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Abstract. Market equilibrium theory assumes that agents are truthful,
and are generally unaware of the total supply of goods in the market. In
this paper, we study linear exchange markets with each of these assump-
tions dropped separately, and show a surprising connection between their
solutions.
We define the exchange market game as where agents strategize on their
utility functions, and we derive a complete characterization of its sym-
metric Nash equilibria (SNE). Using this characterization we show that
the payoffs at SNE are Pareto-optimal, the SNE set is connected, and
we also obtain necessary and sufficient conditions for its uniqueness.
Next we consider markets with supply-aware agents, and show that the
set of competitive equilibria (CE) of such a market is equivalent to the
set of SNE of the corresponding exchange market game. Through this
equivalence, we obtain both the welfare theorems, and connectedness and
uniqueness conditions of CE for the supply-aware markets.
Finally, we extend the connection between CE and SNE to exchange
markets with arbitrary concave utility functions, by restricting strategies
of the agents to linear functions in the game, and as a consequence obtain
both the welfare theorems.

1 Introduction

General equilibrium theory has been studied extensively for more than a century
due to its immense practical relevance [15,29]. The exchange market model is
a classical market model proposed by Leon Walras in 1874 [34]. In this model,
each agent has a fixed initial endowment of goods, which she can sell and buy
a preferred bundle of goods from her earned money. Her utility for a bundle of
goods is determined by a non-decreasing, concave function. Given prices of goods,
each agent demands a utility maximizing (optimal) bundle, that is affordable by
her earned money. A setting of prices is referred to as competitive equilibrium
(CE) if, after each agent is given an optimal bundle, there is neither deficiency
nor surplus of any good, i.e., the market clears. It was only in 1954, that Arrow
and Debreu showed the existence of a competitive equilibrium [3]3 under mild

3 They consider a more general model including production firms.



conditions. Since then, there has been a large body of work to understand the
properties, structure and consequences of competitive equilibrium [22,31].

In this market model it is implicitly assumed that agents behave truthfully,
and are unaware of the total supply of goods available in the market. Each of
these assumptions may not necessarily hold as observed and analyzed for differ-
ent market settings [1,5,7,8]. In this paper we study exchange markets, with each
of these assumptions dropped separately, and establish a surprising connection
between their solutions which we think should be of economic interest.

The strategic behavior of agents is well known; many different types of market
games have been formulated and analyzed for its Nash equilibria by economists
[2,13,28] (see Section 1.2 for details). More recently, [1] defined the Fisher mar-
ket4 game for linear utility functions where agents strategize on their utility
functions, and they derived various properties of its Nash equilibria. Further, [7]
showed that no agent can gain more than twice by strategizing in Fisher markets
with linear utility functions; a similar result is obtained for Fisher markets with
Leontief utility functions in [8]. To the best of our knowledge no such results are
known for the exchange markets.

Generalizing the Fisher market game of [1], we define the exchange market
game, as where agents are players and strategies are utility functions that they
may pose, for the case when utility functions are linear. We derive a complete
characterization of the symmetric Nash equilibria (SNE) this game.

In strategic analysis of markets, a crucial question is whether competitive
equilibrium allocations, which are always efficient, can be achieved at Nash equi-
librium [28,2,13], and even better if no Nash equilibrium is sub-optimal. Using
the characterization of SNE we obtain a number of such important properties: (i)
the payoffs at SNE are always Pareto-optimal, and (ii) every CE allocation can
be achieved at a SNE. Apart from these, we obtain structural properties for the
SNE set, like (iii) connectedness, and (iv) necessary and sufficient conditions for
uniqueness. These structural properties are quite sought after in equilibrium the-
ory, both competitive and Nash, and a lot of work has been done to characterize
such instances [26,25,21,16].

For the case of arbitrary concave utilities, we derive sufficiency conditions
for a strategy to be a symmetric Nash equilibrium, and obtain the first two
properties of Pareto-optimality, and achieving CE allocations at SNEs. We note
that the analysis in exchange market game is relatively more involved than in
Fisher, as expected.

The other assumption that agents are unaware of the total supply of goods
in the market, may not hold in many rural and informal markets where supplies
are visible. Given that agents know the supply of all the goods, it is rational for
them to take the supplies in to consider while calculating their demand bundles.
Therefore, the dynamics of demands will change which in turn will change the set
of competitive equilibria. Such a setting has been analyzed for auction markets,
where agents are assumed to be supply-aware in finding the equilibrium [5,6].

4 Fisher market is a special case of exchange market model [33].
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However, no such work exploring equilibria of exchange markets with supply-
aware agents is known.

We make significant progress towards understanding the effect of supply-
aware agents in exchange markets. We obtain a surprising connection between
the competitive equilibria of supply-aware markets, and symmetric NE of the
exchange market game, and as a consequence get both the welfare theorems [32]
for supply-aware markets. In addition we get connectedness of the CE set, and
a characterization for the uniqueness of CE, for the case of linear utilities.

1.1 Brief overview of main results

We extend the game analyzed in [1,7,8] for Fisher markets, to the setting of
exchange markets. To start with we consider markets where agents have linear
utility functions, also called linear markets. In an exchange marketM, an agent’s
utility function is private to her and hence strategizable, while she must disclose
her initial endowment of goods in order to sell and hence is non-strategizable.
In an exchange market game Γ (M), agents report (play) linear utility functions,
and the game calculates a competitive equilibrium (CE) prices and allocations
based on the reported utilities, and distributes the goods accordingly (see Section
2 for details). However the issue is: among many different competitive equilibria
of the played market, which one to chose to decide the outcome. For linear
exchange markets the set of competitive equilibrium prices is convex, and the
set of all equilibrium allocations remains the same for every equilibrium price
[16,17]. Thus regardless of what prices we chose, there is an obvious choice for
the outcome allocation: the one maximizing social welfare of agents.

We say that a strategy profile is conflict-free, if there exists an allocation
preferred by all the agents, among all the equilibrium allocations of the played
market. Clearly if there is such an allocation, then it will be chosen as the
outcome. We analyze the symmetric strategy profiles of exchange market game,
where all agents play the same strategy, and show the following (see Section 3).

Theorem 1 (Informal).

– A symmetric strategy profile is a Nash equilibrium if and only if it is conflict-
free.

– The payoffs achieved at symmetric Nash equilibria are Pareto-optimal.
– The symmetric Nash equilibria form a connected set, and there exists neces-

sary and sufficient condition for its uniqueness.
– Every competitive equilibrium prices of the true market (with true utility

functions) can be achieved at one of its symmetric Nash equilibria.

For exchange markets with arbitrary concave utility functions, we show the
following, where played utility functions are still restricted to be linear.

Theorem 2 (Informal).

– If a symmetric strategy profile is conflict-free then it gives a Nash equilibrium,
and the payoffs at such Nash equilibria are Pareto-optimal.
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– Every competitive equilibrium prices of the true market can be achieved at a
symmetric Nash equilibrium.

Next we analyze the market where agents do not strategize, but are aware
of the total supply of goods. Recall that in the exchange market, every agent
demands a (optimal) utility maximizing bundle that is affordable at any given
prices, and if the market clears after every agent gets her bundle then the prices
give a CE. For the case where agents are aware of the supply of goods, they will
calculate their optimal bundles accordingly at given prices, i.e., even if a good
is most preferred at these prices to an agent, her demand for the good does not
exceed the supply. This changes the dynamics of demand bundles a great deal,
and the question is how, as a consequence, the competitive equilibrium points
will change. We call such a market as supply aware exchange market, denote it
by MSA, and show the following (see Section 4 for details).

Theorem 3 (Informal).

– Prices and allocation give a competitive equilibrium of a supply-aware linear
exchange market MSA if and only if they can be achieved at a symmetric
Nash equilibrium of the game Γ (M).

– Competitive equilibrium prices and allocation, of a supply-aware exchange
market with arbitrary concave utility functions, can be achieved at a sym-
metric Nash equilibria of the game Γ (M).

As corollaries of Theorems 1, 2 and 3, we get the first and second welfare
theorems [32] for the supply-aware exchange markets. Further, for linear supply-
aware markets we get that its CE set is connected but not convex, and the
characterization for its uniqueness.

The computation of a competitive equilibrium of an exchange market with
separable piecewise linear concave (PLC) function is PPAD-hard, even when the
PLC function for each agent-good pair has exactly two segments, with zero slope
for the second segment [9]. Further, the set of competitive equilibria prices of
these markets can be disconnected. We note that, supply-aware exchange market
with linear utilities is a special case of this market where the second segment
starts at an amount equal to the total supply of the respective good in each
function. This restriction surprisingly makes the market well behaved, in the
sense that the set of CE prices is connected, and equilibrium computation is
efficient as it suffices to find a CE of linear exchange market [20].

1.2 Related Work

Shapley and Shubik [28] consider a market game for the exchange economy, where
every good has a trading post, and the strategy of a buyer is to bid (money) at
each trading post. For each strategy profile, the prices are determined naturally
so that market clears and goods are allocated accordingly, however agents may
not get their optimal bundles. Many variants [2,13] of this game have been
extensively studied. Essentially, the goal is to design a mechanism to implement
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competitive equilibrium (CE), i.e., to capture CE at a NE of the game. The
strategy space of this game is tied to the implementation of the market (in this
case, trading posts). Our strategy space is the utility functions itself, and is
independent of the market implementation.

In word auction markets as well, a similar study on strategic behavior of
buyers (advertisers) has been done [14,32].

In next few pages, we present main ideas, techniques and results of the paper.
Due to space constrains, some of the proofs are omitted from the main paper,
and can be found in Appendix A, unless specified otherwise.

2 Exchange Market Game

In this section first we briefly describe the exchange market model [33] and later
define a game on these market, that is an extension of the game defined in [1].

The exchange market consists of a set G of goods and a set A of agents.
Let n denote the number of goods and m denote the number of agents in
the market. Each agent has an initial endowment of goods, for agent i it is
wi = (wi1, . . . , win) where wij is the amount of good j with agent i. Further,
she wants to buy a (optimal) bundle of goods that maximizes her utility to the
extent allowed by the money earned by selling her initial endowment. The prefer-
ence of an agent i over bundles of goods can be captured by a non-negative, non-
decreasing and concave utility function Ui : Rn

+ → R+. Non-decreasingness mod-
els free disposal property, and concavity models the law of diminishing marginal
returns. Without loss of generality (wlog) we assume that total available quan-
tity of each good is one5, i.e.,

∑
i∈A wij = 1,∀j ∈ G. We denote this market by

M.
Given prices p = (p1, . . . , pn), agent i earns wi · p by selling her initial

endowment, and demands an affordable bundle xi = (xi1, . . . , xin) maximizing
her utility (optimal bundle). Prices p are said to give a competitive equilibrium
(CE) if, there is an assignment of an optimal bundle to every agent, and demand
equals supply, i.e., market clears.

We are going to consider markets where utility functions are linear; lin-
ear markets. For an agent i, her utility function Ui is defined as Ui(xi) =∑
j∈G uijxij ; agent i gets uij amount of utility from a unit amount of good

j. We assume that every good is liked by some agent, i.e., ∀j, uij > 0 for some
i, or else it can be distributed freely. Let ui denote the vector (ui1, . . . , uin).
The following conditions are necessary and sufficient for p and x to be a CE
allocation and prices [33].

∀i ∈ A,∀j ∈ G : xij > 0⇒ uij

pj
≥ uij′

pj′
, ∀j′ ∈ G (1)

∀j ∈ G :
∑
i∈A xij = 1

∀i ∈ A : xi · p ≤ wi · p
(2)

5 This is like redefining the unit of goods by appropriately scaling utility parameters.
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In (1) the ratio uij/pj is the marginal utility per unit money of agent i for
good j at prices p, and hence she wants to buy only those which maximize this
ratio. The last two conditions ensure market clearing. Note that if p is a CE price
vector, then so is αp, ∀α > 0. Henceforth, wlog we assume that

∑
j∈G pj = 1.6

Also, for an agent i since scaling uij ’s by a positive constant does not change
the CE, we assume that

∑
j∈G uij = 1, ∀i ∈ A.

It is known that exchange markets are not incentive compatible [1,7,8,27]7,
and agents may gain by reporting fictitious utility functions. The following ex-
ample illustrates the same.

Example 1. Consider a market with two goods, and two agents with linear utility
functions. Let w1 = w2 = (0.5, 0.5), U1(x1, x2) = 2x1 + x2 and U2(x1, x2) =
x1 + 2x2. Equilibrium prices are (p1, p2) = (1, 1) and allocations are x1 = (1, 0)
and x2 = (0, 1). Now, if agent 1 poses her utility function as U ′1 = U2 instead,
then the equilibrium prices will be (p′1, p

′
2) = (1, 2) and allocations will be x′1 =

(1, 0.05) and x′2 = (0, 0.95). Since x1 < x′1 agent 1 gains by deviating.

Based on the observation of Example 1 next we define exchange market
game; an extension of game defined in [1] for Fisher markets (a special case of
exchange markets). Given a linear exchange market M consider a single-shot,
non-cooperative exchange market game Γ (M), where agents are the players. We
assume that the agents’ endowments are common knowledge, while the utility
functions are their private information and hence strategizable. This is because,
the endowments, when put up on sell, become public knowledge, while utility
function of an agent is still known only to her. In a play, agents report their utility
functions, and each receives a bundle of goods as per a competitive equilibrium of
the market with reported utilities. We will call the marketM as the true market,
the market in a play of game Γ (M) with possibly fictitious utility functions as
played market.

The set of strategies for an agent is the set of all linear utility functions from
Rn to R, up to scaling. Therefore, the strategy set Si of agent i is ∆n, where ∆n

denotes the n-dimensional simplex. The game is played as follows: Suppose agent
i reports si ∈ Si. First we compute competitive equilibrium allocation for the
played market. It is known that the set of competitive equilibrium allocations
forms a convex set in case of linear exchange markets [16]. For a strategy profile
s ∈ S = ×i∈ASi, we denote this set by X (s). Outcome of a play is an allocation
x(s) achieving maximum social welfare as per the true utility functions, and also
balanced payoffs whenever there is a choice.

x(s) = arg max
x∈X (s)

∏
i

Ui(xi) (3)

Since, product is a strictly concave function, there will be a unique allocation
achieving the maximum. One can think of the outcome process as, once prices

6 We may not follow this assumption in examples to work with simpler numbers.
7 These results are for Fisher markets which is a special case of exchange markets.
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are set based on the reported utility functions, every agent will try to buy the
best possible bundle at the given prices, and hence socially optimal allocation is
reached.

Remark 1. There may not exist a CE in an exchange market [3,23]. If such a case
happens for the played market, then the outcome of the play could be: agents
keep their own endowments. Assuming wij > 0,∀(i, j) will avoid such a case [3].

3 Nash Equilibrium Characterization

In this section we derive necessary and sufficiency conditions for the symmetric
Nash equilibria (NEs) of game Γ (M), and using this characterization we derive
important properties like, Pareto-optimality, achieving CE prices at a symmetric
NE (SNE), connectedness of the SNE set, and necessary and sufficient conditions
for the uniqueness of the SNE prices.

Note that, in a played market with strategy profile s, marginal utility per
unit of money of agent i for good j at prices p is sij/pj (due to (1)). Therefore,
at prices p, agent i can be assigned only those goods which have this ratio as
maxl sil/pl, and any amounts of them. Let G(s,p) be the bipartite graph between
agents and nodes, with an edge between agent i and good j if j ∈ maxl sil/pl,
i.e., if good j can be assigned to agent i at prices p when s is played.

A strategy profile s is said to be symmetric if all the players play the same
strategy in s, i.e., si = si′ ,∀i, i′ ∈ A.

Lemma 1. If a strategy profile s is symmetric, then the only CE prices of played
market with utilities s and endowment wi’s are p = si.

Proof. At p = si the ratio sij/pj is one for all (i, j). Clearly, G(s,p) is a complete
bipartite graph. Therefore, there exists a market clearing assignment and hence
p is a CE. Further, if there is any other CE prices p′ 6= p, then ∃j 6= j′ such that
sij/p′j < sij/p′

j′ ,∀i ∈ A. In that case, no agent will want to buy good j at prices
p′ (see (1)), and hence market for good j will not clear. ut

Let πi(s) be the maximum payoff that agent i can achieve from any allocation
of X (s), i.e., πi(s) = maxx∈X (s) Ui(xi).

Definition 1. A strategy profile s ∈ S is said to be conflict-free if there exists
x ∈ X (s) such that Ui(xi) = πi(s), ∀i ∈ A. Such an allocation is called a
conflict-free allocation of s.

Note that, if a played strategy profile s has a conflict-free allocation in X (s)
then clearly that will be chosen as the outcome allocation x(s) by (3), and
every agent gets the best possible payoff πi(s). It turns out that similar to [1],
the notion of conflict-free utilities is pivotal in characterizing Nash equilibria
even for such a general setting of exchange market game with arbitrary concave
utilities.
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Lemma 1 implies that if s is symmetric then the played market has a unique
equilibrium prices namely p = si. Clearly, G(s,p = si) is a complete bipartite
graph in that case. Due to this, any bundle xk that agent k can afford at prices
p, is feasible at s, i.e., xk · p = wk · p ⇒ ∃x′ ∈ X (s), xk = x′k. We use these
facts crucially in the proofs that follows.

Lemma 2. A symmetric Nash equilibrium strategy profile has to be conflict-free.

Proof. Suppose s is a symmetric Nash equilibrium, but not conflict-free. Let
x = x(s) be the outcome allocation for the play s. Then, there exists an agent
k with Uk(xk) < πk(s). Let x′ ∈ X (s) be the allocation achieving the maximum
payoff for agent k, i.e., Ui(x

′
k) = πk(s). Let p be an equilibrium prices for the

played market. Since graph G(s,p) is a complete bipartite graph (Lemma 1),
there are cycles involving agent k, and therefore many allocations are possible.
We will break all these cycles by perturbing sk so that the only feasible allocation
for agent k is a perturbed version of x′k.

Let x′ be such that agent k is sharing at most one good with any other agent.
Such an allocation exist because G(s,p) is a complete bipartite graph, and at
prices p agent k will want to buy goods in the decreasing order of ukj/pj, and
she is indifferent between goods having the same value for it. Let J1 = {j ∈
G | x′kj = 1}, J2 = {j ∈ G | x′kj = 0}, and let j′ be the shared good.

Consider a deviating strategy s′k for agent k, where s′kj = pj + ε, ∀j ∈ J1,
s′kj′ = pj′ , and s′kj = 0,∀j ∈ J2, with a small positive constant ε. Rescale s′kjs
so that they sum up to one. Let s′ = (s′k, s−k) be the new strategy profile.

Set p′j to pj + ε if j ∈ J1 and pj otherwise, and scale them so that they sum
to one. Clearly, in graph G(s′,p′) only agent k has edges to goods of J1, all the
agents have edges to good j′, and all except k have edges to goods of J3. Let δ =
πk(s)−Uk(xk). If we set ε to less than min{δpj′/(ukj′ |J1|(2+|J1|)), minx′ij>0

x′ij/m∗n},
then it is easy to show that p′ is the CE prices of the played market for profile
s′. Further, in every allocation of X (s′) all the goods of J1 goes to agent k, and
any x′ ∈ X (s′) is strictly better than the outcome of play s for agent k, i.e.,
Uk(x′k) > Uk(xk). ut

Next we show that conflict-freeness is enough for a symmetric strategy to be
a Nash equilibrium, and thus we get a complete characterization of symmetric
NEs of game Γ (M).

Lemma 3. If a symmetric strategy profile s is conflict-free then it gives a Nash
equilibrium of game Γ (M).

Proof. To the contrary suppose not. Then ∃k ∈ A who can deviate to s′k and
gain. Let s′ = (s′k, s−k) be the strategy profile when k deviates, and let x′ =
x(s′). We will construct an allocation x ∈ X (s) such that xk ≥ x′k. This will
prove the lemma, since payoff of agent k while playing sk is πk(s) ≥ Uk(x) ≥
Uk(x′k); the last inequality is due to non-decreasingness of Uk.

Due to Lemma 1 the equilibrium prices for s is unique, denote them by p.
Suppose, the CE prices are unique for profile s′ as well and let they be p′. Let
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J1 = {j ∈ G | p′j/pj = minl p
′
l/pl}, and J2 = G \ J1. Clearly, all the agents except

k will want to buy only goods of J1 at p′, hence k has to buy all of J2 in x′. Let
a1 =

∑
j∈J1 wkjp

′
j and a2 =

∑
j∈J2 wkjp

′
j . Market clearing condition at p′ gives,

wk · p′ = x′k · p⇒ a1 + a2 =
∑
j∈J1 x

′
kjp
′
j +

∑
j∈J2 p

′
j

⇒ a1 =
∑
j∈J1 x

′
kjp
′
j +

∑
j∈J2 p

′
j −

∑
j∈J2 wkjp

′
j

⇒ a1 =
∑
j∈J1 x

′
kjp
′
j +

∑
j∈J2(1− wkj)p′j

Let α = pj/p′j, j ∈ J1 and ∀j ∈ J2, βj = pj/p′j. By construction we have
α > βj ,∀j ∈ J2. Continuing with the above derivation,

⇒ αa1 =
∑
j∈J1 x

′
kj(αp

′
j) +

∑
j∈J2 (1− wkj)(αp′j)

⇒
∑
j∈J1 wkj(αp

′
j) ≥

∑
j∈J1 x

′
kjpj +

∑
j∈J2 (1− wkj)pj

⇒
∑
j∈G wkjpj ≥

∑
j∈J1 x

′
kjpj +

∑
j∈J2 pj

⇒ wk · p ≥ x′k · p

The above expression implies that at prices p, agent k earns at least as much
as the money required to buy bundle x′k. Furthermore, while going from p′ to
p the earnings of all other agents will scale at most by α. Therefore, they can
barely afford the goods of J1 that they are getting in x′, at prices p. Since,
p = si,∀i ∈ A (Lemma 1), G(s,p) is a complete bipartite graph. Therefore,
∃x ∈ X (s) such that xk ≥ x′k.

In case of linear utilities, the set of optimal allocation for every equilibrium
prices remains the same [16]. Hence, even if the equilibrium prices are not unique
for s′, considering any of them will work. ut

The next theorem completely characterizes the symmetric Nash equilibria,
and follows directly using Lemma 2 and Lemma 3

Theorem 4. A symmetric strategy profile gives a Nash equilibrium of game
Γ (M) iff it is conflict-free.

Using the characterization of Theorem 4 we derive a number of properties
of the symmetric Nash equilibria. The crucial question in any strategic analysis
of markets is whether a competitive equilibrium allocation, which is assumed to
be efficient, can be achieved at any Nash equilibrium [28,2,13]. We show that,
for game Γ (M), the answer to this question is yes for all possible competitive
equilibrium allocations.

Lemma 4. Every CE prices and allocation of the true marketM can be achieved
at a symmetric NE of game Γ (M).

The first fundamental theorem of welfare economics states that the payoff
achieved at any competitive equilibrium is Pareto-optimal [32]. The next theorem
establishes similar result for the symmetric Nash equilibria. Let U be the set of
all possible utility-tuples achievable by any feasible allocation, i.e.,

U = {(U1(x1), . . . , Um(xm)) |
∑
i∈A

xij ≤ 1, ∀j ∈ G} (4)
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Lemma 5. Let s′ be a symmetric Nash equilibrium with x′ = x(s′), then (U1(x′1),
. . . , Um(x′m)) is a Pareto-optimal point of U .

General exchange market can have multiple competitive equilibria, and they
may form a disconnected set [11]. The uniqueness of equilibrium, competitive
or Nash, is a very important property, and a lot of work has been done to
characterize such instances [26,24,25,21,12]. The following lemma derives such a
characterization for the uniqueness of symmetric Nash equilibria in game Γ (M).

Lemma 6. The game Γ (M) has a unique symmetric Nash equilibrium iff mar-
ket M has a unique CE prices, say p∗, and in graph G(u,p∗) degree of every
good is at least two.

In case of linear exchange markets, the competitive equilibrium prices form
a convex set [16], and the proof is quite involved. Next we show that the set of
symmetric Nash equilibria of game Γ (M) forms a connected set, and again the
proof is quite involved, discussed in Appendix B.

Lemma 7. The set of symmetric Nash equilibrium prices form a connected set.

3.1 Exchange market game with concave utility functions

We extend results of the previous section to general exchange markets where the
utility functions of the agents are arbitrary concave, non-decreasing functions.
LetM be such an exchange market, and consider a game Γ (M) where strategies
of the agents are still restricted to linear functions. Therefore, the strategy sets
of agents, the outcome function of the game, namely (3), and the notion of
conflict-free strategies remain unchanged.

First we show that conflict-freeness is sufficient for a symmetric Nash equi-
librium in such a general setting as well.

Lemma 8. If a symmetric strategy profile is conflict-free, then it is a Nash
equilibrium of game Γ (M).

Proof. Since, played utilities are still linear, the proof is essentially same as the
proof of Lemma 3. Because it is all about constructing an allocation where the
deviating agent gets at least as much as what she gets when she deviates. ut

An exchange marketM may have many disconnected competitive equilibria
[11]. Using the above lemma next we show that all of these can be achieved at
symmetric NE of game Γ (M), a desirable property for any market game.

Lemma 9. A competitive equilibrium prices and allocation of the true market
M can be achieved at a symmetric NE of game Γ (M).

Let U be the set of all possible payoff tuples, as defined by (4). We show
that for this general setting too, allocations at symmetric Nash equilibria are
efficient, in the sense that they achieve Pareto-optimal payoffs.

Lemma 10. The payoffs achieved at a symmetric NE of game Γ (M) with
conflict-free allocation, gives a Pareto-optimal point of set U .
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4 Supply Aware Exchange Market

Supply aware exchange markets are similar to exchange markets, except for one
crucial difference. In exchange markets agents are assumed to be unaware of the
total supply of goods. Therefore, an agent does not take the supply in to account
when she calculates her optimal bundle at the given prices p = (p1, . . . , pn). This
need not be the case always, and agents may take supply into considerations as
well. Suppose, agents are aware of the total supply of goods in the market; 1
unit of each good. Then, at the given prices p, agent i will solve the following
problem instead, to calculate her optimal bundle.

max : Ui(xi)
s.t. xi · p ≤ wi · p

0 ≤ xij ≤ 1, ∀j ∈ G
(5)

We will call such a market where agents are aware of supply of every good, as
Supply Aware Exchange Markets (SAEM), and denote it by MSA. Again prices
p are said to be competitive equilibrium of market MSA if, every agent gets an
optimal bundle and there is no surplus or deficiency of any good, i.e., market
clears. Let p be a CE prices and x be its optimal allocation, then the market
clearing condition can be formally stated as,

∀j ∈ G,
∑
i∈A xij = 1

∀i ∈ A, xi · p ≤ wi · p
(6)

Competitive equilibrium in an exchange market exists under mild conditions
[3,23]. An immediate question is, whether they always exist in supply-aware
exchange markets too. In the next lemma we show that a supply-aware market
admits a CE whenever corresponding exchange market has one.

Lemma 11. Every competitive equilibrium of the exchange market M is also
an equilibrium of the corresponding supply aware market MSA.

Proof. Let p∗ be a CE prices of the exchange market M. Agent i solves the
following program to calculate her optimal bundle in M.

max : Ui(xi)
s.t. xi · p ≤ wi · p

xij ≥ 0, ∀j ∈ G

Let x∗ be the optimal allocation at prices p∗, then x∗i is an optimal solution
of the above program, and (x∗,p∗) satisfies (6) too to ensure market clearing.
Hence, x∗ij ≤ 1,∀(i, j). This implies that x∗i is an optimal solution of program
(5) too at prices p∗. Thus x∗i is a optimal bundle of agent i at prices p∗ in the
supply-aware market MSA too, and hence prices p∗ and allocation x∗ gives a
CE of the supply aware market MSA as well. ut

Existence of an equilibrium in a supply aware market follows from the above
lemma and the Arrow-Debreu theorem on existence of CE in exchange markets
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[3]. However, there may be many more equilibria in market MSA as demon-
strated by the following example. In all the examples that follow, we consider a
market with two goods, and two agents with linear utility functions.

Example 2. Let w1 = w2 = (0.5, 0.5) be the endowments, and U1(x1, x2) =
2x1+x2 and U2(x1, x2) = x1+2x2 be the utility functions. The only equilibrium
prices of the corresponding exchange marketM is (1, 1). However, every convex
combination of points (2, 1) and (1, 2) gives an equilibrium prices for the supply
aware market MSA. ut

It is also possible that a market M does not have a CE8 but corresponding
supply aware market MSA has one, as illustrated by the following example.

Example 3. Consider a market with two goods, and two agents with linear utility
functions. Let w1 = (1, 0.5) and w2 = (0, 0.5) be the endowment vectors. Let
the utility functions be U1(x1, x2) = x1 and U2(x1, x2) = x2 + x1/2.

In case of exchange market setting M if p2 > 0 then agent 1 will have more
money than what she can spend and hence market will not clear. If p2 is set to
zero then agent 2 will ask for an infinite amount of good 2 as she is unaware of
the supply. Therefore, there does not exist an equilibrium in market M.

However, in marketMSA where agents are aware of the supply, setting prices
to (p1, p2) = (1, 0) gives an equilibrium. ut

A market is said to satisfy weak gross substitute (WGS) property, if increase
in price of good j does not decrease the demand of any other good [32]. Exchange
markets with linear utilities is one such example. The next example demonstrates
that even if an exchange market M satisfies WGS property, the corresponding
supply-aware market need not be WGS.

Example 4. Consider an exchange marketM with linear utilities, with two goods
and two agents. Let w1 = (0.8, 0.6), w2 = (0.2, 0.4), U1(x1, x2) = 10x1 + x2 and
U2(x1, x2) = 5x1 + x2. At prices (p1, p2) = (1, 1), the optimal bundles of agent
1 and 2 are (1, 0.4) and (0.6, 0). Thus demands of good 1 and 2 are 1.6 and 0.4
respectively. If we increase p1 to 2, then optimal bundles are (1, 0.2) and (0.4, 0),
and hence demand of good 2 decreases to 0.2. ut

5 Nash meets Walras

In this section we establish an equivalence between the competitive equilibria
of supply-aware market MSA and the symmetric Nash equilibria of exchange
market game Γ (M), for the linear case. As consequences of this equivalence,
we derive a number of properties for the supply-aware markets, like both the
welfare theorems [32], and connectedness of the CE set, and characterization for
the uniqueness of CE. For markets with arbitrary concave utilities we show that

8 The weakest known sufficiency conditions for existence of a competitive equilibrium
in exchange markets is given by Maxfield [23]
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the former is a subset of the latter, which allows us to derive both the welfare
theorems for this general setting as well.

We start with the general setting first. Given a supply-aware exchange market
MSA with concave utility functions, we show that its equilibrium can be achieved
at a symmetric NE of game Γ (M).

Lemma 12. Every equilibrium prices and allocations of market MSA can be
achieved at a symmetric Nash equilibrium of game Γ (M).

Proof. Let p∗ and x∗ be a CE prices and allocation of market MSA. Set the
strategy profile s∗ be such that s∗i = p. Clearly, x∗ ∈ X (s∗), since (6) is satisfied
and all the agents like all the goods as per utilities s∗ and prices p∗. Since every
agent gets an optimal bundle in x∗ at prices p∗, it is also a conflict-free allocation
of s∗. Thus, due to Theorem 4 for the linear case, and Lemma 8 for the arbitrary
concave case, strategy profile s∗ is a symmetric NE achieving prices p∗. ut

Using the above lemma and results established in Section 3, we show that
(as expected) the two fundamental theorem of welfare economics [32] follow for
the supply-aware markets as well. The next theorem is a direct consequence of
Lemmas 12 and 10.

Theorem 5 (First Welfare Theorem). The payoffs achieved at a competitive
equilibrium of market MSA are Pareto-optimal.

The second welfare theorem states that given utility functions Ui’s, every
Pareto-optimal points of U of (4) can be achieved at a CE of some exchange
market with Ui utility functions and some endowment vectors. This theorem
trivially follows for supply aware markets using Lemmas 12 and 9 (also Lemma
11 suffices), together with the fact that the theorem holds for the exchange
markets [32].

Theorem 6 (Second Welfare Theorem). Every Pareto-optimal point of U
can be achieved at a CE of market MSA with utility functions Ui and some
endowment vectors.

Going back to the connection between competitive equilibria of supply-aware
and symmetric NE of the game, for linear markets we get containment in other
direction as well, as shown in the next lemma.

Lemma 13. Every symmetric Nash equilibrium prices and allocations of game
Γ (M) can be achieved at an equilibrium of market MSA, when utility function
Ui’s are linear.

Proof. Let s∗ be a symmetric NE of game Γ (M) and x∗ = x(s∗) be its conflict-
free allocation (Theorem 4). Prices at s∗ is p∗ = s∗i (Lemma 1). Clearly, ∃x′ ∈
X (s∗) such that x′i is an optimal bundle of agent i at prices p∗ in marketMSA.
Since, x∗ is conflict-free, we have Ui(x

∗
i ) ≥ Ui(x

′
i). Therefore, x∗i is also an

optimal bundle of agent i. This is true for all the agents. Therefore, at prices p∗,
allocation x∗ is optimal and market clearing, hence is a CE of MSA. ut
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The next theorem follows using Lemmas 12 and 13.

Theorem 7. The set of equilibrium prices of a linear market MSA is exactly
the set of prices achieved at symmetric Nash equilibria of game Γ (M).

Since, the exchange market game Γ (M) exhibits nice structural properties,
for the linear case discussed in Section 3, we get a number of results as corollaries
of Theorem 7, and Lemmas 7 and 6.

Corollary 1. Let MSA be a supply-aware linear exchange market.

– The set of equilibrium prices of a market MSA form a connected set.
– If the corresponding linear exchange marketM has a unique CE prices where

every good is liked by at least two agents, then marketMSA also has a unique
equilibrium.

The computation of a competitive equilibrium of an exchange market with
separable piecewise linear concave (PLC) function is PPAD-hard, even when
the PLC function for each agent-good pair has exactly two segments, with zero
slope for the second segment [9]. Further, the set of competitive equilibrium
prices of these markets can be disconnected. Note that, supply-aware exchange
market with linear utilities is a special case of this market where the second
segment starts at amount equal to the total supply of the respective good in
each function. Corollary 1 shows that this restriction surprisingly makes the
market well behaved, in the sense that the set of CE prices is connected, and
equilibrium computation is efficient because it suffices to find a CE of linear
exchange market [20].

6 Discussion

Walras designed the tatonnement process of price adjustment, where prices of
goods with excess demand are increased and those with excess supply are de-
creased, until the market reaches an equilibrium. There has been much work
analyzing convergence of the variants of tatonnement process in exchange mar-
kets, with positive results for markets satisfying weak-gross substitute prop-
erty (which includes linear markets) [4,30,10]. We saw that (Example 4) even
supply-aware linear market is not WGS, and preliminary investigation shows
that such a process is locally divergent in them. It would be interesting to
know if any variant of tatonnement converges, and to understand the special
properties of the convergent point. There are a whole lot of questions on the
computational aspect of supply-aware market, like sufficiency conditions for the
existence of equilibria (see Example 3), efficient algorithms or hardness in case
of SPLC/Leontief/CES/PLC utilities (see Example 2).

In the exchange market game, non-symmetric Nash equilibria remains to be
understood. The current analysis of general exchange market game restricts the
strategy set of agents to linear functions. It is unclear how the Nash equilibria
behave if concave functions are also allowed. As in [7,8] for Fisher markets, it
would be interesting to obtain an upper bound on the amount of gain an agent
can ensure by strategizing her utility functions in exchange markets.
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A Proofs

Proof of Lemma 4:
Let p∗ be a CE prices of market M, and x∗ be an optimal allocation at p∗.
Set si = p∗,∀i ∈ A. The only CE prices for s is again p∗. Since, allocation x∗

satisfies market clearing conditions (2) at p∗, it is a feasible allocation when s is
played, i.e., x∗ ∈ X (s). Further, x∗ being a CE allocation, every agent receives
an optimal bundle in it, hence it is also conflict-free. Thus s is a symmetric,
conflict-free strategy profile and hence is a Nash equilibrium of Γ (M) (Theorem
4). ut

Proof of Lemma 5:
Since, s is symmetric, corresponding CE prices are p′ = s′i (Lemma 1), and
hence X (s′) = {x |

∑
i xij = 1, ∀j ∈ G; xi · p′ ≤ wi · p′, ∀i ∈ A}. Further,

x′ is a conflict-free allocation of set X (s). Suppose, U ′ = (U1(x′1), . . . , Um(x′m))
is not Pareto optimal. Then there exists U∗ ∈ U with U∗i ≥ Ui,∀i and strict
inequality for some agent, say k. Let the allocation achieving U∗ be x∗.

Since agent k likes x′k the best among all of X (s′), it should be the case that
she can’t afford bundle x∗k at prices p′. So, we have x∗i · p′ > x′i · p′, and since
total money in the market is

∑
ij wijp

′
j =

∑
j p
′
j = 1, we also have

∑
i 6=k x

∗
i ·p′ <
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∑
i 6=k x

′
i ·p′. This implies that at x∗ the agents, except k, can achieve at least as

much as at x′ by cumulatively spending less. In that case, ∃i 6= k such that she
can get a better bundle than x′i at prices p′, i.e., πi(s

′) > Ui(x
′
i), contradicting

conflict-freeness of s′. ut

Proof of Lemma 6:
First, let us assume that wij > 0,∀i ∈ A,∀j ∈ G, to get rid of the trivial cases.
Let u = (u1, . . . ,um) be the profile corresponding to true utilities.

If there is exactly one symmetric NE then marketM has to have a unique CE
prices (Lemma 4). Let these be p∗. If degree of a good, say l, is one in G(u,p∗),
then we will construct more symmetric NE. Let the only edge of good l be from
agent k. It is easy to check that there exist α < 1 and β > 1, such that strategy
profile s′, where s′i = (βp∗1, . . . , βp

∗
l−1, αp

∗
l , βp∗l+1, . . . , βp∗n) and

∑
j∈G s

′
ij = 1,

for all i ∈ A, is a symmetric NE.
For the other direction, we show that the only symmetric NE is s, where

si = p∗, ∀i ∈ A. Suppose, there exists another symmetric NE s′ 6= s. Let p′ = s′i
be the CE prices of the corresponding played market (Lemma 1). Consider the
set J = {j ∈ G | p′j/p∗j = minl p

′
l/p∗l }. Let N(J) be the set of agents connected to

J in graph G(u,p∗). Note that, these connections will remain intact in G(u,p′)
since while going form p∗ to p′ prices of goods in J gets scaled by the same
factor.

At prices p′ every agent in N(J) wishes to get only goods of J . Total earnings
of agents of N(J) is more than the total prices of goods in J (since all wij ’s are
positive). Therefore, it is easy to check that if the degree of every good in J
is more than one, then it will create conflict among the agents of N(J) for the
allocation, and hence s′ is not a symmetric NE (Theorem 4). ut

Proof of Lemma 9:
Let p∗ and x∗ be a competitive equilibrium prices and allocation of market M.
Consider a symmetric strategy profile s where si = p∗,∀i. The CE prices in the
played market for s will be p∗. Further, x∗ ∈ X (s) and it is conflict-free. Thus
s is symmetric NE (due to Lemma 8). ut

Proof of Lemma 10:
Let s′ be a symmetric Nash equilibrium with conflict-free allocation x′ = x(s′).
We need to show that point U ′ = (U1(x′1), . . . , Um(x′m)) is Pareto-optimal in U .
Suppose not, and let U∗ ∈ U is a better point and let x∗ be the corresponding
allocation. The proof is based on the same intuition as the proof of Lemma 5.

Suppose, agent k gets more in U∗ than in U ′. Then clearly, at CE prices
p′ = s′i of the played market for s′ (Lemma 1), she can’t afford bundle x∗k, i.e.,
x∗k · p′ > x′k · p′. Since, total money in the market is

∑
i,j wijp

′
j =

∑
j p
′
j = 1

(a constant), rest of the agents gets at least as much utility from x∗ as from x′,
while spending strictly less. In that case, x′ can not be conflict-free for them. ut
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B Proof of the Connectedness Lemma

LetM be a linear exchange market defined in Section 2. Let S be the symmetric
Nash equilibria (SNE) of game Γ (M), and let SCE be those achieving competi-
tive equilibrium (CE) prices and allocations (Lemma 4). Since, set of CE prices
of market M is convex [16], so is set SCE . We show that every point of S is
connected to some point of SCE .

Given a symmetric profile s and the CE prices p of its played market, we
have si = p,∀i (Lemma 1). Therefore, p is enough to represent the profile s.
Henceforth, S and SNE be the sets of price vectors achieved at corresponding
SNEs. For a SNE prices p ∈ S, define x(p) as,

x(p) = x(s), where si = p, ∀i

Claim. Let s be a symmetric profile, and let p be the corresponding CE prices.
For an allocation xi if xi · p = wi · p, then ∃x′ ∈ X (s) such that xi = x′i.

Proof. The proof follows using the fact that G(s,p), where an edge between
agent i and good j indicates any amount of good j can be allocated to agent i,
is a complete bipartite graph.

For SNE prices p ∈ S, agent i derives utility uij/pj by spending a unit money
on good j at these prices. Let this ratio be called bang-per-buck of agent i for
good j. Since, earnings of agent i is limited, ideally she would want to buy goods
in decreasing order of bang-per-buck until her money runs out. Using the above
claim, it is easy to see that the conflict-free allocation x = x(p) achieves this
ideal assignment for all the agents. Formally,

xij > 0,
uij

pj
<

uij′

pj′
⇒ xij′ = 1

xij = 0, xij′ > 0⇒ uij

pj
≤ uij′

pj′

(7)

The only difference between a CE allocation and SNE allocation is that, in
CE an agent buys only her maximum bang-per-buck goods (see (1)), while in
SNE she buys lower bang-per-buck goods as well, but only after consuming the
higher bang-per-buck goods completely. Let these higher bang-per-buck goods
that she buys completely be called her forced goods, i.e., j′ in the first condition
of (7).

Now, consider a SNE prices p, and its outcome allocation x = x(p). Let
Ge(p) be the set of forced goods, i.e., Using (1), (7) and the fact that both CE
and SNE prices and allocation have to satisfy market clearing conditions (2), it
follows that if Ge(p) is empty, then p is a CE prices and s ∈ SNE .

For the other case, we will reduce the size of set Ge(p) inductively. For now
let us consider the Fisher setting by assuming wij = wi, ∀(i, j), where wi > 0,∀i
and

∑
i wi = 1, and later show how to handle the general case. In such a market,

earnings of agent i remains wi at any prices p summing to one.
Consider a SNE prices p ∈ S, and let x = x(p) be the corresponding outcome

allocation. From the above discussion, we know that they satisfy (2). Next we
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will update (p,x) so that (2) is always satisfied, thereby ensuring that p remains
in S, while reducing the size of Ge(p).

Define a bipartite graph G(x,p) between agent and goods nodes as follows:
There is an edge (i, j) in the graph if either xij > 0, or xij′ > 0 and uij/pj =
uij′/pj′ . An alternating path in this graph, from node a to node b is the one where
odd level edges from node a have non-zero xij . Wlog we assume that for any
p ∈ S, corresponding x(p) forms a forest.

1. If Ge(p) = ∅ then STOP.
2. Let l ∈ Ge(p) be the forced good of agent k with least bang-per-buck among

all her forced goods.
3. Let T be the subgraph of G(x,p) containing node k and all the alternating

paths from k, and let N be the set of goods in T except for those in Ge(p).
4. Let pl = αpl, ∀j ∈ N, pj = βpj , where β = αpk/

∑
j∈Npj. the set of nodes

reachable from node l in graph G(x,p) through an alternating path. Clearly,
if α > 1 then β < 1.

5. Starting from α = 1, increase it, and accordingly change x so that it remains
x(p). This can be done by increasing the money flow on edge (k, l) and on
even level edges of T from node k, and decreasing on its odd level edges from
k. Do this until one of the following happens.
– If for good j ∈ N adjacent to k in T , we get ukl/pl = ukj/pj, then remove
l from Ge(p) and go to Step 1, i.e., l is no more a forced good.

– If xij becomes zero, then do the following: If i 6= k then recalculate
G(x,p) and go to Step 3 (edge (i, j) will be removed in T ). Otherwise,
if xkj = 0,∀j ∈ N , then remove l from Ge(p) and go to Step 1.

– If an agent i /∈ T gets interested in a good j ∈ N , i.e., her bang-per-buck
for good j becomes same as the bang-per-buck of a good she is buying,
then recalculate G(x,p) and go to Step 3.

The above procedure is similar to the one used in [18] for equilibrium compu-
tation in Fisher markets. Due to the claim, when the above procedure terminates
we have p ∈ SNE . Since, p ∈ S through out the procedure, we get that S is
connected.

The above procedure tries to increase the price of good l, to make it a non-
forced good of agent k, while maintaining that p remains a SNE price and
x = x(p). Therefore, it has to decrease prices in T by a same factor. When
this is done, prices in other components of G(p,x) do not change because the
earnings of all the agents are fixed (wi for agent i).

If we consider arbitrary exchange market, where wijs of an agent are not
same, then the earnings of agent i is

∑
ij wijpj , and hence will change with

prices. In that case, prices of goods in components other than T will also change,
which will have to be taken care of. We will hold prices of goods in Ge(p) as
they are, except for good l. For the rest, in a component other than T , prices of
all the goods, except for those in Ge(p), will change by the same factor, say γ.
It can be shown that γ has to be a convex combination of α and β.

In the last case of Step 5, it is assumed that i /∈ T can not get interested in
a good of Ge(p)∩ T . This is true under the previous assumption, because prices
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are fixed outside T . If prices in a component other than T are increasing (γ > 1),
then its agent can get interested in a good of j ∈ Ge(p). In that case we switch
reset l = j and restart from Step 2, where then l is not changed. After this price
is good j is going to increase, and agent will be no more interested in it.

The rest remains the same. The procedure stops in finite number of steps,
because one can show that the difference between ratios ukl/pl and ukj/pj for
(k, j) ∈ T decreases by at least an absolute constant. And good l becomes non-
forced as soon as (or before) they become equal.
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