
Curating and Searching the Annotated Web
Amit Singh, Sayali Kulkarni, Somnath Banerjee, Ganesh Ramakrishnan, Soumen Chakrabarti

IIT Bombay
ganesh@cse.iitb.ac.in, soumen@cse.iitb.ac.in

ABSTRACT
We demonstrate CSAW, a system for Curating and Searching
the Annotated Web. CSAW annotates named entities and
quantities in Web-scale text corpora, and, where confident,
connects these annotations with entries in an entity and
type catalog such as Wikipedia. The semistructured cat-
alog, together with the unstructured corpus, forms a com-
posite database that CSAW can then search using powerful
reachability, proximity and aggregation primitives. Specif-
ically, we can look for snippets with mentions of specific
entities, entities of a specified type, quantities with specified
types or units, find unions and intersections of snippet sets,
and then aggregate evidence from snippet sets into ranked
responses. Responses are not page URLs as in standard
Web search, but ranked tables where the cells can be entity
references, quantities, or token snippets. We will show a
subset of CSAW’s capabilities, and describe the beginnings
of a next-generation Web search API that significantly ex-
tends the capabilities of APIs provided by popular search
engines today.

1. INTRODUCTION
Despite immense progress in crawling and indexing the

Web as well as ranking technology, the query experience has
remained exactly the same as fifteen years back: type some
string tokens into a text box, and get a ranked list of URLs as
response. Several notable research prototypes [5, 4, 6] have
sought to break this “syntax barrier” [3] on small corpora
and specific tasks, but these have not become mainstream
at Web scale.

Substantial advances have been made in two related tech-
nologies in the last decade: named entity recognition (NER)
and entity resolution or disambiguation. Collectively, we
call these information extraction [11]. Web search engines
already annotate their enormous corpus with several named
entities of coarse-grained types, such as persons, organiza-
tions, locations, dates, prices, etc. These annotations are
exploited extensively by the ranking logic. E.g., 94720 in
the query pizza 94720 may be interpreted as a zip code.
Responses to queries on (ambiguous) person names are di-
versified so as not to be dominated by a few people.

Notwithstanding these advances, the connection between
the world of text and the semantic world of entities and
relations is still tenuous in mainstream Web search [2].

• As far as publicly known, Web search engines annotate
named entities from a few dozen types, but they do
not attach token spans to entities in a suitable entity
catalog.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$10.00.

• The lowest common denominator query language gives
the user very little control over expressing queries that
are in part placeholders for entities of given types and
in part strings and other predicates to match e.g.,
weight of Nikon FM2N.

• The response is page-oriented rather than entity and
relation oriented, which are often the responses de-
sired. The onus is on the user to click through and
inspect the page for the answer. (The response snip-
pets often do not serve up the answer.)

• There is no precise, flexible and open policy of evidence
aggregation across token segments rich in matched query
words.

In this demo, we present an early preview of CSAW (Cu-
rating and Searching the Annotated Web), a system that
addresses the issues listed above.

1.1 Data model
Ordinary IR systems index token strings and severely re-

strict query expressiveness, whereas relational databases de-
mand intimate schema knowledge. Information extraction
systems analyze unstructured text and populate structured
databases that can be queried independent of the original
corpus. Our premise is that the data model for next-generation
search has to be somewhere in between: IR indices aug-
mented with linkages to structured catalogs of entities and
relationships. In our current architecture of CSAW,

• A document is modeled as a sequence of tokens.
• Some token segments are identified as potential men-

tions of named entities.
• One special kind of named entities is a quantity, pos-

sibly associated with a unit of measurement.
• Some tokens segments are associated with an entity

node ID in an entity catalog, currently, Wikipedia. In
a companion paper [9] we describe new algorithms for
adding such annotations accurately.

• Wikipedia also provides a category hierarchy ; each en-
tity node can be attached with one or more categories.

For concreteness we will refer to Wikipedia in the rest of
this paper, while making it clear that other entity catalogs
may be used.

1.2 Query capabilities
This composite representation allows us to combine cir-

cumstantial evidence of association (textual proximity) with
relatively clean structured data (inside the catalog) in potent
ways. At a high level, queries are built out of the following
primitives:

• Instantiating documents or snippets (collectively called
contexts) where query tokens occur close together.

• Ditto for mentions of a given entity, or entities reach-
able from a given category.

• Intersecting context sets where query tokens or entity
mentions co-occur.

• Extracting entities and quantities from qualifying con-

texts.
• Scoring and ranking entities, quantities and quantity

intervals based on the number and quality of contexts
where they occur.

Detailed examples follow in Section 2, suggesting a prelimi-
nary sketch of a query API.

As with SQL or XQuery, we do not expect typical end
users to type queries in such a language. We expect query
mining and NLP applications to“compile” information needs
into our intermediate form [10, 8].

1.3 Response
Another broad departure from typical Web search is that

the CSAW user expects not a list of URLs, but entities,
quantities, or tables of entities, quantities and text fields.
In case of select-like point queries, users may ask for the
typical battery life of a laptop, or the phone number of a
business. Search engines are beginning to appreciate the
utility of simple attribute compilation interfaces, such as
Google Squared. CSAW goes further; we can ask about the
typical driving time between Paris and Nice, which is not an
attribute of either entity. In addition, CSAW aggregates ev-
idence or consensus over contexts to rank quantity intervals
[1], and we are adding capabilities to aggregate evidence for
discrete entities as well [7]. As just one example of what
this can enable, we can get as response a table of physicists
and musical instruments, sorted in decreasing order of evi-
dence of association. More concrete examples are shown in
Section 2.

2. USER EXPERIENCE

2.1 Basic notions
A query is either a simple query or a join query. A simple

query has two parts:
Target entities: A target entity is either a Wikipedia cat-

egory or a quantity type (abbreviated qtype). Qtypes
may be in a hierarchy, e.g. Qtype:foot is a refinement
of Qtype:LinearDistance. Target entities are repre-
sented by a free variable of the form ?v.

Match conditions: A match condition is a set of items
drawn from three kinds of items.

Tokens: Single tokens or phrases represented as strings,
e.g., academy awards.

Entities: References to entities, such as Castro (city)
or Jordan algebra. Although we write them as
strings for clarity, they are internally represented
as Wikipedia node IDs.

Quantities: A numeric literal, associated with a unit,
e.g., 1250 INR. Although written as a string, this
is internally represented as a number and a stan-
dard unit, enabling approximate numeric match-
ing and possibly unit conversion.

Search
Luxembourg (district)

Luxembourg (canton)

Luxembourg (city)

Luxembourg (Belgium)

Luxembourg (album)

Luxembourg (band)

Matching conditions: [Luxembourg

Figure 1: Wikipedia entity suggestion.

The purpose of a simple query is to extract contexts that
have an instance of each target entity, and have high simi-
larity or proximity to the match conditions. These contexts
are then suitably aggregated to emit a sequence of response
tuples. A join query is a collection of simple queries related
through shared target entities. Examples follow shortly.

Search
count

millimeter

meter

mile

kilometer

foot

degree

lb

kilogram

INR

USD

Matching conditions: [Luxembourg (city)] distance {

Figure 2: Qtype suggestion.

2.2 Query hardening
CSAW does not assume that the user has intimate knowl-

edge of Wikipedia entities or categories or quantity types.
Instead, the query process proceeds in two steps. In the
first step, the query is hardened through an autocompletion
(also called query suggestion). Typing “[” triggers autocom-
pletion to a Wikipedia entity or category via user selection
from a drop down list. This facilitates the user to harden the
keyword Luxembourg to the Wikipedia entity Luxembourg
(city) (in the sense of a city) as shown in Figure 1. Simi-
larly, typing “{” triggers autocompletion to a qtype, such as
meter, USD, foot etc., as shown in Figure 2. In the exam-
ples that follow, Wikipedia entities will be marked within
“[]” and qtypes marked with “{}”.

2.3 Supported predicates and operators
CSAW currently supports the predicates IsA, SubCat,

HasCat, HasUnit and InContext. The first three in-
volve Wikipedia’s entity and category hierarchy. IsA(e, C)
means entity e is a direct instance of category C, i.e., e ∈ C.
SubCat(C1, C2) means C1 ⊆ C2. HasCat(e, C) ≡ e ∈
C1 ⊆ · · · ⊆ C, shorthanded as e ∈+ C. InContext takes
one context argument and a variable number of entities,
quantities, tokens and phrases, and returns true if the latter
all appear in the context. The width of a context is usually a
certain window of tokens, a sentence, or a table cell etc. E.g.,
InContext(s; elephant, ?h) ∧ HasUnit(?h, Qtype:foot) is
true if the string literal “elephant” appears in a context s to-
gether with a quantity with unit foot. Note that QType:foot
is already disambiguated apart from the elephant’s foot. We
will abbreviate this query as InContext(s; elephant, ?h ∈
QType:foot).

The most interesting operator in CSAW is Cons, which
aggregates evidence (“consensus”) over qualifying contexts.
Suppose we wish to list scientists that are most likely to be
associated with musical instruments. We first write

InContext(?c; ?s ∈+ Category:Scientists,
?m ∈+ Category:Musical instruments, played)

to collect contexts, and then write down the aggregation
Cons(?c) to collect tuples 〈?s, ?m〉 across contexts ?c, sorted
in decreasing order of evidence. Consensus for quantities [1]
may be achieved differently from collecting consensus for
discrete entities [7].

2.4 Example queries
We describe some more queries supported by our system

to illustrate our design.

Target Entity Set: {kilometer}

Matching conditions: [Luxembourg (city)] [Castro (city)] distance far

Result Set

Search
Quantity type

String tokens

Wikipedia entities

kilometer

… <distance retrieved>

Figure 3: Searching for a quantity.

Target Entity Set: [French films]

Matching conditions: won Academy Awards {count}

Result Set

Search
Wikipedia category

String tokens

Quantity type

Result Set

Entity Name count

Baise-moi …

The Gleaners and I …

Happenstance …

Le Roi Danse …

Sade …

Signs & Wonders …

Sous Le Sable …

The Taste of Others …

Taxi 2 …

La Veuve de Saint-Pierre …

String tokens

Figure 4: Compiling a single quantity related to el-
ements of a specified category.

Single target quantity. Cons(?c) where
InContext(?c; ?d ∈ +Qtype:LinearDistance,
Castro (city), Luxembourg (city), distance, far)

finds the distance between cities Castro and Luxembourg.
See Figure 3.

Multiple targets expressed as category. Suppose we want
to compile a table with a row for every French film, with the
title and number of Academy Awards won by that film as
the two columns. The clauses of our query are

• ?f ∈+ Category:French Films,
• ?a ∈ Qtype:Number,
• InContext(?c; ?f, ?a, academy awards, won),

followed by the “group-by” Cons(?c), resulting in a table
with two columns. See Figure 4.

Subqueries and joins. We may want to compile the pro-
duction cost and number of academy awards for French
films. In general these quantities may come from different
context, even different pages. Effectively, two subqueries are
issued with shared free variables ?f, ?a, ?p, the clauses being

• ?f ∈+ Category:French Film,
• ?a ∈ Qtype:Number, ?p ∈ Qtype:MoneyAmount,
• InContext(?c1; ?f, ?a, academy awards, won),
• InContext(?c2; ?f, ?p, production cost, budget),

ending with Cons(?c1, ?c2), to emit a sequence of 〈?f, ?a, ?p〉
tuples. See Figure 5.

Since we will be extracting and aggregating information
from largely unstructured sources, in general, the output is
a probabilistic or uncertain database, i.e., tuples should be
accompanied with some notion of confidence, so that, e.g.,
they can be materialized and reused in other queries. Un-
certain databases is a major area of contemporary database

Result Set

Search

Result Set

Search

Target Entity Set: [French films]

Matching conditions: production cost {USD}

Entity Name count

Baise-moi …

The Gleaners and I …

Happenstance …

Le Roi Danse …

Sade …

Signs & Wonders …

Entity Name USD

Baise-moi …

The Gleaners and I …

Happenstance …

Le Roi Danse …

Sade …

Signs & Wonders …

QCQ1 QCQ2
Target Entity Set: [French films]

Matching conditions: won Academy Awards {count}

Sous Le Sable …

The Taste of Others …

Taxi 2 …

La Veuve de Saint-Pierre …

Sous Le Sable …

The Taste of Others …

Taxi 2 …

La Veuve de Saint-Pierre …

Entity Name count USD

Baise-moi … …

The Gleaners and I … …

Happenstance … …

Le Roi Danse … …

Sade … …

Signs & Wonders … …

Sous Le Sable … …

The Taste of Others … …

Taxi 2 … …

La Veuve de Saint-Pierre … …

Join Results

Figure 5: Subqueries and joins.

research and we plan to draw on this area to further refine
our system.

3. SYSTEM DESCRIPTION
The pages crawled from the Web are annotated using

the quantity and Wikipedia annotators. The two anno-
tation engines generate separate Lucene indices which are
merged and stored in a distributed manner using Katta
(http://katta.sourceforge.net/). The search API uses
this distributed index to filter pages based on the Wikipedia
entities appearing in the query keywords. Filtered results
are then fed to the QCQ component that returns the final
ranked interval list. See Figure 6.

3.1 Annotation Process

3.1.1 Quantity Annotator
The quantity annotator detects quantity mentions and

classifies them into one of several quantity types such as
count, date, mile, hour, dollar etc. Quantity mentions oc-
cur in diverse forms like $10, USD 10, 000, 10–20 feet, 106

km, ten million litres. The system uses a set of pre-defined
rules for each quantity type to annotate token spans. This
annotation process can be done at the rate of 900 docu-
ments/second on one 4-core Intel Xeon CPU (2.50GHz).

Annotation

Engine

Katta Cluster Search

API
Indexer

Quantity

Annotator

Wikipedia

Entity

Annotator

Engine

Web

Pages

Node-1

Node-2

Node-k

API

Lucene

Index HDFS

QCQ

System

One time indexing Query Multicast Global top results QCQ ranked interval result

Figure 6: System Architecture

3.1.2 Wikipedia Entity Annotator
The entity annotation component consists of tagging the

Wikipedia entities appearing in the plain text. There are
two main stages in this process: spotting and tagging.

Spotting phase. The Wikipedia version we use contains
about 2.3 million Wikipedia entities. These entities are used
to build a trie (prefix tree) generated using the Webgraph1

framework. Documents to be annotated are tokenized and
token sequences that maximally match an entity in the trie
are identified. These token sequences are termed as spots.
For our demonstration, we restrict our entity set to a subset
of the entities picked from a few Wikipedia categories.

Tagging phase. Once all the candidate spots on a page
are identified, a label is chosen for each spot independent
of the others, without any collective information, using the
Local algorithm [9]. Some of the identified spots could be
dropped in the annotation phase for the lack of annotation
confidence. We plan to use the collective inference tech-
niques [9] in the future. The Local algorithm was reported
to yield a maximum F1 measure of 60.49 at a precision of
59.24, when evaluated on about a hundred news articles with
about 20,000 spots to annotate. Precision can be gained at
the cost of recall to achieve a precision of 70.22% at a re-
call of 41.75% and 79.57% at a recall of 14.63%. In our
annotation process, we decided to be conservative about the
annotations we make in order to improve our precision at
the cost of low recall. The entire annotation process using
Local can be done at the rate of 10 documents/second on
one 4 core Intel Xeon CPU (2.50GHz). The main bottle-
neck in the processing pipeline is random disk I/O involved
in accessing Wikipedia feature vectors (∼10GB) since they
cannot entirely fit in RAM.

3.1.3 Indexing
Quantity and entity annotations generated by the anno-

tation components are stored as Lucene indexes distributed
across multiple machines. We have adapted the Katta frame-
work to answer the queries over this distributed index.

3.2 Query Processing
The query is first decomposed into simple subqueries. For

each simple query, the target entities and quantities define a
set of contexts to inspect. These contexts are constructed by
scanning posting lists for entity and quantity types together
with posting lists for ordinary words [4].

In CSAW, the posting scan is complicated by the dis-
tributed nature of the Katta index. Candidate lists are built
on each Katta node and these are merged to a central list.

Contexts in the high-quality list are scored and then ag-
gregated to develop a confidence score for every candidate
tuple. If needed, these are then joined across subqueries to
produce the final answer.

Acknowledgment. Thanks to D. Grosvenor, K. Ramanathan,
S. Sarawagi and S. Sudarshan for helpful discussions.

4. REFERENCES
[1] S. Banerjee, S. Chakrabarti, and G. Ramakrishnan.

Learning to rank for quantity consensus queries. In
SIGIR Conference, 2009.

1http://webgraph.dsi.unimi.it/

Soft selector (keywords)

“Height”, ”of”

Hard selector (Quantity, Entity)

”qty.feet”, “Giraffe”

Lucene query

Input query

“Height(qty.feet)

of [Giraffe]”

Retrieve top

documents from

Katta index

Calculate snippet

feature

Aggregate results

using consensus

Rank final results

Figure 7: Query execution.

[2] A. Broder, S. Chakrabarti, J. Ribas, V. Singh, and
N. Weininger. Web search APIs: The next generation.
In WWW Conference, Apr. 2009. Panel discussion.

[3] S. Chakrabarti. Breaking through the syntax barrier:
Searching with entities and relations. In
ECML/PKDD, pages 9–16, 2004. Invited talk.

[4] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing
scoring functions and indexes for proximity search in
type-annotated corpora. In WWW Conference,
Edinburgh, May 2006.

[5] T. Cheng, X. Yan, and K. C. Chang. EntityRank:
Searching entities directly and holistically. In VLDB
Conference, pages 387–398, Sept. 2007.

[6] G. Kasneci, F. M. Suchanek, G. Ifrim, S. Elbassuoni,
M. Ramanath, and G. Weikum. NAGA: harvesting,
searching and ranking knowledge. In SIGMOD
Conference, pages 1285–1288. ACM, 2008.

[7] J. Ko, E. Nyberg, and L. Si. A probabilistic graphical
model for joint answer ranking in question answering.
In SIGIR Conference, pages 343–350, 2007.

[8] V. Krishnan, S. Das, and S. Chakrabarti. Enhanced
answer type inference from questions using sequential
models. In EMNLP/HLT, pages 315–322, 2005.

[9] S. Kulkarni, A. Singh, G. Ramakrishnan, and
S. Chakrabarti. Collective annotation of Wikipedia
entities in Web text. In SIGKDD Conference, 2009.

[10] A. Popescu, O. Etzioni, and H. Kautz. Towards a
theory of natural language interfaces to databases. In
Intelligent User Interfaces, pages 149–157, Miami,
2003. ACM.

[11] S. Sarawagi. Information extraction. FnT Databases,
1(3), 2008.

