
Efficient and Accurate Local Learning for Ranking
Somnath Banerjee

HP Labs India
Avinava Dubey

IIT Bombay
Jinesh Machchhar

IIT Bombay
Soumen Chakrabarti

IIT Bombay

ABSTRACT
Learning to score—and thereby order—items represented as
feature vectors xi ∈ Rd, with the goal of minimizing various
ranking loss functions, is now a major topic in Information
Retrieval. Training data consists of relevant and irrelevant
documents identified for a number of queries. Many systems
train a model w ∈ Rd, such that the score of an item xi is
w>xi. However, queries are diverse: navigational, informa-
tional, transactional, etc. Recently, there has been interest
in local learning: customizing a model to each test query.
While intuitively appealing, these proposals have either re-
sulted in modest gains, or entail excessive computational
burden at test time. In this paper we propose a local learn-
ing algorithm based on a new similarity measure between
queries. The proposed local learning algorithm does not
depend on a fixed query classification scheme. First, we
represent (relevant and irrelevant) document vectors for the
query as a point cloud. Second, we define an intuitive notion
of similarity between the shapes of two point clouds, based
on principal component analysis (PCA). Our local learn-
ing algorithm clusters queries at training time, using the
PCA-based measure of query similarity. During test time,
we simply locate the nearest training cluster, and use the
model trained for that cluster. Very few clusters are ade-
quate to give substantial boost to test accuracy. Our test
time is small, training time is reasonable, and our accuracy
beats several recent local learning approaches, as tested on
the well-known LETOR dataset.

Categories and Subject Descriptors: H.3.3
[Information Search and Retrieval]: Retrieval models

General Terms: Algorithms, Experimentation

Keywords: Learning to rank, Local Ranking

1. INTRODUCTION
Learning to rank is an area of Machine Learning that has

seen much recent activity. In the most common scenario,
the training data consists of a set of queries Q. Each query
q ∈ Q is associated with a set of document Dq, represented
as feature vectors xqi ∈ Rd. (We describe the elements of
these vectors shortly.) Each document xqi is associated with
a relevance label zqi. Often, the relevance label is binary, i.e.,
the document is relevant (“good”) or irrelevant (“bad”), but
three or more levels of relevance are also possible. A large
class of algorithms for learning to rank uses this training
data to estimate a scoring model w ∈ Rd. When deployed,
a test query t is submitted to the system, along with its
document set Dt. The system then assigns a score w>xti to
each feature vector xti ∈ Dt, and then the documents are
sorted in decreasing order of score.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Most systems that learn to rank use a few standard fam-
ilies of features in the document feature vectors xqi. Each
element in the vector xqi represents some notion of match
between the query q and the document indexed by i, or some
notion of quality of document i.

As pointed out by several researchers [2, 8, 5], Web queries
are of various types. Two major types are navigational,
where a definite authoritative URL like http://www.ibm.c
om is sought, and informational, where the user wants to sat-
isfy an information need by browsing many relevant pages.
Different families of features have different impacts on rank-
ing for different query classes. For navigational queries, the
URL substring and PageRank features may be the best indi-
cators of quality, whereas for informational queries, whole-
page TFIDF and BM25 features may be better. In other
words, a single model w may not be adequate as a scoring
(hence ranking) device for diverse types of queries. That is
where local learning comes in.

1.1 Related Work
In recent years, researchers are increasingly proposing that

a single model w may not be sufficiently expressive to reduce
ranking loss to the maximum extent possible (but this may
not be entirely attributable to query diversity alone). Here
we review prior work with this general flavor, and discuss
two closely relate papers [8, 5] in detail.

1.1.1 Composite ranking models
Algorithms for learning ranking models may be trained us-

ing itemwise, pairwise or listwise objectives. Itemwise learn-
ers seek to regress xqi to relevance label zqi, perhaps via or-
dinal regression [4]. A recent regression algorithm uses gra-
dient boosted regression trees [10], which can express highly
nonlinear scoring functions. However, this work does not
take query diversity into account.

RankBoost [7] is a pairwise trainer that estimates an
overall scoring function H(x) =

P
m αmhm(x) as a linear

combination of weak scoring functions. This composition
can express nonlinearity only if some weak functions hm(x)
are nonlinear in feature vector x.

If the application requires K > 2 levels of relevance, Qin
et al. [12] propose to learn

`
K
2

´
ranking model, one for each

pair of relevance levels. Then they use a weighted Borda
count to aggregate ranking information across all the mod-
els. While this is a composite ranking system, query diver-
sity is not the focus here.

1.1.2 PCA and local projection of training data
Duh and Kirchhoff [5] present a different lazy approach

to local learning for ranking. They do nothing at training
time. At test time, given a test query t they compute a
kernel principal component [1] on the feature vectors of Dt.
Principal Component Analysis (PCA) finds the directions
of maximum variation for a given set of points, by comput-
ing the eigenvectors of the covariance matrix. They retain
P principal components {u1, . . . , uP } corresponding to the
top P eigenvalues. D&K’s intuition was that these direc-

1

tions capture the most important directions in the feature
space of documents associated with test query t. Therefore,
they project all training data on to the subspace U defined
by u1, . . . , uP and create a locally-tuned representation of
training data. Then a model is trained on this projected
training data to rank the documents of test query t.

The main problem with the D&K proposal is that the
entire training work is deferred to test time. For the small
LETOR data sets [11], test time was tolerable. But test time
scales with the total number of training documents, which
is clearly unacceptable.

1.1.3 Nearest-neighbor query clusters
Geng et al. [8] represent each query as a 27-dimensional

feature vector. These features are derived from the docu-
ments associated with the query. For a document they de-
fine 27 query-derived features as described in [13]. A query
is represented by taking average of those features from the
top T documents ordered by BM25 score.

For each query in the training set a seperate ranking model
is trained using the query and its K nearest queries. Here
the distance between queries is the Euclidean distance in the
27-dimensional embedding of queries. Given a test query,
they find the nearest training query and use the model as-
sociated with that query.

Their test time is reasonably fast if the training set is of
manageable size, although it does scale with training set size.
Training time is quite large, because the number of models to
be trained is equal to the number of training queries. In our
experiments, accuracy gains beyond a competitive single-
model baseline were quite modest. They did not use LETOR
because they found the number of queries in LETOR too
small to see any benefit from local learning (interestingly,
this turns out not to be the case for our approach). They
used proprietary data sets, and obtained some improvement
in NDCG. They did not report on the scalability and run
time performance of their training and testing algorithms.

1.2 Our contributions
We make three contributions in this paper:
• We propose a new representation of queries and a no-

tion of similarity between queries using this represen-
tation.
• We propose an offline method to cluster queries based

on this similarity, and train a model for each cluster.
Our training time is reasonable compared to a single
model training time and orders of magnitude smaller
than Geng et al.. Given a test query, we use the model
from the most similar cluster, also defined suitably.
This gives a considerable accuracy boost compared to
baselines, Geng et al.’s approach, and Duh et al.’s ap-
proach.
• To improve test time scaling as training size improves,

we adapt locality sensitive hashtables (LSH) in local
learning to rank. We show that this results in signifi-
cant reduction of testing time. Our test time is orders
of magnitude smaller than Duh et al., while achieving
better test accuracy.

In the next section we describe different methods of rep-
resenting a query as a point cloud. We propose our local
learning algorithm in Section 3 and in Section 4 we report
on extensive experiments with the LETOR (version 3) data
sets [11] as well as a new data set released by a Russian In-

ternet company. As competitive baseline algorithms, we use
SVMmap [15] and RankBoost [7].

2. SIMILARITY BETWEEN POINT CLOUDS
Learning to rank has a two-level structure. Unlike tra-

ditional classification, each instance is not a single feature
vector, but a set of feature vectors, each labeled good or
bad, associated with a query. We can even train a classifier
or ranker for each training query q separately. Given a test
query t, we expect that the models corresponding to similar
training queries will be more accurate.

In this section we describe how to compute similarity be-
tween two queries when a query is represented as a point
cloud, i.e., an unordered set of feature vectors1. At a high
level, our working hypothesis is:

The proposed similarity measure between queries q, q′

should reflect the similarity between the shapes of the point
clouds defined by Dq and Dq′ .

Here we study the specifics of how to characterize cloud
shapes and their similarities. While we are designing similar-
ity measures between point clouds, we will point out various
invariants that they do or do not satisfy:
• A basic requirement is that the order of presenting

points in a cloud be ignored. This requirement is sat-
isfied by all the similarity measures discussed in this
paper.
• For the ranking task, scaling or shifting all points in a

cloud should not affect its similarity to other clouds.

2.1 Simple cloud aggregates
One way to compute similarity between point clouds is

to represent each cloud as a feature vector by aggregating
the feature vectors of individual points in the cloud. In this
spirit, we define the following three aggregates:

Mean µ ∈ Rd: where µ = 1
nq

Pnq

i=1 xqi, nq = |Dq|
Variance σ2 ∈ Rd: where σ2

j = 1
nq

Pnq

i=1((xqi)j − µj)
2: σ2

is the diagonal elements of covariance matrix of points
in the cloud.

Skew ϕ ∈ Rd: where ϕj =
1

nq

Pnq
i=1((xqi)j−µj)3

σ3
j

Once we form the cloud aggregates for two clouds, we can
compare the aggregate feature vectors in usual ways, like
dot product or Euclidean distance. If the document vec-
tors are in Rd, the time to estimate mean and element-wise
standard deviation for query q is O(dnq), for a total time

of O
“
d

P
q nq

”
. Thereafter, the similarity between any pair

of clouds can be done in O(d) time. Evaluating all pairwise
similarities will take O(d|Q|2) time. Although obvious, it
is important to note that the mean is not shift- or scale-
invariant, and the standard deviation is not scale-invariant.

2.2 Distributional divergence and kernels

2.2.1 KL-Divergence
Another option is to assume that each point cloud has

been generated from a multivariate Gaussian, estimate its
parameters, and compare the two distributions using those

1In this paper we will consider the point clouds as unlabeled,
because, for training, we might be able to exploit the point
labels, but the test cloud is unlabeled.

2

estimated parameters. The symmetric KL (Jensen-Shannon)
divergence is one measure of distance between distributions
that we can use.

Given two point clouds D1, D2, let the corresponding mean
vector and covariance matrices be µ1, µ2, Σ1, Σ2. Then the
KL divergence is given by

KL(D1‖D2) =
1

2

„
ln
|Σ2|
|Σ1|

+ tr(Σ−1
2 Σ1)

«
+

1

2

“
(µ2 − µ1)

>Σ−1
2 (µ2 − µ1)− d

”
(1)

and the symmetric divergence is

JS(D1, D2) = 1
2
(KL(D1‖D2) + KL(D2‖D1)). (2)

Computing divergence between a pair of queries takes O(d3)
time on account of the inverse and determinant operations.
Thereafter, computing divergence between all pairs of queries
takes O(d3|Q|2). Note that this definition is neither shift nor
scale invariant.

2.2.2 Bhattacharyya kernel
Given densities p1(x), p2(x) over random variable x, the

Bhattacharyya kernel is defined as

K(p1, p2) =

Z
x

p
p1(x)

p
p2(x)dx. (3)

Kondor and Jebara [9] proposed to use the Bhattacharyya
kernel between two multivariate Gaussian distributions, whose
parameters are estimated from the respective clouds. For-
tunately, this can be computed in closed form:

Σ† =
`

1
2
Σ−1

1 + 1
2
Σ−1

2

´−1

µ† = 1
2
Σ−1

1 µ1 + 1
2
Σ−1

2 µ2

K(p1, p2) = |Σ1|−1/4|Σ2|−1/4|Σ†|1/2

exp
“
− 1

4
µ1Σ

−1
1 µ1 − 1

4
µ2Σ

−1
2 µ2 + 1

2
µ†

>
Σ†µ†

”
.

(4)

Observe that matrix inversion is needed for each pair of
clouds. Like matrix multiplication, this is O(d3), but the
constant is usually somewhat larger. The overall time to
evaluate all pairs of cloud distances is O(d3|Q|2). Again
note that, by design, K(·, ·) is sensitive to translation and
scaling.

2.3 Our proposal
Let U = (u1, . . . , uP) be the sequence of principal compo-

nents of Dq, in order of decreasing eigen value. Likewise, let
U ′ = (u′1, . . . , u

′
P) be the sequence of principal components

of Dq′ , in order of decreasing eigen value. Then we define

sim(Dq, Dq′) =
1

P

PX
p=1

˛̨̨
u>p u′p

˛̨̨
. (5)

We take the absolute value because, if u is a principal com-
ponent of a point cloud, then so is −u. Depending on minor
numerical perturbation, a PCA program may find either u
or −u as a principal component of a point cloud D. Verify,
as an extreme case, that sim(D, D) = 1. Also note that

sim(D, D′) = sim(D, D′ + η),

MAP

PCA based

Distance

Symmetric

KL Distance

Bhattacharyya

Distance

KNN

Distance

q2 1.000 0.177 84.584 1.000 95.941

q3 0.887 0.810 48.037 0.917 1.124

Figure 1: Comparison of different similarity mea-
sures on synthetic dataset.

where D′ + η denotes all document vectors in D′ translated
through vector η; i.e., sim(D, D′) is translation-invariant.
Furthermore,

sim(D, D′) = sim(D, αD′) ∀α 6= 0,

where αD′ denotes all document vectors in D′ scaled by
a factor α; which means that sim(D, D′) is scale-invariant.
One potential problem with (5) as a definition of similar-
ity is that clustering algorithms cannot use fast techniques
developed for inner-product spaces [6].

The preprocessing step performs PCA on each query cloud,

taking O
“P

q d2nq +
P

q d3
”

= O(d2 P
q nq + d3|Q|) time.

Thereafter, the time for all pairwise cloud comparisons is
O(d|Q|2). Even though d is just a constant typically be-
tween 40–250, in practice, d|Q|2 � d3|Q|2.

2.4 Illustrative experiments
In order to test the effectiveness of our point cloud simi-

larity measure, we generate synthetic point clouds for three
queries q1, q2 and q3. The point cloud of each query qi has
relevant and non-relevant document sets {D+

i } and {D−
i }

respectively. Each document in {Dy
i } (where y ∈ {+,−})

a d dimensional feature vector and generated from a Gaus-
sian distribution N (µy

i , Σy
i) with mean µy

i and covariance
matrix Σy

i . We generate the documents while making sure
that point cloud of q1 and q2 have similar mean while q1 and
q3 have similar variance.

Now we train a ranking model (SVMmap) on the docu-
ments of query q1 and test the model on query q2 and q3.
From the point of view of ranking accuracy we assert that
q1 is more similar to q2 than q3, if the ranking accuracy
achieved by the model (trained using q1) is higher on q2

than q3. We then compute similarity of query q1 to queries
q2 and q3 using the various measures described above. The
hypothesis is that a good similarity measure from ranking
perspective should find the query with higher ranking accu-
racy to be more similar to q1.

Figure 1 shows the result of the above experiment. Query
q1 is more similar to q2 than q3 as the model trained on q1

achieves better MAP score on q2 than q3. Also the distance
computed using PCA based similarity between q1 and q2

is smaller than the distance between q1 and q3. But the
other similarity measures have a lower distance between q1

and q3 compared to that between q1 and q2. This shows
that our method of computing similarity between two point
clouds is more effective than the other methods with regard
to ranking.

3. PROPOSED ALGORITHM (LocalRank)

3.1 Clairvoyant selection of training query
Our proposed notion of similarity between queries imme-

diately suggests a clustering scheme over training queries.

3

However, on our way to the final algorithm, we first do
some sanity-checking experiments: Is anything to be gained
by segregating training queries, as against using all of them
in a single model? We begin with an extreme case, with a
model wq per training query q ∈ Q. At test time we choose
a model in two different manners.

1. Model wq∗ such that q∗ = arg maxq∈Q sim(Dq, Dt).
2. The clairvoyant best model wq̃ where q̃ ∈ Q such that

wq̃ gives the best accuracy for t.
As a baseline we train a single model w0 using all train-

ing queries. Detailed experimental results are presented in
Section 4.2.1, but here is a summary:
• Compared to w0, the accuracy achieved with the clair-

voyant choice q̃ is consistently much larger.
• However, the fraction of times that q̃ = q∗ is quite

small, meaning that the clairvoyant choice is not visible
via single query-to-query similarity evaluation.

These preliminary experiments suggest that one-model-
per-query over-fragments training data and we can poten-
tially gain accuracy by clustering the training queries. We
use complete-link agglomerative clustering in our experi-
ments. Then we train a model on each cluster instead of
individual queries. At test time we choose the cluster that
contains the most similar training query to the test query t.
Pseudocode of our proposed algorithm is shown in Figure 2.

The main experimental question is, will clustering make
it any easier to locate the best cluster from which to use the
trained model, and whether clustering will smear together
queries that are not quite similar enough, so as to reduce the
efficacy of cluster models for any specific test query. Before
we resolve those questions in Section 4, we discuss how to
make similarity search more efficient.

1: Training:
2: Input: Training queries Q with associated point clouds,

number of clusters C, number of principal components
P

3: Output: C clusters and their corresponding models
4: for each q ∈ Q do
5: run PCA(Dq) and record principal components Uq

6: cluster {Uq : q ∈ Q} into C clusters using complete-
link agglomerative clustering with our proposed similar-
ity measure (Equation 5)

7: for each cluster c do
8: train a model using queries Qc belonging to cluster c
9: record model wc obtained by training

1: Testing:
2: Input: Set of documents Dt for test query t, C clusters

and their corresponding models
3: Output: Ranked list of documents in Dt

4: run PCA(Dt) to get principal components Ut

5: find cluster c∗ = arg maxc maxq∈Qc sim(Dt, Dq) where
sim(Dt, Dq) is computed using Equation 5

6: use wc∗ to rank Dt

Figure 2: Clustered local learning pseudocode.

3.2 Similarity search using locality sensitive
hashing

In learning to rank applications, one can usually be more
generous with training time compared to testing time. Any
practical proposal for local learning must come up with a
fast mechanism to assign a test query to one or few local

1: Preprocessing
2: Parameters:
3: P : Number of principal components (PC) retained for

each query
4: h: Number of hyperplanes in each hashtable, h is tuned
5: m: Repetition factor for hashtables, m is tuned
6: Input: Training queries, empty hash-tables HT [P][m]
7: Output: Populated HT [P][m]
8: Data structures: HT [P][m]: There are mP hash-

tables
9: for each training query q do

10: for p← 1 to P do
11: for j ← 1 to m do
12: insert q in HT [p][j] by hashing the pth PC of q

{Note that a different random projection is used
for each j}

1: Testing
2: Input: HT [P][m] populated with training queries, test

query t
3: Output: Closest training query q as per PCA-based

similarity
4: Data structures: CQ = ∅: Set of candidate training

queries
5: Initialize two counter arrays CP [P][|Q|] and CM [P][|Q|]

to zero {CP for +u and CM for −u}
6: for p← 1 to P do
7: for j ← 1 to m do
8: hash t into HT [p][j] using its pth PC up to get

bucket b
9: for each train query q in bucket b do

10: Add q to CQ
11: Increment the count CP [p][q]
12: Repeat the steps 7 to 11 for −up i.e. the negative of

the pth PC and update the counts in CM [p][]
13: for each candidate train query q ∈ CQ do
14: Initialize accumulator aq to 0
15: for p← 1 to P do
16: add max{ CP [p][q] , CM [p][q] } to accumulator aq

17: Return arg maxq aq

Figure 3: Locality Sensitive Hashing pseudocode.

models compiled during training time. In order to reduce
our testing time for selecting the right model for a given
test query we make use of locality sensitive hashing (LSH)2.

LSH is a method of hashing objects into buckets such that
similar objects are hashed into same bucket with high prob-
ability and hence speed up the search for similar objects.
We use the random projection method of LSH to approxi-
mate the cosine distance between the principal components
in our PCA-based similarity measure. The basic idea of is to
choose a random hyperplane (defined by a random normal
unit vector r) at the outset and use the hyperplane to hash
input vectors.

Given a principal component u and a hyperplane r, we
let hash(u) = sign(u>r). That is, hash(u) = ±1 depend-
ing on which side of the hyperplane u lies. If there are h
hyperplanes we get a bit vector v ∈ {0, 1}h of length h by
mapping each hash value {−1, +1} to {0, 1}. The bit vec-
tor v, interpreted as a number in binary, indexes one of 2h

buckets in the hashtable. A particular bucket will contain

2http://en.wikipedia.org/wiki/Locality_sensitive_h
ashing

4

queries with same bit vector v, i.e., a pair of queries in the
same bucket will tend to have higher cosine similarity be-
tween the principal components.

We need to adapt LSH in one important way to use it
in our application. In our PCA based similarity measure we
use multiple principal components of the queries and also the
absolute value of the dot product (equation 5). Therefore we
need to tailor LSH to work with our similarity measure. We
handle multiple principal components using multiple hashta-
bles, one for each principal component. Given that we retain
P principal components, this means we use P hashtables.
First we populate the hashtables with the training queries
using the above described hashing mechanism, once for each
principal component. In order to handle the absolute value
of the dot product in our PCA-based similarity, we use the
principal component u and its negative, −u, and generate
two separate bit vectors. At test time we retrieve a set of
training queries from the hashtables using u and −u and
retain the most similar training query. The details of the
algorithm are given in the figure 3.

4. EXPERIMENTS

4.1 Experimental testbed

4.1.1 Data sets
We use two data sets to test our ideas. These are described

below.

LETOR. For accuracy studies we primarily use the LETOR
data set [11], version 3. It consists of seven different data
sets (TD2003, TD2004, HP2003, HP2004, NP2003, NP2004,
OHSUMED) with a total of 575 queries. We clean the
dataset by removing documents of a particular query that
has conflicting relevance labels. Cleaning also involves re-
moving those queries that have no relevant document (for
details see [3]).

Yandex. Recently, a Russian Internet company called Yan-
dex has released another LETOR-like dataset, as part of the
Internet Mathematics Contest 2009 3. Specific permission
was obtained from the publishers of the dataset to report
results of algorithms discussed in this paper on this dataset.
In this dataset, each query-document pair is described by
245 features. Four level relevance judgement is available for
97,290 query-document pairs and can be used for training a
model. We clean Yandex dataset in the same way as done
for LETOR.

4.1.2 Baseline algorithms and evaluation
We compare our proposed system LocalRank against

several baseline algorithms as well as other local learning
approaches:
SVMmap: Based on structured learning [14], this directly

optimizes a convex upper bound to a loss function that
reflects mean average precision (MAP). SVMmap is
also the algorithm our system uses on each training
cluster.

KNN: This is our implementation of Geng et al.’s algo-
rithms [8]. In LETOR datasets (except OHSUMED)
we determine the 27 features using the description pro-
vided in [8, 13]. For Yandex and OHSUMED we used

3http://company.yandex.ru/grant/2009/en/

all the available features to represent the queries as we
could not determine the 27 features.

RankBoost: We implemented the standard RankBoost
algorithm as in [7].

D&K: This is our reimplementation of Duh and Kirchhoff’s
system [5]. We implemented ordinary PCA as well
as PCA with polynomial and RBF kernels. On our
cleaned version of LETOR3, we did not find kernel
PCA to improve accuracy beyond ordinary PCA, so
we will report on D&K with ordinary “linear” PCA4.

We report on ranking accuracy in terms of mean aver-
age precision and normalized discounted cumulative gain
(NDCG) at three ranks: 1, 5, and 10. Since Yandex has
non-binary relevance judgement, MAP evaluation measure
is not applicable for this dataset.

There are several parameters that need to be tuned across
the algorithms. In any of the max-margin methods, the ob-
jective is 1

2
‖w‖22 plus a magic parameter5 B times a suit-

able sum of slack variables. We pick the best B from the
set {10, 1, 0.1, 0.01, 0.01}. In the final results we tune
the other parameters in the following way. The number of
neighbors, K, in KNN method and the number of clusters,
C, in our method are tuned using cross validation. Our
method has one more critical parameter, P , the number of
principal components to retain while computing the similar-
ity between the point clouds. We observed that generally
better result is obtained when P is chosen such that it cov-
ers 80% of the variance of the point cloud, that is, the sum
of the top P eigen values must reach at least 80% of the sum
of all the eigen values.

4.2 Results

4.2.1 Clairvoyant vs. most similar single query se-
lection

Figure 4 compares the accuracies achieved if we use the
trained model associated with q̃, the clairvoyant query vs.
q∗, the query most similar to the test query. In figure 5 we
show where our PCA based similarity ranks the clairvoyant
training query. For each test query, we order the training
queries by the PCA-based similarity measure and note down
the “rank” of the clairvoyant training query q̃. Figure 5
shows for each rank the fraction of test queries for which q̃
was at that rank. We see that
• Compared to the baseline, q̃ achieves substantially bet-

ter accuracy.
• However, our PCA-based sim(q, q′) is not effective in

selecting a query that gives accuracy better than the
baseline.
• In fact, the PCA-based similarity can place q̃ at the

top in only about 11% of the test queries (Figure 5).

4.2.2 Clustering helps
From figure 4 and 5 we learn that PCA based similarity

does not give a direct handle to select the clairvoyant query.
Can we save the situation by clustering queries? To answer
this we use the proposed agglomerative clustering algorithm
with a specified number of clusters.

4To verify our implementation we sent our cleaned data to
Kevin Duh. The accuracy he obtained using his code was
close to the accuracy we obtained.
5Usually called C, but we have already used C to denote
the number of clusters.

5

0.000

0.200

0.400

0.600

0.800

1.000

TD2003 HP2003 HP2004 NP2004

Datasets

M
A
P

Baseline

Most similar(PCA)

Clairvoyant

0.000

0.200

0.400

0.600

0.800

1.000

TD2003 HP2003 HP2004 NP2004

Datasets

N
D
C
G
@
1

Baseline

Most similar(PCA)

Clairvoyant

Figure 4: Accuracy obtained using clairvoyant sin-
gle query q̃ is much better than the baseline. It
also beats accuracy obtained using the model corre-
sponding to the most similar (based on PCA-based
similarity) training query.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

rank of the model

F
ra

ct
io

n
 o

f
te

st
 q

u
e

ri
e

s

Figure 5: If training queries are ranked by our PCA-
based similarity to the test query, the best model to
use for the test query is rarely at or even near the
very top.

In Figure 6 we plot test MAP (TD2003) as the number of
clusters, C, is allowed to increase. We can see that MAP in-
creases from the baseline value obtained by SVMmap from
C = 1 to C = 4, then drops below the baseline. In this data
set there were 29 training queries in each fold. Our plot
continues to C = 29, which corresponds to no clustering at
all (one model per query). As can be seen, no clustering
(equivalent to one query per cluster) gives much poorer ac-
curacy than an optimal intermediate level of clustering. An-
other line in the chart shows the clairvoyant accuracy upper
bound, which keeps on improving with increasing C. How-
ever, there is no method to find the best cluster except in
hindsight; the clairvoyant line just tells us that some cluster
gets better and better than baseline as C increases. C must
be about right to achieve two slightly conflicting goals:
• There should be enough queries in each cluster so that

a non-clairvoyant cluster selection algorithm based on
similarity has a good chance of picking up a very good
model for the test query.
• If the number of clusters is too small, not sufficient

0.25

0.3

0.35

0.4

0.45

0.5

1 4 7 10 13 16 19 22 25 28

Number of clusters

M
A

P

LocalRank PC = 8

SVMmap Baseline

Clairvoyant

Figure 6: Test MAP vs. C, the number of clusters.

query diversity will be recognized, and diverse models
will be averaged out, leading to lower accuracy.

Patterns similar to MAP are seen for NDCG@1 (Figure 7)
and NDCG@5 (Figure 8) for another data set. Summarizing
the three charts,
• When C = 1 our algorithm is the same as the baseline,

by definition.
• Peak accuracy occurs uniformly at C > 1, suggesting

that clustering is clearly useful.
• As C increases further, accuracy decreases, as clus-

ters become too small to build models any better than
single-query-based models.

0.600

0.630

0.660

0.690

0.720

2 3 4 5 6 7 8 9

Number of clusters

N
D

C
G

@
1

LocalRank
SVMmap
D&K
KNN

Figure 7: NDCG@1 vs. C for HP2004.

0.780

0.810

0.840

0.870

2 3 4 5 6 7 8 9

Number of clusters

N
D

C
G

@
5

LocalRank

SVMmap

D&K

KNN

Figure 8: NDCG@5 vs. C for HP2004.

4.2.3 Comparison with other cloud similarity func-
tions

Next we ask if the relative sophistication of our PCA-
based similarity was indeed required, or would the simple
aggregates and moments mentioned in Section 2.1 suffice.
Figure 9 shows the results. In this figure, the parameter C
(number of clusters) is tuned for individual methods to give
the best accuracy.

Clearly the PCA-based notion of cloud similarity adds
some value that is missed by simpler moments. Next we

6

TD2003 HP2003 HP2004 TD2003 HP2003 HP2004 TD2003 HP2003 HP2004

Mean 0.275 0.785 0.765 0.407 0.773 0.681 0.327 0.828 0.855

Variance 0.294 0.777 0.750 0.344 0.751 0.680 0.370 0.823 0.839

Skewness 0.301 0.777 0.760 0.424 0.758 0.694 0.357 0.824 0.827

LocalRank 0.333 0.798 0.769 0.447 0.787 0.707 0.395 0.843 0.859

MAP NDCG@1 NDCG@5

Figure 9: Comparison of PCA-based cloud similar-
ity with simpler notions of cloud similarity based on
simple aggregates.

TD2003 HP2003 HP2004 TD2003 HP2003 HP2004 TD2003 HP2003 HP2004

KL-Divergence 0.313 0.782 0.751 0.427 0.765 0.680 0.371 0.837 0.834

Bhattacharyya 0.265 0.784 0.741 0.367 0.765 0.678 0.331 0.835 0.837

LocalRank 0.333 0.798 0.769 0.447 0.787 0.707 0.395 0.843 0.859

MAP NDCG@1 NDCG@5

Figure 10: Comparison of PCA-based cloud similar-
ity with other notions of cloud similarity like Bhat-
tacharyya kernel and Symmetric KL divergence.

compare our PCA-based similarity with distributional diver-
gence and point-cloud-kernel based similarity in Figure 10.
Here also the parameter C is chosen in the above mentioned
way. As visible from Figure 10 and Figure 9 our method
consistently outperforms the others. One possible reason
could be that these methods are not shift or scale invariant.

4.2.4 Comparison with other algorithms
Having studied specific properties and parameters of our

approach, we present a broad summary of the accuracy
of our algorithm compared against baseline algorithms and
other local learning algorithms in the literature.

The accuracies for all the algorithms are shown in Fig-
ure 11. We make the following observations from the table:

TD2003 TD2004 HP2003 HP2004 NP2003 NP2004 OHSUMED YANDEX
SVMmap 0.364 0.493 0.765 0.665 0.591 0.573 0.676 0.664
Rankboost 0.360 0.453 0.714 0.653 0.636 0.530 0.617 0.576
D&K 0.424 0.480 0.699 0.672 0.636 0.538 0.588 x
KNN 0.313 0.324 0.762 0.578 0.584 0.499 0.638 0.661
LocalRank 0.404 0.493 0.765 0.693 0.623 0.530 0.647 0.663

SVMmap 0.368 0.363 0.829 0.835 0.801 0.830 0.621 0.763
Rankboost 0.325 0.349 0.854 0.821 0.816 0.768 0.597 0.709
D&K 0.366 0.378 0.848 0.798 0.836 0.805 0.577 x
KNN 0.369 0.320 0.817 0.806 0.807 0.770 0.616 0.767
LocalRank 0.383 0.348 0.837 0.856 0.791 0.828 0.623 0.761

SVMmap 0.385 0.343 0.840 0.845 0.821 0.847 0.601 0.824
Rankboost 0.347 0.340 0.868 0.845 0.836 0.806 0.582 0.781
D&K 0.367 0.350 0.862 0.826 0.860 0.823 0.572 x
KNN 0.322 0.324 0.831 0.829 0.817 0.836 0.580 0.826
LocalRank 0.392 0.336 0.850 0.868 0.815 0.847 0.611 0.823

SVMmap 0.269 0.259 0.781 0.746 0.707 0.709 0.563 x
Rankboost 0.277 0.263 0.782 0.739 0.740 0.664 0.545 x
D&K 0.298 0.265 0.770 0.742 0.749 0.678 0.529 x
KNN 0.232 0.242 0.762 0.714 0.702 0.668 0.547 x
LocalRank 0.327 0.251 0.789 0.759 0.717 0.687 0.558 x

N
D

C
G

@
1

N
D

C
G

@
5

N
D

C
G

@
10

M
A

P

Figure 11: Summary of MAP and NDCG accuracies
for all algorithms and various datasets.

• LocalRank is nearly equal (±0.001) or better than
SVMmap 74% of the times.
• LocalRank is better than RankBoost 74% of the

times.
• LocalRank is better than KNN 81% of the times.
• LocalRank is better than D&K 64% of the times but

we see in Section 4.2.5 that D&K has impractical test
time.

D&K

0

2000

4000

6000

8000

0.2 0.4 0.6 0.8 1

Fraction of training data used

T
e

st
 t

im
e

(s
e

co
n

d
s)

LocalRank

0.05

0.08

0.11

0.14

0.17

0.2 0.4 0.6 0.8 1

Fraction of training data used

T
e

st
 t

im
e

(s
e

co
n

d
s)

KNN

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1

Fraction of training data used

T
e

st
 t

im
e

(s
e

co
n

d
s)

Figure 12: Testing time per query vs percentage of
training data used for Yandex.

0

10000

20000

30000

40000

50000

0.2 0.4 0.6 0.8 1

Fraction of training data used

T
ra

in
in

g
 t

im
e

 (
se

co
n

d
s)

LocalRank

KNN(K = 100)

KNN(K = 500)

Figure 13: Training time vs percentage of training
data used for Yandex.

• Overall LocalRank is the best 42% of the times.

4.2.5 Running time and scaling behavior
Our central goal was to match or exceed the benefits from

recent local learning algorithms for ranking, while signifi-
cantly improving upon testing and/or training time. LETOR
is a very small data set (100 queries) to perform reliable
runtime performance and scalability studies, for which we
turned to the Yandex data (7900 queries).

D&K has unacceptably long test times. On Yandex dataset
we could not complete a single run of D&K because of its
huge size. For just one test query, D&K takes 1.5 hours.
That means, to get the results of all the queries D&K will
take almost a year.

Figure 12 shows test time per query against the percentage
of training data used for Yandex dataset. Note that we
choose to use different scales in the Y-axis of the plots to
show the scaling effect of increase in training data size for
different algorithms. D&K is several orders of magnitude
slower than KNN as well as LocalRank. While Local-
Rank is slower than KNN at test time, KNN’s training time
is several orders of magnitude greater than LocalRank’s.
For K ≥ 400, KNN training time is more than 1.5 days (for
five folds), whereas our training time is only 1.1 hours. In
Figure 13 we show average training time per fold is plotted
against the percentage of training data.

For KNN, the number of models to train is equal to |Q|,
the number of training queries and that the training time
further increases by increasing the size of neighbourhood
K of a query. In contrast, the training time increases only
moderately for LocalRank on increasing training data, be-
cause the number of models to train is equal to the number
of clusters which is much smaller than |Q|.

In order to further improve our testing time we use locality
sensitive hashing (LSH) to find the best model to be used
for a given test query. The speedup gains from using LSH
are visible only if the dataset has a sufficiently large number

7

0

10

20

30

40

50

60

70

1000 2000 3000 4000 5000 6000

Number of training queries

T
im

e
(m

il
li

se
co

n
d

s)
Without LSH

With LSH

Figure 14: Time taken for selecting model at test-
time vs number of training queries for Yandex.

TD2003 TD2004 HP2003 HP2004 NP2003 NP2004

Quadratic Features 0.298 0.262 0.787 0.749 0.719 0.706

LocalRank 0.327 0.251 0.789 0.759 0.717 0.708

Figure 15: Accuracy (MAP) with non-linear fea-
tures

of training queries. So we apply LSH on Yandex and plot
the time required to find the most similar model to a given
test query against the number of training queries. Figure 14
shows that, using LSH, the time required to find the most
similar model at test time is almost constant, independent
of |Q|.

4.3 Non-linearity vs. local learning
Sometimes, local learning may show benefits merely be-

cause the hypothesis class in each local model is too weak to
properly fit the full data. Many algorithms for learning to
rank, including our baseline, SVMmap, uses a linear scoring
mechanism. Could it be that using a more complicated non-
linear scoring device can obviate the need for local learning
altogether? We wanted to explore this question while keep-
ing the rest of our experimental setup unchanged. One way
to do this is to use non-linear kernels in max-margin algo-
rithms for learning to rank, such as SVMmap. The problem
is that inference becomes intractable.

Therefore we tried to simulate the effect of a non-linear
kernel by creating non-linear feature combinations from our
raw data. Specifically, in addition to the original features in
document vectors, we created new features by multiplying
all pairs of original feature values from each feature vector. If
the original feature vector was (x1, . . . , xd), then the new fea-
ture vector is computed as [x1, . . . , xd, . . . , xixj , . . . , x

2
1, . . . , x

2
d]

for i, j ∈ 1, . . . , d and i < j. Overall this gives
`

d
2

´
+ 2d

features. Using this encoding has the same effect as using
a non-linear polynomial kernel of degree 2. We represent
the training and test documents using these non-linear fea-
tures and evaluate SVMmap. We compare the accuracy of
SVMmap, thus modified, against LocalRank with no fea-
ture synthesis.

Figure 15 shows the comparison of accuracy numbers. As
can be seen, LocalRank outperforms the non-linear fea-
ture synthesis approach in terms of MAP accuracy 4 out
of 6 times. This seems to indicate that local learning does
offer additional predictive quality over and above fitting non-
linear but global decision models.

5. CONCLUSION
In this paper we proposed a new representation of queries

and a notion of similarity between queries using this repre-
sentation. We cluster the training queries using this similar-
ity measure and train a model for each individual cluster. At
test time, the documents of the query are ranked using the
model corresponding to the most similar cluster. We argue
that the proposed similarity measure has several desirable
properties from ranking perspective, for example, shift and
scale invariance. Our experiments show that we are often
able to improve the accuracy over baseline and other state
of the art local learning approaches. At the same time our
algorithm offers reasonable training and test time whereas
the other local learning algorithms take unreasonably long
time to either train or test.

As future work, we plan to do the following:
• We would like to formulate a point cloud represen-

tation that takes the relevance labels of points into
account.
• Using queries categorized into known query types, we

would like to draw a comparison between query simi-
larity and different categories that the query falls into.
This will give us an insight into how the clusters and
actual query categories correspond.
• In using single link clustering policy, we had to retain

details of each query cloud even if number of clusters
was much smaller. We would like to have a compact
representation for a cluster of point clouds rather than
retaining full information about the clouds constitut-
ing a cluster.

6. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006.

[2] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[3] S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya.
Structured learning for non-smooth ranking losses. In SIGKDD
Conference, pages 88–96. ACM, 2008.

[4] W. Chu and S. Keerthi. New approaches to support vector
ordinal regression. In ICML, pages 145–152, 2005.

[5] K. Duh and K. Kirchhoff. Learning to rank with
partially-labeled data. In SIGIR Conference, pages 251–258.
ACM, 2008.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. JCSS, 66(4):614–656, 2003.

[7] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. Journal of
Machine Learning Research, 4:933–969, 2003.

[8] X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum.
Query dependent ranking using k-nearest neighbor. In SIGIR
Conference, pages 115–122. ACM, 2008.

[9] R. I. Kondor and T. Jebara. A kernel between sets of vectors.
In ICML, pages 361–368, 2003.

[10] P. Li, C. J. C. Burges, and Q. Wu. McRank: Learning to rank
using multiple classification and gradient boosting. In NIPS
Conference, pages 845–852, 2007.

[11] T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR:
Benchmark dataset for research on learning to rank for
information retrieval. In LR4IR Workshop, 2007.

[12] T. Qin, X.-D. Zhang, D.-S. Wang, T.-Y. Liu, W. Lai, and
H. Li. Ranking with multiple hyperplanes. In SIGIR
Conference, pages 279–286. ACM, 2007.

[13] R. Song, J.-R. Wen, S. Shi, G. Xin, T.-Y. Liu, T. Qin,
X. Zheng, J. Zhang, G. Xue, and W.-Y. Ma. Microsoft
Research Asia at Web Track and Terabyte Track of
TREC 2004. In TREC, volume 13 of NIST SP 500-261, 2004.

[14] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. JMLR, 6(Sep):1453–1484, 2005.

[15] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In SIGIR
Conference, pages 271–278, 2007.

8

