Learning Random Walks to Rank Nodes in Graphs

Soumen Chakrabarti Alekh Agarwal

IIT Bombay

Motivation

- Typically studied in vector spaces
- Graphs model relationships naturally
- Should exploit/respect graph structure and links
- Web, XML, database search ...

Interpretations of Edges

Associative Networks

- Edges encode *similarity*
- Preference for *smooth* scoring functions
- Edge weights encode extent of similarity

Random Walk Approach

- Edges indicate *endorsement*
- Motivated by Pagerank, widely used
- Each edge (u, v) has associated transition probability $Q(v, u) = \Pr(v|u)$

Training and Testing

• Given fixed graph G

• Justifies $KL(\cdot || q)$ as a regularizer

Generalization Bounds

For any $m \ge 1$, any $\delta \in (0,1)$, w.p. $\ge 1 - \delta$ over random draws of sample \prec of size m,

 $R \le R_{\rm emp} + 2\beta + (4m\beta + 1)\sqrt{\frac{\ln(1/\delta)}{2m}}$

• Graph agnostic bound of $\beta = \frac{2\ln 2}{\lambda m}$ trivial to show

Using Graph Properties

• G may not always reduce function class, (n-1)!possible orderings in (a)

- Cost-sensitive loss $g(f_u, f_v, \ell(f_u, f_v))$
- For example, $g(f_u, f_v, \ell(f_u, f_v)) = (\max(f_u, f_v) +$ $\ell(f_u, f_v))^2$
- Can show $\Pr(g(f_u, f_v, \ell(f_u, f_v)) \geq \epsilon) \leq \delta(\epsilon) \Rightarrow$ $\Pr(\ell(f_u, f_v) \ge \epsilon \land h(f_u, f_v) \ge \theta) \le \delta(\epsilon \gamma \theta)$
- Generalization proved using stability wrt g
- Can easily extend (Lap) to implement this as a convex quadratic optimization

Experimental Results

- Synthetic RMAT Graphs: 1000-4000 nodes, 4000-16000 edges resembling real social networks
- **Real Graphs:** Biological networks, directed graphs with social network like degree distributions
- Preferences: Aim to discover a hidden favored "personalized" community
 - Compute reference unweighted π
 - Directed large teleport(0.1-0.8) into hidden random seed nodes, get "true" scores ϕ^*

- Training set of node-pairs " $u \prec v$ ", means we want score(u) < score(v)
- Associative Networks: Learn a good scoring function on the nodes
- Random Walk: Discover underlying transition probabilities
- Test node pairs from same distribution
- Number of incorrect predictions measured

Associative Scoring

- Let $\pi = Q\pi, \Pi = \operatorname{diag}(\pi)$
- Directed Graph Laplacian

 $L = \mathbb{I} - \left(\frac{\Pi^{1/2}Q\Pi^{-1/2} + \Pi^{-1/2}Q\Pi^{1/2}}{2}\right)$

Impose roughness penalty

$$f^{\top}Lf = \sum_{(u,v)\in E} \pi(u)Q_{uv} \left(\frac{f(u)}{\sqrt{\pi(u)}} - \frac{f(v)}{\sqrt{\pi(v)}}\right)^2$$

• Scoring algorithm:

$$\min_{\substack{f:V \to \mathbb{R} \\ s = \{s_{uv} \ge 0: u \prec v\}}} \frac{\frac{1}{2} f^{\top} L f + B \sum_{u \prec v} s_{uv} \text{ subject to}}{f_v - f_u \ge 1 - s_{uv} \quad \forall u \prec v}$$
(Lap)

Ranking using Random Walks

- Pagerank π induces flow $q_{uv} = \pi(u)Q_{uv}$ along graph edges
- Goal: learn flow p close to q that satisfies training preferences

$$\min_{\substack{\{0 \le p_{uv}\}\\\{0 \le s_{uv}\}}} \sum_{(u,v)\in E} p_{uv} \log \frac{p_{uv}}{q_{uv}} + B \sum_{u \prec v} s_{uv}$$
(KL)
s.t.:
$$\sum p_{uv} = 1$$

- Bound on outdegree D not enough: in (c) middle layer acts as a hub, by biasing outflows among neighbors in arbitrary ratios
- G may help: $1 \prec 3 \prec 2 \prec 4$ not learnable in (b)

Eccentricity $\rho = \max_{u \in V} \frac{\max_{v:(u,v) \in E} p_{uv}}{\min_{v:(u,v) \in E} p_{uv}}$

- Controls influence of single node on rankings, along with D
- Can find modified β , worsens with increasing D, ρ . Proof involves upper and lower bounding p_{uv} using induced pagerank $\phi(u)$, D and ρ
- Note: Relative loss bounds, not upper bound on 0-1 risk.

Margin and 0/1 Loss Bound

- Hinge loss max(0, 1 + f(u) f(v)) upper bound on 0-1 loss. Training loss bounds empirical 0-1 risk
- (Pref) uses shifted hinge $\max(0, f(u) f(v))$, not upper bound on 0-1 loss
- $\sum_{(u,v)} p_{uv} = 1$ keeps flows in [0,1]
- Power-law assumptions \Rightarrow most nodes with small pageranks
- Arbitrary additive margin (e.g., "1" for hinge loss) infeasible
- Solution: Make $F = \sum_{(u,v)} p_{uv}$ variable
- Possible as KL(p||q) is still well-defined. I.e., if $F \ge 1$, $\operatorname{KL}(p \| q) \ge 0$ and minimized at p = Fq for a fixed F

$$\min_{\substack{\{p_{uv}\},\{s_{uv}\}\\F\geq 1}}\sum_{(u,v)\in E}p_{uv}\log\frac{p_{uv}}{q_{uv}}+B\sum_{u\prec v}s_{uv}+B_{1}F^{2}$$
subject to
$$1+\sum_{(w,u)\in E}p_{wu}-\sum_{(w,v)\in E}p_{wv}-s_{uv}\leq 0\quad\forall u\prec v$$

• Sample train and test sets using these, keep node-disjoint to remove transitivity

Evaluating Cost-Sensitive Ranking

- Precision at $k = |T_k^u \cap \hat{T}_k^u|/k$
- Relative Average Goodness (RAG) at k = $\sum_{v \in T_k} \phi^*(v) / \sum_{v \in T_k^*} \phi^*(v)$
- Kendall's τ between true and computed ranks

Laplacian-KL Correspondence

• $f(v) \propto \sqrt{\pi(v)}$ minimizes $f^{\top}Lf$

• Both (Lap) and (KL) prefer same ordering in absence of training data

Let p be a valid flow distribution on G, and let q be the reference flow distribution induced by π . Let $f_p(u) = \sqrt{\sum_{\{u:(u,v)\in E\}} p_{uv}}$. Then $\operatorname{KL}(p \| q) \leq \epsilon \Rightarrow f_p^{\top} L f_p \leq 4\sqrt{2\epsilon \ln 2}.$

- Proof follows from standard inequalities and $\operatorname{KL}(p||q) \ge \frac{1}{2\ln 2} ||p - q||_1^2$
- Small KL-distance \Rightarrow low Laplacian roughness

- Small $F \Rightarrow$ large margin (effectively $\frac{1}{F}$)
- Generalization bound polynomial in δ
- Worsens as upper bound on *F* increases

Cost-sensitive Ranking

- Tester wants no mistakes near top of ranked list
- Can penalize on true scores/ranks in tune with importance-weighted classification
- But, true scores/ranks not available, excessive cognitive burden on trainer (may be end-user)

Use algorithm's score estimates as surrogate

• Demands high confidence in ranks of nodes with high scores

Summary

- Correspondences between Laplacian and random-walk ranking
- New generalization bounds for random-walk ranking
- Ranking with margin using network flow
- Cost-sensitive ranking framework

References

- [1] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank networked entities. In SIGKDD Conference, pages 14-23, 2006.
- [2] S. Agarwal. Ranking on graph data. In ICML, pages 25-32, 2006.