
Learning to Rank Networked Entities
Alekh Agarwal

IIT Bombay

alekh@cse.iitb.ac.in

Soumen Chakrabarti
∗

IIT Bombay

soumen@cse.iitb.ac.in

Sunny Aggarwal
IIT Bombay

sunny@it.iitb.ac.in

ABSTRACT
Several algorithms have been proposed to learn to rank en-

tities modeled as feature vectors, based on relevance feed-

back. However, these algorithms do not model network con-

nections or relations between entities. Meanwhile, Pager-

ank and variants find the stationary distribution of a rea-

sonable but arbitrary Markov walk over a network, but do

not learn from relevance feedback. We present a framework

for ranking networked entities based on Markov walks with

parameterized conductance values associated with the net-

work edges. We propose two flavors of conductance learning

problems in our framework. In the first setting, relevance

feedback comparing node-pairs hints that the user has one

or more hidden preferred communities with large edge con-

ductance, and the algorithm must discover these communi-

ties. We present a constrained maximum entropy network

flow formulation whose dual can be solved efficiently using

a cutting-plane approach and a quasi-Newton optimizer. In

the second setting, edges have types, and relevance feedback

hints that each edge type has a potentially different conduc-

tance, but this is fixed across the whole network. Our algo-

rithm learns the conductances using an approximate Newton

method.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND

RETRIEVAL]: Information Search and

Retrieval[Retrieval models; Relevance feedback]; I.5.1

[PATTERN RECOGNITION]: Models[Statistical]

General Terms
Algorithms, Experimentation, Measurement

Keywords
Pagerank, conductance, network flow, maximum entropy

1. INTRODUCTION
Consider a set V of entities (such as documents) that

can be returned by a search engine in response to queries.

Each entity v ∈ V may be represented by a feature vector

xv ∈ Rd. E.g., if the entities are documents, they can be

represented in the vector space model used in Information

Retrieval (IR) [21]. In standard IR, given a query vector

∗Contact author.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

q ∈ Rd, responses are presented in decreasing order of the

dot product q′xv.

In fact, any vector w ∈ Rd defines a scoring function w′x

and thus (in general) a total order over V . A series of papers

[14, 16, 1] explore how to learn w, given a partial order “≺”

involving some of the entities. If u ≺ v, we want w′xu ≤
w′xv. (Throughout, we will use ≺ both as an operator, as

in “a ≺ b,” and as a set of preferences, as in “(a, b) ∈≺.”

Also, a ≺ b means b � a.) We will review some of this work

in Section 2.1. None of this family of algorithms models

entities as nodes in a graph.

Increasingly, documents are not isolated sequences of words,

but are interconnected through a network. This is true not

only of the Web, where hyperlinks greatly assist ranking [6,

17], but also of entity-relationship (ER) graphs [5, 3], XML

data [12], and Semantic Web networks [2] where nodes rep-

resent entities with textual attributes and edges represent

diverse relations.

In these networked data models, ranking is often achieved

by some generalization of Pagerank [6] or HITS [17]. A

Markovian random walk is defined on the graph, and the

score of a node is defined as its steady-state visit probability.

The random walk, while usually intuitive and reasonable, is

arbitrarily designed, in the sense that no preference ≺ is au-

tomatically incorporated to improve its design. We produce

several examples below, and will review the techniques in

Sections 2.3 and 2.4.

In standard Pagerank [6], all edges are considered the

same. In ObjectRank [3], the Intelligent Surfer [20], and

XRank [12], the random walk favors nodes containing query

keywords in a fixed, arbitrary manner. In topic-sensitive

Pagerank [13], the random walk preferentially moves to nodes

(Web pages) on a specified topic. In personalized Pagerank

[15] the random walk preferentially moves to pages visited

by the user in the past. Only very few projects [8, 24, 10,

19] attempt to learn the parameters of the random walk.

1.1 Our contributions
Our primary contribution is to bring together the power of

Markovian walk-based scoring functions and the flexibility

of improving the scoring function using relevance judgments.

(We focus on the Pagerank family, but it should be possible

to extend our work to some members of the HITS family as

well.)

We propose a framework for learning certain edge param-

eters of Markovian walks on graphs, given preference orders

over nodes. Within this framework, we consider two learn-

ing problems that have to estimate conditional and absolute

transition probabilities—Pr(v|u) and Pr(u → v)—on each

edge (u, v) of the graph (see Section 1.2 for details).

The difference between the two settings is that in one,

we must estimate the transition probability on each edge

separately (Section 3) but in the other, edges are associated

with a few types (person wrote book, company located-in

city etc.) and each type of edge has a globally fixed (but

unknown) transition probability, which our algorithm must

discover (Section 4).

We evaluate the proposed algorithms on synthetic data

generated by state-of-the-art graph generators, using broad

statistics measured from real graphs collected from DBLP

(http://dblp.uni-trier.de/) and CiteSeer (http://citeseer.

ist.psu.edu/). We show that the algorithms are scalable

and that they compute Markovian walk parameters that

lead to good prediction of unseen user preferences.

1.2 Classes of formulations
Throughout this paper, our “null hypothesis” or “parsi-

monious belief” is that standard Pagerank is the ideal rank-

ing mechanism unless ≺ provides contrary evidence. Based

on ≺, our learners must pick up an “ideal” Markovian walk

from a larger hypothesis space. Here we consider two spaces,

the first containing the second.

1.2.1 Hidden favored communities
In this setting, ≺ is non-empty because the user has one or

few favorite communities. Not only is the “ideal” random

walk disproportionately likely to transit to nodes in these

communities, but the edges within these communities may

have large transition probability Pr(v|u) compared to the

rest of the graph. E.g., to a computer vision researcher,

papers and citations related to computer vision in DBLP

are more significant than other papers and citations, which

are mere distractions.

With rare exceptions [24], existing personalization litera-

ture has proposed arbitrary biases in the Markov procedure

“by force” [13, 15] and not discovered a modified Markov

walk parameters from preference data. In contrast, we pro-

pose an efficient and scalable procedure to estimate transi-

tions modeled as a network flow p with puv = Pr(u → v)

on each edge (u, v) of the graph, such that the total inflows

into the nodes satisfy ≺ as far as possible.

1.2.2 Type-specific edge weights
In the second setting the graph represents entity-relation-

ship (ER) connectivity with multiple kinds of relationship

edges. Graph-structured databases are becoming a “lowest

common denominator” representation not only for XML [12,

2], but also for relational data [5, 3].

Each edge (u, v) in an ER graph adheres to a schema,

i.e., has an associated type t(u, v) ∈ {1, . . . , T}, a fixed and

typically small set of edge types. E.g., the edge connecting

a paper to an author has a type different from a paper-to-

paper citation edge, and the “ideal” random walk is likely

to transit along edges of different types with different prob-

abilities. Our assumption is that ≺ is generated because

of these differences between the ideal and baseline random

walks.

Our algorithm sees the graph G and preferences ≺, and

knows the baseline walk, and has to discover the ideal walk

by estimating the relative conductance of each type of edge.

In contrast, many systems [12, 3] that use Pagerank-like

Markovian walks over typed graphs associate each edge type

t with an arbitrarily fixed weight β(t) (or two weights if the

edge is bidirectional) which then determines its conductance.

2. BACKGROUND AND RELATED WORK
We review two kinds of prior work: those that we build

upon, and those that we enhance or generalize.

2.1 Scoring feature vectors
Most algorithms that learn to order items model them as

feature vectors x ∈ Rd [9, 14, 16]. The quest is for a model

vector w∗ ∈ Rd so that the score of item x is w′x ∈ R,

and items are ranked in decreasing order of this score. A

preference i ≺ j means we want w to be such that w′xi ≤
w′xj . A max-margin search for w introduces a set of slack

variables s∗ij ≥ 0 and solves the quadratic optimization

min
s≥0;w∈Rd

w′w + B
∑

(i,j):i≺j

sij subject to

w′xj − w′xi + sij ≥ 1 ∀i ≺ j (RankSVM)

Note that if w′xj ≥ 1 + w′xi then i ≺ j is satisfied, sij = 0

and no penalty is paid. As with support vector classifiers, B

is a tuned parameter that trades off the model complexity

w′w = ‖w‖2 against the penalty for violating preferences.

Note that no graphical connection is modeled between any

xi and xj ; they remain independent feature vectors.

2.2 Pagerank
Pagerank [6] is a total order on nodes in a graph G =

(V, E) imposed via a “random surfer” model. The random

surfer performs a Markovian walk on G, and is at node j

with probability pj =
∑

i pip(j|i). If we write p(j|i) as a

|V | × |V | transition matrix C, the column vector p solves

p = Cp, where C is designed as

C(j, i) =

{
α [(i,j)∈E]

OutDegree(i)
+ (1− α)rj , i ∈ Vo

rj , otherwise

(UnweightedPagerank)

Here [I] = 1 if boolean condition I is true, and 0 otherwise.

Vo ⊆ V is the set of nodes which are not dead-ends, i.e.,

have at least one out-link. The two design variables are α,

the probability of walking to a neighbor instead of jumping

to a random node; and r = (rj), the teleport or personaliza-

tion vector, which, in ordinary Pagerank, is set uniformly to

(1/n, . . . , 1/n) where n = |V |. With r set thus, p depends

only on the structure of G and the value of α.

2.3 Teleport optimization
Follow-up work on Pagerank has attempted to modify the

teleport vector r to “personalize” the scores heuristically,

based on topics [13], words [20, 3], or user preferences on

graph nodes [15].

We will compare our work with that of Tsoi et al. [24].

They propose a quadratic programming (QP) approach to

optimizing r given preferences ≺. For simplicity, assume

Vo = V , i.e., that there are no dead-end nodes in G. (We

can add new edges to connect any dead-end node u to itself

or all other nodes.) Let A be the node adjacency matrix

of G with each row scaled to add up to 1. Given teleport

vector r ∈ R|V |×1, the Pagerank vector satisfies

p = αA′p + (1− α)r, and therefore

p = (1− α)(I− αA′)−1r = Mr, say. (1)

Here I is the identity matrix. The inverse in (1) always ex-

ists, but we will not be concerned with the complications of

computing it. We are looking for a r so that elements of

the resulting p satisfies inequalities given by ≺. These pref-

erences are easily encoded in a matrix Π ∈ {−1, 0, 1}|≺|×|V |

and written as Πp ≥ 0|≺|×1. Each row of Π represents one

preference u ≺ v and has one −1 (in the u column) and one

1 (in the v column) and the other columns are zeros. If for

r we used the uniform teleport rU , we would get the stan-

dard Pagerank vector pU = MrU . Tsoi et al. propose to

minimize ‖p − pU‖2 while making p satisfy the constraints

given by Π. This leads to the “hard constraint” QP:

minr∈R|V |(Mr −MrU)′(Mr −MrU)

s.t. ΠMr ≥ 0, r ≥ 0, 1′r = 1. (2)

Here 1 is a vector of 1s of suitable size. (We also need

Mr ≥ 0 but that is guaranteed by r ≥ 0.) Surprisingly,

Tsoi et al. do not enforce 1′r = 1, i.e., ‖r‖1 = 1, which

is essential to keep r meaningful as a teleport probability

vector, and which is generally violated unless enforced. Tsoi

et al. note that (even without the 1′r = 1 constraint) (2)

may not be feasible, and propose a “soft constraint” QP in

which they replace the one-sided constraint ΠMr ≥ 0 with

an additional symmetric quadratic penalty in the objective:

minr∈R|V |(Mr −MrU)′(Mr −MrU) + B r′(M ′Π′ΠM)r

s.t. r ≥ 0, 1′r = 1. (3)

Here, too, enforcing ΠMr ≥ 0 leads to infeasibility and not

enforcing it generally leads to violation. Also, it is unclear

why ΠMr > 0 is being penalized. One simple fix is to

introduce slack variables and rewrite the optimization as

minr∈R|V |, s≥0(Mr −MrU)′(Mr −MrU) + B1′s

s.t. r ≥ 0, 1′r = 1, ΠMr + s ≥ 0, (4)

but the resulting QP optimizer turns out to be much slower

than Tsoi et al.’s formulation. As we shall see in Section 3.4.3,

these are serious limitations from which our proposals do not

suffer.

2.4 Tuning edge weights
Equation (UnweightedPagerank) can be generalized to in-

corporate edge weights. Each edge e has an associated edge

type t(e) taken from a flat set of edge types T . Any edge e

with type t(e) has a strictly positive weight β(t(e)) > 0. A

nonexistent edge has weight zero. The modified Pagerank

equation is

C(j, i) =

{
α β(t(i,j))

OutWeight(i)
+ (1− α)rj , i ∈ Vo

rj , otherwise

(WeightedPagerank)

where OutWeight(i) =
∑

j β(t(i, j)). C is a function of the

weights β, and we are looking for β such that the p that

solves p = Cp also satisfies ≺. Unlike (1) where M is a

constant, we will now face quadratic equality constraints,

which poses more difficulty than quadratic objectives with

linear constraints.

There have been various attempts to approximate this

optimization via gradient descent [8], error backpropagation

[10] or simulated annealing [19]. Unfortunately the objective

is not well-behaved, and the search procedures are complex

and time-consuming. Usually, the search routine has to ef-

fectively call Pagerank a large number of times with various

weight choices. We propose a simple and efficient way to

search for β(t)s approximately in Section 4.

3. LEARNING CONSTRAINED FLOWS
We now give a different formulation that not only captures

teleport learning, but generalizes to learning a network flow

throughout G, from which node ranks can then be derived

naturally. In Pagerank, since pj =
∑

i pij =
∑

i pip(j|i), we

can cast our transition process in terms of flows pij along

each edge (i, j), with
∑

i,j pij = 1.

A Markov process must also satisfy the flow balance prop-

erty:
∑

i piu =
∑

j puj for each node u. Any Pagerank, bi-

ased or unbiased, with uniform or non-uniform teleport, sat-

isfies the above two properties. But there are other classes

of solutions as well. In particular, Tomlins [22] advocates

maximizing the entropy H(p) of {pij}, i.e., −
∑

i,j pij log pij

while enforcing the above constraints. In this Section we

will combine Tomlin’s view of Pagerank as a flow system

together with Joachims and others’ notions of max-margin

scoring/ranking.

3.1 Primal formulation
Before we get to our formulations, we provide a uniform

device to handle teleport. We add a special dummy node

d, and directed edges (v, d) and (d, v) for all v ∈ V . The

augmented graph is called G′ = (V ′, E′).

If in the original graph G, u had no outlinks, the entire

inflow into u has to pass out through (u, d). If u had at

least one outlink in G, a fraction 1−α of the net inflow into

u passes out through (u, d) and the remaining fraction α is

apportioned into the original outlinks (u, v) in G.

The outflows from d back to other nodes along (d, v) edges

are variables included in our optimization; i.e., the search for

a good teleport vector is embedded in our formulation.

The “hard constraint” optimization can be cast as follows:

min
{0≤puv≤1}

∑
(u,v)∈E′

puv log puv (HardObjective)

such that
∑

(u,v)∈E′

puv − 1 = 0 (Total)

∀v ∈ V ′ : −
∑

(u,v)∈E′

puv +
∑

(v,w)∈E′

pvw = 0 (Balance)

∀v ∈ Vo : − αpvd + (1− α)
∑

(v,w)∈E

pvw = 0 (Teleport)

∀u ≺ v :
∑

(w,u)∈E′

pwu −
∑

(w,v)∈E′

pwv ≤ 0(Preference)

Why no margin in(Preference)?Some traditional classi-

fiers use the notion of a margin to make the system more

robust to minor perturbations of training points on either

side of the decision boundary, analogous to the margin of

“1” in (RankSVM). An arbitrary margin can be asserted

because any margin can be satisfied by suitably scaling the

model (β in case of (RankSVM)). However, in our case,

there is no such scaling capability: all puv ∈ [0, 1] and in-

deed
∑

u,v puv = 1. Therefore, a margin would represent an

arbitrary decision and will simply add more parameters to

the system. Also, given that we are dealing with extremely

small numbers (a typical flow could be O(1/|E|), say), too

large a choice of the margin may easily lead to infeasibility.

Soft constraints and slack variables:As in SVMs, the

“soft margin” counterpart introduces and penalizes slacks

suv with a penalty function L(s) weighted with a magic

penalty parameter B. Some common choices for L(s) are

the L1 penalty
∑

u≺v suv and the L2 penalty
∑

u≺v s2
uv. Be-

cause 0 ≤ suv ≤ 1, L2 downplays violations and so L1 is usu-

ally more suitable; therefore we focus on L1. (Preference)

changes to

∀u ≺ v :
∑

(w,u)∈E′

pwu ≤ suv +
∑

(w,v)∈E′

pwv

(SoftPreference)

Minimizing distance to a parsimonious model:Maxi-

mizing the entropy of flow {puv} seeks to make all edge

flows equal. A more meaningful “null hypothesis” or “par-

simonious belief” is that all edges are functionally identical

and the teleport follows a uniform distribution—this is just

(UnweightedPagerank) and gives what we call a “reference”

flow {quv}. Flow q may already satisfy some preferences.

Our objective is to perturb q minimally to get a flow p that

(largely) satisfies ≺, and the KL divergence KL(p||q) is a

natural measure of perturbation. Based on the above dis-

cussion our final primal objective becomes

min
{0≤puv≤1}
{0≤suv :u≺v}

∑
(u,v)∈E′

puv log
puv

quv
+ B

∑
u≺v

suv

(SoftObjective)

Why not includeα in the optimization?We avoid includ-

ing α in the optimization for two main reasons. First, this

would result in quadratic constraints, making the optimiza-

tion much more difficult. Also, if α were an optimization

variable, the hypothesis space would include a degenerate

solution: with α set to zero, and pdv’s set to satisfy a total

order extending ≺, the empirical risk reduces to zero. Even

in the soft-constraint version, too large a B may drive us

toward this solution, overriding the KL(p||q) term. Hence

we felt that it is better in practice to do a grid search over

a small range of “sensible” values of α rather than include

α in the optimization.

3.2 Dual formulation
We propose to solve the dual of the above optimization,

because the dual has some useful and interesting properties.

Instead of O(|E|) variables as in the primal problem, it has

O(|V |+ |≺|) dual variables. Each dual variable turns out to

be either unconstrained, or bounded below and above by two

constants (a so-called “box-constrained” variable). Each it-

eration of the dual optimizer is analogous in computational

cost to an iteration of Pagerank. And, as we shall see in

Section 3.3, we can induct only a carefully chosen subset of

dual variables into the optimization, implicitly setting the

rest to zeros, and considerably speed up the optimization.

Let {βv : v ∈ V ′} (|V |+ 1 variables), {τv : v ∈ Vo} (|Vo|
variables) and {πuv : u ≺ v} (| ≺ | variables) be the dual

variables corresponding to constraints (Balance), (Teleport)

and (SoftPreference) respectively. Let

bias(v) =
∑
r≺v

πrv −
∑
v≺s

πvs (5)

Using a standard Lagrangian procedure, we arrive at the

following observations.

Proposition 1. The primal flows can be expressed as

∀v ∈ V pdv = (1/Z) qdv exp(βv − βd + bias(v))

∀v ∈ Vo pvd = (1/Z) qvd exp(βd − βv + ατv)

∀v ∈ V \ Vo pvd = (1/Z) qvd exp(βd − βv)

∀(u, v) ∈ E puv = (1/Z) quv

exp(βv − βu − (1− α)τu + bias(v))

Here all β and τ are unconstrained, and each πuv ∈ [0, B].

The dual objective to maximize is − log Z, where

Z =
∑
v∈V

qdv exp(βv − βd + bias(v))

+
∑
v∈Vo

qvd exp(βd − βv + ατv) +
∑

v∈V \Vo

qvd exp(βd − βv)

+
∑

(u,v)∈E

quv exp(βv − βu − (1− α)τu + bias(v)),

so that
∑

(u,v)∈E′ puv = 1.

Once we have routines to compute ∂Z/∂βx, ∂Z/∂τxand ∂Z/∂πxy

(we omit the tedious expressions) the dual can be solved us-

ing the BLMVM optimizer [4].

3.3 Variable inclusion
Computing the dual objective and gradient takes time

roughly proportional to |V |+ |E| and |≺|, as we shall see in

Section 3.4.3. However, in a deployed search system, V , E

and ≺ can be large, and ≺ can grow indefinitely with time.

Two features of our setting come to our rescue. First,

while satisfying balance equalities exactly is mathematically

appealing, it matters less in practice. Small imbalances near

low-ranked nodes may not matter at all to the best-ranked

nodes. Second, some pairs in ≺ may (approximately) sub-

sume others.

Following the cutting-plane approach of Tsochantaridis

et al. [23], we propose an approach to introduce dual vari-

ables gradually to the dual optimizer. We present some

theoretical guarantees of progress and termination, and also

provide experimental evidence that our approach can be ef-

fective.

1: Input: V
′
, E

′
, ≺ and tolerance ε

2: Let B, T ,P be current sets of dual variables
3: B ← ∅, T ← ∅, P ← ∅ (implicitly all β, π, τ = 0)
4: repeat
5: {estimate violations}
6: V(βv) = |OutFlow(v)− InFlow(v)|
7: V(τv) = |αpvs − (1− α)

∑
(v,w)∈E pvw|

8: V(πu,v) = InFlow(v)− InFlow(u)
9: discard candidates with violation V less than ε

10: B ← B ∪ arg max
(k)

v∈V ′ V(βv)

11: T ← T ∪ arg max
(k)

v∈V ′ V(τv)

12: P ← P ∪ arg max
(k)

(u,v)∈≺ V(πu,v)

13: Run dual optimizer over variables in B, T ,P
14: until B, T ,P stabilize or test accuracy saturates

Figure 1: Constraint inclusion heuristic. Here

arg max(k) selects the arguments corresponding to

top-k values.

Figure 1 shows the dual variable inclusion heuristic. Un-

like StructSVM [23] we wish to include not one but several

violators, because we do not have an exponential number of

dual variables, and in comparison the relatively heavyweight

optimizer needs to be run after every inclusion step. Note

that the parameters k and ε which control the number of

variables that will be included in an optimization step are

crucial to the success of the algorithm. Too small a value of

k will lead to a prohibitively large number of iterations to

induct a sufficient number of constraints for an acceptable

quality of solution. Too large a k can lead to the induction of

an extremely large number of constraints, thereby defeating

the purpose. Similar arguments hold for ε.

We adaptively tune k and ε so that, even if their initial

values are not very good, we can quickly reach a reasonable

value. Every time the number of violators found above the

ε threshold is greater than k, we increment k. This allows

us to start off with a conservatively small k. For adapting ε,

when we see that the number of variables being inducted is

extremely low for several consecutive iterations, we increase

ε. This is based on our observation that towards the end, the

optimizer drags on, adding very few violators per iteration,

and hardly improving in the quality of solution. Hence, we

increase ε so that only significant violators, if any left, are

inducted and can make a perceptible change in the quality

of solution. The exact formulae by which we set k and ε are

deferred to an extended version of this paper [18].

Proposition 2. The primal problem in Section 3.1 can be

superficially rewritten to represent all dual variables β, τ

and π collectively as a vector λ = (λj) with j ranging over

a suitable index space, and to express

puv =
quv

Zλ
exp

(∑
j λjfj(u, v)

)
=

quv

Zλ
exp(λ′f(u, v)), (6)

Zλ =
∑

(u,v)∈E′

quv exp(λ′f(u, v)) (7)

where fj(u, v) ∈ [0, 2] are features that encode the contribu-

tions of various λjs to puv. The modified dual objective to

maximize is

max
{λj}

{
− log Z +

∑
j νjλj

}
= max

λ
{− log Z + ν · λ}

where each νj is a fixed small constant.

We can also show the following important guarantee.

Proposition 3. Suppose vector λ(`−1) is updated to λ(`) in

the `th step of the dual variable inclusion algorithm shown

in Figure 1. Assume that λ(`) is the same as λ(`−1) except

for newly-included dual variables, which are greedily set to

values that maximize the dual objective. Then, for ε > 0 and

all fj(u, v) ∈ [0, 2],

− log Zλ(`−1) + ν′λ(`−1) < − log Zλ(`) + ν′λ(`),

i.e. the dual optimization makes monotonic progress.

The proofs can be found in the full version of this paper [18].

Therefore, the algorithm will terminate in a finite number

of inclusion phases. We can also show that we will make a

good progress when we are far away from the dual optimum,

and make smaller progress when we approach close to it.

3.4 Experiments
For the problem we are studying there are no publicly

available or widely-used benchmarks. Given the subtle in-

terplay between E and ≺, a great deal of care is needed to

generate these in a meaningful and realistic manner, so as to

tease out the nature of the problem, the behavior of various

algorithms, and the effects of different system parameters.

3.4.1 Graph generation using RMAT
Real social networks have many well-studied properties:

degree and Pagerank distributions tend to be power-law [11],

diameter is small (small-world phenomena), and there are

clustered communities. To achieve these goals, we used the

RMAT graph generator [7]. RMAT populates edges one by

one, driven by four parameters bxy with x, y ∈ {1, 2} and∑
x,y bxy = 1. Starting with source and destination node

ranges [1, n], RMAT bisects each range and picks quadrant

(x, y) with probability bxy, and then recurses until only one

source and one destination node remain, at which point an

edge is added. In all our experiments, we used b11 = 0.48,

b12 = b21 = 0.16, and b22 = 0.20, giving us graphs with

characteristic clustering and power-law degree distributions

Figure 2: Characteristic near-power-law degree dis-

tribution of the DBLP+CiteSeer graph.

very similar to real data from DBLP+CiteSeer, shown in

Figure 2.

We also experimented with multiple overlapping graphs,

each created using an RMAT invocation (as described in

Section 4.2) and the results were subjectively similar.

3.4.2 Hidden teleport and sampling≺
Perhaps the simplest “hidden cause” for ≺train disagreeing

with flow q is that the user has a personal preference for an

unknown region of G. (Tsoi et al. [24] make basically the

same assumption.) After computing reference flow q, we

“secretly” picked a seed node u∗ ∈ Vo and sent it a relatively

large flow from the dummy node d, say ru∗ = p(u∗|d) = 0.1.

We divided the remaining teleport mass of 0.9 equally among

other v ∈ V . This gave us our “hidden” flow p∗.

In applications, users are more likely to provide feedback

on, and benefit from, the ranking of nodes near the top

of the lists ordered by q and p∗ scores, rather than low-

scoring nodes. (For any flow p or q, the total inflow into a

node v is its “score,” written as pv or qv.) Accordingly,

we prepared two sorted lists, and considered all distinct

node pairs (u, v) drawn from a large prefix over each list.

If qu ≤ qv and p∗u ≤ p∗v or qu ≥ qv and p∗u ≥ p∗v, we called

it an agreement between q and p∗; the other two cases are

disagreements. Using reservoirs, we sampled a fixed num-

ber of agreements and (an equal number unless specified)

of disagreements, which together constitute ≺train. ≺test

was collected similarly. This generally led to an overlap of

the node set involved in ≺train and ≺test (we always ensured

≺train ∩ ≺test= ∅), but if this was undesired, we partitioned

the node set ahead of time (say odd and even node IDs) and

sampled ≺train from one and ≺test from the other.

We also experimented with multiple hidden favored seeds,

and also with hidden, well-connected communities having

high-conductivity edges grown around the seeds. The results

were qualitatively similar.

3.4.3 Results

Dual optimization dynamics:If we initialize all dual vari-

ables at zero, the initial primal flow p is equal to q, which

satisfies all (Balance) and (Teleport) constraints. However,

as the optimizer seeks to respect ≺, many primal constraints

are abruptly violated, major flow readjustments take place,

and the violations reduce. Gradually, egregious primal vi-

olations become rare, as shown in Figure 3. A meaning-

ful primal solution can be read off only at this stage, and

BLMVM termination has to take care to monitor primal

violations over and above dual objective saturation.

0

0.2

0.4

0.6

0.8

1

0 50 100 150iterations

sa
tis

fie
dC

on
st

ra
in

ts

fracBalanceOK

fracRatioOK

Figure 3: Satisfaction of primal feasibility con-

straints (Balance) and (Teleport) as dual optimization

progresses.

Learning rate:We first sampled a fixed graph using RMAT,

with |V | = 1000 and |E| = 4644. Then we created some 10

separate problem instances by picking 10 hidden seeds v∗ at

random to favor with a teleport of rv∗ = 0.1 as described

before.

0.05

0.15

0.25

0.35

300 600 900 1200 1500 1800
numTrainPrefs

tr
ai

nA
nd

T
es

tE
rr

or

trainError1 testError1

trainError2 testError2
trainError3 testError3

Figure 4: Reduction in test error as training | ≺ |
is increased, for three random choices of the hidden

teleport seed.

For each problem instance, we first selected a fixed ≺test

of size 600 (pairs). Then we picked ≺train of sizes 300, 600,

900, 1200, 1500, and 1800 pairs, and plotted training and

test error, as a fraction of the total number of pairs, in

Figure 4 (only three representative instances are shown, but

they give some idea of the observed variance).

Effect of node overlap:As we picked larger and larger

≺train in Figure 4, the set of nodes involved in ≺test started

overlapping with the set of nodes involved in≺train, although

we obviously ensured ≺train ∩ ≺test= ∅ at all times.

0.1

0.15

0.2

0.25

0.3

0.35

0.4 0.6 0.8 1
fracTestNodeInTrain

te
st

E
rr

or

Figure 5: Effect of overlap between nodes involved

in ≺train and ≺test on test error. Four random tele-

port seeds were used.

For several different hidden teleport seeds, we increased

the size of ≺train and plotted, in Figure 5, the test error

against the fraction of nodes involved in ≺test that also ap-

peared in ≺train. In search applications, users are typically

focused on specific communities, and have no need to rank

nodes far from and unrelated to nodes about which they

already have ranking opinions.

Comparison with QP teleport optimization:In their ex-

periments, Tsoi et al. [24] first computed (UnweightedPagerank),

and then picked a pair of nodes (typically, one was highly

ranked, the other not) and flipped their order to produce a

≺train with only one pair. Their goal was to study the effect

of this inversion on various clusters of G.

0

0.1

0.2

0.3

0.4

0.5

0.6

300 600 900 1200 1500 1800
numTrainPref

er
ro

r

maxEntTrainError
maxEntTestError
qpTrainError
qpTestError

Figure 6: Comparison of maxent flow with QP tele-

port tuning.

Used in our setting, the QP formulation of Section 2.3

performs surprisingly poorly (Figure 6), with an error rate

comparable to random guessing, even if node overlap be-

tween ≺train and ≺test is allowed. For five out of ten choices

of the random favored teleport seed, the QP optimization as-

signed zero teleport to the secret favored node. In contrast,

in all ten cases, our algorithm assigned a positive primal

inflow into the secret favored node.

QP with slack variables:Anecdotally, our modified QP

(4) with slack variables gives much better solutions, but is

computationally very expensive because it has not |V | but

|V |+ |≺| variables and the constraints are more challenging

than a symmetric square loss. Compared to our two al-

gorithms, the quadratic programming approach, which also

involves a matrix inversion to get M , appear impractical.

100

150

200

250

300

350

0 5000 10000 15000 20000
numTrainPref

tim
e

(s
)

Figure 7: Flow optimization time scales linearly

with ≺train.

Performance scaling:Figures 7 and 8 show that a dual

optimization involving all dual variables takes time roughly

linear in | ≺ |, |V | and |E|. In Figure 7 G was fixed and

≺train was scaled. In Figure 8 ≺train was fixed and |V | and

|E| scaled separately.

Savings from variable inclusion:We used a baseline graph

with 21000 nodes and about 42000 edges, and scaled up |V |,
|E| and |≺| in tandem. Figure 9 shows the running time of

the one-shot dual optimizer and the total time of the multi-

round dual variable inclusion strategy given in Figure 1. As

the problem size scales up, we get bigger and bigger gains

from the variable selection strategy.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5
1

1.5

0
100
200
300
400
500
600
700
800
900

T
im

e
(s

)

Relative |E|

Figure 8: Flow optimization time scales roughly lin-

early with |V | (relative sizes 0.5, 1, 1.5 shown) and

with |E| (relative sizes 0.5–5 shown).

0

200

400

600

800

1000

1200

1400

1000 2000 3000 4000 5000
scaleFactor

tim
es

 (
s)

inclTime

oneShotTime

Figure 9: Running time of the one-shot dual opti-

mizer vs. the gradual inclusion strategy. The x-axis

is |≺|; |V | and |E| are scaled up proportionately.

4. LEARNING EDGE CONDUCTANCES
In this Section we address the problem of learning weights

for each edge type from ≺.

4.1 Approximate gradient descent
The conductance matrix C used in (UnweightedPagerank)

is modified to reflect edge weights, as follows:

C(j, i) =

αβ(t(i,j))∑
j′ β(t(i,j′)) , (i, j) ∈ E

1− α[i ∈ Vo], i ∈ V, j = d,

rj i = d, j ∈ V

0, otherwise

(Conductance)

Here d is the dummy node and r = (rj) is the teleport vector

as before. Note that C is a function of β, and we seek a set

of βs such the p solves p = Cp and p satisfies ≺.

As in soft-margin approaches, we again turn the latter

hard constraint into a part of the objective that penalizes

violations of ≺. The transformation of (Preference) into

(SoftPreference) and (SoftObjective) essentially adds a vio-

lation penalty

B
∑

u≺v loss(pu − pv) = B
∑
u≺v

max{0, pu − pv}; (8)

note that if pu ≤ pv as ≺ wants, no penalty is incurred. Two

problems remain: the max function is not differentiable at

zero, and pu cannot be expressed easily in terms of β.

The first problem is common, and readily removed by ap-

proximating (8) with a everywhere-differentiable function

such as the Huber penalty with window width W :

loss(y) =

0, y ≤ 0

y2/(2W), y ∈ (0, W]

y −W/2, W < y

(9)

Because we are searching for β(t)s, we will need to find

the gradient of loss(pu−pv) wrt β(t) for each type t, which is

loss′(pu − pv)(∂pu
∂β(t)

− ∂pu
∂β(t)

), where loss′(y) is the derivative

of the rhs of (9). The only missing piece is ∂pu/∂β(t) for

each node u and type t. Let g(u, t) be an approximation to

∂pu/∂β(t).

1: Initialize all p
(0)
v ← 1/|V ′| and g(0)(v, t) = 0 for all v, t

2: `← 0
3: while any element of p or g changes significantly do
4: `← ` + 1
5: for each u set p

(`)
u ←

∑
v C(u, v)p

(`−1)
v

6: for each node u and type t do

7: g(`)(u, t)←
∑

v
∂C(u,v)

∂β(t)
p
(`−1)
v + C(u, v)g(`−1)(v, t)

8: end for
9: end while

Figure 10: Iterative approximation to ∂pu/∂β(t).

We show in Figure 10 how to compute all the g(u, t)s by

accompanying the regular Pagerank iterations with gradient-

finding steps. This is just an application of chain rule itera-

tion by iteration. ∂C(u,v)
∂β(t)

is easily derived from (Conductance).

Once we calculate p and g, we can evaluate the objective and

gradient and use a Newton method like BLMVM [4].

From (Conductance) we see that scaling all βs by a fixed

factor does not change C. To prevent any C(i, j) from going

to zero, we arbitrarily set the lower bound β(t) ≥ 1 for

all types t. We can also penalize large βs with a standard

Ridge-penalty of the form β′β.

4.2 Experiments

4.2.1 Generating realistic typed graphs
Generating a synthetic graph through a single call to RMAT,

and then randomly assigning types and weights, would lead

to very unrealistic graphs that would look locally statisti-

cally homogeneous at all nodes wrt incident weights.

To generate natural graphs with typed nodes and edges,

such as the DBLP or CiteSeer citation graphs, we first called

RMAT with a single set of 10000 paper nodes, creating

86382 citation links between them. Then we created a sep-

arate set of 10000 author nodes, and called RMAT to con-

nect papers and authors with 26280 edges. Similarly, we

connected papers to 1000 venue nodes using 15930 edges.

These numbers were derived from an informal study of the

degree distribution of the DBLP and CiteSeer graphs (see

Figure 2). We also experimented with a graph derived from

IMDB (http://imdb.com) and the results were similar.

4.2.2 Generating≺ using hidden edge weights
Edges connecting two node communities have a desig-

nated type, e.g., paper written-by author. As in several

ER graph databases [5, 3] all edges logically exist in both

directions. Another way to say this is that each edge has

two types, e.g. an “author wrote paper” also has a “paper

written-by author” in the reverse direction.

We first assigned all edges unit weights (all β = 1) and

computed the reference flow q. Then we assigned the edges

various hidden weights (default values were paper-author:

6, 10; paper-paper: 20; paper-venue: 1, 4), and computed

the hidden flow p∗. Finally, as in Section 3.4, we sampled

from the agreements and disagreements between q and p∗

to get ≺train and ≺test.

4.2.3 Results
In this section we give evidence that the approximate

gradient-descent is very effective at recovering the hidden

parameters that led to ≺, in terms of both accuracy and

speed. A direct comparison with Nie et al.’s system was

not feasible because they use a sophisticated, highly-tuned

simulated annealing approach whose code is not public, and

their running times range into several hours [19, Figure 8]

while our algorithm takes a few minutes.

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

0 10 20 30
iteration (i)

m
ax

 |g
ra

d(
i)-

gr
ad

(i-
1)

|

GradWrtBeta1
GradWrtBeta2
GradWrtBeta3
GradWrtBeta5

Figure 11: Like Pagerank itself, the gradients con-

verge within very few iterations.

Gradient approximation:maxv∈V |g(`)(v, t) − g(`−1)(v, t)|
is plotted against iterations ` for several edge types t in

Figure 11. The difference between successive values decay

exponentially, and convergence is achieved in practice be-

tween 30 and 50 iterations. We therefore feel confident to

use these gradients in a gradient-descent procedure.

0

20

40

60

80

100

0 100 200
trainSize

te
st

E
rr

or

Figure 12: Reduction in test errors out of 2000 as

≺train is increased.

Learning rate:Figure 12 shows, for a fixed ≺test of size

2000, the test error as ≺train is increased. Unlike in the

maxent flow approach, here node overlap between ≺train

and ≺test had no systematic effect on test error, so we en-

sured zero node overlap between ≺train and ≺test through-

out. Compared to the maxent flow setting, we are estimat-

ing only a handful of βs, so the size of ≺train needed to attain

good test accuracy is much smaller.

Accuracy of estimating hiddenβs: In another experiment,

we varied 1–2 edges weights away from the defaults listed

above, and saw if our algorithm can estimate values close to

the hidden values. The results are shown in Figure 13. The

prominent diagonal is reassuring. Thanks to the β′β Ridge

penalty, there is a downward pressure on some βs leading

to the below-diagonal entries. However, we note that an

infinite number of combinations of edge weights can lead to

the same Pagerank ordering per (WeightedPagerank). Even

where we underestimated a β, the effect on train or test

error was negligible.

1

10

100

1 10 100hidden beta

es
tim

at
ed

 b
et

a

Figure 13: Accuracy of estimation of hidden βs.

Scalability:Figure 14 shows the increase of iterations and

time per iteration as the graph size is scaled up. The time

per iteration scales essentially linearly with |V | and |E|,
while the number of iterations is more erratic, but grows

slowly with G. The overall result is that the training time

is proportional to the scale factor raised to the power of

about 1.34, which is mildly superlinear.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10
graphScaleFactor

op
tT

im
e(

s)

0

2

4

6

8

10

12

ite
ra

tio
ns

timePerIter

iterations

Figure 14: Scaling of running time with graph size.

The x-axis represents the factor by which our syn-

thetic DBLP graph’s V and E were expanded.

5. CONCLUDING REMARKS
Most existing approaches to ranking entities involve learn-

ing weights for feature vectors, or Markovian walks with

arbitrarily-designed conductance matrices. We have initi-

ated the study of a uniform framework for learning the pa-

rameters of Markovian walks in graphs to satisfy pairwise

preference constraints between nodes.

We presented two learning problems in this framework. In

the first, the preferences hint at one or more favored com-

munities that the learning algorithm must discover. We pro-

posed a maximum entropy flow estimation algorithm for this

setting. In the second problem, edges have types that deter-

mine their conductance, and the learner must estimate these

weights. We proposed an approximate gradient-descent al-

gorithm for this setting. Our formulations enhance and gen-

eralize some previous approaches. We showed experimen-

tally that our approaches are effective.

The flow approach has to estimate a large number of vari-

ables, scaling with G. The flow approach applies to settings

where edges are not typed, and ≺train and ≺test are nat-

urally clustered (as they would be in many relevance feed-

back or collaborative filtering applications). In contrast, the

approximate gradient-descent approach estimates relatively

few global weights, and can therefore generalize from ≺train

to ≺test that involve completely different nodes, far away

in G, with a much smaller number of examples. However,

the second approach requires a notion of global edge types.

In ongoing work we are trying to go beyond just counting

satisfied node-pairs to a more rank-aware objective that pays

more importance to top-ranking nodes. We are also trying

to extend the framework to integrate node feature vectors

(e.g. text on Web pages) in an elegant manner.

6. REFERENCES

[1] S. Agarwal, C. Cortes, and R. Herbrich, editors.

Learning to Rank, NIPS Workshop, 2005.

[2] K. Anywanwu, A. Maduko, and A. Sheth. SemRank:

Ranking complex semantic relationship search results

on the semantic Web. In WWW Conference, pages

117–127, Chiba, Japan, 2005.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.

Authority-based keyword queries in databases using

ObjectRank. In VLDB, Toronto, 2004.

[4] S. J. Benson and J. J. Moré. A limited memory

variable metric method for bound constraint

minimization. Technical Report

ANL/MCS-P909-0901, Argonne National Laboratory,

2001.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,

and S. Sudarshan. Keyword searching and browsing in

databases using BANKS. In ICDE. IEEE, 2002.

[6] S. Brin and L. Page. The anatomy of a large-scale

hypertextual web search engine. In WWW

Conference, 1998.

[7] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:

A recursive model for graph mining. In ICDM. SIAM,

2004.

[8] H. Chang, D. Cohn, and A. McCallum. Creating

customized authority lists. In ICML, 2000.

[9] W. W. Cohen, R. E. Shapire, and Y. Singer. Learning

to order things. JAIR, 10:243–270, 1999.

[10] M. Diligenti, M. Gori, and M. Maggini. Learning Web

page scores by error back-propagation. In IJCAI, 2005.

[11] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On

power-law relationships of the internet topology. In

SIGCOMM, pages 251–262, 1999.
[12] L. Guo, F. Shao, C. Botev, and

J. Shanmugasundaram. XRANK: Ranked keyword

search over XML documents. In SIGMOD Conference,

pages 16–27, 2003.

[13] T. H. Haveliwala. Topic-sensitive PageRank. In

WWW, pages 517–526, 2002.

[14] R. Herbrich, T. Graepel, and K. Obermayer. Support

vector learning for ordinal regression. In International

Conference on Artificial Neural Networks, pages

97–102, 1999.

[15] G. Jeh and J. Widom. Scaling personalized web

search. In WWW Conference, pages 271–279, 2003.

[16] T. Joachims. Optimizing search engines using

clickthrough data. In SIGKDD Conference. ACM,

2002.

[17] J. M. Kleinberg. Authoritative sources in a

hyperlinked environment. JACM, 46(5):604–632, 1999.

[18] NetRank project home page.

http://www.cse.iitb.ac.in/~soumen/doc/netrank,

2006.

[19] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma.

Object-level ranking: Bringing order to Web objects.

In WWW Conference, pages 567–574, 2005.

[20] M. Richardson and P. Domingos. The intelligent

surfer: Probabilistic combination of link and content

information in pagerank. In NIPS 14, pages

1441–1448, 2002.

[21] G. Salton and M. J. McGill. Introduction to Modern

Information Retrieval. McGraw-Hill, 1983.

[22] J. A. Tomlin. A new paradigm for ranking pages on

the world wide Web. In WWW Conference, pages

350–355, 2003.

[23] I. Tsochantaridis, T. Joachims, T. Hofmann, and

Y. Altun. Large margin methods for structured and

interdependent output variables. JMLR,

6(Sep):1453–1484, 2005.

[24] A. C. Tsoi, G. Morini, F. Scarselli, M. Hagenbuchner,

and M. Maggini. Adaptive ranking of web pages. In

WWW Conference, pages 356–365, 2003.

