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Motivation
e Typically studied in vector spaces

e Graphs model relationships naturally
e Should exploit/respect graph structure and links
e Web, XML, database search ...

Interpretations of Edges
Assoclative Networks

e Edges encode similarity
e Preference for smooth scoring functions
e Edge weights encode extent of similarity

Random Walk Approach

e Edges indicate endorsement
e Motivated by Pagerank, widely used

e Each edge (u, v) has associated transition prob-
ability Q(v,u) = Pr(v|u)

Training and Testing

e Given fixed graph G

e Training set of node-pairs “u < v”, means we
want score(u) < score(v)

e Associative Networks: Learn a good scoring
function on the nodes

e Random Walk: Discover underlying transition
probabilities

e Test node pairs from same distribution
e Number of incorrect predictions measured

Associative Scoring
o Let m = Qm, I = diag(n)

e Directed Graph Laplacian
[t (Hl/Qin/Q + H1/2QH1/2)
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e Impose roughness penalty
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e Scoring algorithm:
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Ranking using Random Walks

e Pagerank = induces flow ¢,, = 7(u)Q,, along
graph edges

e Goal: learn flow p close to ¢ that satisfies train-
ing preferences
min Z Puw lOg Puv + B Z Suw (KL)
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Laplacian-KL Correspondence

e f(v) oc v/m(v) minimizes f'Lf
e Both (Lap) and (KL) prefer same ordering in ab-
sence of training data

Let p be a valid flow distribution on &, and let ¢ be
the reference flow distribution induced by 7. Let

13(12) = /3 (upery Pu- Then
KL(p|lq) <€ = prpr < 4v2¢eln 2.

e Proof follows from standard inequalities and
KL(pllg) = z5llp — qll}
e Small KL-distance =- low Laplacian roughness
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e Justifies KL(-||q) as a regularizer

Generalization Bounds
Forany m > 1, any § € (0,1), w.p. > 1 — § over
random draws of sample < of size m,
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e Graph agnostic bound of g = % trivial to show

Using Graph Properties

e G may not always reduce function class, (n—1)!
possible orderings in (a)

e Bound on outdegree D not enough: in (c) mid-
dle layer acts as a hub, by biasing outflows
among neighbors in arbitrary ratios

e G may help: 1 <3 < 2 < 4 not learnable in (b)

Eccentricity p = max —— (u,0)€E Puv
ueV MLy, (4 ) e E Puv

e Controls influence of single node on rankings,
along with D

e Can find modified [, worsens with increasing
D, p. Proof involves upper and lower bounding
puy USINg induced pagerank ¢(u), D and p

e Note: Relative loss bounds, not upper bound on
0-1 risk.

Margin and O/1 Loss Bound

e Hinge loss max(0,1+ f(u) — f(v)) upper bound
on 0-1 loss. Training loss bounds empirical 0-1
risk

e (Pref) uses shifted hinge max(0, f(u)— f(v)), not
upper bound on 0-1 loss

o Z(W) puww = 1 keeps flows in [0,1]

e Power-law assumptions = most nodes with
small pageranks

e Arbitrary additive margin (e.g., “1” for hinge
loss) infeasible

e Solution: Make F = Z(w) Py Variable

e Possible as KL(p||q) is still well-defined. l.e., if
F > 1, KL(p||q) > 0 and minimized at p = Fq for
a fixed F
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e Small F = large margin (effectively +)
e Generalization bound polynomial in ¢
e \WWorsens as upper bound on F' increases

Cost-sensitive Ranking

e Tester wants no mistakes near top of ranked list

e Can penalize on true scores/ranks in tune with
Importance-weighted classification

e But, true scores/ranks not available, excessive
cognitive burden on trainer (may be end-user)

Use algorithm’s score estimates as surrogate

e Demands high confidence in ranks of nodes
with high scores
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e Cost-sensitive 10Ss ¢(fu, fo, £(fu, f2))

o For example, g(fu, fv, ((fu, fv)) = (max(fu, fo) +
g(fu7fv>)2

e Can show Pr(g(fu, fo, €(fu, fo)) = €) < d(e) =
Pr(€(fus fo) 2 € NN fu, fu) = 0) < 0(e70)

e Generalization proved using stability wrt g

e Can easily extend (Lap) to implement this as a
convex quadratic optimization

Experimental Results

Synthetic RMAT Graphs: 1000-4000 nodes,
4000-16000 edges resembling real social net-
works

Real Graphs: Biological networks, directed
graphs with social network like degree distri-
butions

Preferences: Aim to discover a hidden favored
“personalized” community
e Compute reference unweighted =

e Directed large teleport(0.1-0.8) into hidden
random seed nodes, get “true” scores ¢*

e Sample train and test sets using these, keep
node-disjoint to remove transitivity
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Evaluating Cost-Sensitive Ranking

e Precision at k = [T N T}|/k
e Relative Average Goodness (RAG) at k& =

ZveTk ¢* (U>/ ZveTg (b* (v>

e Kendall's 7 between true and computed ranks
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Summary

e Correspondences between Laplacian and
random-walk ranking

e New generalization bounds for random-walk
ranking

e Ranking with margin using network flow
e Cost-sensitive ranking framework
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