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Abstract. The next wave in search technology will be driven by the
identification, extraction, and exploitation of real-world entities repre-
sented in unstructured textual sources. Search systems will either let
users express information needs naturally and analyze them more intel-
ligently, or allow simple enhancements that add more user control on
the search process. The data model will exploit graph structure where
available, but not impose structure by fiat. First generation Web search,
which uses graph information at the macroscopic level of inter-page hy-
perlinks, will be enhanced to use fine-grained graph models involving
page regions, tables, sentences, phrases, and real-world-entities. New al-
gorithms will combine probabilistic evidence from diverse features to
produce responses that are not URLs or pages, but entities and their
relationships, or explanations of how multiple entities are related.

1 Toward more expressive search

Search systems for unstructured textual data have improved enormously since
the days of boolean queries over title and abstract catalogs in libraries. Web
search engines index much of the full text from billions of Web pages and serve
hundreds of millions of users per day. They use rich features extracted from the
graph structure and markups in hypertext corpora.

Despite these advances, even the most popular search engines make us feel
that we are searching with mere strings: we do not find direct expression of
the entities involved in our information need, leave alone relations that must
hold between those entities in a proper response. In a plenary talk at the 2004
World-wide Web Conference, Udi Manber commented:

If music had been invented ten years ago along with the Web, we would
all be playing one-string instruments (and not making great music).

referring to the one-line text boxes in which users type in 1–2 keywords and
expect perfect gratification with the responses.

Apart from classical Information Retrieval (IR), several communities are
coming together in the quest of expressive search, but they are coming from
very different origins.

Databases and XML: To be sure, the large gap between the user’s information
need and the expressed query is well-known. The database community has been
traditionally uncomfortable with the imprecise nature of queries inherent in IR.



The preference for precise semantics has persisted from SQL to XQuery (the
query language proposed for XML data). The rigor, while useful for system-
building, has little appeal for the end-user, who will not type SQL, leave alone
XQuery.

Two communities are situated somewhere between “uninterpreted” keyword
search systems and the rigor of database query engines. Various sub-communities
of natural language processing (NLP) researchers are concerned with NL inter-
faces to query systems. The other community, which has broad overlaps with
the NLP community, deals with information extraction (IE).

NLP: Classical NLP is concerned with annotating grammatical natural lan-
guage with parts of speech (POS), chunking phrases and clauses, disambiguating
polysemous words, extracting a syntactic parse, resolving pronoun and other ref-
erences, analyze roles (eating with a spoon vs. with a friend), prepare a complete
computer-usable representation of the knowledge embedded in the original text,
and perform automatic inference with this knowledge representation. Outside
controlled domains, most of these, especially the latter ones, are very ambitious
goals. Over the last decade, NLP research has gradually moved toward building
robust tools for the simpler tasks [19].

IE: Relatively simple NLP tasks, such as POS tagging, named entity tagging,
and word sense disambiguation (WSD) share many techniques from machine
learning and data mining. Many such tasks model unstructured text as a se-
quence of tokens generated from a finite state machine, and solve the reverse
problem: given the output token sequence, estimate the state sequence. E.g., if
we are interested in extracting dates from text, we can have a positive and a
negative state, and identify the text spans generated by the positive state. IE is
commonly set up as a supervised learning problem, which requires training text
with labeled spans.

Obviously, to improve the search experience, we need that

– Users express their information need in some more detail, while minimizing
additional cognitive burden

– The system makes intelligent use of said detail, thus rewarding the burden
the user agrees to undertake

This new contract will work only if the combination of social engineering and
technological advances work efficiently in concert.

2 The new contract: Query syntax

Suitable user interfaces, social engineering, and reward must urge the user to
express their information need in some more detail. Relevance feedback, offering
query refinements, and encouraging the user to drill down into response clusters
are some ways in which systems collect additional information about the user’s
information need. But there are many situations where direct input from the
user can be useful. I will discuss two kinds of query augmentation.

Fragments of types: If the token 2000 appears in grammatical text, cur-
rent technology can usually disambiguate between the year and some other

2



number, say a money amount. There is no reason why search interfaces can-
not accept a query with a type hint so as to avoid spurious matches. There is
also no reason a user cannot look for persons related to SVMs using the query
PersonType NEAR "SVM", where PersonType is the anticipated response type
and SVM a word to match. To look for a book in SVMs published around year
2000, one might type BookType (NEAR "SVM" year~2000). I believe that the
person composing the query, being the stakeholder in response quality, can be
encouraged to provide such elementary additional information, provided the re-
ward is quickly tangible. Moreover, reasonably deep processing power can be
spent on the query, and this may even be delegated to the client computer.

Attributes, roles and relations: Beyond annotating query tokens with type
information, the user may want to express that they are looking for “a business
that repairs iMacs,” “the transfer bandwidth of USB2.0,” and “papers written
in 1985 by C. Mohan.” It should be possible to express broad relations between
entities in the query, possibly the placeholder entity that must be instantiated
into the answer. The user may constrain the placeholder entity using attributes
(e.g. MacOS-compliant software), roles and relations (e.g., a student advised by
X). The challenge will be to support an ever-widening set of attribute types,
roles and relations while ensuring ongoing isolation and compatibility between
knowledge bases, features, and algorithms.

Compared to query syntax and preprocessing, whose success depends largely
on human factors, we have more to say about executing the internal form of the
query on a preprocessed corpus.

3 The new contract: Corpus and query processing

While modest changes may be possible in users’ query behavior, there is far too
much inertia to expect content creators to actively assist mediation in the imme-
diate future. Besides, questions preprocessing can be distributed economically,
but corpus processing usually cannot.

The situation calls for relatively light processing of the corpus, at least until
query time. During large scale use, however, a sizable fraction of the corpus may
undergo complex processing. It would be desirable but possibly challenging to
cache the intermediate results in a way that can be reused efficiently.

3.1 Supervised entity extraction

Information extraction (IE), also called named entity tagging, annotates spans of
unstructured text with markers for instances of specified types, such as people,
organizations, places, dates, and quantities.

A popular framework [11] models the text as a linear sequence of tokens
being generated from a Markov state machine. A parametric model for state
transition and symbol emission is learned from labeled training data. Then the
model is evaluated on test data, and spans of tokens likely to be generated by
desired states are picked off as extracted entities.

Generative models such as hidden Markov models (HMMs) have been used
for IE for a while [7]. If s is the (unknown) sequence of states and x the sequence
of output features, HMMs seek to optimize the joint likelihood Pr(s,x).
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In general, x is a sequence of feature vectors. Apart from the tokens them-
selves, some derived features found beneficial in IE are of the form: Does the
token

– Contain a digit, or digits and commas?
– Contain patterns like DD:DD or DDDD or DD’s where D is a digit?
– Follow a preposition?
– Look like a proper noun (as flagged by a part-of-speech tagger1)?
– Start with an uppercase letter?
– Start with an uppercase letter and continue with lowercase letters?
– Look like an abbreviation (e.g., uppercase letters alternating with periods)?

The large dimensionality of the feature vectors usually corners us into naive inde-
pendence assumptions about Pr(s,x), and the large redundancy across features
then lead to poor estimates of the joint distribution.

Recent advances in modeling conditional distributions [18] directly optimize
Pr(s|x), allowing the use of many redundant features without attempting to
model the distribution over x itself.

3.2 Linkage analysis and alias resolution

After the IE step, spans of characters and tokens are marked with type iden-
tifiers. However, many string spans (called aliases) may refer to a single en-
tity (e.g., IBM, International Business Machines, Big Blue, the computer giant
or www.ibm.com). The variations may be based on abbreviations, pronouns,
anaphora, hyperlinks and other creative ways to create shared references to en-
tities. Some of these aliases are syntactically similar to each other but others are
not.

In general, detecting aliases from unstructured text, also called coreferent
resolution, in a complete and correct manner is considered “NLP complete,”
i.e., requires deep language understanding and vast amounts of world knowl-
edge. Alias resolution is an active and difficult area of NLP research. In the IE
community, more tangible success has been achieved within the relatively limited
scope of record linkage.

In record linkage, the first IE step results in structured tables of entities,
each having attributes and relations to other entities. E.g., we may apply IE
techniques to bibliographies at the end of research papers to populate a table of
papers, authors, conferences/journals, etc. Multiple rows in each table may refer
to the same object. Similar problems may arise in Web search involving names
of people, products, and organizations.

The goal of record linkage is to partition rows in each table into equivalence
classes, all rows in a class being references to one real-world entity. Obviously,
knowing that two different rows in the author table refer to the same person
(e.g., one may abbreviate the first name) may help us infer that two rows in the
paper table refer to the same real-world paper.

A veriety of new techniques are being brought to bear on record linkage [10]
and coreferent resolution [20], and this is an exciting area of current research.

1 Many modern part-of-speech taggers are in turn driven by state transition models.
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3.3 Bootstrapping ontologies from the Web

The set of entity types of interest to a search system keeps growing and changing.
A fixed set of types and entities may not keep up. The system may need to
actively explore the corpus to propose new types and extract entities for old and
new types. Eventually, we would like the system to learn how to learn.

Suppose we want to discover instances of some type of entity (city, say) on
the Web. We can exploit the massive redundancy of the Web and use some very
simple patterns [16, 8, 1, 13]:

“cities” {“,”} “such as” NPList2
NP1 {“,”} “and other cities”
“cities” {“,”} “including” NPList2
NP1 “is a city”

Here { } denotes an optional pattern and NP is a noun phrase. These patterns
are fired off as queries to a number of search engines. A set of rules test the
response Web pages for the existence of valid instantiations of the patterns. A
rule may look like this:

NP1 “such as” NPList2 AND
head(NP1)=“cities” AND
properNoun(head(each(NPList2)))

⇒ instanceOf(City,head(each(NPList2)))

KnowItAll [13] makes a probabilistic assessment of the quality of the extrac-
tion by collecting co-occurrence statistics on the Web of terms carefully chosen
from the extracted candidates and pre-defined discriminator phrases. E.g., if X
is a candidate actor, “X starred in” or “starring X” would be good discriminator
phrases. KnowItAll uses the pointwise mutual information (PMI) formulation
by Turney [24] to measure the association between the candidate instance I and
the discriminator phrase D: PMI(I,D) = |Hits(D + I)|/|Hits(I)|.

Apart from finding instances of types, it is possible to discover subtypes. E.g.,
if we wish to find instances of scientists, and we have a seed set of instances, we
can discover that physicists and biologists are scientists, make up new patterns
from the old ones (e.g. “scientist X” to “physicist X”) and improve our harvest
of new instances.

In Sections 3.5 and 3.6 we will see how automatic extraction of ontologies
can assist next-generation search.

3.4 Searching relational data with NL queries

In this section and the next (§3.5), we will assume that information extraction
and alias analysis have led to a reasonably clean entity-relationship (ER) graph.
The graphs formed by nodes corresponding to authors, papers, conferences and
journal in DBLP, and actors/actresses, movies, awards, genres, ratings, produc-
ers and music directors in the Internet Movie Database (IMDB) are examples
of reasonably clean entity-relationship data graphs. Other real-life examples in-
volve e-commerce product catalogs and personal information management data,
with organizations, people, locations, emails, papers, projects, seminars, etc.

There is a long history of systems that give a natural language interface
(NLI) to relational engines [4], but, as in general NLP research, recent work has
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moved from highly engineered solutions to arbitrarily complex problems to less
knowledge-intensive and more robust solutions for limited domains [21]. E.g., for
a table JOB(description,platform,company) and the NL query What are the
HP jobs on a UNIX system?, the translation to SQL might be select distinct
description from JOB WHERE company = ’HP’ and platform = ’UNIX’. The
main challenge is to agree on a perimeter of NL questions within which an algo-
rithm is required to find a correct translation, and to reliably detect when this
is not possible.

3.5 Searching entity-relationship graphs

NLI systems take advantage of the precise schema information available with
the “corpus” as well the well-formed nature of the query, even if it is framed
in uncontrolled natural language. The output of IE systems has less elaborate
type information, the relations are shallower, and the questions are most often
a small set of keywords, from users who are used to Web search and do not wish
to learn about any schema information in framing their queries.

Free-form keyword search in ER graphs raises many interesting issues, in-
cluding the query language, the definition of a “document” in response to a
query, how to score a document which may be distributed in the graph, and how
to search for these subgraphs efficiently.

Multiple words in a query may not all match within a single row in a sin-
gle table, because ER graphs are typically highly normalized using foreign key
constraints. In an ER version of DBLP, paper titles and author names are in
different tables, connected by a relation wrote(author,paper). In such cases,
what is the appropriate unit of response? Recent systems [6, 3, 17] adopt the
view that the response should be some minimal graph that connects at least one
node containing each query keyword.

Apart from type-free keyword queries, one may look for a single node of a
specified type (say, a paper) with high proximity to nodes satisfying various
predicates, e.g., keyword match (“indexing”, “SIGIR”) or conditions on numeric
fields (year<1995). Resetting random walks [5] are a simple way to answer such
queries. These techniques are broadly similar to Pagerank [9], except that the
random surfer teleports only to nodes that satisfy the predicates. Biased random
walks with restarts are also related to effective conductance in resistive networks.
In a large ER graph, it is also nontrivial to explain to the user why/how enti-
ties are related; this is important for diagnostics and eliciting user confidence.
Conductance-based approaches work well [14]: we can connect +1V to one node,
ground the other, penalize high-fanout nodes using a grounded sink connected
to every node, and report subgraphs that conduct the largest current out of the
source node.

Recent years have seen an explosion of analysis and search systems for ER
graphs, and I expect the important issues regarding meaningfulness of results
and system scalability to be resolved in the next few years.

3.6 Open-domain question answering

Finally, the Web at large will continue to be an “open-domain” system where
comprehensive and accurate entity and relation extraction will remain elusive.
No schema of entities and relationships can be complete at any time, even if
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they become more comprehensive over time. Moreover, even a cooperative user
will not be able to remember and exploit a universal “type system” in asking
questions. Instead, search systems will provide some basic set of roles [15] that
apply broadly. Questions will express roles or refinements of roles, and will be
matched to probabilistic role annotations in the corpus.

In open-domain QA, question analysis and response scoring will necessarily
be far more tentative. Some basic machine learning will reveal that the question
When was television invented? expects the type of the answer (atype) to be a
date, and that the answer is almost certainly only a few tokens from the word
television or its synonym. In effect, current technology [22, 2, 12, 23] can translate
questions into the general form

find x from corpus where x InstanceOf(Atype(question))
and x RelatedTo GroundConstants(question)

Here Atype(question) represents the concept of time, and we are looking for a
reference to an entity x which is an instance of time. (This is where a system like
KnowItAll comes into play.) In the example above, television or TV would
be in GroundConstants(question).

Checking the predicate RelatedTo is next to impossible in general. QA sys-
tems employ a variety of approximations. These may be as crude as linear prox-
imity (the number of of tokens separating x from GroundConstants(question).
Linear proximity is already surprisingly effective [23]. More sophisticated sys-
tems2 attempt a parse of the question and the passage, and verify that x and
GroundConstants(question) are related in a way specified by (a parse of) the
question. As might be expected, there is a trade-off beteen speed and robustness
on one hand and accuracy and brittleness on the other.

4 Conclusion

Many of the pieces required for better searching are coming together. Current
an upcoming research will introduce synergy as well as build large, robust ap-
plications. The applications will need to embrace bootstrapping and life-long
learning better than before. The architecture must isolate feature extraction,
models, and algorithms for estimation and inferencing. The interplay between
processing stages makes this goal very challenging. The applications must be
able to share models and parameters across different tasks and across time.
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