
Learning Parameters in Entity Relationship
Graphs from Ranking Preferences

Soumen Chakrabarti? and Alekh Agarwal

IIT Bombay

Abstract. Semi-structured entity-relation (ER) data graphs have di-
verse node and edge types representing entities (paper, person, com-
pany) and relations (wrote, works for). In addition, nodes contain text
snippets. Extending from vector-space information retrieval, we wish to
automatically learn ranking function for searching such typed graphs.
User input is in the form of a partial preference order between pairs of
nodes, associated with a query. We present a unified model for rank-
ing in ER graphs, and propose an algorithm to learn the parameters of
the model. Experiments with carefully-controlled synthetic data as well
as real data (garnered using CiteSeer, DBLP and Google Scholar) show
that our algorithm can satisfy training preferences and generalize to test
preferences, and estimate meaningful model parameters that represent
the relative importance of ER types.

1 Introduction

There is much recent interest [12, 14, 1] in learning to order entities represented
by feature vectors, given a partial order ≺ involving some of the entities. The
order is defined by a scoring function whose parameters have to be learned.
A popular scoring function, suitable for ranking documents in Information Re-
trieval (IR), is an inner product β′xi between the feature vector xi representing
entity i and an estimated parameter vector β; if i ≺ j, we want β′xi ≤ β′xj .

Increasingly, documents are not isolated sequences of words, but are inter-
connected through a network. This is true not only of the Web, where hyperlinks
greatly assist ranking [5, 15], but also of entity-relationship (ER) graphs [4, 2] and
XML data [10] where nodes represent entities with textual attributes and edges
represent diverse relations. A sample ER graph is shown in Figure 1. Activa-
tion spreading or Pagerank-like Markovian random walks are often used to score
nodes given a query. Typically, a database administrator has to assign and/or
tune edge weights, which are used to bias the walks or activation propagation.

In Section 2 we will review a number of efforts to learn some of the parameters
of the Markov walk system, most typically via heuristic search [17], quadratic
programs [20] or local hill-climbing [7, 9].

To our knowledge, no single existing approach covers the scenario we address
in Section 3: User preference is provided as ≺ (not as absolute score targets

? Contact author, soumen@cse.iitb.ac.in

Person

works-for

Paper
cited in-reply-to

wrote sent

Email

received

Company

Figure 1. ER graph with diverse node
and edge types.

W
or

d
no

de
s

d E
nt

ity
 n

od
es1

2

3

4

5

Figure 2. Typed graph with word
nodes.

as in some previous work), and ranking is query-specific. We must learn to
combine information from feature vectors associated with nodes as well as edge
types to output a total order that agrees well with ≺ and generalizes to unseen
preferences. As a by-product we learn a notion of relative conductivity of different
edge types.

In Section 4 we carefully evaluate our proposed algorithm using synthetic
data as well as real data from DBLP, CiteSeer and Google Scholar. Unlike some
of the earlier work, we give a very detailed account of loss functions, constraints
on parameters and model parsimony, the nature of the optimization surface and
parameter search techniques. We will release our code and data in the public
domain [16].

2 Related work

Learning to rank feature vectors: Learning to rank items represented by feature
vectors from partial orders or point-scale training input (ordinal regression) is
well-explored in machine learning [12, 14, 1]. In RankSVM [14], a slack variable
sij ≥ 0 is introduced for each constraint i ≺ j, and the preference is expressed
as β′xj + sij ≥ β′xi + 1, or, equivalently, sij ≥ max{0, 1 − (β′xj − β′xi)} =
hinge(1+β′xi−β′xj), where hinge(y) = max{0, y} is the classic hinge loss. The
objective is to minimize β′β + B

∑
i≺j sij , where B is a magic parameter that

trades off the norm of β against the severity of training set errors. Summarizing,
RankSVM seeks to minimize β′β +B

∑
i≺j hinge(1+β′xi−β′xj), which can be

done using standard quadratic programming tools. However, observe that the
training set error is just

∑
i≺j step(β′xi−β′xj), where step(y) = [y > 0]. ([I] is

1 if condition I is true and 0 otherwise.) RankSVM upper bounds the training
error with

∑
i≺j hinge(1 + β′xi − β′xj), which is more amenable to quadratic

optimization.

Pagerank basics: We review the “random surfer” model of Pagerank [5] briefly.
Items are now nodes in a graph G = (V,E), not feature vectors. In the steady
state, the random surfer is at node j with probability pj =

∑
i pip(j|i). If we

2

write p(j|i) as a transition or conductance matrix C, the row vector p solves
p = Cp. C is designed as

C(j, i) =

{
α [(i,j)∈E]

OutDegree(i) + (1− α)rj , i 6∈ leaf(V)

rj , otherwise
(UnweightedConductance)

leaf(V) is the set of dead-end nodes without outlinks. The two design variables
are α, the probability of walking to a neighbor instead of jumping to a random
node; and r = (rj), the teleport or personalization vector, which, in ordinary
Pagerank, is set uniformly to (1/n, . . . , 1/n) where n = |V |. With r set thus, p
depends only on the structure of G and the value of α.

Follow-up work on Pagerank has attempted to modify the teleport vector r
to “personalize” the scores heuristically, based on topics [11], words [18, 2], or
user preferences on graph nodes [13], but the transitions are designed by hand,
not learnt from preference data.

Learning link-based ranking: Recently there have been efforts to learn r and even
C automatically. Tsoi et al. [20] used a quadratic programming approach to opti-
mize only the teleport vector r in (UnweightedConductance), but their formula-
tion had only one kind of edges. Chang et al. [7] proposed tuning edge weights for
HITS [15] using relevance feedback without a notion of edge types. Nie et al. [17]
tried local search exhaustively over each edge type. Diligenti et al. [9] fit edge
weights using back-propagation in a neural network, in case there are known
absolute target scores for a few specific pages. In applications, it is easier to col-
lect partial orders between nodes rather than absolute scores. None of the above
approaches combine query and per-node feature vectors with link information.

Combining links and text in ranking: Pagerank [5] is precomputed on the entire
Web graph and combined with text-based scores at query time in undocumented
and proprietary ways. In HITS [15], query keywords drive a heuristic procedure
for collecting a limited subgraph of the Web, which is then scored. We know of
only a few attempts to combine link and text information for ranking (for the
classification task much more is known) in a unified, principled manner. Cohn
and Hofmann [8] propose an elegant joint generative model combining text and
links, but leave the application to search and ranking unspecified. Silva et al. [19]
extend Turtle and Croft’s approach to IR scoring using Bayesian networks [21] to
include link information, but as precomputed scores from standard HITS—the
learning is limited to the Bayesian network and there is no learning associated
with hyperlink edges.

3 Learning Markov parameters from preferences

We are given a directed graph G = (V,E). Edge (i, j) has type t(i, j) belonging
to a set of types numbered 1, . . . , T . Each type t has an associated importance
represented by a weight β(t). Thus, edge (i, j) has weight β(t(i, j)). We will

3

require that our learning algorithm keep these weights positive, to ensure that
the graph topology is not altered by effectively erasing these edges. We will
revisit this issue in Section 3.4.

(UnweightedConductance) is modified to use weights as follows. As before,
columns are source nodes and rows are destination nodes. Each column adds up
to 1. Teleport is handled by adding a dummy node d to the graph, connecting
each node i ∈ V to d and back again, i.e., edges (i, d) and (d, i).

C(j, i) =



0, i 6= d, j 6= d, i ∈ leaf(V)
α β(t(i,j))P

j′ β(t(i,j′)) , i 6= d, j 6= d, i 6∈ leaf(V)

1, i 6= d, j = d, i ∈ leaf(V)
1− α, i 6= d, j = d, i 6∈ leaf(V)
rj i = d, j 6= d

0, i = d, j = d

(WeightedConductance)

Here “i ∈ leaf(V)” means i has no outlinks in G. The Pagerank vector p ∈
R(|V |+1)×1 for a given C satisfies p = C p. In addition, we wish p to satisfy ≺,
i.e., for each i ≺ j, we must have pi ≤ pj . Unfortunately, searching over feasible
values of both β and p together will introduce problematic quadratic constraints,
thanks to the requirement p = C p.

3.1 Truncating the recursion

To make the learning problem manageable, we truncate the recursion. In prac-
tice, the Pagerank vector is frequently computed via power iteration, by initial-
izing p = p0 = 1(|V |+1)×1/(|V |+1) and iterating p← Cp until convergence. The
number of iterations needed, which we call the horizon H, depends strongly on
α but is less sensitive to other aspects of C, and typically grows slowly with the
size of the graph. As we shall see, p = CHp0 is often an excellent approximation,
even for modest values of H (10–50). Therefore, the problem reduces to looking
for β such that, for each i ≺ j, (CH p0)i ≤ (CH p0)j . Although we describe our
learning procedure in terms of a fixed H, in an implementation we need not pick
a fixed horizon, but iterate until a specific error tolerance is satisfied.

3.2 Choice of loss function

Next we will look at various choices of the loss function. We need to approximate∑
i≺j step((CH p0)i − (CH p0)j). Because ‖p0‖1 = 1 and columns of C add up

to 1, ‖p‖1 = 1 as well. Therefore −1 ≤ (CH p0)i − (CH p0)j ≤ 1, and thus
picking loss(y) = hinge(1+ y) is meaningless because we end up just minimizing∑

i≺j(1+(CH p0)i−(CH p0)j) where a satisfied constraint contributes a negative
amount to the sum.

(Note that this is a non-issue for RankSVM because there, ‖β‖2 can be
inflated by the optimizer to prevail over these effects. Moreover, if the training

4

input comprises absolute score targets [9] for nodes, rather than the more realistic
partial order preferences, this problem does not arise.)

In optimizing conditional models, it is very common to replace the hinge
loss with a “soft” hinge loss of the form log(1 + ey), which asymptotes to the
hinge loss for large |y|. Yet another possibility is to directly approximate the step
function step(y) with the logit function logit(y) = 1/(1 + e−y). Unfortunately,
neither soft hinge nor logit works for us. A detailed study showed that the reason
is that they are both positive at y = 0 (and small negative values), adding a
“noise floor” to the objective even for satisfied preferences, making it very hard
for the optimizer to find a reliable gradient. It is very important that loss(y) is
exactly zero for y ≤ 0. After quite some experimentation we picked the Huber
loss with window W given by

huber(y) =


0, y ≤ 0
y2/(2W), y ∈ (0,W]
y −W/2, W < y

; huber′(y) =


0, y ≤ 0
y/W, y ∈ (0,W]
1, W < y

3.3 Newton method

All that remains to plug in our formulation into a Newton method is the com-
putation of (∂/∂βt)

∑
i≺j loss((CH p0)i − (CH p0)j), which is∑

i≺j loss′
(
(CH p0)i − (CH p0)j

) (
∂(CH p0)i/∂βt − ∂(CH p0)j/∂βt

)
.

We can compute this easily if we had a (|V |+1)×T matrix of Pagerank gradients
∂

∂βt
(CH p0)i where i = 1, . . . , |V |+ 1 and t = 1, . . . , T . This matrix can be built

up inductively over h = 0, . . . ,H as follows:

∂

∂βt
(C0p0)i = 0 for all t and i, (1)

and for h = 1, . . . ,H:

∂

∂βt
(Chp0)i =

∑
j

[
∂C(i, j)

∂βt
(Ch−1p0)j + C(i, j)

∂

∂βt
(Ch−1p0)j

]
(ChainRule)

Finally we compute ∂C(i,j)
∂βτ

from (WeightedConductance), where the only inter-
esting case is i 6= d, j 6= d, i 6∈ leaf(V):

∂C(i, j)
∂βτ

=


−α

β(t(i, j))
∑

w[τ = t(i, w)]
(
∑

w β(t(i, w)))2
τ 6= t(i, j)

α

∑
w β(t(i, w))− β(t(i, j))

∑
w[τ = t(i, w)]

(
∑

w β(t(i, w)))2
, τ = t(i, j)

(2)

In case we wish to also make α a variable in the optimization, (ChainRule)
carries over unchanged, and the nonzero derivatives of conductance are:

∂C(i, j)
∂α

=

{
β(t(i,j))P
w β(t(i,w)) , i 6= d, j 6= d, i 6∈ leaf(V)

−1, i 6= d, j = d, i 6∈ leaf(V)

5

Each iteration of the Newton update takes O((|V | + |E|) H) floating point op-
erations. O(T |V |) main memory is adequate; the edge list E can be scanned
sequentially from disk. We use the BLMVM optimizer [3].

3.4 Keeping the model parsimonious

In RankSVM, the model parameters are penalized by a β′β terms in the objec-
tive, which is equivalent to imposing a Gaussian prior with zero mean on each
element of β. Zero mean does not make sense for us. In fact, any βt going to
zero may change the topology of G and its Markov properties in serious ways.
We can see at least two reasonable choices for penalizing model complexity.

Centered at 1: If we consider Equation (UnweightedConductance) as the most
parsimonious model, we should center the βts at 1. E.g., we might assess a
penalty of

∑
t(βt − 1)2, choosing square loss for computational simplicity. For

the reasons above we also need to lower bound each βt strictly away from zero,
which involves yet another magic number that we do not like.

Scale-free floating: There is nothing special about 1 as center; given a solution,
we can scale all βts by a factor and C in Equation (WeightedConductance) (and
therefore p) will remain unchanged. We can therefore lower bound all βt ≥ 1
without loss of generality, and modify the penalty to try to keep all the βts close
together without centering any of them:

∑
t,t′(βt − βt′)2. Suppose there are two

solution vectors, one a constant multiple of the other. The violations and losses
are the same, but the solution with smaller magnitude has lower model penalty,
so we will naturally prefer that one.

3.5 Incorporating queries and node features

Much recent work on algorithms to learn ranking functions have used an intrinsic
feature vector representation of the objects being ranked, whereas we have, thus
far, ignored the objects and considered only the graph that connect them. There
was also no notion of a query.

We propose two ways to incorporate node features and queries into our frame-
work. The first implements teleport through word nodes and resembles Object-
Rank [2] and the intelligent surfer [18]. The second, more pedestrian approach
fits a linear combination of Pagerank-induced and node feature-induced scores.

Teleport through word nodes: We assume each node has a set of associated words,
and the query is also a set of words. As shown in Figure 2, we introduce a node
for every word. The dummy node d is connected only to nodes corresponding to
query words (edge type “3”) and other word nodes are deleted. Each matched
word node is connected to all entity nodes where the word occurs (edge type “2”).
Entity nodes are interconnected as in the rest of this paper (collectively marked
as edge type “1” although there could be more than one type of edges here).
d also connects to entities directly (edge type “4”)—this sets up a competition

6

between text match and network prestige. Finally, entity nodes teleport back to
d as usual (edge type “5”). Our algorithm has to be invoked on this graph for
each query and query-specific preferences.

Linear score combination: The above approach retains a “pure Markovian fla-
vor”, but requires a query-time Pagerank computation, which is expensive. Prac-
tical implementations are more likely to adopt our second approach.

In this approach we first compute a match function µ(q, i) ∈ R+ between
the query and the node features. E.g., each node may be a document, and the
query and documents may be represented in vector space and µ may be the
commonly-used cosine similarity between q and the text of node i. For a fixed
query, we will omit q and use µi in place of µ(q, i). For simplicity we will assume
that the text score vector µ has been scaled so that ‖µ‖1 = 1.

We use uniform teleport to compute CHp0, but integrate signal from µ by
writing the score vector as p = (1− γ)CHp0 + γµ, where γ ∈ [0, 1] is part of the
optimization, with

∂

∂γ

∑
i≺j

loss(pi − pj) =
∑
i≺j

loss′(pi − pj)
[
µi − µj + (CHp0)j − (CHp0)i

]
.

4 Experiments

Here are the main steps of our evaluation scheme:

1. Get G from real data or a synthetic graph generator.
2. Get ≺ from real data and do a test-train split, or, for synthetic generation:

(a) Compute unweighted Pagerank puw on G using (UnweightedConductance).
(b) Assign hidden parameters β (and possibly α and γ), and compute weighted

Pagerank pw using the hidden parameters and (WeightedConductance).
(c) Draw stratified samples (typically 1:1 for us) from agreements and dis-

agreements between scores of node pairs as per puw and pw. This re-
flects the reasonable null hypothesis of (UnweightedConductance), and
the belief that training data must expose the implausibility of the null
hypothesis.

3. Give our algorithm G and ≺train but not the hidden weights.
4. Our algorithm estimates β∗ (and possibly α∗ and γ∗).
5. Compute weighted Pagerank p∗w using these estimated parameters.
6. Evaluate what fraction of ≺test is satisfied by p∗w.

Graphs: We experimented with synthetic and real-life graphs. SynthDBLP, a
synthetic citation graph, had author, affiliation and paper nodes (total 21000)
connected by “works-for”, “wrote” and “cited” edges (total 128592). SynthIMDB,
a synthetic graph modeling http://imdb.com, had actor, movie, and genre nodes
(total 21000) with “acted-in” and “belongs-to” edges (total 97121). We used
RMAT [6] to generate the synthetic graphs that satisfy typical properties of
social networks. The real citation graph curated from DBLP and CiteSeer had
author, paper, and venue (conference/journal) nodes (total 147870) and “cited”,
“wrote” and “appeared-in” edges (total 1145393).

7

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1alpha

re
la

tiv
e

er
ro

r
or

 lo
ss

true error

hinge

huber

Figure 3. Training error and losses
vs. α (αhidden = 0.7).

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6iterations

re
la

tiv
e

er
ro

r
an

d
lo

ss

error

hinge

huber

Figure 4. Training error and losses
vs. optimizer iterations.

0

0.01

0.02

0.03

0.04

0.05

0 0.04 0.08 0.12
fraction noise

te
st

 e
rr

or

0.E+00

2.E-09

4.E-09

6.E-09

8.E-09

1.E-08
m

od
el

 c
os

t

error

model

Figure 5. Test error and model
penalty vs. training noise.

0

100

200

300

400

500

0 50 100 150 200
numTrainPref

te
st

E
rr

or
 o

f 2
00

0

Figure 6. Test error and its standard
deviation (10 runs) vs. |≺train |.

0

5

10

15

20

25

30

8 10 12 14 16
horizon

test error

iterations

Figure 7. Effect of H on convergence
and test error.

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
known alpha

te
st

 e
rr

or

Figure 8. Test error vs. α.

0

0.5

1

1.5

0 5 10 15 20
hidden beta

es
t b

et
a/

hi
dd

en
 b

et
a

Figure 9. β estimation accuracy.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
hidden alpha

es
tim

at
ed

 a
lp

ha

B=1e10

B=1e16

Figure 10. Estimated vs. hidden α.

8

Edges and weights: Except for experiments involving teleport through word
nodes, each edge is made bidirectional, and “hidden” weights are associated
with each direction to reflect heuristic values used in the literature [4, 2]. Part
of our goal is to see if the algorithm can discover these hidden weights given
preference data. (Details about data generation can be found in an extended
version of this paper [16].)

Error, loss, and convergence: The success of the optimizer depends on how
closely our loss approximation tracks training loss. Our general experience is
that Huber loss works well for large α (say, larger than 0.4) typically used in
Pagerank, but deteriorates at small α. This is not a problem with Huber loss
per se, because hinge loss (without a margin, defined as

∑
i≺j max{0, pi − pj})

is an even poorer approximation. Figure 3 shows training error, hinge loss and
Huber loss for variate α. For values of α commonly used in Pagerank algorithms,
Huber loss gave reliable convergence (Figure 4).

Robustness to noisy training data: In real life, our hypothesis that ranking is
determined by weighted edges may not hold, and relevance feedback may not
even be consistent. Our algorithm seems very robust to random flipping (i ≺ j
replaced by j ≺ i) of training pairs (Figure 5). Even when over 20% of ≺ has
been corrupted, the error on (clean) test data is less than 6%. It is also reassuring
to note that as noise increases, the algorithm cuts back on investments in model
complexity (measured as the floating penalty).

Learning rate and validation: To check if the model generalizes well, we generated
≺train and ≺test to be node disjoint, so that our algorithm cannot, e.g., benefit
from discovering transitivity. We increased | ≺train | and plotted the test error in
Figure 6. Just a few hundred preference pairs appear adequate to learn a model
that generalizes well.

Effect of horizon choice H: Is the truncation of iterations in Section 3.1 rea-
sonable for both objective and gradient? Figure 7 shows the effects of varying
horizon H on the number of iterations to convergence and the error rate (out
of 4000 node pairs). As H is increased, the objective and gradient estimates be-
come more accurate (but computationally expensive) and the Newton method
converges in fewer iterations. Furthermore, the edge model learnt is more accu-
rate and therefore test error reduces. Even for larger real-life graphs, it appeared
that H > 30 is always sufficient.

Effect of known α: As α goes to zero, edge weight tuning struggles harder and
test error goes up, although, even at α = 0.05, test error is less than 5%. Note
that in Figure 8, the algorithm knows α and estimates only the βs.

Edge weight (β) discovery: Fixing G, we varied 2–3 hidden βts at a time and
ran our algorithm. Recall that all βts can be scaled arbitrarily without changing
conductance C. In principle, our model penalty should force an automatic scaling

9

down, but the complex optimization surface can prevent the scaling down once
training error is minimized. Therefore we scaled all βts by their minimum value.
In Figure 9 we plot the ratio of estimated to hidden βts against the hidden value.

Typically the two largest βts are estimated very well, but, thanks to our
regularization scheme, there is a slight upward pressure on small values and a
downward pressure on large values. However, note that the optimization problem
is fundamentally degenerate in that, while we start from a specific hidden β, the
same Pagerank ordering can be achieved by an infinite number of β vectors, so
the deviations below the diagonal hurt neither training nor test error.

Combined α, β search: Figure 3 shows that the approximate loss surface has
local minima. Therefore, a Newton method will need multiple restarts to locate
the global optimum. We varied α between 0 and 1, but this was hidden (as was
β) from the algorithm, which had to estimate α and β together.

Figure 10 shows that α is reconstructed with surprising perfection, despite
our ignorance of both α and βts, (the latter were all initialized to 2, which always
led us to the global optimum for any fixed α—this, and the much better quality
of reconstructing α, merit a future study). Compared to the fixed α case, more
care was needed with B to avoid overfitting.

We performed all our experiments above using synthetic ≺ on both synthetic
graphs and the real graph culled from DBLP and CiteSeer, and all the results
were very similar and consistent.

Integrating queries and text match: We collected queries in the areas of databases
and XML (Figure 11). First, for each query, we pinned down all edge weights
except for dummy-to-word edges, which we varied to inspect the rankings ob-
tained. Figure 12 shows the results. For small dummy-to-word weights, text
match is ignored and generic classic papers are listed at the top, whereas at
larger weights, the query gets more attention (but citations are still important).
Given there are only a handful of query words and about 80000 papers, naturally
the dummy-to-word edges need to be quite heavy to have an effect.

Second, we set a hidden weight for dummy-to-word edges and fixed all other
edge weights at 1, and tested if our algorithm can discover the hidden weight.
The results broadly paralleled our study on other β(t)s and are omitted. The
accuracy was not as good as in Figure 9. Overestimates like βhidden = 100 and
βestimated ≈ 20000 were seen, but training and test errors went down reliably as
before. Therefore, the “teleport through word nodes” model works as intended.

Third, we sent the queries to Google Scholar (http://scholar.google.com)
and sampled the (prefix of the) total order returned to derive ≺train and ≺test.

1: database xml structure index inverted, 2: "data streams" "query processing",
3: database concurrency control deadlock handling, 4: recovery shadow paging,
5: relation nested subquery optimization, 6: transaction serializability,
7: query processing sensor networks, 8: set "similarity join", 9: xml twig join,
10: heterogeneous schema integration "machine learning"

Figure 11. Queries for DBLP and CiteSeer.

10

transaction serializability, β(dummy → word) = 1

Graph based algorithms for boolean function manipulation (506)
Scheduling algorithms for multiprogramming in a hard real time environment (413)
A method for obtaining digital signatures and public key cryptosystems (312)
Rewrite systems (265)
Tcl and the Tk toolkit (242)

transaction serializability, β(dummy → word) = 106

On serializability of multidatabase transactions through forced local conflicts (38)
Autonomous transaction execution with epsilon serializability (6)
The serializability of concurrent database updates (104)
Serializability a correctness criterion for global concurrency control in interbase (41)
Using tickets to enforce the serializability of multidatabase transactions (12)

Figure 12. β(dummy→word) gives a learnable trade-off between word match and
citation popularity. Top paper nodes shown with number of citations.

We injected this ≺ into the “teleport through word nodes” model with only one
variable edge weight, β(dummy → word); there was no known “ground truth”.

α = 0.05
Q# |≺test| Errors γ
q1 945 390 0.0272911
q3 771 310 0.0272881
q5 1008 406 0.0209949
q4 993 409 0.0272896

α = 0.7
Q# |≺test| Errors γ
q1 945 326 0.9888147
q3 771 219 0.9364531
q5 1008 382 0.6016729
q4 993 343 0.9833497

Figure 13. Fitting γ with
fixed α.

Estimates were between 1 and 2 in 4 of 10 cases,
and 21, 127, 172, 509, 650, and 6686 for the others.
Training error was typically around 25% but test
error was higher, around 35–40%; see comments at
the end of this Section.

Finally, to test the “linear score combination”
model, we used the IR TFIDF cosine score between
the query and the paper titles to obtain µ, and used
≺ from Google Scholar. We set a few values of α
by hand and estimated γ and β. For small α, G as-
serts little effect, the Pagerank distribution is very
flat, so the optimizer can afford and prefers very
small γs. For large α, G provides some valuable
signal (absolute error goes down nicely), but it be-
comes more important to emphasize text: γ rises
substantially (Figure 13).

The results involving ≺ from Google Scholar are preliminary and come with
an important caveat: Google Scholar uses a. paper body text and b. a much
larger and different graph compared to our sample of DBLP and CiteSeer, so its
ranking function is using information not accessible to us.

5 Conclusion

We have presented models and numerical methods for learning Markov and other
parameters for ranking nodes in ER graphs from partial order preferences. The
optimization surfaces involved are not always benign, but they must be searched
satisfactorily, given the widespread and increasing applicability of such models.
We initiate an in-depth treatment of the choice of loss functions, optimization

11

surfaces, search procedures, and parameter settings. In ongoing work we are
investigating text-match models more deeply and seeking to extend the loss
framework to become rank-sensitive.

References

1. S. Agarwal, C. Cortes, and R. Herbrich, editors. Learning to Rank, NIPS Workshop,
2005.

2. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Authority-based keyword
queries in databases using ObjectRank. In VLDB, Toronto, 2004.

3. S. J. Benson and J. J. Moré. A limited memory variable metric method for bound
constraint minimization. Technical Report ANL/MCS-P909-0901, Argonne Na-
tional Laboratory, 2001.

4. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In ICDE. IEEE, 2002.

5. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In WWW Conference, 1998.

6. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In ICDM. SIAM, 2004.

7. H. Chang, D. Cohn, and A. McCallum. Creating customized authority lists. In
ICML, 2000.

8. D. Cohn and T. Hofmann. The missing link — a probabilistic model of document
content and hypertext connectivity. In NIPS, 2001.

9. M. Diligenti, M. Gori, and M. Maggini. Learning Web page scores by error back-
propagation. In IJCAI, 2005.

10. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In SIGMOD Conference, pages 16–27, 2003.

11. T. H. Haveliwala. Topic-sensitive PageRank. In WWW, pages 517–526, 2002.
12. R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal

regression. In International Conference on Artificial Neural Networks, pages 97–
102, 1999.

13. G. Jeh and J. Widom. Scaling personalized web search. In WWW Conference,
pages 271–279, 2003.

14. T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD
Conference. ACM, 2002.

15. J. M. Kleinberg. Authoritative sources in a hyperlinked environment. JACM,
46(5):604–632, 1999.

16. NetRank project. http://www.cse.iitb.ac.in/∼soumen/doc/netrank, 2006.
17. Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level ranking: Bringing order

to Web objects. In WWW Conference, pages 567–574, 2005.
18. M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination

of link and content information in pagerank. In NIPS 14, pages 1441–1448, 2002.
19. I. Silva, B. Ribeiro-Neto, P. Calado, E. Moura, and N. Ziviani. Link-based and

content-based evidential information in a belief network model. In SIGIR Confer-
ence, pages 96–103, 2000.

20. A. C. Tsoi, G. Morini, F. Scarselli, M. Hagenbuchner, and M. Maggini. Adaptive
ranking of web pages. In WWW Conference, pages 356–365, 2003.

21. H. R. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval
model. Transactions on Information Systems, 9(3):187–222, 1991.

12

