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The satisfiability problem

@ Boolean variables xq, ..., x,
@ Term t; = (—x; V x3 V x7), and so on upto tp,.
@ Formula t; Ato A ... Aty

Question: Decide if there is a satisfying assignment to the formula.

No known algorithm which works in time polynomial in n and m.

@ The problem belongs to an equivalence class called
NP-complete problems.
@ The question of P v. NP asks:
» Either produce an efficient algorithm.
» Or prove none exists.
@ This has been an outstanding question for the last 50
years.
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Decision vs. Counting

Equivalence: Solve One < Solve All
Unsolvable One < Unsolvable All

Many relatives of P v. NP. We look at the counting version.
@ Boolean variables xq, ..., x,
e Term t; = (—x; V x3 V x7), and so on upto tp,.
@ Formula ti; Ato A ... Aty
Question: Decide if there is a satisfying assignment to the formula.

Harder Question: Count the number of satisfying assignments.
Thus we have the decision problem and its counting version.
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Matchings

Question: Given a bipartite
graph on n, n vertices, check
if the graph has a complete
matching.

This problem has a known
polynomial time algorithm.

Harder Question: Count the number of complete matchings.

@ There is no known polynomial time algorithm to compute this
number.

@ Even worse, there is no proof of its non-existence.

Thus, there are decision problems whose counting versions are hard.
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The permanent

If X is an n X n matrix, then the permanent function is:
perm,(X) = Z HXi,a(i)
o i

The relationship with the matching problem is obvious. When X is
0-1 matrix representing the bipartite graph, then perm(X) counts the
number of matchings.

@ There is no known polynomial time algorithm to compute the
permanent, and worse, no proof of its non-existence.

@ The function perm, is # P-complete. In other words, it is the
hardest counting problem whose decision version is easy to solve.
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Our Thesis

@ Non-existence of algorithm = existence of a mathematical
structure (obstructions)

@ These happen to arise in the GIT and Representation Theory of

Orbits.
Example
o Hilbert Nullstellensatz : Either polynomials fi, ..., f, have a
common zero, or there are gy, ..., g, such that
fign+...+fg. =1
@ Thus g1,...,g, obstruct f;, ..., f, from having a common zero.
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Computation Model-Formula Size

Let p(Xi,...,X,) be a polynomial.
A formula is a particular way of writing it using * and +.

formula = formulax*formula | formula+formula

@ Thus the same function may have different ways of writing it.
@ The number of operations required may be different.
Example:
e 2 — b =(a—b)(a®+axb+b).
o Van-der-Monde (Ar, ..., As) = [T, (A — Aj)-
Formula size: the number of * and + operations.
@ LHS1 is 5, RHS1 is 7, RHS2 is n?.
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Formula size

e A formula gives a
formula tree.

@ This tree yields an
algorithm which takes
time proportional to
formula size.

Does perm, have a formula of size polynomially bounded in n?
(This also implies a polynomial time algorithm) No Answer

Valiant's construction: converts the tree into a determinant.
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Valiant's Construction

If p(Y1,..., Yk) has a formula of size m/2 then,

@ There is an inductively constructed graph G, with atmost m
nodes, with edge-labels as (i) constants, or (ii) variable Y;.

@ The determinant det(A,) of the adjacency matrix of G, equals p.

A simple formula. The general case. Addition
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The Matrix

In other words:
p(Y1,..., Yx) = dety,(A)

where A;(Y) is a degree-1 expression on Y.
For our example, we have:

det(A) =y

>
Il
= O O
O = =
o< o

@ Note that in Valiant's construction A; = Y, or A; = c.

formula size = m/2 = p(Y) = det,,(A)
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The homogenization

Lets homogenize the above construction:
@ Add an extra variable Yj.
o Let p™(Yo, ..., Yx) be the degree-m homogenization of p.
@ Homogenize the A; using Yp to Al

We then have: p™(Yp,..., Yx) = det,(A)

For our small example:

010 0 y O
A=101y| A=|0 y y| det(A)=yy
100 Yo 0 0

P 2, B
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Valiant-conclusion

If a form p(Y) has a formula of size m/2 then

@ There is an m X m-matrix A with linear entries
det(A) = p(Y)
@ There is an m x m-matrix A" with homogeneous linear entries
det(A’) = p"(Y)

where p™ is the m-homogenization of p.
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The = hom

Let X = {X1,..., X, }.

For two form f, g € Sym?(X), we say that f <pom g, if
f(X) = g(B - X)) where B is a fixed r x r-matrix.

NOte that. Program for f(Y)
@ B may even be singular. M}\ﬂ,% —
@ =yom Is transitive. X’form for

5 o £(X)

If there is an efficient algorithm to compute g then we have such for
f as well.
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The insertion

Suppose that perm,(Y’) has a formula of size m/2. How is one to
interpret Valiant's construction?

@ Let Y be nx n.

@ Build a large m x m-matrix X.

@ Identify Y as its submatrix.
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The "inserted” permanent

For m > n, we construct a new function perm? € Sym™(X).

n Y

@ Let Y be the principal
n X n-matrix of X. X

e perm™ = xm"perm,(Y)

Thus perm, has been inserted into Sym™(X), of which det,,(X) is a
special element.
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The "inserted” permanent

For m > n, we construct a new function perm? € Sym™(X).

n Y

@ Let Y be the principal
n X n-matrix of X. X

e perm™ = xm"perm,(Y)

Thus perm, has been inserted into Sym™(X), of which det,,(X) is a
special element.

e formula of size m/2

implies Conclusion
m — det, (A
perm, = det,,(A) PErtn etm(A)
@ Use x,,, as the perm.” =< pom dety,

homogenizing variable
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Group Action and <om

Let V = Sym™(X). The
group GL(X) acts on V as
follows. For T € GL(X) and
geV

gr(X) = g(T7'X)

Two notions:
@ The orbit: O(g) =
{er|T € SL(X)}.
@ The projective orbit
closure

A(g) = cone(O(g)).

If f <pom & then
f =g(B-X), whence
e If Bis full rank then f is
in the GL(X)-orbit of g.
@ If not, then B is

approximated by
elements of GL(X).

Thus, in either case,

f Zhomg = f € A(g)
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The A

@ Thus, we see that if perm, has a formula of size m/2 then
perm € A(dety,).

@ On the other hand, perm? € A(det,,) implies that for every
€ >0, thereis a T € GL(X) such that ||(dety,)r — perm?|| < e.
This yields a poly-time approximation algorithm for the
permanent

Thus, we have an almost faithful algebraization of the formula size
construction.
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The Obstruction and its existence
To show that perms has no formula of size 20/2, it suffices to show:

permz® & A(dety)

In other words:
e Vs a GL(X)-module.
e f and g are special points.
@ What is the witness to f ¢ A(g)?

It is clear that such witnesses or obstructions exist in the coordinate
ring k[V].

Real Question: How do | find this family and prove that it is indeed
S0.

What is the structure of such obstructions?
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The Obstruction

Solet g, f € V = Sym9(X). How do we show that f & A(g).

@ Exhibit a homogeneous polynomial o € Sym"(V*) which
vanishes on A(g) but not on .

This p is then the required obstruction. We would need to show
that:

o u(f) #0.
e 1(gr)=0forall T € SL(X).

Check 1 on every point of Orbit(g)

False start: Use the SL(X)-invariant elements of Sym"(V*) for
constructing such a pu.

P 2, B
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Invariants

@ V is a space with a group G acting on V.
e Orbit(v) = {g.v|G € G}.
@ Invariant is a function p : V' — C which is constant on orbits.

Existence and constructions of invariants has been an enduring
interest for over 150 years.

Example:
@ V is the space of all m x m-matrices.
e G=GL, and g.v=_gvg L

@ Invariants are the coefficients of the characteristic polynomial.
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Invariants and orbit separation

To show that f ¢ A(g)

Exhibit a homogeneous invariant p which vanishes on g but not on f.
This 1 would then be the desired obstruction.

@ Easy to check if a form is an invariant.
@ Easy to construct using age-old recipes.
e Easy to check that p(g) = 0 and u(f) # 0.

1(g) =0 = pu(gr) =0 = u(A(g)) =0

Important Fact

If g and f are stable and f & A(g), then there is a homogeneous
invariant u such that pu(g) # u(f).

T —



Stability

@ g is stable iff @ For matrices under
SL(X)-Orbit(g) is conjugation, precisely
Zariski-closed in V. the diagonalizable

o Most polynomials are matrices are stable.
stable.

C erm,, and det, are stable.
o It is difficult to show permm "

that a particular form is

Proof:
stable.

@ Kempf's criteria.
Hilbert : Classification of

: @ Based on the stabilizers
unstable points.

of the determinant and
permanent.
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Rich Stabilizers

The stabilizer of the The stabilizer of the
determinant: permanent:

@ The form det,,(X): @ The form perm,,(X):

» X — AXB » X — PXQ
» X = XT » X — D1 XD,

o det, € Sym™(X) > X = XT
determined by its e perm,, € Sym™(X)
stabilizer. determined by its

stabilizer.

Tempting to conclude that the homogeneous obstructing
invariant ;. now exists.

P 2, B
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The Main Problem

Recall we wish to show o Added an extra degree
equalizing variable.
erm™ & A(det,,
permy & A ) @ Treated as a polynomial
in a larger redundant

set of variables.

where
perm™ = x™"perm(Y).

perm]’ is unstable, in fact in
the null-cone, for very trivial m
reasons. X
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Two Questions

@ Thus every invariant p will vanish on perm!.

@ There is no invariant  such that u(det,) =0 and
p(perm) # 0.

Homogeneous invariants will never serve as obstructions. They dont J

even enter the null-cone

Two Questions:

@ Is there any other system of functions which vanish on A(det,)?

@ Can anything be retrieved from the superficial instability of
perm;'?

P 2, B
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Part |l

@ Is there any other system of functions which vanish on A(det,,)?

Yes. The admissibility argument.

@ Can anything be retrieved from the superficial instability of
perm™?

Yes. Partial or parabolic stability.

Two key focal points:
o Representations as obstructions
o Stabilizers
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Question 1

Is there any other system of functions which vanish on A(det,,) and
enter the null-cone?

@ We use the stabilizer H C SL(X) of det,,.

o For a representation V), of SL(X), we say that V, is
H-admissible iff V|4 contains the trivial representation 1.

For g stable:
Fact: k[Orbit(g)] = k[G/H] = > , H-admissible "™ VA

Thankfully: k[A(g)] = >\ H-admissible M VA

Thus a fairly restricted class of G-modules will appear in k[A(g)].
We use this to generate some elements of the ideal for A(g).
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G and H

Consider next the G-equivariant surjection:
¢ - k[V] — k[A(g)]

We see that (i) ¢ is a graded surjection, and (ii) if V,, C k[V]¢ is not
H-admissible, then V,, € ker(¢).

Let X4 be the ideal generated by such V, within k[V].
Clearly X4 vanishes on A(g).

How good is L 47
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The Local Picture

G-separability: We say that H C G is G-separable, if for every
non-trivial H-module W,, such that:

e W, appears in some restriction V,|y.

then there exists a H-non-admissible V), such that V|4 contains W,.

Theorem: Let g and H be as above, with (i) g stable, (i) g only
vector in V with stabilizer H, and (iii) H is G-separable. Then for an
open subset U of V, UN A(g) matches (k[V]/Zh)u.
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Applying this ...

The conditions: (i) stability of g, (ii) VH =< g > and (iii)
G-separability of H.
@ det,, and perm, satisfy conditions (i) and (ii) above.
@ For n =2, stabilizer of det, is indeed SL,-separable.

e For V = A% and g the highest weight vector, A(g) is the
grassmanian. For this > generates the ideal.

e For g = det,,, the data X, does indeed enter the null-cone.

Still open:

@ Look at H = SL, x SL,, sitting inside G = SL,». Is H
G-separable?

@ Does ¥y determine A(det,,)?
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To conclude on Question 1

@ Stabilizer yields a rich set X4 of relations vanishing on A(det,,).
o Given G-separability, ¥y does determine A(det,,) locally.

Now suppose that perm” € A(det,,) then:

@ Look at the surjection k[A(det,,)] — k[A(perm™)].
V., C k[A(perm’)] and V,, non-H-admissible, then V/, is the required

obstruction.

If k[A(perm)] is understood then this sets up the
representation-theoretic obstruction.
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Question 2-Partial Stability

Can anything be retrieved from the superficial instability of perm?

@ Let's consider the

simpler function f = n| |y
perm(Y) € Sym"(X), "
i.e., with useful X
variables Y and useless
X_Y. We see that:

o Let parabolic o f is fixed by U.
P C GL(X) fix Y. o f is L-stable.

e P—= LU, with U the
unipotent radical.
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The form f

Recall f = perm(Y) € V = Sym"(X) and P fixing Y.
We see that f is partially stable with R = L = GL(Y') x GL(X —Y).

With W = Sym"(Y'), we have the P-equivariant diagrams:

wooL v KWl & kv
1 1 ! l
Aw(f) 5 Av(f) KAw(F)]Y & KAy ()¢

where Ay (f) is the projective closure of the GL(Y)-orbit of f, and
Ay(f) is that of the GL(X)-orbit of f.
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The Theorem

Lifting
@ The GL(X)-module V,,(X) occurs in k[Ay(f)]9* iff (V,(X))Y is
non-zero. Thus the GL(Y)-module V,,(Y) must exist.

o Next, the multiplicity of V,,(X) in k[Ay(f)]?* equals that of
Vu(Y) in Kldw(F)]*].

Now recall that f = perm,,(Y), and let K = stabilizer(f) C GL(Y').

But f is GL(Y)-stable, and

e the GL(Y)-modules which appear in k[Ay/(f)]¢ must be
K-admissible.
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The Grassmanian

Consider V = V;«(C™) = A*(C™) and the highest weight vector v.
@ v is stable for the GL, x GL,,_x action.

Ay(v) is just the grassmanian.

v is partially stable with the obvious P.

W = Ck C C™ and Aw/(v) is the line through v.

o
°
o
@ whence

Kaw(v)] =) C

@ The above theorem subsumes the Borel-Weil theorem:

K[Dv(v)] =) Vi(CT)
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The general partially stable case

Recall: Let V be a G-module. Vector v € V is called partially stable
if there is a parabolic P = LU and a regular R C L such that:

@ v is fixed by U, and
@ v is R-stable.

In the general case, there is a regular subgroup R C L, whence the
theory goes through

Aw(v) = Ay(v) — Ay(v)

@ The first injection goes through a Pieri branching rule.

@ The second injection follows the lifting theorem.
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In Summary

In other words, the theory of partially-stable A/ (f) lifts from that of
the stable case Ay (f). J

The Obstruction
Let H C GL(X) stabilize det,, and K C GL(Y') stabilize perm],.

The representation-theoretic obstruction V(X for
permy € A(dety,)
@ V, is such that V,(X)Y is non-zero.

e V,(Y,y)|r has a K-fixed point.
@ V,(X)|n does not have a H-fixed point.
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Philosophically-Two Parts

@ ldentifying structures where obstructions are to be found.

@ Actually finding one and convincing others.

Two different types of problems:
@ Geometric

» |s the ideal of A(g) determined by representation theoretic data.
» Does ¥ty generate the ideal of A(g)?
» |s the stabilizer H of g, G-separable?

* Larsen-Pink: do multiplicities determine subgroups?
@ Representation Theoretic
» |s this G-module H-admissible!

August 2, 2009 39 / 45



The subgroup restriction problem

@ Given a G-module V/, does V|4 contain 147
@ Given an H-module W, does V|4 contain W?

The Kronecker Product Consider H = SL, x SL; — SL,; = G,
when does V), (G) contain an H-invariant? J

This, we know, is a very very hard problem. But this is what arises
(with r = s = m) when we consider det,.
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Another problem-Strassen

Links invariant theory to computational issues.

@ Consider the 2 x 2 matrix multiplication AB = C. To compute
C, we seem to need the 8 bilinear forms aj;bj.

e Can we do it in any fewer?
A bilinear form on A, B is rank 1 if its matrix is of rank 1. Let S
denote the collection of all rank 1 forms.

o Let S* =S5+ S+ ...+ S (k times). These are the so called
secant varieties.

@ Strassen showed that S’ contains all the above 8 bi-linear forms.

Consequence J

There is an n>7-time algorithm to do matrix multiplication.
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Specific to Permanent-Determinant

Negative Results

@ von zur Gathen: m > c-n

» Used the singular loci of det and perm.
» Combinatorial arguments.

@ Raz: m > p(n), but multilinear case.
@ Ressayre-Mignon: m > ¢ - n?
» Used the curvature tensor.
For a point p € M, hyper-surface k : TP,, — TP,,.
e For any point of det,, rank(x(det,)) < m.
e For one point of perm,, rank(x(perm,)) = n*.
@ A section argument.
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Any more geometry?

Is there any more geometry which will help?

@ The Hilbert-Mumford-Kempf flags: limits for affine closures.

» Extendable to projective closures?
» Something there, but convexity of the optmization problem
breaks down.

@ The Luna-Vust theory: local models for stable points.

» Extendable for partially stable points?
» A finite limited local model exists, but no stabilizer condition
seems to pop out.
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In Conclusion

@ Complexity Theory questions and projective orbit closures.

» stable and partially stable points.
» obstructions

@ obstruction existence

» Representations as obstructions
» Distinctive stabilizers
» local definability of Orbit(g)

@ partial stability
» lifting theorems
@ subgroup restriction problem
> tests for non-zero-ness of group-theoretic data
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Thank you.



