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Motivation
• Typically studied in vector spaces

• Graphs model relationships naturally

• Should exploit/respect graph structure and links

• Web, XML, database search . . .

Interpretations of Edges
Associative Networks

• Edges encode similarity

• Preference for smooth scoring functions

• Edge weights encode extent of similarity

Random Walk Approach

• Edges indicate endorsement

• Motivated by Pagerank, widely used

• Each edge (u, v) has associated transition prob-
ability Q(v, u) = Pr(v|u)

Training and Testing
• Given fixed graph G

• Training set of node-pairs “u ≺ v”, means we
want score(u) < score(v)

• Associative Networks: Learn a good scoring
function on the nodes

• Random Walk: Discover underlying transition
probabilities

• Test node pairs from same distribution

• Number of incorrect predictions measured

Associative Scoring
• Let π = Qπ, Π = diag(π)

• Directed Graph Laplacian

L = I−
(

Π1/2QΠ−1/2 + Π−1/2QΠ1/2

2

)
• Impose roughness penalty

f>Lf =
∑

(u,v)∈E

π(u)Quv

(
f (u)√
π(u)

− f (v)√
π(v)

)2

• Scoring algorithm:
min

f :V→R
s={suv≥0:u≺v}

1
2f

>Lf + B
∑
u≺v

suv subject to

fv − fu ≥ 1− suv ∀u ≺ v

(Lap)

Ranking using Random Walks
• Pagerank π induces flow quv = π(u)Quv along

graph edges
• Goal: learn flow p close to q that satisfies train-

ing preferences
min

{0≤puv}
{0≤suv}

∑
(u,v)∈E

puv log
puv

quv
+ B

∑
u≺v

suv (KL)

s.t.:
∑

(u,v)∈E

puv = 1

∀v ∈ V :
∑

(u,v)∈E

puv −
∑

(v,w)∈E

pvw = 0 (Bal)

∀u ≺ v :
∑

(w,u)∈E

pwu −
∑

(w,v)∈E

pwv − suv ≤ 0 (Pref)

Laplacian-KL Correspondence
• f (v) ∝

√
π(v) minimizes f>Lf

• Both (Lap) and (KL) prefer same ordering in ab-
sence of training data

Let p be a valid flow distribution on G, and let q be
the reference flow distribution induced by π. Let
fp(u) =

√∑
{u:(u,v)∈E} puv. Then

KL(p‖q) ≤ ε ⇒ f>p Lfp ≤ 4
√

2ε ln 2.

• Proof follows from standard inequalities and
KL(p‖q) ≥ 1

2 ln 2‖p− q‖2
1

• Small KL-distance ⇒ low Laplacian roughness

• Justifies KL(·‖q) as a regularizer

Generalization Bounds
For any m ≥ 1, any δ ∈ (0, 1), w.p. ≥ 1 − δ over
random draws of sample ≺ of size m,

R ≤ Remp + 2β + (4mβ + 1)

√
ln(1/δ)

2m

• Graph agnostic bound of β = 2ln2
λm trivial to show

Using Graph Properties

0

1 2

34

1 2

34

21

11

31 3k

1k

32

12 …

…

…

…

…

…

(a) (b)

(c)

• G may not always reduce function class, (n−1)!
possible orderings in (a)

• Bound on outdegree D not enough: in (c) mid-
dle layer acts as a hub, by biasing outflows
among neighbors in arbitrary ratios

• G may help: 1 ≺ 3 ≺ 2 ≺ 4 not learnable in (b)

Eccentricity ρ = max
u∈V

maxv:(u,v)∈E puv

minv:(u,v)∈E puv

• Controls influence of single node on rankings,
along with D

• Can find modified β, worsens with increasing
D, ρ. Proof involves upper and lower bounding
puv using induced pagerank φ(u), D and ρ

• Note: Relative loss bounds, not upper bound on
0-1 risk.

Margin and 0/1 Loss Bound
• Hinge loss max(0, 1 + f (u) − f (v)) upper bound

on 0-1 loss. Training loss bounds empirical 0-1
risk

• (Pref) uses shifted hinge max(0, f(u)−f (v)), not
upper bound on 0-1 loss

•
∑

(u,v) puv = 1 keeps flows in [0,1]

• Power-law assumptions ⇒ most nodes with
small pageranks

• Arbitrary additive margin (e.g., “1” for hinge
loss) infeasible

• Solution: Make F =
∑

(u,v) puv variable

• Possible as KL(p‖q) is still well-defined. I.e., if
F ≥ 1, KL(p‖q) ≥ 0 and minimized at p = Fq for
a fixed F

min
{puv},{suv}

F≥1

∑
(u,v)∈E

puv log puv
quv

+ B
∑
u≺v

suv + B1 F 2

subject to 1 +
∑

(w,u)∈E

pwu −
∑

(w,v)∈E

pwv − suv ≤ 0 ∀u ≺ v

• Small F ⇒ large margin (effectively 1
F )

• Generalization bound polynomial in δ

• Worsens as upper bound on F increases

Cost-sensitive Ranking
• Tester wants no mistakes near top of ranked list

• Can penalize on true scores/ranks in tune with
importance-weighted classification

• But , true scores/ranks not available, excessive
cognitive burden on trainer (may be end-user)

Use algorithm’s score estimates as surrogate

• Demands high confidence in ranks of nodes
with high scores

• Cost-sensitive loss g(fu, fv, `(fu, fv))

• For example, g(fu, fv, `(fu, fv)) = (max(fu, fv) +
`(fu, fv))

2

• Can show Pr(g(fu, fv, `(fu, fv)) ≥ ε) ≤ δ(ε) ⇒
Pr(`(fu, fv) ≥ ε ∧ h(fu, fv) ≥ θ) ≤ δ(εγθ)

• Generalization proved using stability wrt g

• Can easily extend (Lap) to implement this as a
convex quadratic optimization

Experimental Results
Synthetic RMAT Graphs: 1000-4000 nodes,

4000-16000 edges resembling real social net-
works

Real Graphs: Biological networks, directed
graphs with social network like degree distri-
butions

Preferences: Aim to discover a hidden favored
“personalized” community

• Compute reference unweighted π

• Directed large teleport(0.1-0.8) into hidden
random seed nodes, get “true” scores φ∗

• Sample train and test sets using these, keep
node-disjoint to remove transitivity
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Evaluating Cost-Sensitive Ranking

• Precision at k = |T u
k ∩ T̂ u

k |/k
• Relative Average Goodness (RAG) at k =∑

v∈Tk
φ∗(v)/

∑
v∈T ∗k

φ∗(v)

• Kendall’s τ between true and computed ranks
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Summary
• Correspondences between Laplacian and

random-walk ranking

• New generalization bounds for random-walk
ranking

• Ranking with margin using network flow

• Cost-sensitive ranking framework
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