Learning Parameters in Entity Relationship Graphs from Ranking Preferences

Soumen Chakrabarti Alekh Agarwal

IIT Bombay

www.cse.iitb.ac.in/~soumen/doc/netrank

Learning to rank...

- ...feature vectors, studied in detail
 - *i*-th entity represented by feature vector *x_i*
 - Score of *i*-th entity is dot product $\beta' x_i$
 - Want $\beta' x_i \leq \beta' x_j$ if we say "i < j"
 - Max-margin setup

 $\min_{\beta \in \mathbb{R}^d} \beta' \beta \text{ subject to } \beta' x_i + 1 \le \beta' x_j \text{ for all } i \prec j$

- Other scores, e.g. 2-layer neural net (RankNet)
- ...nodes in a graph, less so
 - Strongly motivated by Pagerank and HITS
 - Changing score of one node influences others

Inverse problem

- Traditionally: Given matrix *C*, find Pagerank *p*
- Clever design of C for various applications
 - Tweak or learn r topic sensitive, personalized
 - Tweak w(i,j) Intelligent Surfer, ObjectRank
 - Model $p_{ij} = p_i C(j, i)$ as a flow (KDD 2006)
- Our problem: Given partial order <_{train}, find C (and thereby p) such that
 - *p* satisfies *p* = *Cp* approximately
 - *p* satisfies $<_{\text{train}}$ and unseen $<_{\text{test}}$ well: $p_i \le p_j$ if i < j
 - Edges in C have weights determined by few types...

Ranking nodes in ER graphs

- Nodes have entity types: Person, Paper, Email, Company
- Edges have relation types: wrote, sent, cited, in-reply-to; edge *e* has type *t*(*e*)∈ {1,2,...,*T*}
- Edge *i→j* of type *t* has *weight* β(*t*) and conductance C(*i→j*)...

Hard constraints

Model cost

- Parsimonious model is where all β(t)s are equal
- Penalize pairwise differences

ModelCost(
$$\beta$$
) = $\sum_{t \neq t'} (\beta(t) - \beta(t'))^2$

- If β is a solution, so is any multiple of β
- Objective should penalize large multiples automatically because, e.g.,

 $ModelCost(2\beta) > ModelCost(\beta)$

7

Soft constraints with slacks

Smooth loss approximation

Avoiding quadratic constraints

- *p*=*Cp* is usually solved by Power Iteration
 - Start with some p⁰
 - Find C^H p⁰ until increasing horizon H makes no difference
- Can get rid of s_{ii} now

$$\min_{\beta \ge 1} \sum_{t_1 \neq t_2} (\beta_{t_1} - \beta_{t_2})^2 + B \sum_{i < j} \text{huber} ((C^H p^0)_i - (C^H p^0)_j)$$

Remember C is a function of β

 To use a gradient descent method, need gradient wrt β

Gradient of Huber loss

$$\frac{\partial}{\partial\beta(t)} \text{huber} \left(p_i - p_j\right) =$$

$$\text{huber'} \left(p_i - p_j\right) \left(\frac{\partial p_i}{\partial\beta(t)} - \frac{\partial p_j}{\partial\beta(t)}\right)$$

$$p = Cp$$

$$\frac{\partial p}{\partial\beta} = C \frac{\partial p}{\partial\beta} + p \frac{\partial C}{\partial\beta}$$

$$\frac{\partial p}{\partial\beta} = (\mathbb{I} - C)^{-1} p \frac{\partial C}{\partial\beta} \approx (\mathbb{I} - C)^{-1} C^H p^0 \frac{\partial C}{\partial\beta}$$

Polynomial ratios and products surface not monotonic or unimodal, need some grid search

11

Data set preparation

- No open benchmark for this task
 - No standardized comparison yet
 - We will make code and some data available
 - Synthetic G and < can explore space thoroughly
- Generating graph G
 - RMAT (power-law degree, small dia, clustering)
 - Real DBLP+CiteSeer graph
- Generating preference <
 - Use β_{hidden} to compute p_{hidden}
 - Sample $\prec_{\text{train}}, \prec_{\text{test}}$ from p_{hidden}
 - Measure flips on <_{test}

Is loss approximation ok?

- Less reliable than true error, but "in practice"...
- Approx loss wrt β tracks true loss reasonably
 - Min objective same if not always at same $\boldsymbol{\beta}$
- α surface more tricky, need grid search
 - Applications use $\alpha \approx 0.85$ where tracking is ok

Learning rate and robustness

- 20000-node, 120000edge graph
 - 100 pairwise training preferences enough to cut down test error to 11 out of 2000
 - Training and test preferences were made node-disjoint
- 20% random reversal of train pairs → 5% increase in test error
 - Model cost reduces

Discovering hidden edge weights

- Assign hidden edge weights to edge types
- Compute weighted Pagerank and sample <
- Can recover hidden weights fairly well
 - Penalty $\sum_{t,t'} (\beta_t \beta_{t'})^2$ shrinks β values toward each other
 - Does not hurt error on ≺_{test}
- Can also find hidden α
- Time scales as $(|V| + |E|)^{1.34}$

Integrating queries and text match

- Create node for each word, teleport through these
- Dummy connected only to query words
- Word node connected to entity nodes mentioning word
- Edge types 3 and 4 balance text relevance and link prestige

Balancing text match and prestige

- β (dummy \rightarrow word) balances text match and prestige
- Small: classic papers win; large: relevance matters
- A versatile space of ranking functions

transaction serializability β (dummy \rightarrow word)=1	Citations
Graph based algorithms for boolean function manipulation	506
Scheduling algorithms for multiprogramming in a hard real time environment	413
A method for obtaining digital signatures and public key cryptosystems	312
Rewrite systems	265
Tcl and the Tk toolkit	242
transaction serializability β (dummy \rightarrow word)=10 ⁶	Citations
On serializability of multidatabase transactions through forced local conflicts	38
Autonomous transaction execution with epsilon serializability	6
The serializability of concurrent database updates	104
Serializability a correctness criterion for global concurrency control	41
Using tickets to enforce the serializability of multidatabase transactions	12

Learning text+link conductance

- DBLP graph, Google Scholar preference pairs
 - Around 25% train and 35-40% test error
 - Two possible reasons:
 - They use larger graph with Web pages and Web links; we use only citations
 - Their proprietary ranking function is not in our class
- DBLP graph, synthetic pref in our pref class
 - Tune β (dummy \rightarrow word) so ranking looks good to us
 - β(dummy→word) generally overestimated
 - Even so, reliable decrease in train and test errors

Summary and Ongoing Work

- Learning to rank nodes in graph from pairwise preferences: surprisingly unexplored
- Goal: design edge conductance so that dominant eigenvector satisfies preferences
- Integration of queries and node features with link-based learning formulation
- Optimization surface not benign but gradient descent is robust in practice
- Need more study on generalization and text feature integration

Thank You

For code and data please email soumen@cse.iitb.ac.in