
Learning Parameters in Entity
Relationship Graphs from

Ranking Preferences

Soumen Chakrabarti

Alekh Agarwal

IIT Bombay
www.cse.iitb.ac.in/~soumen/doc/netrank

Learning to rank…

� …feature vectors, studied in detail
� i-th entity represented by feature vector xi

� Score of i-th entity is dot product β′xi

� Want β′xi ≤ β′xj if we say “i � j”

� Max-margin setup

� Other scores, e.g. 2-layer neural net (RankNet)

� …nodes in a graph, less so
� Strongly motivated by Pagerank and HITS

� Changing score of one node influences others

min ' subject to ' ' for all 1
d i jx x i j

β
β β β β

∈
≤+ ≺

R

� Conductance of edge i�j written as C(j,i)

� C(j,i)=Pr(j @ this step |i @ previous step)

� Pagerank vector p satisfies p = C p

� Unweighted (standard) Pagerank

� Weighted Pagerank: i�j edge weight w(i,j)





 ∈−+

=
∈

otherwise

)1(
),()OutDegree(

]),[(

j

oji

Eji

r

Vir
ijC

αα

Edge conductance and Pagerank

'

(,)

(, ')
(1)

(,)

otherwise

j

j
w i

o
j

w i

j

j
r i V

C j i

r

α α + − ∈
= 



∑

i is a

dead-end

Pr(teleport)

i

j

w=2

w=3

w=3

Prob. of
following
this edge
2/(2+3+3)

Teleport?

1jj V
r

∈
=∑

Inverse problem

� Traditionally: Given matrix C, find Pagerank p

� Clever design of C for various applications

� Tweak or learn r – topic sensitive, personalized

� Tweak w(i,j) – Intelligent Surfer, ObjectRank

� Model pij=piC(j,i) as a flow (KDD 2006)

� Our problem: Given partial order �train, find C

(and thereby p) such that

� p satisfies p = Cp approximately

� p satisfies �train and unseen �test well: pi ≤ pj if i � j

� Edges in C have weights determined by few types…

Ranking nodes in ER graphs

� Nodes have entity types: Person, Paper, Email,

Company

� Edges have relation types: wrote, sent, cited,

in-reply-to; edge e has type t(e)∈{1,2,…,T}

� Edge i�j of type t has weight β(t) and
conductance C(i�j)…

i

j

k

l

β=2

β=3

β=3

Probability

of following
blue edge

out of i is
2/(2+3+3)

Teleport?

((,))
(,)

((,))
i j

t i j
C j i

t i j

β

β
→

=

∑

(For the moment

ignore teleport)

6

Hard constraints

,
min ModelCost()

subject to:

()

 for all

p

i j

p C p

p p i j

β
β

β

≥

=

≤

1

≺

It might not be to possible to

satisfy constraints exactly.
So add slacks.

Scaling all β
preserves p,
so we can
demand all

β(t)≥1

((,))
(,)

((,))
i j

t i j
C j i

t i j

β

β
→

=

∑

Remember C is a

function of β:

7

Model cost

� Parsimonious model is where all β(t)s are
equal

� Penalize pairwise differences

� If β is a solution, so is any multiple of β

� Objective should penalize large multiples

automatically because, e.g.,

∑ ≠
−=

'

2))'()(()ModelCost(
tt

tt βββ

ModelCost(2) ModelCost()β β>

8

Avoid quadratic

constraints

involving β and p

Soft constraints with slacks

, ,0
min ModelCost() Loss()

subject to:

()

 for all

ij
s

ij

p
i j

i j

p C

s

s

p

p p i

B

j

β
β

β

≥≥
+

=

≤ +

∑
1

≺

≺

Like in SVM, balance

model cost with data fit

Design Loss to

approximate
training error

No margin!? –Because an arbitrary margin

(say 1) may never be attainable by deviating

from the parsimonious model and scaling β
(unlike RankSVM)

9

-1.0 -0.5 0.0 0.5 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Smooth loss approximation

0 0
Loss()

1 0

ij

ij
ij

s
s

s

≤
= 

> -0.5 0 0.5

Neither convex

nor differentiable

Traditional

hinge upper
bounds step

but won’t
work for us

Shifted hinge not

differentiable at
zero

2

0, 0

huber() /(2), (0,]

/ 2,

y

y y W y W

y W W y

≤


= ∈
 − <


Huber is convex

and differentiable

Important to stay at zero for arg ≤ 0

Need gradient

of Loss

10

Avoiding quadratic constraints

� p=Cp is usually solved by Power Iteration

� Start with some p0

� Find CH p0 until increasing horizon H makes no

difference

� Can get rid of sij now

� To use a gradient descent method, need

gradient wrt β

()
1 2

1 2

2 0 0min () huber () ()H H
t t i ji j

t t

B C p C p
β

β β
≥

≠

− + −∑ ∑
1 ≺

Remember C is a function of β

11

Gradient of Huber loss

()

()

1 1 0

huber
()

huber'
() ()

() ()

i j

ji
i j

H

p p
t

pp
p p

t t

p Cp

p p C
C p

p C C
C p C C p

β

β β

β β β

β β β
− −

∂
− =

∂

∂ ∂
− −  ∂ ∂ 

=

∂ ∂ ∂
= +

∂ ∂ ∂

∂ ∂ ∂
= − ≈ −

∂ ∂ ∂
I I

Polynomial

ratios and

products—

surface not

monotonic or

unimodal,

need some

grid search

Data set preparation

� No open benchmark for this task
� No standardized comparison yet

� We will make code and some data available

� Synthetic G and � can explore space thoroughly

� Generating graph G
� RMAT (power-law degree, small dia, clustering)

� Real DBLP+CiteSeer graph

� Generating preference �
� Use βhidden to compute phidden

� Sample �train, �test from phidden

� Measure flips on �test

Is loss approximation ok?

� Less reliable than true error, but “in practice”…

� Approx loss wrt β tracks true loss reasonably

� Min objective same if not always at same β

� α surface more tricky, need grid search

� Applications use α ≈ 0.85 where tracking is ok

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
alpha

e
rr

o
r

o
r

lo
s
s

true error

huber

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12
beta(0)

e
rr

o
r

o
r

lo
s
s

true error
hinge
huber

0

0.2

0.4

0.6

0.8

1

0 20 40
beta(4)

e
rr

o
r

o
r

lo
s
s

true error

hinge

huber

Learning rate and robustness

� 20000-node, 120000-
edge graph

� 100 pairwise training
preferences enough to cut

down test error to 11 out

of 2000

� Training and test
preferences were made

node-disjoint

� 20% random reversal of
train pairs � 5%
increase in test error

� Model cost reduces

0

100

200

300

400

500

0 50 100 150 200
numTrainPref

te
s
tE

rr
o

r
o

f
2

0
0

0

0

0.01

0.02

0.03

0.04

0.05

0 0.04 0.08 0.12

fraction noise

te
s
t
e

rr
o

r

0.E+00

2.E-09

4.E-09

6.E-09

8.E-09

1.E-08

m
o

d
e

l c
o

s
t

error

model

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

hidden alpha

e
s
ti
m

a
te

d
 a

lp
h
a

Downward pressure

Upward pressure

Discovering hidden edge weights

� Assign hidden edge
weights to edge types

� Compute weighted
Pagerank and sample �

� Can recover hidden
weights fairly well
� Penalty

shrinks β values toward
each other

� Does not hurt error on �test

� Can also find hidden α

� Time scales as

0

0.5

1

1.5

0 5 10 15 20
hidden beta

e
s
t
b

e
ta

/h
id

d
e

n
 b

e
ta

()
1.34

V E+

2
', '

()t tt t
β β−∑

Integrating queries and text match

� Create node for each word, teleport through these

� Dummy connected only to query words

� Word node connected to entity nodes mentioning word

� Edge types 3 and 4 balance text relevance and link

prestige

d

3

4

5

2

1

E
n

ti
ty

 N
o

d
e

s

W
o

rd
 N

o
d

e
s

Graph XML

Structure Mining
d

Graph

XML

Structure

Mining

Graph Mining

1 - α

rj

Balancing text match and prestige

� β(dummy�word) balances text match and prestige

� Small: classic papers win; large: relevance matters

� A versatile space of ranking functions

12Using tickets to enforce the serializability of multidatabase transactions

41Serializability a correctness criterion for global concurrency control

104The serializability of concurrent database updates

6Autonomous transaction execution with epsilon serializability

38On serializability of multidatabase transactions through forced local conflicts

Citationstransaction serializability β(dummy�word)=106

242Tcl and the Tk toolkit

265Rewrite systems

312A method for obtaining digital signatures and public key cryptosystems

413Scheduling algorithms for multiprogramming in a hard real time environment

506Graph based algorithms for boolean function manipulation

Citationstransaction serializability β(dummy�word)=1

Learning text+link conductance

� DBLP graph, Google Scholar preference pairs

� Around 25% train and 35-40% test error

� Two possible reasons:

� They use larger graph with Web pages and Web
links; we use only citations

� Their proprietary ranking function is not in our class

� DBLP graph, synthetic pref in our pref class

� Tune β(dummy�word) so ranking looks good to us

� β(dummy�word) generally overestimated

� Even so, reliable decrease in train and test errors

Summary and Ongoing Work

� Learning to rank nodes in graph from pairwise

preferences: surprisingly unexplored

� Goal: design edge conductance so that

dominant eigenvector satisfies preferences

� Integration of queries and node features with

link-based learning formulation

� Optimization surface not benign but gradient

descent is robust in practice

� Need more study on generalization and text

feature integration

Thank You

For code and data please email

soumen@cse.iitb.ac.in

