBackCallBack)(void *data, char

*output);

} MCallBackVector, *MCallBack;

Each function takes one or more parameters. All take a generic data

parameter. The data parameter is passed the value of the data parameter
of the StartMaple function.

If a call-back function needs the MKernelVector of the kernel from
which it was called, your application can use the data parameter to pass
this information. For example, the data parameter can pass a pointer to
an object or structure containing the MKernelVector.

Note: All the API functions, including the call-back functions, are de-
clared with the M_DECL modifier. The functions assigned to the call-back
vector must also be declared with the M_DECL modifier.

The call-back functions are defined in maplec.h and described in the
following subsections.

6.3 OpenMaple: Using Maple in Compiled Code • 381

Text Call-back Function It is recommended that you specify a textCallBack
function.

The textCallBack function is called with typical (non-exceptional)
Maple output. The output that Maple generates, for example, an inter-
mediate result or the output from a printf statement, is passed to the
textCallBack function.

void (M_DECL *textCallBack)(void *data, int tag, char

*output)

• The tag parameter indicates the type of Maple output. The tag pa-
rameter can take one of the following values (as defined in moemapi.h).

MAPLE_TEXT_OUTPUT A line-printed (1-D) Maple expres-
sion or statement.

MAPLE_TEXT_DIAG Diagnostic output (high printlevel or
trace output).

MAPLE_TEXT_MISC Miscellaneous output, for example, from
the Maple printf function.

MAPLE_TEXT_HELP Text help output. This is generated in
response to a help request. For a more comprehensive help facility,
see 6.3 Maple Online Help Database.

MAPLE_TEXT_QUIT Response to a Maple quit, done, or stop
command.

MAPLE_TEXT_WARNING A warning message generated dur-
ing a computation.

MAPLE_TEXT_ERROR An error message generated during
parsing or processing. This is generated only if you do not
specify an errorCallBack function. For more information on
the errorCallBack function, see the following Error Call-back
Function subsection.

MAPLE_TEXT_STATUS Kernel resource usage status (a "bytes
used" message). This is generated only if you do not spec-
ify a statusCallBack function. For more information on the
statusCallBack function, see the following Status Call-back
Function subsection.

MAPLE_TEXT_DEBUG Output from the Maple debugger.

• The output parameter contains the output of the type indicated by
the tag parameter. Each output string can be arbitrarily long.

382 • Chapter 6: Advanced Connectivity

Error Call-back Function The errorCallBack function is called when
an error occurs during parsing or processing.

void (M_DECL *errorCallBack)(void *data, M_INT offset,

char *msg)

• The offset parameter indicates the location of a parsing error.

– If offset ≥ 0, the error was detected at the specified offset in the
string passed to EvalMapleStatement.

– If offset < 0, the error is not a parsing error; it is a computation
error.

• The msg parameter contains the text of the error message.

If an errorCallBack function is not specified, error messages are sent
to the textCallBack function, with the MAPLE_TEXT_ERROR tag. For more
information on the textCallBack function, see the previous subsection
Text Call-back Function.

Status Call-back Function The statusCallBack function is called
when Maple reports resource usage information (equivalent to the "bytes
used" messages in stand-alone Maple).

void (M_DECL *statusCallBack)(void *data, long

kilobytesUsed, long kilobytesAlloc, double

cpuTime)

• The cpuTime parameter is the number of seconds of CPU time con-
sumed since the Maple kernel was started. This includes time spent
in any call-back functions.

• The bytesUsed parameter indicates how many bytes of storage have
been allocated by the Maple internal storage manager.

• The bytesAlloc parameter indicates how many bytes of storage have
been allocated by the operating system by the Maple internal storage
manager.

If no statusCallBack function is specified, status information is
sent to the textCallBack function in the form "bytes used=%ld,

alloc=%ld, time=%1.2f", with the MAPLE_TEXT_STATUS tag. For more
information on the textCallBack function, see Text Call-back Func-
tion on page 380.

6.3 OpenMaple: Using Maple in Compiled Code • 383

Read Line Call-back Function The readLineCallBack function is
called when the kernel executes the Maple readline6 function (which
is also used by readstat and history) to obtain a line of input from the
user. In most applications, this is not used.

char * (M_DECL *readLineCallBack)(void *data, M_BOOL

debug)

• The debug parameter indicates that the call to readline was made
by the Maple debugger (the Maple debugger uses readline to get
debugger commands from the user).

– If debug is TRUE, the readline call is from the debugger.

– If debug is FALSE, the readline call is from history, readstat,
or another non-debugger call.

If no readLineCallBack function is provided, any attempt to exe-
cute the Maple readline function produces an error (reported using the
errorCallBack or textCallBack function). For more information on the
errorCallBack function, see Error Call-back Function on page 382.
For more information on the textCallBack function, seeText Call-back
Function on page 380.

Redirect Call-back Function The redirectCallBack function is called
when the kernel executes the Maple writeto7 or appendto function. The
intent is to redirect subsequent output.

M_BOOL (M_DECL *redirectCallBack)(void *data, char *name,

char *mode)

• The name parameter specifies the name of the file to which output is
appended.

• The mode parameter specifies the file access mode to use: "wt" for
write or "at" for append.

The name and mode parameters are compatible with the C library
function fopen.

6For more information on the readline function, refer to chapter 7 of the Introduc-
tory Programming Guide or ?readline.

7For more information on the writeto and appendto functions, see Redirecting
the default Output Stream on page 217.

384 • Chapter 6: Advanced Connectivity

If the name parameter is NULL (in which case the parameters are not
compatible with fopen), Maple is signalling that redirection is terminated.
Subsequent output is sent to the main output stream. Again, this is user-
dependent.

If no redirectCallBack function is provided, any attempt to exe-
cute the Maple writeto function or appendto function produces an error
(reported using the errorCallBack function or textCallBack function).

Call Back Call-back Function The callBackCallBack function is called
when Maple code calls the Maple callback function.

char * (M_DECL *callBackCallBack)(void *data, char

*output)

• The output parameter contains the text version of the parameters
passed to the Maple callback function.

On return, the callBackCallBack function returns either a NULL

pointer or a string containing a valid Maple expression.

• If the Maple callback function returns nothing, the callbackCallBack
function returns NULL.

• If a Maple expression is returned, it is parsed, and the Maple callback
function returns the (unevaluated) expression, or the callbackCallBack
function returns a parsed Maple expression.

This function can be used to explicitly pass intermediate values of a
computation to your code and to return a value to Maple.

If no callBackCallBack function is provided, any attempt to exe-
cute the Maple callback function produces an error (reported using the
errorCallBack function or textCallBack function).

Query Interrupt Call-back Function The queryInterrupt call-back
function is called to allow the user to halt the computation. This function
is called before each Maple statement is executed. In general, this occurs
hundreds of times per second. For some operations (notably large integer
manipulations), the queryInterrupt function is called every few seconds.

M_BOOL (M_DECL *queryInterrupt)(void *data)

To halt the computation, the function must return TRUE. To continue
the computation, the function must return FALSE.

6.3 OpenMaple: Using Maple in Compiled Code • 385

If no queryInterrupt function is provided, computations cannot be
interrupted.

Stream Call-back Function The Maple math engine and the Open-
Maple API communicate using logical streams. The Maple engine in-
terprets a stream as an unevaluated call to a function with a name that
begins with "INTERFACE_". Data is sent on a stream either implicitly by
various operations (for example, the Maple print function sends its data
on the INTERFACE_PRINT stream), or explicitly by a call to the Maple
streamcall function. There are several predefined streams. In Open-
Maple, most streams map to one of the call-back functions described
in this subsection.

Streams are usually used to output information (as is done by the
INTERFACE_PRINT stream), but some streams can be used to request in-
formation as well. For example, the INTERFACE_READLINE stream is used
to request user input during execution of a Maple procedure. In Open-
Maple, INTERFACE_READLINE is mapped to the readLineCallBack.

In addition to the predefined streams, a Maple user, or an OpenMaple
developer, can create streams by passing a Maple expression of the form,

INTERFACE_streamName(arguments)

to the streamcall function. If the stream returns a result, the streamcall
function returns that result. (You can also send to a stream by passing
such an expression to the Maple print function, or by allowing such an
expression to be the result of a computation, but in that case, no result
can be passed on the stream back to Maple).

The streamCallBack function is called when Maple sends output as
a stream that is not explicitly handled by the OpenMaple API.

char * (M_DECL *streamCallBack)(void *data, char *name,

M_INT nargs, char **args)

• The name parameter specifies the name of the stream without the
"INTERFACE_" prefix.

• The nargs parameter indicates the number of arguments passed. If
no arguments are passed, nargs is zero.

• The args parameter points to an array of string pointers, one for each
argument passed. Each string is a line-printed (1-D) Maple expression
corresponding to that argument.

386 • Chapter 6: Advanced Connectivity

The streamCallBack function must return a string in valid Maple
syntax. If no result is to be returned, it must return the NULL pointer.

User-defined streams are an alternative to using the callBackCallBack
function. For more information on the callBackCallBack function, see
Call Back Call-back Function on page 384. Streams have several ad-
vantages:

• The stream name is passed. You can use multiple streams in Maple
code, and quickly determine which operation to perform by examining
the stream name in the streamCallBack function.

• Multiple arguments are passed as separate strings, unlike the
callBackCallBack function to which multiple arguments are passed
as a single comma-separated string. This reduces parsing requirements
in the OpenMaple application.

• The number of arguments is passed, making it easier to check that
the correct arguments are passed.

If no streamCallBack function is specified and output is sent to an
unknown stream, the arguments to the stream are sent to the call-back
function to which Maple results are sent, that is, the textCallBack func-
tion.

Maple Online Help Database
The Maple online help system is also available to your application. Al-
though help output can be generated by passing a Maple help command
to a kernel (in which case the output is returned to the textCallBack

function with a MAPLE_TEXT_HELP tag), such output does not reflect any
markup in the help file. By calling the help system directly, formatted
help pages can be retrieved.

Setting the Help Database Search Path The help system is accessed
using the MapleHelp function. As with stand-alone Maple, the help search
path is defined by the value of libname8. The MapleLibName function
can be used to query or change this path. For more information on the
MapleLibName function, refer to maplec.h.

Retrieving a Help Page To retrieve and display a help page, use the
MapleHelp function.

The following figure illustrates text mode help output.

8For more information on libname, refer to ?libname.

6.3 OpenMaple: Using Maple in Compiled Code • 387

The MapleHelp function retrieves and displays a help page, or a sec-
tion of a help page, based on the specified topic. The results are passed as
a stream of characters and attributes to the specified call-back functions.

char * M_DECL MapleHelp(

MKernelVector kv,

char *topic,

char *section,

M_BOOL (M_DECL *writeChar)(void *data, int c),

M_BOOL (M_DECL *writeAttrib)(void *data, int a),

int width,

void *data

)

• The kv parameter specifies the handle to the Maple kernel. This han-
dle is returned by StartMaple.

• The topic parameter specifies the help page. The topic is generally
a Maple keyword, function name, symbol, or a combination thereof
separated by commas. For example, to refer to a function in a package,
use "package_name, function_name".

388 • Chapter 6: Advanced Connectivity

• The section parameter indicates which section of the page to display.
If this is passed as "" or NULL, the entire page is displayed. To restrict
display to a particular section of the page, pass one of the following
values.

"usage" Displays the function name (one-line description) and call-
ing sequence

"description" Displays the detailed description of the function

"examples" Displays examples of the function usage

"seealso" Displays a list of related topics

• The writeChar parameter defines a call-back function to which the
characters are passed. The characters are all printable. Leading spaces
are added to achieve the appropriate alignment. No trailing spaces are
generated. A newline (’\n’) character is sent at the end of each line.
The writeChar function terminates rendering by returning TRUE.

• The writeAttrib parameter defines a call-back function to which
attribute information is passed. The attribute passed to writeAttrib

applies to all characters passed to writeChar until another attribute
is passed to writeAttrib. The possible attribute values are:

FN_NORMAL Normal text mode.

FN_BOLD Boldfaced text mode. This can be used for key words
in Maple procedures in example output and for section headings.

FN_ITAL Italic text mode. This can be used for calling sequence
parameter names.

FN_UNDER Underlined text mode. This is used for links to other
topics. The format of this text is "linkReference##linkText",
where linkReference is the topic to which the link refers and link-
Text is the link text displayed in the help page. It is equivalent to
the HTML code:

linkText

The writeAttrib function can be omitted by passing NULL for the
writeAttrib parameter.

• The width parameter indicates the width, in characters, to which the
help information is formatted.

• The data parameter is an arbitrary user-supplied value. It is the first
argument passed to the call-back functions.

6.3 OpenMaple: Using Maple in Compiled Code • 389

The MapleHelp function returns NULL if successful, or it returns a
pointer to an error message if unsuccessful. It may return the same pointer
in all cases of failure. To save the message, make a copy of it immediately.

Technical Issues
This subsection discusses technical issues related to using OpenMaple.

Memory Usage Maple allocates memory from the operating system
(through the C malloc function on most architectures) in large chunks
(64KB on most architectures). This memory is not returned to the op-
erating system (that is, by free) until Maple terminates. When Maple
no longer requires a piece of memory, the memory is added to one of the
Maple internal free storage lists. Maple maintains several storage lists, for
different sizes of memory blocks, so it can quickly find blocks of the re-
quired size. For example, Maple makes extensive use of three-word blocks,
so it maintains a list of free blocks of that size. Maple allocates additional
memory from the operating system only when it is unable to satisfy a
request using its storage lists.

Maple appears to leak memory because the amount of memory allo-
cated to Maple only increases. The more memory Maple is allocated by
the operating system, the less it is allocated in future because it reuses
memory. For most applications, 4MB of memory must be available for
Maple to allocate.

Under Microsoft Windows, the Maple kernel is compiled using 4-byte
structure alignment. Your application must be compiled this way. This is
a general requirement for Windows applications.

File Structure
Off the main Maple installation path, the following subdirectories contain
files related to OpenMaple.

bin.$SYS Location of maplec.dll and maplec.lib. Also holds various
dynamic libraries used by the OpenMaple kernel. To determine $SYS

for your platform, see Table 6.5 on page 395.

samples/OpenMaple Location of the C/C++ #include files for use
with external calling and OpenMaple.

lib Location of the Maple math libraries and help database.

extern/examples Location of platform-independent sample code.

390 • Chapter 6: Advanced Connectivity

The OpenMaple files installed are platform dependent.9

UNIX On UNIX platforms, the OpenMaple engine consists of a shared
object library (libmaplec.so, libmaplec.sl (HP), or libmaplec.a
(AIX)) which exports the functions described in this document.

Microsoft Windows Under Microsoft Windows, the OpenMaple engine
consists of a DLL (maplec.dll) which exports the functions described
in this document.

An import library is also provided. The file maplec.lib in the
bin.$SYS directory is an import library in COFF format.

Mac OS X Under Mac OS X, the OpenMaple engine consists of two
dynamic libraries (libmaplec.dylib and libmaple.dylib), which
export the functions described in this document.

Building the Sample Program
The code for one simple example of how to use OpenMaple is in the file
samples/OpenMaple/cmaple/omexample.c. The example program illus-
trates how to evaluate expressions, access help, and interrupt computa-
tions.

The following assumes the current directory is the root of the Maple
installation, and that the compiler is set up to work in command-line
mode, that is, it is in the PATH and relevant environment variables are set
up.

AIX

setenv LIBPATH bin.IBM_RISC_UNIX

cc samples/OpenMaple/cmaple/omexample.c -o

bin.IBM_RISC_UNIX/omexample -Lbin.IBM_RISC_UNIX

-Iinclude -lmaplec

bin.IBM_RISC_UNIX/omexample

Digital UNIX / Compaq Tru64

setenv LD_LIBRARY_PATH bin.DEC_ALPHA_UNIX

cc samples/OpenMaple/cmaple/omexample.c -o

bin.DEC_ALPHA_UNIX/omexample -Lbin.DEC_ALPHA_UNIX

-Iinclude -lmaplec

bin.DEC_ALPHA_UNIX/omexample

9For a list of currently supported operating system versions, refer to the installation
instructions.

6.3 OpenMaple: Using Maple in Compiled Code • 391

HP-UX

setenv SHLIB_PATH bin.HP_RISC_UNIX

cc samples/OpenMaple/cmaple/omexample.c -o

bin.HP_RISC_UNIX/omexample -Lbin.HP_RISC_UNIX

-Iinclude -lmaplec -lCsup

bin.HP_RISC_UNIX/omexample

IRIX

setenv LD_LIBRARY_PATH bin.SGI_MIPS_UNIX

cc samples/OpenMaple/cmaple/omexample.c -o

bin.SGI_MIPS_UNIX/omexample -Lbin.SGI_MIPS_UNIX

-Iinclude -lmaplec

bin.SGI_MIPS_UNIX/omexample

Linux

setenv LD_LIBRARY_PATH bin.IBM_INTEL_LINUX

gcc samples/OpenMaple/cmaple/omexample.c -o

bin.IBM_INTEL_LINUX/omexample

-Lbin.IBM_INTEL_LINUX -Iinclude -lmaplec

bin.IBM_INTEL_LINUX/omexample

Mac OS X

setenv DYLD_LIBRARY_PATH bin.APPLE_PPC_OSX

gcc samples/OpenMaple/cmaple/omexample.c -o

bin.APPLE_PPC_OSX/omexample -Lbin.APPLE_PPC_OSX

-Iinclude -lmaplec -lmaple

bin.APPLE_PPC_OSX/omexample

Microsoft Windows with Microsoft Visual C/C++ (MSVC)

cd bin.IBM_INTEL_NT

cl -Gz ../samples/OpenMaple/cmaple/omexample.c -I../include

maplec.lib

omexample

Solaris

setenv LD_LIBRARY_PATH bin.SUN_SPARC_SOLARIS

cc samples/OpenMaple/cmaple/omexample.c -o

bin.SUN_SPARC_SOLARIS/omexample

-Lbin.SUN_SPARC_SOLARIS -Iinclude -lmaplec

bin.SUN_SPARC_SOLARIS/omexample

392 • Chapter 6: Advanced Connectivity

6.4 Conclusion

This chapter outlined how the CodeGeneration package provides utilities
for translating Maple code to other programming languages. Additionally,
this chapter discussed how the Maple kernel can be extended by integrat-
ing compiled code using the ExternalCalling package and how Maple
can be used by compiled code using OpenMaple.

6.4 Conclusion • 393

T
ab

le
6.
3

C
om

p
ou

n
d
T
yp

es

M
a
p
le

D
a
ta

D
es
cr
ip
to

r
C

T
y
p
e

F
o
rt
ra

n
T
y
p
e

J
av

a
T
y
p
e

A
R
R
A
Y
(
d
a
t
a
t
y
p
e
=
t
y
p
e
n
a
m
e
,

t
y
p
e

*
A

t
y
p
e

*
A

t
y
p
e
[
]

A

o
r
d
e
r
=
.
.
.
,

e
t
c
.

)

s
t
r
i
n
g
[
n
]

c
h
a
r

x
[
n
]

C
H
A
R
A
C
T
E
R
*
2

s
t
r
i
n
g

c
o
m
p
l
e
x
[
4
]

s
t
r
u
c
t

C
O
M
P
L
E
X

{
f
l
o
a
t

r
,

i
;

}
C
O
M
P
L
E
X
*
8

N
A

c
o
m
p
l
e
x
[
8
]

s
t
r
u
c
t

D
O
U
B
L
E

N
A

{
d
o
u
b
l
e

r
,

i
;

}
C
O
M
P
L
E
X

C
O
M
P
L
E
X
*
1
6

R
E
F
(
t
y
p
e
n
a
m
e
)

T
Y
P
E
N
A
M
E
*

N
A

N
A

394 • Chapter 6: Advanced Connectivity

T
ab

le
6.4

W
rap

p
er

C
om

p
ou

n
d
T
yp

es

M
a
p
le

D
a
ta

D
escrip

to
r

C
T
y
p
e

F
o
rtra

n
T
y
p
e

J
av

a
T
y
p
e

S
T
R
U
C
T
(

m
e
m
b
e
r
1

:
:

d
e
s
c
r
i
p
t
o
r
1
,

.
.
.
,

s
t
r
u
c
t

{
t
y
p
e
1

m
e
m
b
e
r
1
;

.
.
.
,

N
A

N
A

m
e
m
b
e
r
N

:
:

d
e
s
c
r
i
p
t
o
r
N
,

o
p
t
i
o
n
s

)
t
y
p
e
N

m
e
m
b
e
r
N
;

}

U
N
I
O
N
(

m
e
m
b
e
r
1

:
:

d
e
s
c
r
i
p
t
o
r
1
,

.
.
.
,

u
n
i
o
n

{
t
y
p
e
1

m
e
m
b
e
r
1
;

.
.
.
,

N
A

N
A

m
e
m
b
e
r
N

:
:

d
e
s
c
r
i
p
t
o
r
N
,

o
p
t
i
o
n
s

)
t
y
p
e
N

m
e
m
b
e
r
N
;

}

P
R
O
C
(

m
e
m
b
e
r
1

:
:

d
e
s
c
r
i
p
t
o
r
1
,

.
.
.
,

t
y
p
e
R

(
*
p
r
o
c
)

(
t
y
p
e
1

m
e
m
b
e
r
1
,

.
.
.
,

N
A

N
A

m
e
m
b
e
r
N

:
:

d
e
s
c
r
i
p
t
o
r
N
,

t
y
p
e
N
,

m
e
m
b
e
r
N

)
;

R
E
T
U
R
N

:
:

d
e
s
c
r
i
p
t
o
r
R

)

6.4 Conclusion • 395

T
ab

le
6.
5

M
ap
le

A
P
I
L
ib
ra
ri
es

fo
r
C
an
d
F
or
tr
an

O
p
e
ra

ti
n
g

B
in

a
ry

L
o
a
d

L
ib
ra

ry
C

M
a
p
le

F
o
rt
ra

n
M

a
p
le

S
y
st
e
m

D
ir
ec

to
ry

E
n
v
ir
o
n
m
e
n
t

A
P
I
L
ib
ra

ry
A
P
I
L
ib
ra

ry
V
a
ri
a
b
le

M
ic
ro
so
ft

W
in
d
ow

s
b
in
.w

X
X

1
P
A
T
H

m
ap

le
c.
li
b

m
ap

le
fo
rt
ra
n
.l
ib

(m
ap

le
c.
d
ll
)

(m
ap

le
fo
rt
ra
n
.d
ll
)

M
ac

O
S
X

N
A

D
Y
L
D
_
L
IB

R
A
R
Y
_
P
A
T
H

m
ap

le
c.
d
y
li
b

m
ap

le
fo
rt
ra
n
.d
y
li
b

S
ol
ar
is

b
in
.S
U
N
_
S
P
A
R
C
_
S
O
L
A
R
IS

L
D
_
L
IB

R
A
R
Y
_
P
A
T
H

li
b
m
ap

le
c.
so

li
b
m
ap

le
fo
rt
ra
n
.s
o

H
P
-U

X
b
in
.H

P
_
R
IS
C
_
U
N
IX

S
H
L
IB

_
P
A
T
H

li
b
m
ap

le
c.
sl

li
b
m
ap

le
fo
rt
ra
n
.s
l

IR
IX

b
in
.S
G
I_

M
IP

S
_
U
N
IX

L
D
_
L
IB

R
A
R
Y
_
P
A
T
H

li
b
m
ap

le
c.
so

li
b
m
ap

le
fo
rt
ra
n
.s
o

A
IX

b
in
.I
B
M
_
R
IS
C
_
U
N
IX

L
IB

P
A
T
H

li
b
m
ap

le
c.
a

li
b
m
ap

le
fo
rt
ra
n
.a

O
S
F
1/

T
ru
e6
4

b
in
.D

E
C
_
A
L
P
H
A
_
U
N
IX

L
D
_
L
IB

R
A
R
Y
_
P
A
T
H

li
b
m
ap

le
c.
so

li
b
m
ap

le
fo
rt
ra
n
.s
o

L
in
u
x

b
in
.I
B
M
_
IN

T
E
L
_
L
IN

U
X

L
D
_
L
IB

R
A
R
Y
_
P
A
T
H

li
b
m
ap

le
c.
so

li
b
m
ap

le
fo
rt
ra
n
.s
o

1
F
o
r
M
ic
ro
so
ft

W
in
d
ow

s,
th
e
b
in
a
ry

d
ir
ec
to
ry

n
a
m
e
d
ep

en
d
s
o
n
th
e
p
la
tf
o
rm

.
It

is
o
n
e
o
f:
b
i
n
.
w
9
x
(W

in
d
ow

s
9
8
),

b
i
n
.
w
n
t
(W

in
d
ow

s
N
T
),

a
n
d
b
i
n
.
w
i
n
(o
th
er

W
in
d
ow

s
p
la
tf
o
rm

s)
.

396 • Chapter 6: Advanced Connectivity

Table A.1 Maple Structures

AND ASSIGN BINARY BREAK CATENATE
COMPLEX CONTROL DCOLON DEBUG EQUATION
ERROR EXPSEQ FLOAT FOR FOREIGN
FUNCTION GARBAGE HASH HASHTAB HFLOAT
IF IMPLIES INEQUAT INTNEG INTPOS
LESSEQ LESSTHAN LEXICAL LIST LOCAL
MEMBER MODDEF MODULE NAME NEXT
NOT OR PARAM POWER PROC
PROD RANGE RATIONAL READ RETURN
RTABLE SAVE SERIES SET STATSEQ
STOP STRING SUM TABLE TABLEREF
TRY UNEVAL USE XOR ZPPOLY

A Internal Representation
and Manipulation

Table A.1 lists the structures currently implemented in Maple.
Each of structure, along with the constraints on its length and con-

tents, is described in the following sections.

A.1 Internal Organization

Maple appears to the user as an interactive calculator. The user interface
reads input, parses it, and then calls the math engine for each complete
statement encountered. Maple can read and evaluate an unlimited number
of statements until a quit statement is evaluated, or the user interface is
shut down.

397

398 • Appendix A: Internal Representation and Manipulation

Components
Maple consists of three main components: a kernel, a library, and a user
interface. The kernel and library together are known as the math engine.

Kernel The kernel is written in the C language and is responsible for
low-level operations such as arbitrary precision arithmetic, file I/O, execu-
tion of the Maple language, and the performance of simple mathematical
operations such as differentiation of polynomials.

Library Most of the Maple mathematical functionality is in the Maple
library, which is written in the Maple language. The library is stored in
an archive, and pieces of it are loaded and interpreted by the kernel on
demand.

User Interface The user interface is the part of Maple that the user sees,
and is conceptually separate from the math engine. The same math engine
can be used with different user interfaces. Usually, Maple is provided with
a graphical user interface (GUI) and a command-line interface. The GUI is
more useful for interactive use, especially when working with plots or large
matrices. The command-line interface is practical for batch processing, or
solving large problems where you want to devote all the resources of your
computer to computation.

Maplet applications provide an alternate user interface, which is built
from a description generated in the Math Engine by a series of user com-
mands. For more information on the Maplets package, refer to the Intro-
ductory Programming Guide.

Internal Functions
The internal functions in Maple are divided into five distinct groups:

1. Evaluators The evaluators are the main functions responsible for
evaluation. There are six types of evaluations: statements, algebraic
expressions, boolean expressions, name forming, arbitrary precision
floating-point arithmetic, and hardware floating-point arithmetic. The
user interface calls only the statement evaluator, but thereafter, there
are many interactions between evaluators. For example, the statement,

if a > 0 then b||i := 3.14/a end if

is first analyzed by the statement evaluator, which calls the Boolean
evaluator to resolve the if condition. Once completed (for example,

A.1 Internal Organization • 399

with a true result), the statement evaluator is invoked again to do the
assignment, for which the name-forming evaluator is invoked with the
left side of the assignment, and the expression evaluator with the right
side. Since the right side involves floating-point values, the expression
evaluator calls the arbitrary precision floating-point evaluator.

Normally, the user does not specifically invoke any of the evaluators,
but in some circumstances, when a non-default type of evaluation
is needed, the user can directly call evalb (the Boolean evaluator),
evaln (the name-forming evaluator), evalf (the arbitrary precision
floating-point evaluator), or evalhf (the hardware floating-point eval-
uator).

2. Algebraic Functions These are commonly called basic functions.
Some examples are: taking derivatives (diff), dividing polynomi-
als (divide), finding coefficients of polynomials (coeff), comput-
ing series (series), mapping a function (map), expanding expressions
(expand), and finding indeterminates (indets).

3. Algebraic Service Functions These functions are algebraic in
nature, but serve as subordinates of the functions in the previous
group. In most cases, these functions cannot be explicitly called by the
user. Examples of such functions are the internal arithmetic packages,
the basic simplifier, and retrieval of library functions.

4. Data Structure Manipulation Functions These are like the alge-
braic functions, but instead of working on mathematical objects, such
as polynomials or sets, they work on data structures, such as expres-
sion sequences, sums, products, or lists. Examples of such functions
are operand selection (op), operand substitution (subsop), searching
(has), and length determination (length),

5. General Service Functions Functions in this group are at the
lowest hierarchical level. That is, they may be called by any other
function in the system. They are general purpose, and not necessar-
ily specific to symbolic or numeric computation. Some examples are:
storage allocation and garbage collection, table manipulation, internal
I/O, and exception handling.

Flow of Control
The flow of control need not remain internal to the Maple kernel. In many
cases, where appropriate, a decision is made to call functions written in
Maple and residing in the library. For example, many uses of the expand

400 • Appendix A: Internal Representation and Manipulation

function are handled in the kernel. However, if an expansion of a sum to a
large power is required, then the internal expand calls the external Maple
library function ‘expand/bigpow‘ to resolve it. Functions such as diff,
evalf, series, and type make extensive use of this feature.

Thus, for example, the basic function diff cannot differentiate any
function. All of that functionality resides in the Maple library in pro-
cedures named ‘diff/functionName‘. This is a fundamental feature of
Maple since it permits:

• Flexibility (changing the library)

• Personal tailoring (by defining your refined handling functions)

• Readability (much of the Maple functionality is visible at the user
level)

Maple allows the kernel to remain small by unloading non-essential func-
tions to the library.

A.2 Internal Representations of Data Types

The parser and some internal functions are responsible for building all the
data structures used internally by Maple. All the internal data structures
have the same general format:

Header Data1 . . . Datan

The header field, stored in one or more machine words, encodes the
length of the structure and its type. Additional bits are used to record
simplification status, garbage collection information, persistent store sta-
tus, and various information about specific data structures (for example,
whether or not a for loop contains a break or next).

The length is encoded in 26 bits on 32-bit architectures, resulting in
a maximum single object size of 67, 108, 863 words (268, 435, 452 bytes,
or 256 megabytes). On 64-bit architectures, the length is stored in 32
bits, for a maximum object size of 4, 294, 967, 295 words (34, 359, 738, 360
bytes, or 32 gigabytes).

Every structure is created with its own length, and that length does
not change during the existence of the structure. Furthermore, the con-
tents of most data structures are never changed during execution, because
it is unpredictable how many other data structures may be referring to

A.2 Internal Representations of Data Types • 401

it, and relying on it not to change. The normal procedure to modify a
structure is to copy it, and then to modify the copy. Structures that are
no longer used are eventually reclaimed by the garbage collector.

The following figures describe each of the 60 structures currently im-
plemented in Maple, along with the constraints on their length and con-
tents. The 6-bit numeric value identifying the type of structure is of little
interest, so symbolic names will be used.

Logical AND

AND ∧expr1 ∧expr2

Maple syntax: expr1 and expr2

Length: 3

Assignment Statement

ASSIGN ∧name− seq ∧expr − seq

Maple syntax: name1, name2, ... := expr1, expr2, ...

Length: 3

The left-hand side name entries must evaluate to assignable objects:
NAME, FUNCTION, or TABLEREF structures. The right-hand side must be an
expression sequence of the same length as the left-hand side.

Binary Object

BINARY data . . .

Maple syntax: none
Length: arbitrary

The BINARY structure can hold any arbitrary data. It is not used
directly as a Maple object, but is used as storage for large blocks of data
inside other Maple objects (currently only RTABLEs). It is also sometimes
used as temporary storage space during various kernel operations.

Break Statement

BREAK

Maple syntax: break
Length: 1

402 • Appendix A: Internal Representation and Manipulation

Name Concatenation

CATENATE ∧name ∧expr

Maple syntax: name || expr

Length: 3

• If the name entry is one of NAME, CATENATE, LOCAL, or PARAM, and
if the expr entry evaluates to an integer, NAME, or STRING, then the
result is a NAME.

• If the name entry is a STRING or CATENATE that resolves to a STRING,
and if the expr entry evaluates to an integer, NAME, or STRING, then
the result is a STRING.

• If expr is a RANGE, then the result is to generate an EXPSEQ of NAMEs
or STRINGs.

Complex Value

COMPLEX ∧re ∧im

COMPLEX ∧im

Maple syntax: Complex(re,im) or re + im * I

Length: 2 or 3

The re and im fields must point to INTPOS, INTNEG, RATIONAL, or
FLOAT structures, one of the NAMEs infinity or undefined, or a SUM

structure representing -infinity. In the length 3 case, if either re or im
is a FLOAT, the other must be a FLOAT as well.

Communications Control Structure

CONTROL ∧integer

Maple syntax: none
Length: 2

This is an internal structure used in kernel to user-interface com-
munication. Such a structure never reaches the user level, or even the
mathematical parts of the kernel.

A.2 Internal Representations of Data Types • 403

Type Specification or Test

DCOLON ∧expr ∧type− expr

Maple syntax: expr :: typeExpr

Length: 3

This structure has three interpretations depending on the context in
which it is used. When it appears in the header of a procedure definition,
it is a typed parameter declaration. When it appears in the local section
of a procedure or on the left side of an assignment, it is a type assertion.
When it appears elsewhere (specifically in a conditional expression), it is
a type test.

Debug

DEBUG ∧expr1 ∧expr2 . . .

Maple syntax: none
Length: 2 or more

This is another internal-only structure. It is used by the kernel when
printing error traceback information to transmit that information up the
call stack.

Equation or Test for Equality

EQUATION ∧expr1 ∧expr2

Maple syntax: expr1 = expr2

Length: 3

This structure has two interpretations depending on the context in
which it is used. It can be either a test for equality, or a statement of
equality (not to be confused with an assignment).

Error Statement

ERROR ∧expr

Maple syntax: error "msg", arg, . . . arg
Length: 2

404 • Appendix A: Internal Representation and Manipulation

This represents the Maple error statement. The expr is either a single
expression (if only a message was specified in the error statement), or an
expression sequence (if arguments were also specified). The actual internal
tag used for the ERROR structure is MERROR, to prevent collision with a
macro defined by some C compilers.

Expression Sequence

EXPSEQ ∧expr1 ∧expr2 . . .

Maple syntax: expr1, expr2, . . .
Length: 1 or more

Expression sequences are available to the user as a data structure, and
are also used to pass arguments to procedures. Effectively, procedures take
a single argument that is an expression sequence. An expression sequence
may be of length 1 (that is, an empty sequence), which is represented
by the Maple symbol NULL, or in some contexts (such as parameters to a
function call) as nothing at all.

Floating-Point Number

FLOAT ∧integer1 ∧integer2 ∧attrib− expr

Maple syntax: 1.2, 1.2e3, Float(12,34), Float(infinity)
Length: 2 (or 3 with attributes)

A floating-point number is interpreted as integer1 ∗ 10integer2. A
floating-point number may optionally have attributes, in which case the
length of the structure is 3, and the third word points to a Maple ex-
pression. This suggests that several floating-point numbers with the same
value but different attributes can exist simultaneously.

The integer2 field can optionally be one of the names undefined

or infinity, in which case the FLOAT structure represents an undefined
floating-point value (not-a-number, or NaN, in IEEE terminology), or a
floating-point infinity. When integer2 is undefined, integer1 can take
on different small integer values, allowing the existence of different NaNs.
When integer2 is infinity, integer1 must be 1 or −1.

For/While Loop Statement

FOR ∧name ∧from− ∧by− ∧to− ∧cond− ∧stat−
expr expr expr expr seq

A.2 Internal Representations of Data Types • 405

FOR ∧name ∧in− expr ∧cond− expr ∧stat− seq

Maple syntax:

for name from fromExpr by byExpr to toExpr

while condExpr do

statSeq

end do

Maple syntax:

for name in inExpr

while condExpr do

statSeq

end do

Length: 7 or 5

The name follows the same rules as in ASSIGN, except that it can
also be the empty expression sequence (NULL), indicating that there is no
controlling variable for the loop.

The from-expr, by-expr, to-expr, and cond-expr entries are general
expressions. All are optional in the syntax of for loops and can thus be
filled in with default values (1, 1, NULL, and true respectively) by the
parser.

The stat-seq entry can be a single Maple statement or expression, a
STATSEQ structure, or NULL indicating an empty loop body. An additional
bit in the FOR structure’s header is used to indicate whether the stat-seq
contains any break or next statements.

Foreign Data

FOREIGN . . .

Maple syntax: none
Length: 1 or more

This is similar to the BINARY structure, except that it is for use by
components of Maple outside the kernel, such as the user interface. A
FOREIGN structure is exempt from garbage collection, and it is the re-
sponsibility of the external component to free it when it is finished using
it.

406 • Appendix A: Internal Representation and Manipulation

FOREIGN data structures can be created and managed in external
code via the MaplePointer API functions. For more information, refer
to ?MaplePointer.

Function Call

FUNCTION ∧name ∧expr − seq ∧attrib− expr

Maple syntax: name(exprSeq)

Length: 2 (or 3 with attributes)

This structure represents a function invocation (as distinct from a
procedure definition that is represented by the PROC structure). The name
entry follows the same rules as in ASSIGN, or it may be a PROC structure.
The expr-seq entry gives the list of actual parameters, and is always an
expression sequence (possibly of length 1, indicating no parameters).

Garbage

GARBAGE . . .

Maple syntax: none
Length: 1 or more

This structure is used internally by the Maple garbage collector as a
temporary object type for free space.

Hardware Float

HFLOAT floatword

HFLOAT floatword floatword

Maple syntax: none
Length: 2 on 64-bit architectures, 3 on 32-bit architectures

This structure is used to hold a hardware floating-point value. The
one or two words (always 8 bytes) after the header hold the actual double-
precision floating-point value. HFLOAT objects are currently not available
directly to the user, but they are used internally to more efficiently trans-
fer hardware floating-point values between RTABLEs of such values, and
the Maple I/O facilities (for example, the printf and scanf families of
functions).

A.2 Internal Representations of Data Types • 407

If Statement

IF ∧cond− ∧stat− ∧cond− ∧stat− ∧stat−
expr1 seq1 expr2 seq2 seqN

Maple syntax:

if condExpr1 then

statSeq1

elif condExpr2 then

statSeq2

...

else statSeqN

end if

Length: 3 or more

This structure represents the if . . . then . . . elif . . . else . . . end if

statement in Maple. If the length is even, the last entry is the body of an
else clause. The remaining entries are interpreted in pairs, where each
pair is a condition of the if or elif clause, followed by the associated
body.

Logical IMPLIES

IMPLIES ∧expr1 ∧expr2

Maple syntax: expr1 implies expr2

Length: 3

Not Equal or Test for Inequality

INEQUAT ∧expr1 ∧expr2

Maple syntax: expr1 < > expr2

Length: 3

This structure has two interpretations, depending on the context in
which it is used. It can be either a test for inequality or an inequality
statement (not to be confused with an assignment).

Negative Integer

INTNEG integer integer . . .

408 • Appendix A: Internal Representation and Manipulation

Maple syntax: −123
Length: 2 or more

This data structure represents a negative integer of arbitrary preci-
sion. For positive integer representation information, see the following
section.

Positive Integer

INTPOS integer integer . . .

Maple syntax: 123
Length: 2 or more

This data structure represents a positive integer of arbitrary precision.
Integers greater than or equal to the threshold 10kernelopts(gmpthreshold)

are represented internally in a base equal to the full word size of the host
machine. On 32-bit architectures, this base is 232. On 64-bit architectures,
the base is 264. Integers in this range use the GNU Multiple Precision
Arithmetic (GMP) library for integer arithmetic.

Integers less than the threshold 10kernelopts(gmpthreshold) are repre-
sented internally in a smaller base that is also dependent on the host
machine. On 32-bit architectures, this base is 10, 000. On 64-bit architec-
tures, the base is 1, 000, 000, 000. The base is chosen such that the square
of the base is still representable in a machine integer. Each integer field
represents either 4 or 9 digits. The least significant digits are represented
first. For example, on a 32-bit platform, the integer 123, 456, 789, 638, 747
is represented as:

INTPOS 8747 8963 4567 123

Small integers are not represented by data structures at all. Instead of a
pointer to an INTPOS or INTNEG structure, a small integer is represented
by the bits of what would normally be a pointer. The least significant
bit is 1, which makes the value an invalid pointer (since pointers must be
word-aligned). Such an integer is called an immediate integer .

The range of integers representable in this way is −1, 073, 741, 823
to 1, 073, 741, 823 (that is, about ±109) on 32-bit architectures, and
−4, 611, 686, 018, 427, 387, 903 to 4, 611, 686, 018, 427, 387, 903 (that is,
about ±4 ∗ 1018) on 64-bit architectures. (These numbers may not seem
small, but consider that the Maple maximum integer magnitude is about
22,147,483,488 on 32-bit architectures and 2274,877,906,688 on 64-bit architec-
tures.)

A.2 Internal Representations of Data Types • 409

Less Than or Equal

LESSEQ ∧expr1 ∧expr2

Maple syntax: expr1 <= expr2, expr2 >= expr1

Length: 3

This structure has two interpretations, depending on the context. It
can be interpreted as a relation (that is, an inequation), or as a comparison
(for example, in the condition of an if statement, or the argument to a
call to evalb). Maple does not have a greater-than-or-equal structure.
Any input of that form is stored as a LESSEQ structure.

Less Than

LESSTHAN ∧expr1 ∧expr2

Maple syntax: expr1 < expr2, expr2 > expr1

Length: 3

Like the LESSEQ structure above, this structure has two interpreta-
tions, depending on the context. It can be interpreted as a relation (that
is, an inequation), or as a comparison (for example, in the condition of
an if statement, or the argument to a call to evalb).

Maple does not have a greater-than structure. Any input of that form
is stored as a LESS structure.

Lexically Scoped Variable within an Expression

LEXICAL integer

Maple syntax: name
Length: 2

This represents an identifier within an expression in a procedure or
module that is not local to that procedure, but is instead declared in a
surrounding procedure or module scope. The integer field identifies which
lexically scoped variable of the current procedure is being referred to. The
integer, multiplied by 2, is an index into the lexical-seq structure referred
to by the PROC DAG of the procedure. Specifically, |integer| * 2 - 1

is the index to the NAME of the identifier, and |integer| * 2 is the index
to a description (LOCAL, PARAM, or LEXICAL) relative to the surrounding
scope. The value of integer can be positive or negative. If positive, the
original identifier is a local variable of a surrounding procedure; if nega-
tive, it is a parameter of a surrounding procedure.

410 • Appendix A: Internal Representation and Manipulation

List

LIST ∧expr − seq ∧attrib− expr

Maple syntax: [expr, expr, ...]

Length: 2 (or 3 with attributes)

The elements of the expr-seq are the elements of the list. The list can
optionally have attributes.

Local Variable within an Expression

LOCAL integer

Maple syntax: name
Length: 2

This indicates a local variable when it appears within an expression in
a procedure or module. The integer is an index into the procedure local-
seq. At procedure execution time, it is also an index into the internal data
structure holding the active locals on the procedure activation stack, and
holds private copies of the NAMEs of the local variables (private copies in
the sense that these NAMEs are not the same as the global NAMEs of the
same name).

Member

MEMBER ∧module ∧name

Maple syntax: module :- name

Length: 3

This structure represents a module member access in an expression.
MEMBER objects typically do not persist when a statement is simplified.
Instead, they are replaced by the actual member that they refer to (an
instance of a NAME).

Module Definition

MODDEF param- local- option- export- stat- desc-
seq seq seq seq seq seq

...

global- lexical- mod-
seq seq name

Maple syntax:

A.2 Internal Representations of Data Types • 411

module modName ()
description descSeq;
local localSeq;
export exportSeq;
global globalSeq;
option optionSeq;
statSeq

end module

Length: 10

The param-seq points to an expression sequence describing the formal
parameters of the module. Currently, Maple does not support parameter-
ized modules, so this field always points to the sequence containing just
an instance of the name thismodule.

The local-seq points to an expression sequence listing the explicitly
and implicitly declared local variables. Each entry is a NAME. The explicitly
declared variables appear first. Within the module, locals are referred to
by LOCAL structures, the local variable number being the index into the
local-seq.

The export-seq points to an expression sequence listing the exported
module members. Each entry is a NAME. Within the module, exports are
referred to by LOCAL structures, the local variable number being the num-
ber of elements in the local-seq, plus the index into the export-seq.

The option-seq points to an expression sequence of options to the
module (for modules, options are the same thing as attributes). Each
entry is a NAME or EQUATION specifying an option. Typical options are
load= . . . and unload= . . .

The stat-seq field points to a single statement or a statement sequence
(STATSEQ). If the module has an empty body, this is a pointer to NULL

instead.
The desc-seq field points to an expression sequence of NAMEs or

STRINGs. These are meant to provide a brief description of what the Mod-
ule does, and are displayed even when interface(verboseproc) is less
than 2.

The global-seq field points to a list of the explicitly declared global
variables in the module (those that appeared in the global statement).
This information is never used at run time, but it is used when simplify-
ing nested modules and procedures to determine the binding of lexically
scoped identifiers (for example, an identifier on the left side of an assign-
ment in a nested procedure can be global if it appears in the global

statement of a surrounding context). This information is also used at

412 • Appendix A: Internal Representation and Manipulation

printing time, so that the global statement contains exactly the global
identifiers that were declared in the first place.

The lexical-seq field points to an expression sequence of links to iden-
tifiers in the surrounding scope, if any. The sequence consists of pairs of
pointers. The first pointer of each pair is to the globally unique NAME of
the identifier; this is needed at simplification and printing time. The sec-
ond pointer is a pointer to a LOCAL, PARAM, or LEXICAL structure which is
understood to be relative to the surrounding scope. When a module def-
inition is evaluated, the lexical-seq is updated by replacing each of the
second pointers with a pointer to the actual object represented. The name
pointers are not touched, so that the actual identifier names are still avail-
able. The lexical-seq for a module contains entries for any surrounding-
scope identifiers used by that module or by any procedures or modules
contained within it.

The mod-name field points to the optional name of the module. If
a module name was specified when the module was declared, the name
will appear there. If no module name was specified, this field will contain
NULL.

Module Instance

MODULE ∧export− seq ∧mod− def ∧local − seq

Maple syntax: none
Length: 4

Executing a module definition (MODDEF) results in a module instance.
Each local or exported member of the module is instantiated and be-
longs to that instance of the module. The export-seq field points to an
expression sequence of names of the instantiated exports (as opposed to
the global names, as stored in the module definition). The mod-def field
points back to the original module definition. The local-seq field points
to an expression sequence of names of the instantiated local variables of
the module.

Identifier

NAME ∧assigned− ∧attrib− characters characters . . .
expr expr

Maple syntax: name
Length: 4 or more

A.2 Internal Representations of Data Types • 413

The assigned-expr field points to the assigned value of the name. If
the name has no assigned value, this field is a null pointer (not a pointer
to NULL). The next field points to an expression sequence of attributes
of the name. If there are no attributes, this field points to the empty
expression sequence (NULL). The remaining fields contain the characters
making up the name, stored 4 or 8 per machine word (for 32-bit and 64-bit
architectures respectively). The last character is followed by a zero-byte.
Any unused bytes in the last machine word are also zero. The maximum
length of a name is 268,435,447 characters on 32-bit architectures and
34,359,738,351 characters on 64-bit architectures.

Next Statement

NEXT

Maple syntax: next
Length: 1

Logical NOT

NOT ∧expr

Maple syntax: not expr

Length: 2

Logical OR

OR ∧expr1 ∧expr2

Maple syntax: expr1 or expr2

Length: 3

Procedure Parameter within an Expression

PARAM integer

Maple syntax: name
Length: 2

This indicates a parameter when it appears within a procedure. The
integer is an index into the procedure param-seq. Several special PARAM
structures exist:

414 • Appendix A: Internal Representation and Manipulation

PARAM 0

This represents the Maple symbol nargs, the number of arguments passed
when the procedure was called.

PARAM −1

This represents the Maple symbol args, the entire sequence of arguments
passed when the procedure was called.

PARAM −2

This represents the Maple symbol procname, referring to the currently
active procedure.

At procedure execution time, the integer (if positive) is used as an
index into the internal data structure Actvparams which is part of the
Maple procedure activation stack, and holds pointers to the values (which
are also Maple structures, of course) of the actual parameters passed to
the procedure.

Power

POWER ∧expr1 ∧expr2

Maple syntax: expr1∧expr2
Length: 3
This structure is used to represent a power when the exponent is

not an integer, rational, or floating-point value. When the exponent is
numeric, the POWER structure is converted to a length 3 PROD structure.

Procedure Definition

PROC ∧param− ∧local− ∧option− ∧rem− ∧stat− ∧desc−
seq seq seq table seq seq

...

∧global− ∧lexical−
seq seq

Maple syntax:

proc (paramSeq)
description descSeq;

A.2 Internal Representations of Data Types • 415

local localSeq;
export exportSeq;
global globalSeq;
option optionSeq;
statSeq

end proc

Length: 9

The param-seq points to an expression sequence describing the formal
parameters of the procedure. Each entry is either a NAME or a DCOLON

(which in turn contains a NAME and an expression specifying a type).
Within the procedure, parameters are referred to by PARAM structures,
the parameter number being the index into the param-seq.

The local-seq points to an expression sequence listing the explicitly
and implicitly declared local variables. Each entry is a NAME. The explicitly
declared variables appear first. Within the procedure, locals are referred
to by LOCAL structures, the local variable number being the index into
the local-seq.

The option-seq field points to an expression sequence of options to
the procedure (for procedures, options are the same thing as attributes).
Each entry is a NAME or EQUATION specifying an option. Typical options
are remember, operator, and ‘Copyright ...‘.

The rem-table field points to a hash table containing remembered
values of the procedure. Entries in the table are indexed by the procedure
arguments, and contain the resulting value. If there is no remember table,
this field contains a pointer to NULL, the empty expression sequence.

The stat-seq field points to a single statement or a statement sequence
(STATSEQ). If the procedure has an empty body, this is a pointer to NULL

instead. For each procedure that is built into the kernel, there is a wrapper
PROC that has the option builtin in its option-seq, and a single Maple
integer pointed to by its stat-seq. The integer gives the built-in function
number.

The desc-seq field points to an expression sequence of NAMEs or
STRINGs. These are meant to provide a brief description of what the pro-
cedure does, and are displayed even when interface(verboseproc) is
less than 2.

The global-seq field points to a list of the explicitly declared global
variables in the procedure (those that appeared in the global statement).
This information is never used at run time, but it is used when simplifying
nested procedures to determine the binding of lexically scoped identifiers.
For example, an identifier on the left side of an assignment in a nested

416 • Appendix A: Internal Representation and Manipulation

procedure can be global if it appears in the global statement of a sur-
rounding procedure. This information is also used at procedure printing
time, so that the global statement will contain exactly the same global
identifiers that were declared in the first place.

The lexical-seq field points to an expression sequence of links to iden-
tifiers in the surrounding scope, if any. The sequence consists of pairs of
pointers. The first pointer of each pair is to the globally unique NAME of
the identifier; this is needed at simplification and printing time. The sec-
ond pointer is a pointer to a LOCAL, PARAM, or LEXICAL structure which is
understood to be relative to the surrounding scope. When a procedure is
evaluated (not necessarily called), the lexical-seq is updated by replacing
each of the second pointers with a pointer to the actual object repre-
sented. The name pointers are not touched, so that the actual identifier
names are still available. The lexical-seq for a procedure contains entries
for any surrounding-scope identifiers used by that procedure or by any
procedures contained within it.

Product, Quotient, Power

PROD ∧expr1 ∧expon1 ∧expr2 ∧expon2

Maple syntax: expr1 ^ expon1 * expr2 ^ expon2 ...

Length: 2n+ 1

This structure is interpreted as pairs of factors and their numeric ex-
ponents. Rational or integer expressions to an integer power are expanded.
If there is a rational constant in the product, this constant is moved to the
first entry by the simplifier. A simple power, such as a^2, is represented as
a PROD structure. More complex powers involving non-numeric exponents
are represented as POWER structures.

Range

RANGE ∧expr1 ∧expr2

Maple syntax: expr1 .. expr2

Length: 3

Rational

RATIONAL ∧integer ∧pos− integer

A.2 Internal Representations of Data Types • 417

Maple syntax: 1/2
Length: 3

This structure is one of the basic numeric objects in Maple. Note that
this is not a division operation, but only a representation for rational
numbers. Both fields must be integers (INTPOS, INTNEG, or an immediate
integer) and the second must be positive.

Read Statement

READ ∧expr

Maple syntax: read expr

Length: 2

The Maple read statement. The expression must evaluate to either a
string or symbol (STRING or NAME structure), and specifies the name of
the file to read.

Return Statement

RETURN ∧expr − seq

Maple syntax: return expr1, expr2, ...

Length: 2

The Maple return statement. The expression sequence is evaluated,
giving the value(s) to return.

Rectangular Table

RTABLE ∧data ∧maple− ∧ind− ∧attrib flags num-
type fn elems

...

L1 U1 LN UN P1 P2

Maple syntax: rtable(...)
Length: 2n + p where n is the number of dimensions (0 to 63), and p

is 0, 1, or 2, depending on the number of Pi parameters.

The data field points to either a block of memory (for dense and NAG-
sparse RTABLEs), or to a HASHTAB structure (for Maple-sparse RTABLEs).
The data block is either an object of type BINARY, or memory allocated

418 • Appendix A: Internal Representation and Manipulation

directly from the operating system’s storage manager when the block
would be too large to be allocated as a Maple data structure. If the data
block is a BINARY object, the data pointer points to the first data word,
not to the object header.

The maple-type field points to a Maple structure specifying the data
type of the elements of an RTABLE of Maple objects. If the RTABLE con-
tains hardware objects, the maple-type field points to the Maple NAME

anything.
The ind-fn pointer points to either an empty expression sequence

(NULL), or an expression sequence containing at least one indexing func-
tion and a pointer to a copy of the RTABLE structure. The copy of the
RTABLE is identical to the original, except that its ind-fn field refers to
one less indexing function (either NULL, or another expression sequence
containing at least one indexing function and a pointer to another copy
of the RTABLE with one less indexing function again).

The attrib pointer points to an expression sequence of zero or more
arbitrary attributes, which can be set by the setattribute function, and
queried by attributes.

The flags field is a bit field containing the following subfields.

• data type - 5 bits - indicates one of several hardware datatypes or
that a Maple data type (as specified by maple-type) is being used.

• subtype - 2 bits - indicates if the RTABLE is an Array, Matrix, or Vector.

• storage - 4 bits - describes the storage layout (e.g. sparse, upper tri-
angular, etc.)

• order - 1 bit - indicates C or Fortran ordering of RTABLE elements.

• read only - 1 bit - indicates the RTABLE is to be read-only once created.

• foreign - 1 bit - indicates that the space pointed to by the data field
does not belong to Maple, so Maple should not garbage collect it.

• eval - 1 bit - indicates if full evaluation should occur on lookup. For
more information, refer to ?rtable_eval.

• literal - 1 bit - optimization for internal type checking of data con-
tained in an RTABLE.

• number of dimensions - 6 bits - the number of dimensions of the
RTABLE, from 0 to 63.

A.2 Internal Representations of Data Types • 419

The num-elems field indicates the total number of elements of stor-
age allocated for the data. For a Maple-sparse RTABLE, num-elems is
not used. For a NAG-sparse RTABLE, num-elems specifies the number of
elements currently allocated, some of which might not be in use.

The remaining fields specify the upper and lower bounds of each di-
mension, and are stored directly as signed machine integers. The limits
on bounds are −2, 147, 483, 648 to 2, 147, 483, 647 for 32-bit architectures
and −9, 223, 372, 036, 854, 775, 808 to 9, 223, 372, 036, 854, 775, 807 for 64-
bit architectures. The total number of elements cannot exceed the upper
limit numbers either.

Save Statement

SAVE ∧expr − seq

Maple syntax: save expr, expr, ...

Length: 2

The Maple save statement. The expression sequence gives a list of
names of objects to save, and either a file name or repository name in
which to save them. The file or repository name can be specified as a
NAME or STRING.

Series

SERIES ∧expr1 ∧expr2 integer ∧expr3 integer

Maple syntax: none
Length: 2n+ 2

This is the internal representation of a series in Maple. There is no
input syntax for a series; one can only arise from a computation. The first
expression has the general form x-a, where x denotes the variable of the
series used to do that expansion, and a denotes the point of expansion.
The remaining entries are interpreted as pairs of coefficients and expo-
nents. The exponents are integers, not pointers to integers or immediate
integers. The exponents appear in increasing order. A coefficient O(1) (a
function call to the function O, with parameter 1) is interpreted specially
by Maple as an order term.

Set

SET ∧expr − seq ∧attrib− expr

420 • Appendix A: Internal Representation and Manipulation

Maple syntax: {expr, expr, ...}
Length: 2 (or 3 with attributes)

The entries in the set’s expression sequence are sorted in order of
increasing memory address. This is an arbitrary but consistent order,
necessary for efficiently working with sets.

Statement Sequence

STATSEQ ∧stat1 ∧stat2 . . .

Maple syntax: stat1; stat2; ...

Length: 3 or more

This structure represents a sequence of two or more statements, and
can be used wherever a single statement (for example, ASSIGN, IF, FOR)
can appear. A statement sequence, containing only a single statement, is
replaced by that statement. A statement sequence containing no state-
ments is replaced by the empty expression sequence (NULL). Nested
STATSEQ structures are flattened. All of the above transformations are
made by the simplifier.

Stop Maple

STOP

Maple syntax: quit, done, or stop
Length: 1

String

STRING reserved ∧attrib− expr characters characters . . .

Maple syntax: "This is a string"

Length: 4 or more

A Maple string is structurally similar to a NAME, except that it has
no assigned-value field. The attrib-expr field points to an expression
sequence of attributes of the string. If there are no attributes, this field
points to the empty expression sequence (NULL). The remaining fields
contain the characters making up the string, stored 4 or 8 per machine
word (for 32-bit and 64-bit architectures respectively). The last character

A.2 Internal Representations of Data Types • 421

is followed by a zero-byte. Any unused bytes in the last machine word are
also zero.

The maximum length of a string is 268, 435, 447 characters on 32-bit
architectures and 34, 359, 738, 351 characters on 64-bit architectures.

Sum, Difference

SUM ∧expr1 ∧factor1 ∧expr2 ∧factor2

Maple syntax: expr1 * factor1 + expr2 * factor2 ...

Length: 2n+ 1

This structure is interpreted as pairs of expressions and their numeric
factors. Rational or integer expressions with an integer factor are ex-
panded and the factor replaced with 1. If there is a rational constant in
the sum, this constant is moved to the first entry by the simplifier. Simple
products, such as a*2, are represented as SUMs. More complex products
involving non-numeric factors are represented as PROD structures.

Table

TABLE ∧index− func ∧array − bounds ∧hash− tab

Maple syntax: N/A
Length: 4

This is a general table type, as created by the table and array func-
tions in Maple. The index-func will point to either a NAME or a PROC.
For general tables, the array-bounds field points to the empty expression
sequence (NULL). For arrays (not to be confused with Arrays, which are
implemented as RTABLEs), the array-bounds field refers to an expression
sequence of RANGEs of integers. The hash-tab field points to a HASHTAB

structure containing the elements.

Table Reference

TABLEREF ∧name ∧expr − seq ∧attrib− expr

Maple syntax: name [expr]

Length: 3 (or 4 with attributes)

This data structure represents a table reference, or indexed name. The
name entry follows the same rules as for ASSIGN, or it may be a TABLE

422 • Appendix A: Internal Representation and Manipulation

or MODULE structure. (The parser will not generate a TABLEREF with a
TABLE structure for the name entry, but this can arise internally.) The
expression sequence contains the indices.

Try Statement

TRY ∧try− ∧catch− ∧catch− ∧final−
stat− −str stat− stat−
seq seq seq

Maple syntax:

try tryStat
catch "catchStr": catchStat
...
finally finalStat;

end try

Length: 3 or more

This structure represents a try statement, and can have an arbitrary
length, depending on how many catch blocks there are within it, and
whether or not it has a finally block. The catch-strs point to the catch
string of the corresponding catch block. If no catch string was specified,
the catch-str points to NULL. Empty catch-stat-seqs are also represented
by pointers to NULL, as is an empty (but present) finally block.

The actual internal tag used for the TRY structure is MTRY, to prevent
collision with a macro defined by some C exception handling libraries.

Unevaluated Expression

UNEVAL ∧expr

Maple syntax: ’ expr ’

Length: 2

Use Statement

USE ∧bindings ∧statseq

Maple Syntax:

A.2 Internal Representations of Data Types • 423

use bindings in
statseq

end use

Length: 3

The bindings component points to an expression sequence of equa-
tions whose left sides are symbols, and the statseq component points to
a sequence of statements that form the body of the use statement. The
right sides of the binding equations can be arbitary expressions.

The use statement introduces a new binding contour and binds the
names that appear on the left side of the equations in bindings. For con-
venience, on input, a module ‘m’ can appear among the bindings, and is
treated as if it were the sequence e1 = m:-e1, e2 = m:-e2, ..., where
the ei are the exports of ‘m’. Within the sequence statseq of statements,
the symbols appearing on the left side of the equations in bindings are
bound to the corresponding right sides. The previous bindings of those
symbols are restored upon exit from the use statement. Bindings are re-
solved during automatic simplification.

Logical XOR

XOR ∧expr1 ∧expr2

Maple syntax: expr1 xor expr2

Length: 3

Polynomials with Integer Coefficients modulo n

ZPPOLY ∧indet mod coef0 coef1 ...

ZPPOLY ∧indet_seq mod ∧zppoly0 ∧zppoly1 ...

Maple Syntax: modp1(ConvertIn(expr, indet), n);

Maple Syntax: modp2(ConvertIn(expr, indet1, indet2), n);

Length: degree(zppoly) +2 (for the zero polynomial)
Length: degree(zppoly) +3 (otherwise)

This is the internal representation of univariate and bivariate polyno-
mials modulo some integer. The modp1() and modp2() front ends provide
a suite of functions to work on this data structure operating in the domain

424 • Appendix A: Internal Representation and Manipulation

of polynomials in one or two variables with integer coefficients modulo n,
written Zn[x] or Zn[x, y], respectively. indet_seq is an expression se-
quence of the indeterminates of the polynomial (x), or (x,y). mod is the
integer modulus of the integer domain. In a univariate polynomial the
coefficients are stored in the following order.
(coef0*indet^0 + coef1*indet^1 + ... + coefi*indet^i) mod n

A bivariate polynomial contains pointers to univariate ZPPOLY struc-
tures representing the coefficients of the first indeterminate.
(coef0(indet2)*indet1^0 + coef1(indet2)*indet1^1 + ...) mod n

where each coefi is a univariate polynomial in indet1 mod n.
All coefficients are stored including zero coefficients. The leading co-

efficient is always non-zero.

A.3 The Use of Hashing in Maple

An important factor in achieving the overall efficient performance of
Maple is the use of hash-table-based algorithms for critical functions.
Tables are used in both simplification and evaluation, as well as for less
critical functions. For simplification, Maple keeps a single copy of each
expression, or subexpression, during a session. This is done by keeping all
objects in a table. In procedures, the remember option specifies that the
result of each computation of the procedure is to be stored in a remember
table associated with the procedure. Finally, tables are available to the
user as one of the Maple data types.

All table searching is done by hashing. The are two types of hash
tables, basic and dynamic. Basic hash tables are used for most Maple
hashing. However, basic hash tables are inefficient when a very large num-
ber of elements is stored. Dynamic hash tables are designed to work with
a large number of elements. The two types of hash tables are not exposed.
When a basic hash table becomes full, it is automatically converted to a
dynamic hash table.

Basic Hash Tables
The algorithm used for the basic hash tables is direct chaining, except
that the chains are dynamic vectors instead of the typical linked lists.
The two data structures used to implement hash tables are HASHTAB and
HASH.

A.3 The Use of Hashing in Maple • 425

Hash Table

HASHTAB ∧hash− chain1 ∧hash− chain2 . . .

Maple syntax: none
Length: 2n + 1

This is an internal data structure with no Maple syntax equivalent. It
is used in the representation of tables within Maple. Each entry points to
a hash chain (a HASH structure), or is a null pointer if no entry has been
created in that bucket yet. The size of a HASHTAB structure depends on
the type of table and the platform, but is always a power of 2 plus one.

Hash Chain

HASH key ∧expr1 key ∧expr2

Maple syntax: none
Length: 2n+ 1

Each table element is stored as a pair of consecutive entries in a hash
bucket vector. The first entry of this pair is the hash key, and the second
is a pointer to a stored value. In some cases (for example, procedure
remember tables, user defined tables), the key is also a pointer. In other
cases, the key is a hashed value (for example, the simplification table, the
symbol table). The key cannot have the value zero (or the null pointer)
since this is used to indicate the bottom of the bucket.

Dynamic Hash Tables
The Maple dynamic hash table is a complex data structure. A complete
description of the algorithms is not given. The following is a brief descrip-
tion of the structure.

Instead of using a flat, fixed length directory, Maple dynamic hash
tables use a tree structure with contiguous bits from the hash key to
select a child. A child of a directory can be a subdirectory or a hash
chain. For example, a top-level directory may use the first 10 bits to
index 1024 children. One of its children may be a directory that uses, say,
the next 8 bits of the key to index 256 children.

A hash chain in a dynamic table stores elements using key value pairs
(in the same way that a hash chain does in a basic hash table). The first
n bits of the keys in a hash chain are identical, where n is the number of
bits required to locate the hash chain. The remaining bits are arbitrary.
Using the example in the previous paragraph, the elements of a hash chain

426 • Appendix A: Internal Representation and Manipulation

that is a child of the directory with 256 children have hash keys that are
identical in the first 18 bits.

When a hash chain with unused bits overflows, it is split into two.
This may require creating a subdirectory with two children or doubling
the size of the hash chain’s parent directory. In either case, another bit
from the hash key is introduced for indexing. This bit is used to divide
the elements of the old chain into the two new chains. If the hash chain
has no unused bits for indexing, the chain grows as needed. This growth
occurs only if many elements are inserted with identical hash keys.

The Simplification Table
By far, the most important table maintained by the Maple kernel is the
simplification table. All simplified expressions and subexpressions are
stored in the simplification table. The main purpose of this table is to en-
sure that simplified expressions have a unique instance in memory. Every
expression, which is entered into Maple or generated internally, is checked
against the simplification table and, if found, the new expression is dis-
carded and the old one is used. This task is done by the simplifier which
recursively simplifies (applies all the basic simplification rules) and checks
against the table. Garbage collection deletes the entries in the simplifica-
tion table that cannot be reached from a global name or from a live local
variable.

The task of checking for equivalent expressions within thousands of
subexpressions would not be feasible if it were not done with the aid of
hashing. Every expression is entered in the simplification table using its
signature as a key. The signature of an expression is a hashing function
itself, with one very important attribute: signatures of trivially equivalent
expressions are equal. For example, the signatures of the expressions a+
b + c and c + a + b are identical; the signatures of a ∗ b and b ∗ a are
also identical. If two expressions’ signatures disagree then the expressions
cannot be equal at the basic level of simplification.

Searching for an expression in the simplification table is done by:

• Simplifying recursively all of its components

• Applying the basic simplification rules

• Computing its signature and searching for this signature in the table

If the signature is found, then a full comparison is performed (tak-
ing into account that additions and multiplications are commutative) to
verify that it is the same expression. If the expression is found, the one

A.3 The Use of Hashing in Maple • 427

in the table is used and the searched one is discarded. A full compari-
son of expressions has to be performed only when there is a collision of
signatures.

Since simplified expressions are guaranteed to have a unique occur-
rence, it is possible to test for equality of simplified expressions using a
single pointer comparison. Unique representation of identical expressions
is a crucial ingredient to the efficiency of tables, hence also the remember

option. Also, since the relative order of objects is preserved during garbage
collection, this means that sequences of objects can be ordered by ma-
chine address. For example, sets in Maple are represented this way. The
set operations, such as union or intersection, can be done in linear time
by merging sorted sequences. Sorting by machine address is also available
to the user with the sort command.

The Name Table
The simplest use of hashing in the Maple kernel is the name table. This
is a symbol table for all global names. Each key is computed from the
name’s character string and the entry is a pointer to the data structure
for the name. The name table is used to locate global names formed by
the lexical scanner or by name concatenation. It is also used by functions
that perform operations on all global names. These operations include:

1. Marking for garbage collection

2. Saving a Maple session environment in a file

3. Maple functions anames and unames which return all assigned and
unassigned global names, respectively

Remember Tables
A remember table is a hash table in which the argument(s) to a procedure
call are stored as the table index, and the result of the procedure call is
stored as the table value. Because a simplified expression in Maple has a
unique instance in memory, the address of the arguments can be used as
the hash function. Hence, searching a remember table is very fast.

There are several kernel functions which use remember tables in-
cluding, evalf, series, divide, normal, expand, diff, readlib, and
frontend. The functions evalf, series, and divide are handled inter-
nally in a special way for the following reasons:

• evalf and series need to store some additional environment infor-
mation (’Digits’ for evalf and ’Order’ for series). Consequently,

428 • Appendix A: Internal Representation and Manipulation

the entries for these are extended with the precision information. If a
result is requested with the same or less precision than what is stored
in the table, it is retrieved and rounded. If a result is produced with
more precision than what is stored, it is replaced in the table.

• evalf remembers only function calls (this includes named constants);
it does not remember the results of arithmetic operations.

• If a division operation succeeds and the divisor is a nontrivial poly-
nomial, the divide function stores the quotient in its remember table.
Otherwise nothing is stored in the remember table.

If option remember is specified together with option system, at
garbage collection time the remember table entries which refer to ex-
pressions no longer in use elsewhere in the system are removed. This
provides a relatively efficient use of remembering that does not waste
storage for expressions that have disappeared from the expression space.

Maple Language Arrays and Tables
Tables and arrays are provided as data types in the Maple language via
the table and array1 functions. An array is a table for which the com-
ponent indices must be integers lying within specified bounds. Tables and
arrays are implemented using the Maple internal hash tables. Because of
this, sparse arrays are equally as efficient as dense arrays. A table object
consists of the following.

1. Index bounds (for arrays only)

2. A hash table of components

3. An indexing function

The components of a table T are accessed using a subscript syntax (for
example, T[a,b*cos(x)]). Since a simplified expression is guaranteed to
have a unique instance in memory, the address of the simplified index is
used as the hash key for a component. If no component exists for a given
index, then the indexed expression is returned.

The semantics of indexing into a table are described by its indexing
function. Aside from the default, general indexing, some indexing func-
tions are provided by the Maple kernel. Other indexing functions are
loaded from the library or are supplied by the user.

1Note: Unlike the array command, the Array command creates a rectangular table,
which is described in the following subsection.

A.4 Portability • 429

Table A.2 Select Supported Maple Platforms

Hardware Operating System
Intel Pentium Based PC Microsoft Windows

Linux
Apple Power Macintosh Mac OS
Sun SPARC Sun OS/Solaris
Silicon Graphics Iris IRIX
Hewlett Packard PA-RISC HP-UX
IBM RS/6000 AIX
DEC Alpha Digital UNIX/Compaq Tru64

Maple Language Rectangular Tables
Rectangular tables (as implemented by the RTABLE structure), can use a
variety of storage formats. One format, Maple-sparse, is identical to that
used in tables and arrays, namely a hash table. There is another sparse
format, NAG-sparse, which uses one vector for each dimension to record
indices, and a third vector to record the values of the entries. The majority
of RTABLE storage formats are dense, the simplest being the rectangular.
Other dense formats include upper-triangular and band, where storage is
allocated only for the upper triangle or a band of elements respectively.
To the user, rectangular tables manifest themselves as objects of type
Array, Matrix, Vector[row], and Vector[column]. Note that an Array

is not the same thing as an array. For definitions, refer to ?Array and
?array.

A.4 Portability

The Maple kernel and the command-line interface are not tied to any one
operating system or hardware architecture. The Maple kernel is designed
to be portable to any system which supports a C compiler, a flat address
space, and a 32-bit or 64-bit word size. Table A.2 lists some platforms on
which Maple is supported (refer to the installation instructions for a list
of currently supported operating system versions).

The majority of the source code comprising the kernel is the same
across all platforms. Extensive use of macros and conditional compila-
tion take care of platform dependencies, such as word size, byte ordering,

430 • Appendix A: Internal Representation and Manipulation

storage alignment requirements, differences in hardware floating point
support, and sometimes, C compiler bugs.

The Maple library is interpreted by the Maple kernel. Therefore, other
than issues such as maximum object size, it is completely independent of
the underlying architecture.

The Maple graphical user interface has two versions, the standard
worksheet and the classic worksheet (not available on Macintosh). The
standard worksheet is implemented in Java, which is platform indepen-
dent. The classic worksheet is implemented in C and C++, and makes use
of a platform independent user interface class library to achieve portabil-
ity. The Maplet User Interface Customization System (available in both
worksheet versions) is written in Java with some native libraries. The Java
portion is identical on all platforms.

Index

%, 204
&, 33

accuracy, 223, 225, 229, 297
algebraic functions, 399
anames, 427
and, 401
AND internal data structure, 401
animations, 301

data structures of, 301
static form of, 302
with backdrops, 304
with display, 303, 306

appendto, 217, 383, 384
args, 18, 48
arguments, 251

not passed, 341
sequence of, 18

Array, 234
array, 428
Arrays, 232
arrays, 22, 214, 232

and hardware floats, 232
hardware floating-point, 234
initializing, 23
sorting, 8

assign, 20
ASSIGN internal data structure,

401
assignment

multiple, 288
assignment statements, 401
assume, 21, 37
assumptions, 21
atomic, 60
audience, 1
automatic simplification, 20

backdrops, 304
BesselJ, 232
Beta, 226
binary, 401
BINARY internal data structure,

401
binding list, 105
break, 48, 401
BREAK internal data structure,

401
buffered files, 190

flushing, 216

C
notes, 221

call by reference, 340
ANYTHING, 340
CALL_ONLY, 340
RETURN_ONLY, 340

callback function, 384
Cartesian product

sequence of sets, 22
CATENATE internal data struc-

ture, 402
classic worksheet, 2
close, 194
CodeGeneration, 319–330

calling functions, 320
Define command, 327
extensibility, 324–330
intermediate code, 323
intermediate form, 324
language definition, 327
language definition model, 329
Printer module, 325
translation process, 321
using a new language, 330

431

432 • Index

coeff, 399
COLOR, 308

HUE, 259
POLYGONS, 308
RGB, 262

color, 255, 308
adding, 312, 315

color tables, 309, 310
gray scale, 311
HUE, 310

columns
printing, 187, 215
reading, 204

command-line version, 2
commands

long names of, 252
compiled code

using in Maple, 330–374
using Maple in, 374–391

Complex, 402
COMPLEX internal data struc-

ture, 402
complex numbers, 236

imaginary unit, 35
computing

areas, 95
circumferences, 95

concatenation, 70, 402
constants

defining numeric, 238
constructors, 108
CONTROL internal data struc-

ture, 402
control, flow of, 399
conversions, 342
converting

expressions to strings, 275,
310

grids to polygons, 315
integers to string, 218

meshes to polygons, 273, 284,
315

strings to bytes, 218
strings to expressions, 30, 218
to formatted strings, 220
to PLOToptions, 267, 286

CopyFile, 198, 211
Copyright, 57
coverage, 87
customer feedback, 3

data
from other applications, 185
reading from files, 187
saving to file, 186

data structures, 39
for animations, 301
for plotting, 254–256, 262
internal, see internal data struc-

tures
manipulation, 399

DCOLON internal data structure,
403

DEBUG internal data structure,
403

debugopts, 87
define_external, 334
description, 50
diff, 70, 399

extending, 39
Digits, 12, 224, 235, 237

evalhf, 228
digits, number of, 224
display

insequence, 303
divide, 399
done, 381, 420
dsolve, 14

efficiency, 22, 223, 229, 234, 239,
297, 298

Index • 433

embedding 2-D graphics in 3-D,
268, 269, 277

encapsulation, 43, 66
end, 47
end module, 47
enumerated types, 339
equality, 403
EQUATION internal data struc-

ture, 403
error, 403
ERROR internal data structure,

403
errors

catastrophic cancellation, 238,
241

roundoff, 236
eval, 16, 31
evalb, 20, 399
evalf, 12, 224, 227, 399, 427

extending, 238
new constants, 238
new functions, 240

evalhf, 227, 399
arrays, 232–234
Digits, 228
structured objects, 232, 233
var, 234

evaln, 399
evaluating

parsed strings, 218
evaluation

full, 16
numerical, 224
using hardware floats, 227
using software floats, 224

evaluators, 398
event, numeric, 236
expand, 399, 400
export, 44, 52
exported local variables, 45, 52
exported variables

vs. local variables, 118
exports, 52
expressions

converting from strings, 30
reading from terminal, 28

EXPSEQ internal data structure,
404

extending
commands, 39
convert, 289
diff, 39
evalf, 238
simplify, 40
type, 31

extensibility, 66
extension mechanism, 70
external calling, 330–374

argument passing conventions,
338

array data formats, 337
custom wrapper, 331, 350
direct calling, 331, 332
Maple-generated wrapper, 331,

338
other data formats, 337
scalar data formats, 336
string data formats, 337
structured data formats, 336
types, 335

fclose, 194
feof, 195
fflush, 216
file descriptors, 192, 194
filepos, 194
files, 190

appending to, 193
binary, 190
buffered, 190, 216
closing, 187, 194
creating, 187, 193

434 • Index

current position in, 194
default, 191, 197
deleting, 196
descriptors of, 192, 194
detecting end of, 195
flushing, 216
length of, 195
opening, 187, 192, 193
printing bytes to, 210
printing columns to, 187, 215
printing formatted, 186, 211
printing strings to, 210
RAW, 190
READ, 191
reading bytes from, 197
reading columns from, 189,

204
reading formatted, 189
reading lines from, 197
reading remainder of, 198
redirecting default, 217
removing, 196
scanning, 189, 198
status of, 195
STREAM, 190
terminal, 191
text, 190
truncating, 193
unbuffered, 190
WRITE, 191

FLOAT internal data structure,
404

floating-point numbers, 223, 404
n-digit machine, 224
accuracy of, 225
and new constants, 238
and new functions, 240
bases of, 225
digits of, 224, 225
hardware, 227, 236, 297
hardware or software, 229

limitations, 235
models of, 235
precision, 235
representation of zero, 236
roundoff errors, 236
software, 224, 235, 297
zero, 236

flow of control, 399
fopen, 193
fopen C function, 383, 384
for loop, 405
FOR internal data structure, 405
foreign data, 405
FOREIGN internal data struc-

ture, 405
format strings, 187, 189, 199, 211
fprintf, 186, 211
free, 389
fremove, 196
fscanf, 189, 198
function call, 406
FUNCTION internal data struc-

ture, 406
function table, 65
functions

algebraic, 399
defining numeric, 240
numeric and symbolic, 242

garbage collection, 401, 405, 406,
426, 428

GARBAGE internal data struc-
ture, 406

generic programming, 117, 124,
125, 129

generic programs, 44
Getting Started Guide, 2
global, 51
global options, 258, 272
global variables, 21

interactive session, 20

Index • 435

referencing, 51
graphical interface

versions, 2
graphics, programming with, 245
GRID, 255

converting to polygons, 273
gridpoints, 291, 296
group, 78

Hamiltonians, 34, 35, 40
associativity of, 40
inverse of, 37

hardware float, 406
hardware floating-point numbers,

227, 235, 236, 297
and arrays, 232
and structured objects, 232
base of, 228
digits of, 228, 232

has, 399
HASH internal data structure,

425
hash tables, 424

basic, 424
dynamic, 425

hashing, 427
HASHTAB internal data struc-

ture, 425
help, 386
hfarray, 214

structured objects, 232
HFLOAT internal data structure,

406
histograms, 258, 263
history, 383

I, 35
IEEE standard, 224, 236
if, 407
IF internal data structure, 407
imaginary part

sign preservation, 236
immediate integer, 408
immutable state, 110
implementations

vs. interfaces, 118
implicit scoping rules, 58
implies, 407
IMPLIES internal data structure,

407
indets, 399
inequality, 407
INEQUAT internal data struc-

ture, 407
infinite recursion, 35
infinity, 236
infix, 34
infolevel

all, 41
simplify, 41

input
formatted, 198
from a file, 27
from the terminal, 27, 28
interactive, 27
prompting for, 27

Int, 227
int, 227
integers, 408

immediate, 408
negative, 408
positive, 408

integration
numerical, 225, 227

interactive
input, 27
session, 20

interface, 35, 206
indentamount, 208
labelling, 208
labelwidth, 208
prettyprint, 208

436 • Index

screenwidth, 207, 208
verboseproc, 208

interfaces, 118
manipulation, 119
vs. implementations, 118

internal data structures, 400
AND, 401
ASSIGN, 401
BINARY, 401
BREAK, 401
CATENATE, 402
COMPLEX, 402
CONTROL, 402
DCOLON, 403
DEBUG, 403
EQUATION, 403
ERROR, 403
EXPSEQ, 404
FLOAT, 404
FOR, 405
FOREIGN, 405
FUNCTION, 406
GARBAGE, 406
HASH, 425
HASHTAB, 425
HFLOAT, 406
IF, 407
IMPLIES, 407
INEQUAT, 407
INTNEG, 408
INTPOS, 408
length, 400
LESSEQ, 409
LESSTHAN, 409
LEXICAL, 409
LIST, 410
LOCAL, 410
MEMBER, 410
MODDEF, 410
MODULE, 412
NAME, 412

NEXT, 413
NOT, 413
OR, 413
PARAM, 413
POWER, 414
PROC, 414
PROD, 416
RANGE, 416
RATIONAL, 416
READ, 417
RETURN, 417
RTABLE, 417, 429
SAVE, 419
SERIES, 419
SET, 420
STATSEQ, 420
STOP, 420
STRING, 420
SUM, 421
TABLE, 421, 428
TABLEREF, 421
TRY, 422
UNEVAL, 422
USE, 422
XOR, 423
ZPPOLY, 423

internal functions, 398
internal organization, 397
internal representations of data

types, 400
INTNEG internal data structure,

408
INTPOS internal data structure,

408
Introductory Programming Guide,

2
iostatus, 195

kernel, 398
supported platforms, 429

Klein bottle, 284

Index • 437

last_name_eval, 60
Learning Guide, 2
length, 399
LESSEQ internal data structure,

409
LESSTHAN internal data struc-

ture, 409
LEXICAL internal data struc-

ture, 409
lexical scoping, 6

rules, 7, 58
lexically scoped variable, 409
libmaple.dylib file, 390
libmaplec.a file, 390
libmaplec.dylib file, 390
libmaplec.sl file, 390
libmaplec.so file, 390
libname, 386
library, 398
Limit, 227
limit, 227
limits

numerical, 227
LinearAlgebra, 78
LinkedList, 80
LIST internal data structure, 410
lists, 410

appending elements to, 250
load, 57
local, 52
LOCAL internal data structure,

410
local options, 258, 271, 286
local variables, 26, 410

escaped, 19
exported, 45, 52
invoking procedures, 19
outside their procedure, 19
referencing, 52
returning, 22
vs. exported variables, 118

logical AND, 401
logical IMPLIES, 407
logical XOR, 423
lprint, 206

MakeIteration, 15
MakeZn, 59
malloc C function, 389
Mandelbrot set, 248
manual

audience, 1
conventions, 3
set, 2

map, 399
in procedures, 6

Maple
using Compiled Code in, 330–

374
using in compiled code, 374–

391
Maple Getting Started Guide,

2
Maple Introductory Program-

ming Guide, 2
Maple Learning Guide, 2
Maple_floats, 236
maplec.dll file, 389, 390
maplec.h file, 376, 377, 380, 386
maplec.lib file, 389, 390
Maplet

applications, 2
User Interface Customization

System, 2, 430
Maplets package, 398
math engine, 398
MATLAB, 243
Matrices, 214

reading, 215
writing, 215

member, 56, 100

438 • Index

MEMBER internal data struc-
ture, 410

MEMBER objects, 410
memory usage, 389
MESH, 256

converting to polygons, 273
messages, 110
microwave circuit analysis, 280
MODDEF internal data struc-

ture, 410
modeling objects, 108
module, 44, 47, 60, 410
MODULE internal data struc-

ture, 412
moduledefinition, 60
modules, 43

and types, 60
declarations, 50
definition, 44, 47, 51
definition syntax, 47
description, 50
error reporting, 50
exports, 110
implicit scoping rules, 58
lexical scoping rules, 58
manipulation, 87
members of, 52
membership tests, 56
named, 49
nested, 58
options, 57
parameterized, 59
referencing global variables,

51
referencing local variables, 52
referring to, 48
types of variables in, 118
use for new packages, 78
versus procedures, 44–46

moemapi.h file, 381
mplshlib.h file, 375

mpltable.h file, 375
multiple assignments, 288

name, 413
NAME internal data structure,

412
name table, 427
named modules, 49
names

with a tilde, 21
nargs, 48
negative integer, 408
nested modules, 58
nested procedures, 5, 17
neutral operators, 33

defining, 34
infix, 34

newline character, 190
Newton’s method, 14, 230
next, 48, 413
NEXT internal data structure,

413
nops, 23
not, 413
NOT internal data structure, 413
numeric estimate, 14
numeric event, 236
numerical integration, 225, 227
numerical limits, 227
numerical programming, 223
numerical sums, 227
numerics, 236

objects, 44, 108
modeling, 108

omexample.c file, 390
op, 399
open, 193
OpenMaple, 374–391

ALGEB data type, 375, 378
basic API functions, 376–379

Index • 439

call-back functions, 380–386
callBackCallBack function,

380, 384, 386
data types, 375
errorCallBack function, 378,

380–384
EvalMapleStatementAPI func-

tion, 376, 377, 379, 382
EXT_DECL modifier, 375
file structure, 389–390
Mac OS X, 390
UNIX, 390
Windows, 390

FLOAT32 data type, 375
FLOAT64 data type, 375
help database, 386–389
retrieving a help page, 386
setting the path, 386

INTEGER16 data type, 375
INTEGER32 data type, 375
INTEGER64 data type, 375
INTEGER8 data type, 375
interface overview, 375
M_BOOL data type, 375
M_DECL modifier, 375, 380
M_INT data type, 375
MapleHelp function, 386, 389
MapleLibName function, 386
MapleRaiseError API func-

tion, 378
MCallBack function, 380
MCallBackVector function, 380
MKernelVector, 380
queryInterrupt function, 380,

384
readLineCallBack function,

380, 383, 385
redirectCallBack function,

380, 383
RestartMaple API function,

376, 379

sample program, 390–391
StartMapleAPI function, 376,

377, 379, 380, 387
statusCallBack function, 380–

382
StopMapleAPI function, 376,

379
streamCallBack function, 380,

385
streams, 384–387
advantages, 386

technical issues, 389
textCallBack function, 380,

382–384, 386
using Microsoft Visual C/CC++,

375
operator rebinding, 106
operators, 33

*, 35
custom, 33
neutral, 33

options
converting to PLOToptions,

267, 286
global, 258, 272
local, 258, 271, 286
processing, 252
type equals numeric, 14

or, 413
OR internal data structure, 413
organization

internal, 397
output

controlling, 206
rounding, 187

package, 57
packages, 43, 78

exports, 78
in the standard library, 78
table-based, 78

440 • Index

use modules for, 78
using interactively, 79

PARAM internal data structure,
413

parameters
sequence of, 18
within procedures, 413

parse, 30, 218
partition, 27
partitioning, 8
pipes, 192
plot drivers, 256
plotting, 246, 249

animations, 301
AXESSTYLE, 262
COLOR, 258
colors, 275
CURVES, 257, 258, 262
data structures, 254–256, 259,

262
formulæ, 246, 252
functions, 247, 252, 288
GRID, 264
MESH, 265
non-numeric values, 257, 287,

291, 297
numerical approximations, 224
options, 248, 249
POINTS, 258
POLYGONS, 258, 262, 269
SCALING, 269
STYLE, 263
TEXT, 258, 275
undefined values, 287, 291,

297
with plottools, 273

polygon meshes, 272, 281
cutting faces of, 281
stellating, 283

POLYGONS

COLOR, 308

converting from grids or meshes,
273

convex, 269, 287
portablility, 429
positive integer, 408
POWER internal data structure,

414
powers, 414, 416
precision, 238

floating-point numbers, 235
preface, 1
print, 207, 232, 385
printf, 211, 381, 385
printing, 206, 207

bytes, 210
columns, 215
formatted, 186, 187, 211
strange expressions, 19
strings, 210
to files, 186

printlevel, 381
priority queue, 111
proc, 44
PROC internal data structure,

414
procedures

as returned objects, 22
call formats, 340
defining, 414
dispatching, 99
execution details, 41
nested, 5, 9, 17
parameters within, 413
passing information, 22
passing input to, 27
that return procedures, 14

processing options, 252
procname, 48
PROD internal data structure,

416
products, 416

Index • 441

programming
generic, 44, 117, 124, 125,

129
numerical, 223
with color, 308
with graphics, 245
with plot structures, 266

Quaternions, 34, 35, 40
associativity of, 40
inverse of, 37

quaternions, 75
quick-sort algorithm, 8
quit, 381, 397, 420
quotient field, 129
quotients, 416

rand, 11, 14
random floating point num-

bers, 11
random distribution, 11
random numbers

generating, 11
range, 416
RANGE internal data structure,

416
rational, 416
RATIONAL internal data struc-

ture, 416
read, 417
READ internal data structure,

417
readability

of code, 6
readbytes, 197
readdata, 189, 204
reading

bytes from files, 197
columns, 204
data, 187
expressions from terminal, 28

from default, 197
lines from files, 197
remainder of file, 198
statements, 204
strings from terminal, 27

readline, 27, 195, 197, 383
ReadRows, 203
readstat, 28, 219, 383

advantages, 28
record, 57
records, 72

instantiating, 72
representing quaternions, 75
types, 74

rectangular tables, 429
REF, 343
reference

call by, 340
remember tables, 36, 240, 427
return statement, 48, 417
RETURN internal data structure,

417
RGB, 255
root finding, 14
rotating plots, 274
rounding, 225
roundoff errors, 236, 237

catastrophic cancellation, 238,
241

IEEE standard, 237
increasing precision, 238
similar magnitudes, 237

rtable, 417, 429
RTABLE internal data structure,

417, 429
rtables, 212, 214, 215, 232

samples directory, 46
save, 419
SAVE internal data structure, 419
protect, 198

442 • Index

scanning
files, 189, 198
strings, 220

scoping rules, 6
searching, 426
selection operation, 18
sequence of sets

Cartesian product, 22
sequences

of arguments, 251
of statements, 420

series, 399, 427
SERIES internal data structure,

419
SET internal data structure, 420
sets, 19
shadows, 276
Shapes, 58, 94

object-oriented approach, 115
shift

multivariate function, 18
univariate function, 17

sign
of zero, 236

simplification table, 426
simplify

extending, 40
Smith charts, 280
software floating-point numbers,

224, 235, 297
accuracy of, 225
base of, 225
digits of, 224, 225

solutions
analytical, 224
numerical, 224

sort, 427
sorting, 8
sprintf, 220
sscanf, 220
standard worksheet, 2

STATSEQ internal data struc-
ture, 420

stop, 381, 420
STOP internal data structure, 420
streamcall, 385
STRING internal data structure,

420
strings, 420

converting to expressions, 30
parsing, 30
reading from terminal, 27

submodules, 58
subsop, 399
Sum, 227
sum, 227
SUM internal data structure, 421
sums, 421

numerical, 227
suppressing

symbolic evaluation, 227
system

integrity, 374

table, 428
TABLE internal data structure,

421, 428
table references, 421
TABLEREF internal data struc-

ture, 421
tables, 421
terminators, 28, 219
thismodule, 48
tilde, 21
tilings, 278

Truchet, 279
trace, 57, 381
transforming plots, 281
Truchet tilings, 279
try, 232, 422
TRY internal data structure, 422
type

Index • 443

record, 74
type, 400

extending, 31
typematch, 40
types

and modules, 60
checking, 27, 32, 250
defining new, 31, 35
enumerated, 339
matching, 259
structured, 32

unapply, 15
unbuffered files, 190
undefined, 236
UNEVAL internal data structure,

422
unevaluated expressions, 229, 422
uniform distribution, 11
uniform random number genera-

tor, 11
unload, 57
use, 46, 103, 422
USE internal data structure, 422
user input, 27, 30
user interface, 398
userinfo, 41

variables
exported vs. local, 118
global, 20, 21
identifying, 20
lexically scoped, 409
local, 19, 26, 410
scope of, 6
unassigning, 21
undeclared, 7

vector fields, 286
Vectors, 214, 215

read, 215
write, 215

version
classic worksheet, 2
command-line, 2
standard worksheet, 2

worksheet
classic, 2
graphical interface, 2
standard, 2
versions, 2

wrapper, 331
custom, 331, 350
Maple-generated, 331, 338

writebytes, 210
writedata, 187, 215
writeline, 210
writeto, 217, 383, 384

xor, 423
XOR internal data structure, 423

zero
floating-point representation,

236
sign of, 236

ZPPOLY internal data structure,
423

444 • Index

