Hypertext Data Mining (KDD 2000 Tutorial)

Soumen Chakrabarti Indian Institute of Technology Bombay

http://www.cse.iitb.ernet.in/~soumen http://www.cs.berkeley.edu/~soumen soumen@cse.iitb.ernet.in

Hypertext databases

- Academia
 - Digital library, web publication
- Consumer
 - Newsgroups, communities, product reviews
- Industry and organizations
 - Health care, customer service
 - Corporate email
- An inherently collaborative medium
- Bigger than the sum of its parts

The Web

- Over a billion HTML pages, 15 terabytes
- Highly dynamic
 - 1 million new pages per day
 - Over 600 GB of pages change per month
 - Average page changes in a few weeks
- Largest crawlers
 - Refresh less than 18% in a few weeks
 - Cover less than 50% ever
- Average page has 7–10 links
 - Links form content-based communities

KDD2000 Soumen Chakrabarti

The role of data mining

- Search and measures of similarity
- Unsupervised learning
 - Automatic topic taxonomy generation
- (Semi-) supervised learning
 - Taxonomy maintenance, content filtering
- Collaborative recommendation
 - Static page contents
 - Dynamic page visit behavior
- Hyperlink graph analyses
 - Notions of centrality and prestige

Differences from structured data

- Document ≠ rows and columns
 - Extended complex objects
 - Links and relations to other objects
- Document ≠ XML graph
 - Combine models and analyses for attributes, elements, and CDATA
 - Models different from structured scenario
- Very high dimensionality
 - Tens of thousands as against dozens
 - Sparse: most dimensions absent/irrelevant
- Complex taxonomies and ontologies

KDD2000 Soumen Chakrabarti

The sublime and the ridiculous

- What is the exact circumference of a circle of radius one inch?
- Is the distance between Tokyo and Rome more than 6000 miles?
- What is the distance between Tokyo and Rome?
- java
- java +coffee -applet
- "uninterrupt* power suppl*" ups -parcel

Search products and services

- Verity
- Fulcrum
- PLS
- Oracle text extender
- DB2 text extender
- Infoseek Intranet
- SMART (academic)
- Glimpse (academic)

- Inktomi (HotBot)
- Alta Vista
- Raging Search
- Google
- Dmoz.org
- Yahoo!
- Infoseek Internet
- Lycos
- Excite

KDD2000 Soumen Chakrabarti

Roadmap

- Basic indexing and search
- Measures of similarity
- Unsupervised learning or clustering
- Supervised learning or classification
- Semi-supervised learning
- Analyzing hyperlink structure
- Systems issues
- Resources and references

KDD2000 Soumen Chakrabarti

Basic indexing and search

Keyword indexing

- Boolean search
 - care AND NOT old
- Stemming
 - gain*
- Phrases and proximity
 - "new care"
 - loss NEAR/5 care
 - <SENTENCE>

KDD2000 Soumen Chakrabarti

11

Tables and queries

tid did pos care d1 5 care d1 care d1 8 care d2 care d2 5 care d2 8 7 new d2 old d1 7 3 loss d1

POSTING

select distinct did from POSTING where tid = 'care' except select distinct did from POSTING where tid like 'gain%'

with TPOS1(

TPOS1(did, pos) as

(select did, pos from POSTING where tid = 'new'),

TPOS2(did, pos) as

(select did, pos from POSTING where tid = 'care')

select distinct did from TPOS1, TPOS2 where TPOS1.did = TPOS2.did

and proximity(TPOS1.pos, TPOS2.pos)

proximity(a, b) ::= a + 1 = b abs(a - b) < 5

KDD2000 Soumen Chakrabarti

Issues

- Space overhead
 - -5...15% without position information
 - 30...50% to support proximity search
 - Content-based clustering and deltaencoding of document and term ID can reduce space
- Updates
 - Complex for compressed index
 - Global statistics decide ranking
 - Typically batch updates with ping-pong

KDD2000 Soumen Chakrabarti 13

Relevance ranking

Query

Search

- Recall = coverage
 - What fraction of relevant documents were reported
- Precision = accuracy
 Output sequence
 - What fraction of reported documents were relevant
- Trade-off
- 'Query' generalizes to 'topic'

"True response"

Compare

14

Vector space model and TFIDF

- Some words are more important than others
- W.r.t. a document collection D
 - $-d_{\perp}$ have a term, d_{\perp} do not
 - "Inverse document frequency" $1 + \log \frac{d_+ + d_-}{d_+}$
- "Term frequency" (TF)
 - Many variants: $\frac{n(d,t)}{\sum_{t} n(d,t)}, \frac{n(d,t)}{\mathbf{m}}, \frac{n(d,t)}{n(d,t)}$
- Probabilistic models

KDD2000 Soumen Chakrabarti

15

16

Tables and queries

'Iceberg' queries

- Given a query
 - For all pages in the database computer similarity between query and page
 - Report 10 most similar pages
- Ideally, computation and IO effort should be related to output size
 - Inverted index with AND may violate this
- Similar issues arise in clustering and classification

KDD2000 Soumen Chakrabarti 17

Similarity and clustering

Clustering

- Given an unlabeled collection of documents, induce a taxonomy based on similarity (such as Yahoo)
- Need document similarity measure
 - Represent documents by TFIDF vectors
 - Distance between document vectors
 - Cosine of angle between document vectors
- Issues
 - Large number of noisy dimensions
 - Notion of noise is application dependent

KDD2000 Soumen Chakrabarti

Document model

- Vocabulary V, term w_{ii} document α represented by $c(\alpha) = \{f(w_i, \alpha)\}_{w_i \in V}$
- $f(w_i, \alpha)$ is the number of times w_i occurs in document α
- Most fs are zeroes for a single document
- Monotone component-wise damping function g such as log or square-root

$$g(c(\alpha)) = \left\{ g(f(w_i, \alpha)) \right\}_{w_i \in V}$$

Similarity

$$s(\alpha, \beta) = \frac{\left\langle g(c(\alpha)), g(c(\beta)) \right\rangle}{\left\| g(c(\alpha)) \right\| \cdot \left\| g(c(\beta)) \right\|}$$

$$\langle \cdot, \cdot \rangle = \dot{\mathbf{n}}$$
 product

Normalized document profile:
$$p(\alpha) = \frac{g(c(\alpha))}{\|g(c(\alpha))\|}$$

Profile for document group
$$\Gamma$$
:
$$p(\Gamma) = \frac{\sum_{\alpha \in \Gamma} p(\alpha)}{\left\|\sum_{\alpha \in \Gamma} p(\alpha)\right\|}$$

KDD2000 Soumen Chakrabarti

21

Top-down clustering

- k-Means: Repeat...
 - Choose k arbitrary 'centroids'
 - Assign each document to nearest centroid
 - Recompute centroids
- Expectation maximization (EM):
 - Pick k arbitrary 'distributions'
 - Repeat:
 - Find probability that document d is generated from distribution f for all d and f
 - Estimate distribution parameters from weighted contribution of documents

Bottom-up clustering

$$s(\Gamma) = \frac{1}{|\Gamma|(|\Gamma| - 1)} \sum_{\alpha \in \Gamma} \sum_{\beta \neq \alpha} s(\alpha, \beta)$$

- Initially *G* is a collection of singleton groups, each with one document
- Repeat
 - Find Γ , Δ in G with max $S(\Gamma \cup \Delta)$
 - Merge group Γ with group Δ
- For each Γ keep track of best Δ
- $O(n^2 \log n)$ algorithm with n^2 space

KDD2000 Soumen Chakrabarti

23

Updating group average profiles

Un-normalized $\hat{p}(\Gamma) = \sum_{\alpha \in \Gamma} p(\alpha)$ group profile:

Can show:

$$s(\Gamma) = \frac{\langle \hat{p}(\Gamma) \ \hat{p}(\Gamma) \rangle - |\Gamma|}{|\Gamma|(|\Gamma|-1)}$$

$$s(\Gamma \cup \Lambda) = \frac{\langle \hat{p}(\Gamma \cup \Delta) \ \hat{p}(\Gamma \cup \Delta) \rangle - (|\Gamma|+|\Delta|)}{(|\Gamma|+|\Delta|)(|\Gamma|+|\Delta|-1)}$$

$$\langle \hat{p}(\Gamma \cup \Delta), \hat{p}(\Gamma \cup \Delta) \rangle = \langle \hat{p}(\Gamma), \hat{p}(\Gamma) \rangle + \langle \hat{p}(\Delta), \hat{p}(\Delta) \rangle$$

$$+2\langle \hat{p}(\Gamma), \hat{p}(\Delta) \rangle$$

"Rectangular time" algorithm

- Quadratic time is too slow
- Randomly sample $O(\sqrt{kn})$ documents
- Run group average clustering algorithm to reduce to k groups or clusters
- Iterate assign-to-nearest O(1) times
 - Move each document to nearest cluster
 - Recompute cluster centroids
- Total time taken is O(kn)
- Non-deterministic behavior

KDD2000 Soumen Chakrabarti

25

Issues

- Detecting noise dimensions
 - Bottom-up dimension composition too slow
 - Definition of noise depends on application
- Running time
 - Distance computation dominates
 - Random projections
 - Sublinear time w/o losing small clusters
- Integrating semi-structured information
 - Hyperlinks, tags embed similarity clues
 - A link is worth a ____? ___ words

Random projection

- Johnson-Lindenstrauss lemma:
 - Given a set of points in *n* dimensions
 - Pick a randomly oriented k dimensional subspace, k in a suitable range
 - Project points on to subspace
 - Inter-point distance is preserved w.h.p.
- Preserve sparseness in practice by
 - Sampling original points uniformly
 - Pre-clustering and choosing cluster centers
 - Projecting other points to center vectors

KDD2000 Soumen Chakrabarti 27

Extended similarity

- Where can I fix my scooter?
- A great garage to repair your 2-wheeler is at ...
- auto and car co-occur often
- Documents having related words are related
- Useful for search and clustering
- Two basic approaches
 - Hand-made thesaurus (WordNet)
 - Co-occurrence and associations

Latent semantic indexing

KDD2000 Soumen Chakrabarti

29

LSI summary

- SVD factorization applied to term-bydocument matrix
- Singular values with largest magnitude retained
- Linear transformation induced on terms and documents
- Documents preprocessed and stored as LSI vectors
- Query transformed at run-time and best documents fetched

KDD2000 Soumen Chakrabarti

Collaborative recommendation

- People=record, movies=features
- People and features to be clustered
 - Mutual reinforcement of similarity
- Need advanced models

From Clustering methods in collaborative filtering, by Ungar and Foster

KDD2000 Soumen Chakrabarti 31

A model for collaboration

- People and movies belong to unknown classes
- P_k = probability a random person is in class k
- P_I = probability a random movie is in class /
- P_{kl} = probability of a class-k person liking a class-/movie
- Gibbs sampling: iterate
 - Pick a person or movie at random and assign to a class with probability proportional to P_k or P_l
 - Estimate new parameters

Supervised learning

Supervised learning (classification)

- Many forms
 - Content: automatically organize the web per Yahoo!
 - Type: faculty, student, staff
 - Intent: education, discussion, comparison, advertisement
- Applications
 - Relevance feedback for re-scoring query responses
 - Filtering news, email, etc.
 - Narrowing searches and selective data acquisition

Nearest neighbor classifier

- Build an inverted index of training documents
- Find k documents having the largest TFIDF similarity with test document
- Use (weighted)
 majority votes from
 training document
 classes to classify
 test document

KDD2000 Soumen Chakrabarti

35

Difficulties

- Context-dependent noise (taxonomy)
 - 'Can' (v.) considered a 'stopword'
 - 'Can' (n.) may not be a stopword in /Yahoo/SocietyCulture/Environment/ Recycling
- Dimensionality
 - Decision tree classifiers: dozens of columns
 - Vector space model: 50,000 'columns'
 - Computational limits force independence assumptions; leads to poor accuracy

KDD2000 Soumen Chakrabarti

Techniques

- Nearest neighbor
 - + Standard keyword index also supports classification
 - How to define similarity? (TFIDF may not work)
 - Wastes space by storing individual document info
- Rule-based, decision-tree based
 - Very slow to train (but quick to test)
 - + Good accuracy (but brittle rules tend to overfit)
- Model-based
 - + Fast training and testing with small footprint
- Separator-based
 - * Support Vector Machines

KDD2000 Soumen Chakrabarti

37

Document generation models

- Boolean vector (word counts ignored)
 - Toss one coin for each term in the universe
- Bag of words (multinomial)
 - Toss coin with a term on each face
- Limited dependence models
 - Bayesian network where each feature has at most k features as parents
 - Maximum entropy estimation
- · Limited memory models
 - Markov models

Binary (boolean vector)

- Let vocabulary size be | T |
- Each document is a vector of length | 7|
 One slot for each term
- Each slot t has an associated coin with head probability φ_t
- Slots are turned on and off independently by tossing the coins

$$\mathbf{P} \quad d \mid c) = \prod_{t \in d} \phi_{c,t} \prod_{t \notin d} (1 - \phi_{c,t})$$

KDD2000 Soumen Chakrabarti

-

Multinomial (bag-of-words)

- Decide topic; topic c is picked with prior probability $\pi(c)$; $\sum_{c}\pi(c)=1$
- Each topic c has parameters θ(c,t) for terms t
- Coin with face probabilities $\sum_{t} \theta(c, t) = 1$
- Fix document length ℓ
- Toss coin ℓ times, once for each word
- Given ℓ and c, probability of document

KDD2000 Soumen Chakrabarti

Limitations

- With the term distribution
 - 100th occurrence is as surprising as first
 - No inter-term dependence
- With using the model
 - Most observed $\theta(c,t)$ are zero and/or noisy
 - Have to pick a low-noise subset of the term universe
 - Have to "fix" low-support statistics
 - Smoothing and discretization
 - Coin turned up heads 100/100 times; what is Pr(tail) on the next toss?

KDD2000 Soumen Chakrabarti 41

Feature selection

Tables and queries

TAXONOMY

pcid	kcid	kcname
	1	
1	2	Arts
1	3	Science
3	4	Math
3	5	Physics

EGMAPR(did, kcid) ::=
((select did, kcid from EGMAP) union al
(select e did, t pcid from
EGMAPR as e, TAXONOMY as t
where e.kcid = t.kcid))

STAT(pcid, tid, kcid, ksmc, ksnc) ::=
 (select pcid, tid, TAXONOMY.kcid,
 count(distinct TEXT.did), sum(freq)
 from EGMAPR, TAXONOMY, TEXT
 where TAXONOMY.kcid = EGMAPR.kcid
 and EGMAPR.did = TEXT.did
 group by pcid, tid, TAXONOMY.kcid)

TEXT			
did	tid	freq	

KDD2000 Soumen Chakrabarti

43

Effect of feature selection

- Sharp knee in error with small number of features
- Saves class model space
 - Easier to hold in memory
 - Faster classification
- Mild increase in error beyond knee
 - Worse for binary model

KDD2000 Soumen Chakrabarti

Effect of parameter smoothing

- Multinomial known to be more accurate than binary under Laplace smoothing
- Better marginal distribution model compensates for modeling term counts!
- Good parameter smoothing is critical

KDD2000 Soumen Chakrabarti

Support vector machines (SVM)

- No assumptions on data distribution
- Goal is to find separators
- Large bands around separators give better generalization
- Quadratic programming
- Efficient heuristics
- Best known results

Maximum entropy classifiers

- Observations (d_i, c_i) , i = 1...N
- Want model $p(c \mid d)$, expressed using features f(c, d) and parameters λ_i as

$$p(c \mid d) = \frac{1}{Z(d)} \prod_{j} e^{\lambda_{j} f_{j}(c,d)}, Z(d) = \sum_{c'} p(c' \mid d)$$

- Constraints given by observed data $\sum_{d,c} \widetilde{p}(d) p(c \mid d) f(d,c) = \sum_{d,c} \widetilde{p}(d,c) f(d,c)$
- Objective is to maximize entropy of p $H(p) = -\sum_{d \in \widetilde{p}(d)} p(c|d) \, \mathfrak{g} \quad p(c|d)$
- Features
 - Numerical non-linear optimization
 - No naïve independence assumptions

KDD2000 Soumen Chakrabarti

Semi-supervised learning

Exploiting unlabeled documents

- Unlabeled documents are plentiful; labeling is laborious
- Let training documents belong to classes in a *graded* manner Pr(c|d)
- Initially labeled documents have 0/1 membership
- Repeat (Expectation Maximization 'EM'):
 - Update class model parameters θ
 - Update membership probabilities Pr(c|d)
- Small labeled set→large accuracy boost

KDD2000 Soumen Chakrabarti

Clustering categorical data

- Example: Web pages bookmarked by many users into multiple folders
- Two relations
 - Occurs_in(term, document)
 - Belongs_to(document, folder)
- Goal: cluster the documents so that original folders can be expressed as simple union of clusters
- Application: user profiling, collaborative recommendation

Bookmarks clustering

- Unclear how to embed in a geometry
 - A folder is worth ___?__ words?
- Similarity clues: document-folder cocitation and term sharing across folders

Analyzing hyperlink structure

Hyperlink graph analysis

- Hypermedia is a social network
 - Telephoned, advised, co-authored, paid
- Social network theory (cf. Wasserman & Faust)
 - Extensive research applying graph notions
 - Centrality and prestige
 - Co-citation (relevance judgment)
- Applications
 - Web search: HITS, Google, CLEVER
 - Classification and topic distillation

KDD2000 Soumen Chakrabarti

53

Hypertext models for classification

- c=class, t=text,N=neighbors
- Text-only model: Pr[t|c]
- Using neighbors' text to judge my topic: Pr[t, t(N) | c]
- Better model:
 Pr[t, c(N) | c]
- Non-linear relaxation

KDD2000 Soumen Chakrabarti

Exploiting link features

- 9600 patents from 12 classes marked by USPTO
- Patents have text and cite other patents
- Expand test patent to include neighborhood
- 'Forget' fraction of neighbors' classes

KDD2000 Soumen Chakrabarti

55

Co-training

- Divide features into two classconditionally independent sets
- Use labeled data to induce two separate classifiers
- Repeat:
 - Each classifier is "most confident" about some unlabeled instances
 - These are labeled and added to the training set of the other classifier
- Improvements for text + hyperlinks

KDD2000 Soumen Chakrabarti

Ranking by popularity

- In-degree ≈ prestige
- Not all votes are worth the same
- Prestige of a page is the sum of prestige of citing pages:

$$p = Ep$$

- Pre-compute query independent prestige score
- Google model

- High prestige ⇔ good authority
- High reflected prestige ⇔ good hub
- Bipartite iteration

$$-a = Eh$$

$$-h = E^T a$$

$$-h = E^T E h$$

HITS/Clever model

KDD2000 Soumen Chakrabarti

57

Tables and queries

delete from HUBS;

insert into HUBS(url, score)

HUBS (sel-

(select urlsrc, sum(score * wtrev) from AUTH, LINK where authwt is not null and type = non-local

and ipdst <> ipsrc and url = urldst

group by urlsrc);

update HUBS set (score) = score / (select sum(score) from HUBS);

update LINK as X set (wtfwd) = 1. /

(select count(ipsrc) from LINK where ipsrc = X.ipsrc

and urldst = X.urldst) where type = non-local; wgtfwd
score
urlsrc
wipsrc
wgtrev

wgtfwd
score
urldst
wipdst

LINK

AUTH url score

urlsrc urldst ipsrc ipdst wgtfwd wtrev type

KDD2000 Soumen Chakrabarti

Topical locality on the Web

- Sample sequence of out-links from pages
- Classify out-links
- See if class is same as that at offset zero
- TFIDF similarity across endpoint of a link is very large compared to random page-pairs

KDD2000 Soumen Chakrabarti

59

Resource discovery

Resource discovery results

- High rate of "harvesting" relevant pages
- Robust to perturbations of starting URLs
- Great resources found 12 links from start set

KDD2000 Soumen Chakrabarti 61

Systems issues

Data capture

- Early hypermedia visions
 - Xanadu (Nelson), Memex (Bush)
 - Text, links, browsing and searching actions
- Web as hypermedia
 - Text and link support is reasonable
 - Autonomy leads to some anarchy
 - Architecture for capturing user behavior
 - No single standard
 - Applications too nascent and diverse
 - Privacy concerns

KDD2000 Soumen Chakrabarti

Storage, indexing, query processing

- Storage of XML objects in RDBMS is being intensively researched
- Documents have unstructured fields too
- Space- and update-efficient string index
 Indices in Oracle8i exceed 10x raw text
- Approximate queries over text
- Combining string queries with structure queries
- Handling hierarchies efficiently

Concurrency and recovery

- Strong RDBMS features
 - Useful in medium-sized crawlers
- Not sufficiently flexible
 - Unlogged tables, columns
 - Lazy indices and concurrent work queues
- Advances query processing
 - Index (-ed scans) over temporary table expressions; multi-query optimization
 - Answering complex queries approximately

KDD2000 Soumen Chakrabarti 65

Resources

References

- Data mining for hypertext: A tutorial survey
 - SIGKDD Explorations 1(2), 1—11, 2000
 - www.cse.iitb.ernet.in/~soumen

KDD2000 Soumen Chakrabarti

67

Research areas

- Modeling, representation, and manipulation
- Approximate structure and content matching
- Answering questions in specific domains
- Language representation
- Interactive refinement of ill-defined queries
- Tracking emergent topics in a newsgroup
- Content-based collaborative recommendation
- Semantic prefetching and caching

KDD2000 Soumen Chakrabarti

Events and activities

- Text REtrieval Conference (TREC)
 - Mature ad-hoc query and filtering tracks
 - New track for web search (2...100GB corpus)
 - New track for question answering
- Internet Archive
 - Accounts with access to large Web crawls
- DIMACS special years on Networks (-2000)
 - Includes applications such as information retrieval, databases and the Web, multimedia transmission and coding, distributed and collaborative computing
- Conferences: WWW, SIGIR, KDD, ICML, AAAI