
Distributed Hypertext Resource Discovery Through Examples

Soumen Chakrabarti1

IIT Bombay
soumen@cse.iitb.ernet.in

Martin H. van den Berg2

FX Palo Alto Laboratory
vdberg@pal.xerox.com

Byron E. Dom
IBM Almaden

dom@almaden.ibm.com

Abstract
We describe the architecture of a hypertext resource dis-

covery system using a relational database. Such a system

can answer questions that combine page contents, meta-

data, and hyperlink structure in powerful ways, such as

“find the number of links from an environmental protec-

tion page to a page about oil and natural gas over the last

year.” A key problem in populating the database in such

a system is to discover web resources related to the topics

involved in such queries. We argue that that a keyword-

based “find similar” search based on a giant all-purpose

crawler is neither necessary nor adequate for resource dis-

covery. Instead we exploit the properties that pages tend

to cite pages with related topics, and given that a page u

cites a page about a desired topic, it is very likely that u

cites additional desirable pages. We exploit these proper-

ties by using a crawler controlled by two hypertext mining

programs: (1) a classifier that evaluates the relevance of a

region of the web to the user’s interest (2) a distiller that

evaluates a page as an access point for a large neighborhood

of relevant pages. Our implementation uses IBM’s Univer-

sal Database, not only for robust data storage, but also for

integrating the computations of the classifier and distiller

into the database. This results in significant increase in I/O

efficiency: a factor of ten for the classifier and a factor of

three for the distiller. In addition, ad-hoc SQL queries can

be used to monitor the crawler, and dynamically change

crawling strategies. We report on experiments to establish

that our system is efficient, effective, and robust.

1 Introduction

There is a growing need for future generations of hy-
pertext search engines that transcend keyword-based
search and permit powerful query and discovery by
combining predicates on page content, page and hyper-
link meta-data, and hyperlink graph structure. Sev-

1Work partly done at IBM Almaden
2Work done at IBM Almaden

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

eral projects including TSIMMIS3 [19], WebSQL4 [26],
W3QS5 [24], WEBL6 [22], STARTS7, WHIRL8, and
generalized proximity search [18] have made impor-
tant advances in the data representation and query
optimization for semi-structured and unstructured do-
mains.

Our goal in the Focus project is to go beyond rep-
resentation and basic querying, to discover properties
that combine the topical content of web pages and the
linkage relationship between them. We give some ex-
amples of such advanced query power:
Citation sociology: Find a topic (other than bicy-
cling) within one link of bicycling pages that is much
more frequent than on the web at large. The answer
found by the system described in this paper is first aid.
Typed link: Find computer science theory faculty
who have advised at least one student who has pub-
lished on database topics.
Spam filter: Find pages that are apparently about
database research which are cited by at least two pages
about Hawaiian vacations.
Community evolution: Find the number of links
from a page about environmental protection to a page
related to oil and natural gas over the last year.

The novelty in the examples above is that page con-
tent is selected by topics, not keyword matches. In the
examples above, the topics are expressed syntactically
using simple phrases, but we envisage that in actual
use, our system will not depend on the keyword ‘bi-
cycling’ to select bicycling related pages from the web
(many of which might not contain that word) but in-
stead learn to identify bicycling related pages from a
set of examples provided by the user. Our goal is to
answer such queries while materializing as little of the
distributed hypertext repository (in general, the Web)
as possible.

In the spirit of Mendelzon and Milo [27], we claim
that the traditional self-contained view of a database
is not appropriate for answering such questions. The
queries above involve small fractions of the web. A
standard crawler would waste resources and yet likely
to provide stale and incomplete results; the biggest
search engines cover 35–40% of the Web today [3].

3http://www-db.stanford.edu/tsimmis/tsimmis.html
4http://www.cs.toronto.edu/~websql/
5http://www.cs.technion.ac.il/~konop/w3qs.html
6http://www.research.digital.com/SRC/WebL
7http://www-db.stanford.edu/~gravano/starts.html
8http://whirl.research.att.com/

http://www.cs.berkeley.edu/~soumen
http://earth.hum.uva.nl/~vdberg
http://www.almaden.ibm.com/cs/people/dom
http://www.cs.berkeley.edu/~soumen/focus
http://www-db.stanford.edu/tsimmis/tsimmis.html
http://www.cs.toronto.edu/~websql/
http://www.cs.technion.ac.il/~konop/w3qs.html
http://www.research.digital.com/SRC/WebL
http://www-db.stanford.edu/~gravano/starts.html
http://whirl.research.att.com/

Thus, a large crawl of the web, followed by filtering
based on topic (used earlier in a search engine set-
ting [12]) is a poor solution.

This paper deals with the implementation of a novel
example-driven, goal-directed data acquisition system.
Its goal is to answer a pre-specified set of standing
queries continually, not answer interactive queries un-
less they are contained in the topics crawled to answer
the standing queries. Keeping the access costs of the
web ‘database’ in mind, we propose the following prob-
lem formulation.

1.1 Problem formulation

We are given a directed hypertext graph G. G is dis-
tributed, as is the case for the web, and there is a
non-trivial cost for visiting any vertex (web page) of
G. There is also a tree-shaped hierarchical topic direc-
tory C such as Yahoo!. Each topic node c ∈ C refers
to some pages in G as examples (provided manually).
We denote the examples associated with topic c as
D(c). These pages can be preprocessed as desired by
the system. The user’s interest is characterized by a
subset of topics C∗ ⊂ C that is marked good. No good
topic is an ancestor of another good topic. Topics in
the subtree of a good topic are called subsumed topics.
Ancestors of good topics are called path topics.

Given a web page q, a measure of relevance RC∗(q)
of q w.r.t. C∗, together with a method for computing
it, must be specified to the system. C∗ will be omit-
ted if clear from the context. In this paper, we will
use a probability measure 0 ≤ R(q) ≤ 1. By defini-
tion, R{root}(q) = 1∀q. If {ci} are children of c0, then∑

ci
Rci(q) = Rc0(q).

The system starts by visiting all pages in D(C∗).
In each step, the system can inspect its current set
V of visited pages and then choose to visit an unvis-
ited page from the crawl frontier, corresponding to a
hyperlink on one or more visited pages9. Informally,
the goal is to visit as many relevant pages and as few
irrelevant pages as possible, i.e., to maximize average
relevance. Therefore we seek to find V ⊇ D(C∗) where
V is reachable from D(C∗) such that

∑
V R(v)/|V | is

maximized.

1.2 Rationale and discussion

The above formulation is primarily for clarity. When
G is the web, there is no hope of designing an optimal
algorithm, or evaluating practical algorithms against
the optimal visited set. Indeed, part of the paper (§3)
deals with this non-trivial evaluation problem, measur-
ing various indirect indicators of effectiveness. W.r.t.
almost any meaningful C∗, the average relevance of
the whole web is extremely small, therefore we ex-
pect |V | � |G|. Thus the system is naturally pre-
vented from visiting and pre-processing the entire web

9But also see §3.2 for more general notions of page visitation.

graph, as is attempted by current web crawlers. The
user’s choice of C∗ is a clean way to capture the recall-
precision trade-off. Crawlers with very general topics
in C∗ (such as the root of the topic tree) have large re-
call whereas topic nodes deep in the topic tree induce
high precision.

In a self-contained database, there are, in principle,
simple formulations for query by example. There is a
universe of n objects U , and given a probe or query ob-
ject q and a distance measure d, the goal is to find the
top k � n objects u with the smallest values of d(q, u).
Query by Image Content (QBIC) is an example of this
paradigm [29].

There are a number of reasons why this model is
inadequate for our purposes. The biggest problem is
data acquisition. E.g., it is unreasonable to have to
acquire and analyze 350 million web pages to decide
upon the thirty pages most relevant to the user’s inter-
est. Another serious problem is the definition of sim-
ilarity or relevance. Fairly successful representations
and similarity measures have been devised for images,
but keyword matches are known to be relatively un-
reliable for searching text. Third, the diverse styles
of hypertext authoring, together with the abundance
of pages relevant to broad topics, makes it difficult to
completely identify the hyperlinked community from
a keyword query response [31].

1.3 Contributions

Our main contribution is the design of a novel
example-driven, goal-directed resource discovery sys-
tem. Our system uses two basic properties of the web:
pages cite pages on related topics, and a page that
points to one page with a desired topic is more likely
than a random page to point to other pages with de-
sired topics. Accordingly, we use two devices: a super-
vised classifier that learns the topic(s) of interest from
the user’s examples, and then guides the crawler ac-
cordingly, and a distiller, which runs concurrently with
the crawler, identifying nodes in the growing crawl
graph that are likely to lead to a large number of
relevant pages. (Such pages are not necessarily very
relevant in themselves.)

Another contribution is the implementation of the
system on a relational database. The three modules,
crawler, classifier, and distiller, together with mon-
itoring and administering utilities, run concurrently
as clients. The database is not merely a robust data
repository, but takes an active role in the computa-
tions involved in resource discovery (§2.1.3 and §2.2.3).
An important aspect of this work is the design of flex-
ible schemes for crawl frontier management, and the
representation of the classifier and distiller in a rela-
tional framework.

We give experimental evidence that our system is ef-
fective at discovering topic-specific web subgraphs. In
particular, relevant and high-quality pages are found

http://www.yahoo.com

several links away from the results of keyword searches,
establishing the superiority of our approach. We also
show how a careful DBMS implementation yields bet-
ter I/O performance in the classifier and distiller.

1.4 Related work

Although hypertext classification [8] and hyperlink-
based popularity analysis (PageRank [5], HITS [23],
CLEVER [7] and topic distillation [4]) and similar-
ity search [15] have been studied before, no notion of
adaptive goal-directed exploration is evident in these
systems. Another important distinction of our system
is the integration of topical content into the link graph
model. PageRank has no notion of page content10, and
HITS and CLEVER explore the web to a preset radius
(typically, 1) from the keyword query response. All in-
volve pre-crawling and indexing the web.

A few systems that gather specialized content have
been very successful. Cho et al compare several crawl
ordering schemes based on link degree, perceived pres-
tige, and keyword matches on the Stanford Univer-
sity web [13]. Ahoy!11 is a homepage search service
based on a crawler specially tuned to locate home-
pages. Cora12 is a search engine for computer science
research papers, based on a crawler trained to extract
such papers from a given list of starting points at suit-
able department and universities. Information filtering
agents such as WebWatcher [20], HotList and ColdList
[30], Fish Search [16], Shark Search and Fetuccino [2],
and clan search [32] have served a similar purpose.
These are special cases of the general example- and
topic-driven automatic web exploration that we un-
dertake.

2 Architecture

Our problem formulation in the previous section does
not in itself suggest a procedure to attain that goal.
If pages of all topics were finely dispersed throughout
the web, there would be little hope for finding coherent
communities. This, however, is not the case. Most
citations are made to semantically related pages. Two
rules can be exploited:

Radius-1 rule: Compared to an irrelevant page, a
relevant page is more likely to cite another rel-
evant page.

Radius-2 rule: The unconditional probability of a
random web page u pointing to a page of a given
topic may be quite small. However, if we are told
that u does point to one page v of a given topic,
this significantly inflates the probability that u
has a link to another page of the same topic.

10Although Google likely combines PageRank with content-
based heuristics.

11http://www.cs.washington.edu/research/ahoy
12http://www.cora.jprc.com/

These claims have been demonstrated using corpora
such as patents from the US Patent Office and web
pages cataloged in Yahoo!. E.g., a page that points
to a given first level topic of Yahoo! has about a 45%
chance of having another link to the same topic.

In this section we will describe how to exploit
these properties. The radius-1 rule is exploited by a
classifier which makes relevance judgments on pages
crawled to decide on link expansion. The radius-2 rule
is exploited by a distiller which identifies pages with
many links to unvisited promising links. The system
is built around a crawler with dynamically reconfig-
urable priority controls which are governed by the clas-
sifier and distiller.

2.1 Classification

The relevance of each URL fetched is evaluated us-
ing a classifier. Many different methods for text
classification have been studied [1, 6, 14, 17]. Here
we will use a Bayesian classifier. This broad fam-
ily of classifiers have been found to be computation-
ally very inexpensive and yet quite effective for high-
dimensional applications such as text. The CMU
World Wide Knowledge Base project has often used
simple Bayesian learning algorithms13 with good re-
sults. Silicon Graphics MineSet includes a Bayesian
classifier14.

2.1.1 Classifier computations

To simplify the exposition, we will propose a simple
statistical generative model for documents which has
been found to be surprisingly effective. Let classes be
denoted c in formulae and cid in SQL code. For each
term t (from a universe of terms) and each class c,
there is a parameter θ(c, t). (The value of this param-
eter is unknown and is estimated from the training
documents). Terms are denoted as tid in formulae.
Given numeric values of all θ, a document d is gener-
ated as follows. First, a class or topic is chosen using
a prior distribution. All documents by definition be-
long to the root of the topic tree; Pr[root] = 1. Given
that we have decided to write a document about inter-
nal topic node c0, we refine the decision by picking a
child of c0: class ci is picked with probability Pr[ci|c0],
whose logarithm15 is denoted logprior(ci) later.

Once the (leaf) class node c has been decided, the
length of the document is set arbitrarily. (One may
also pick the length using a class-conditional distribu-
tion, but we keep the model simple.) Having picked
the length n(d), we write out the document term after
term. Each term is picked by flipping a die with as

13http://www.cs.cmu.edu/afs/cs.cmu.edu/project/
theo-11/www/wwkb/

14http://www.sgi.com/software/mineset/mineset_data.
html

15We work in the log domain because the absolute probability
is often very small.

http://google.com
http://www.cs.washington.edu/research/ahoy
http://www.cora.jprc.com/
http://www.uspto.gov
http://www.yahoo.com
http://www.yahoo.com
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.sgi.com/software/mineset/mineset_data.html
http://www.sgi.com/software/mineset/mineset_data.html

many sides as there are terms in the universe. The
face corresponding to term t has probability θ(c, t) of
turning up. In the resulting document, the number
of occurrences of t is denoted n(d, t) in formulae and
freq(d, t) in SQL. The class-conditional probability of
generating the document is

(
n(d)
{n(d,t)}

)∏
t∈d θ(c, t)

n(d,t).
This is called the Bernoulli or multinomial model for
text generation.

During the setup stage, the classifier is trained with
example documents associated with each node or class
in the taxonomy tree. Training is in some sense the op-
posite of generation: given documents with associated
classes, the classifier constructs statistical models for
each class and stores these on disk. At each internal
node c0 in the class tree, training involves three steps:

Feature selection: Of all the terms in the universe,
a subset F (c0) is selected. Intuitively, these are terms
that provide the maximum discrimination power be-
tween documents belonging to different subtrees of c0.
Because training data is limited and noisy, accuracy
may in fact be reduced by including more terms. Fea-
ture selection has been studied in detail elsewhere [6].

Parameter estimation: For all internal classes c0
and all t ∈ F (c0), we have to estimate θ(ci, t) for each
child ci of c0 from the training documents. Let D(ci)
be the set of training documents for class ci. Then
θ(ci, t) is estimated as:

1 +
∑

d∈D(ci)
n(d, t)∣∣∪d∈D(c0){t ∈ d}

∣∣+
∑

d∈D(ci)

∑
t∈d n(d, t)

(1)

Notice that θ(ci, t) > 0 for all ci and t, but
for most t, n(d, t) = 0 (text data is very
sparse). To avoid losing the sparseness, we
only store logtheta(ci, t) = log θ(ci, t), where∑

d∈D(ci)
n(d, t) > 0, and logdenom(ci) =

log
(∣∣∪d∈D(c0){t ∈ d}

∣∣+
∑

d∈D(ci)

∑
t∈d n(d, t)

)
.

Index construction: In traditional classification,
the final indexing table, called BLOB here, is built as a
map from (c0, t), where t ∈ F (c0), to a set of records.
Each record is for a child ci of c0 (all children need
not be present), of the form (ci, logtheta(ci, t)). This
structure is shown in Figure 1. c0 is denoted pcid and
ci are denoted kcid. There is also a TAXONOMY table
mapping ci to logdenom(ci) and logprior(ci).

During crawling, each page is subjected to testing.
The traditional purpose of testing is to assign the doc-
ument to one or few best-matching classes. A test
document d is routed as follows. Suppose the root is
denoted c0. In test mode, d is tokenized, and for each
term t an index probe is made with the key (c0, t). For
those t ∈ F (c0), a set of c and θ values are retrieved.
These are used to update the probability that d was
generated from each child of c0, given it was generated
from c0 (this can be applied recursively from the root

using chain rule):

Pr[ci|c0, d] = Pr[d, ci, c0]/Pr[d, c0]
= Pr[d, ci]/Pr[d, c0]
= Pr[ci|c0](Pr[d|ci]/Pr[d|c0]), (2)

because d ∈ ci ⇒ d ∈ c0. (See SingleProbe in Fig-
ure 2 for details.)

The newly evaluated nodes ci are checked into a
pool of nodes to be further expanded. From this pool,
the node with highest probability is picked as the new
“root” and the above process is repeated. Typically,
one may stop after evaluating the highest probability
leaf node.

2.1.2 Modifications for resource discovery

In the administration phase, the user has marked a
set of classes as good. A simple strategy for resource
discovery could be the hard focus rule.

Hard focus rule: Suppose the best leaf class if the
current page d is determined to be c∗. If some
ancestor of c∗ is good, insert the outlinks in d
into the crawl frontier.

We won’t go into details, but this turns out not to be a
good rule; crawls controlled by this rule may stagnate,
i.e., stop because the entire crawl frontier is found un-
suitable for expansion. Manual inspection typically
shows that the frontier nodes are quite relevant, but
the best leaf class is not a descendant of a good class.

Soft focus rule: For queries on the materialized Web
subgraph, the hard focus notion may be used to
select relevant pages. For data acquisition, how-
ever, we are better off evaluating for each docu-
ment d, the probability that it is good,

R(d) ≡ relevance(d) =
∑

good(c)

Pr[c|d], (3)

and prioritizing page crawls (partly) based on this
number. We will report only on the soft focus rule
because it is more robust.

2.1.3 I/O efficient implementation

We will first describe the common implementation of
the classification, explain why this has poor perfor-
mance, and give a superior implementation coded di-
rectly in SQL. Performance analysis is deferred to §3.

Traditionally, keyword-based near-neighbor search
is done using the inverted file approach. For classi-
fication, we do not need to search for documents by
keywords. We can therefore use a more compact in-
verted file representation, described next.

Keyword indices are constructed by assigning
unique ID’s to each term (we use t in formulae, tid in
SQL) and each document (d in formulae, did in SQL).

pcid kcid logprior logdenom

TAXONOMY

did tid freq

DOCUMENT

kcid tid
logtheta

STAT_c

type
null
path
good

pcid tid “stat”

BLOB
kcid

... ...
c0 ci

logtheta

oid numtries relevance

CRAWL

serverload

oid score

HUBS, AUTH

oid_src

LINK

oid_dst sid_dst sid_dst wgt_fwd wgt_rev

lastvisitedkcid

name

url

Figure 1: The main DB2 tables used in our system. TAXONOMY, STAT, BLOB, and DOCUMENT are used by the classifier. CRAWL
and LINK are used by the crawler. LINK, HUBS and AUTH are used by the distiller. Columns which are not self-explanatory
are explained in the text.

In our system we use 32-bit hash codes for terms. For
topics (also called classes, denoted c in formulae and
cid in SQL) we use 16-bit ID’s.

Consider internal node c0 with children {ci}. Let
t ∈ F (c0) be a feature term w.r.t. c0 (see §2.1 for
terminology and notation). The compact inverted file
maps (c0, t) to a sparse vector of θ values, each element
being of the form (ci, logtheta(ci, t)). There is an
entry for ci only if

∑
d∈D(ci)

n(d, t) > 0. A separate
table stores a map from ci to logdenom(ci). θ(ci, t)
can be reconstructed from these numbers.

A key step in classification is to compute
log Pr[ci|c0, d] = logprior(ci) + log Pr[d|ci] −
log Pr[d|c0], where log Pr[d|ci] = constant +∑

t∈d∩F (c0) freq(d, t)logtheta(ci, t). Note that
for a pre-specified C∗, we need to compute Pr[c|d]
only for c ∈ C∗.

The pseudocode using the BLOB table (shown in Fig-
ure 1) is shown in Figure 2. With regard to disk access,
it is similar to any standard keyword indexing engine,
and is quite insensitive to the exact math. If, for exam-
ple, the term distribution is changed from multinomial
to Gaussian, θ would be replaced by the mean µ and
variance σ, but not much else would change.

For large taxonomies θ cannot be stored entirely in
memory. E.g., models derived from about 2100 nodes
of Yahoo! and 1.5 GB of text occupy about 350 MB.
(As users refine and personalize the taxonomy and ask
more queries, this size gets larger.) Consequently most
of the classification time is spent in the PROBE step.
Even with caching, there is little locality of access, be-
cause the records are small and most storage managers
use page-level caching. A lot of random I/O results,
making the classifier disk-bound. The random I/O
problem is especially serious in our system because

of the multi-threaded crawler. In experimental runs,
about thirty threads fetch a total of 5–10 pages a sec-
ond, a typical web page having 200-500 terms, each
term leading to a PROBE.

We will now describe a way to classify a large batch
of documents using a sort-merge technique, which can
be written, with some effort, directly in SQL. The ta-
bles needed are shown in Figure 1. The TAXONOMY table
encodes the relation between parent and child classes
in the usual way. Some topics are marked good as
described earlier; all their ancestors are marked path.
Nodes marked null are not of interest in a particular
crawl (but these may be marked otherwise for a differ-
ent crawl). The DOCUMENT table consists of rows of the
form (d, t, freq(d, t)). Since (d, t) is a key we will refer
to this table as freq(d, t). For each internal node c0
of the taxonomy there is a table STAT c0, which stores
the map from (ci, t) to logtheta(ci, t), where ci are
children of c0 and only those t ∈ F (c0) appear in the
table. Note that only DOCUMENT has to be populated
at crawl time; the rest is precomputed. Populating
DOCUMENT is part of standard keyword indexing any-
way.

Going through the steps in Figure 2,
we note that the main step is to evalu-
ate

∑
t∈d∩F (c0)∩ci

freq(d, t)logtheta(ci, t) −∑
t∈d∩F (c0),t6∈ci

freq(d, t)logdenom(ci).

The first sum is an inner join, but the second sum
leads to random update I/O. The whole expression is
best rewritten (after some trial and error) using one

http://www.yahoo.com

SingleProbe(c0, d)
For all children {ci} of c0

initialize array of log-probabilities {L[i]}
For each term t ∈ d occurring freq(d, t) times:

PROBE BLOB with key (c0, t)
If t 6∈ F (c0) skip t
For each (ci, logtheta(ci, t)) retrieved:

L[i]← L[i] + freq(d, t)logtheta(ci, t)
For each c′i that was missing

L[i]← L[i]− freq(d, t)logdenom(c′i)
Normalize ~L so that

∑
i e

L[i] = 1
For each i

Assign L[i]← L[i] + log Pr[c0|d] + logprior(ci)

Figure 2: Document-by-document classification pseu-
docode.

BulkProbe(c0)
with

PARTIAL(did, cid, lpr1) as
(select did, TAXONOMY.kcid,

sum(freq * (logtheta + logdenom))
from STAT c0, DOCUMENT, TAXONOMY
where TAXONOMY.pcid = c0

and STAT c0.tid = DOCUMENT.tid
and STAT c0.kcid = TAXONOMY.kcid
group by did, TAXONOMY.kcid)

DOCLEN(did, len) as
(select did, sum(freq) from DOCUMENT

where tid in (select tid from STAT c0)
group by did),

COMPLETE(did, kcid, lpr2) as
(select did, kcid, - len * logdenom

from DOCLEN, TAXONOMY where pcid = c0)
select C.did, C.cid, lpr2 + coalesce(lpr1, 0)
from COMPLETE as C left outer join PARTIAL as P
on C.did = P.did and C.cid = P.cid

Figure 3: Hierarchical bulk classification expressed as a
ODBC/JDBC subroutine. This is repeatedly called at all
path nodes in topological order to evaluate the score of the
good nodes.

inner and one left outer join [11]:

∑
t∈d∩F (c0)∩ci

freq(d, t)
(
logtheta(ci, t) + logdenom(ci)

)
−logdenom(ci)

∑
t∈d∩F (c0)

freq(d, t).

Figure 3 shows a high-level pseudocode for an
ODBC/JDBC routine with one parameter c0 which
indicates the node at which bulk evaluation is desired.
For simplicity, the code ignores some details such as
priors and normalization which are lower order perfor-
mance concerns.

2.2 Distillation

The purpose of distillation is to identify hubs, i.e, pages
with large lists of links to relevant resources. A very
relevant page without links is only a finishing point
in the crawl. In contrast, hubs are good for crawling,
and good hubs should be checked frequently for new
resource links.

2.2.1 Query-based distillation review

The Web is an example of a social network. The edges
of a social network can be analyzed to identify pages
that are ‘central’ in some sense [21, 28, 33]. Similar
techniques have been applied to the Web graph. Brin
and Page [5] model the ‘prestige’ of a page v as roughly
the sum total of the prestige of pages that cite v. If E is
the node adjacency matrix, the prestige of a node is the
appropriate component of the dominant eigenvector
of E. Kleinberg offers a slightly different model: each
node v has both a hub score h(v) and an authority
score a(v); these are estimated by mutual recursion.

Hubs confer prestige to authorities:
a(v)←

∑
(u,v)∈E h(u) for all v

Total prestige is normalized:
Σa ←

∑
v a(v)

a(v)← a(v)/Σa for all v
Authorities reflect prestige to hubs [28])
h(u)←

∑
(u,v)∈E a(v) for all u

Total reflected prestige is normalized:
Σh ←

∑
u h(u)

h(u)← h(u)/Σh for all u

If E is the adjacency matrix for E, h and a converge
to the dominant eigenvectors of ET E and EET . Pages
having large a values are highly popular authorities,
and pages having large h are good resource lists or
hubs.

2.2.2 Enhancements for resource discovery

For the purpose of topic-driven discovery, some im-
portant enhancements are needed. In the above pro-
cedure, each edge is implicitly assumed to have the
same importance. Some limitations of this assump-
tion have been described in later work [7, 4], which
have assigned various heuristic weights, based on the
keyword query, to the edges to improve precision. In
our setting there is no query, but there are topics in-
duced by examples, and we wish to model the strength
of hyperlinks using the relevance judgment.

To appreciate the model that we will propose, ob-
serve that w.r.t. almost any topic, relevant pages refer
to irrelevant pages and vice versa with appreciable fre-
quency, owing to the diversity of authorship. Pages of
all topics point to Netscape and Free Speech Online.
Conversely, bookmark files that are great resources
about sports cars may also have links to photography
sites.

http://www.netscape.com
http://unknown

We will specialize the forward and backward adja-
cency matrices E and ET into two differently weighted
matrices EF and EB . We propose that the weight
EF [u, v] of edge (u, v) be the probability that u
linked to v because v was relevant to the topic, i.e.,
relevance(v). This has the effect of preventing leak-
age of endorsement or prestige from relevant hubs
to irrelevant authorities. Similarly, we propose that
EB[u, v] be set to relevance(u), to prevent a relevant
authority from transferring prestige to an irrelevant
hub. Another effect that has to be corrected for is in-
flation of endorsement. This is done similar to Bharat
et al [4].

2.2.3 I/O efficient implementation

Two tables HUBS and AUTH are used to perform distil-
lation. They have the same schema: a 64-bit hashed
oid key for the URL (u and v in the formulae before)
and a floating point field score representing h and a
as per context. The third table involved in distillation
is the LINK table, which has six attributes.

oid src: ID corresponding to source URL, u in pre-
vious formulae.

sid src: The server (represented by IP address) that
served u. This is not always fool-proof, because
of DNS-based load-balancing, multi-homed hosts,
etc., but these aberrations were tolerable.

oid dst: ID of target URL, or v in formulae.

sid dst: Server of target URL.

wgt fwd: Forward iteration edge weight, or EF [u, v] in
formulae (see §2.2).

wgt rev: Reverse or backward iteration edge weight,
or EB[u, v] in formulae (see §2.2).

In past work on distillation, the graphs had few
hundred nodes and iterations were done within main
memory. An array of links would be traversed, reading
and updating the endpoints using node hashes. We
estimate that a graph would |V | nodes would need
about 336|V | bytes of RAM. Large graphs would not
fit in memory, which is shared with the classifier and
crawler. Furthermore, to keep the crawl persistent
and influence the crawler’s decisions, we would have
to write out the new scores to disk anyway.

A cleaner approach is to write the distillation as an-
other database application, so that depending on the
graph size, the database would automatically pick an
I/O-efficient execution plan. This also enables running
distillation concurrently with the crawler and classi-
fier. Furthermore, distillation can then be triggered
by substantial changes in the crawl graph. The code
for one iteration of the distiller is shown in Figure 4.
Notice how it is asymmetric w.r.t. update of HUBS and
AUTH.

3 Experiments

Our prototype crawler is a C++ ODBC/CLI appli-
cation that was run on a dual-processor 333 MHz
Pentium-II PC with 256 MB of RAM and SCSI disk.
IBM Universal Database v5 and v5.2 were used. The
administration program is a JDBC-based Java applet.
Our test machines are connected through a half-duplex
10 MB/s Ethernet through the router to a SOCKS
firewall machine. The firewall is connected to the
ISP using full-duplex 10 MB/s SMDS over DS3. The
ISP connects us to a 622 MB/s OC12 ATM backbone
(UUNET High Performance Network). Comparisons
between standalone mining and mining written on top
of the database were done on a 266 MHz Pentium-II
PC with 128 MB or RAM.

3.1 Using a DBMS

We started building our prototype as a C++ applica-
tion using the file system to maintain crawl state [10].
As we made progress, many services provided by a re-
lational engine became essential. The crawler is multi-
threaded; these threads concurrently access the unex-
plored crawl frontier stored on disk. Few pages on the
Web are formally checked for well-formedness, hence
all crawlers crash [5]. Keeping all crawl tables and in-
dices consistent by hand amounted to reinventing the
wheel.

Robust data storage was the initial reason for using
a DBMS, but we quickly realized that we could exploit
other features. It became trivial to write ad-hoc SQL
queries to monitor the crawler and diagnose problems
such as stagnation. In most cases, the queries we asked
were not planned ahead of time. Multiple index orders
could be implemented on the crawl frontier, and the
policy could even be changed dynamically. Such ex-
periments would cost major coding effort in the case
of a standalone application.

Gradually we started using the DBMS in more ad-
vanced ways. We rewrote the classifier and distiller
to maximally exploit the I/O efficiency of sort-merge
joins. This increased our discovery rate by almost an
order of magnitude. We also used triggers to recom-
pute relevance and centrality scores when the neigh-
borhood of a page changed significantly owing to con-
tinued crawling.

3.2 Controlling the crawler

Now we will describe how the scores determined by
the classifier and distiller are combined with other per-
URL and per-server statistics to guide the crawler. To
make the discussion concrete, we give a specific de-
sign, but it is important to note the flexibility of the
architecture to supporting other policies and designs
as well.

There are three numbers associated with each page
u: the relevance R(u), the hub score h(u) and the

http://www.uu.net/lang.en/network/usa.html

UpdateHubs UpdateAuth(ρ)
delete from HUBS;
insert into HUBS(oid, score)

(select oid_src, sum(score * wgt rev)
from AUTH, LINK
where sid src <> sid dst /* avoid nepotism */
and oid = oid dst
group by oid src);

update HUBS set (score) = score /
(select sum(score) from HUBS)

delete from AUTH;
insert into AUTH(oid, score)

(select oid_dst, sum(score * wgt fwd)
from HUBS, LINK, CRAWL
where sid src <> sid dst
and HUBS.oid = oid src and oid_dst = CRAWL.oid
and relevance > ρ /* filter */
group by oid dst);

update AUTH set (score) = score /
(select sum(score) from AUTH)

Figure 4: SQL code for distillation to find relevant authorities and hubs. Their scores are used to modify crawl (re)visit
priorities.

authority score a(u). R(u) is in the CRAWL table, and
h(u) and a(u) are the score fields in the HUBS and AUTH
tables. Apart from these numbers, we need a few other
numbers in the CRAWL table to control the crawl. The
first is numtries, which records the number of times
the crawler attempted to fetch the URL u. The second
is serverload, which is a crude and lazily updated
estimate of the number of distinct URL’s fetched from
the same server as u. Its purpose is to prevent the
crawler going depth-first into one or a few sites.

In aggressive discovery mode, the highest priority
is seeking out new resources. New work is checked out
from the CRAWL table in the order

(numtries ascending, relevance descending,
serverload ascending).

Occasionally, HUBS.score is used to trigger the rais-
ing of relevance of unvisited pages cited by some of
the top hubs. We have not had much experience in
crawl maintenance, but lexical orderings such as

(lastvisited ascending, HUBS.score descending), or
(numtries descending, AUTH.score descending,

relevance descending)

behaved reasonably, provided timeouts and dead
links (very high numtries) were picked off separately.
In production runs, additional criteria can be useful,
for instance, an estimate of the average interval be-
tween updates to a page that has already been visited.
But notice that the code change would be minimal.

A crawler can use various devices to extend its
frontier. Typically, it scans each fetched page for
outgoing hyperlink URL’s. However, other strate-
gies are also known. E.g., if the URL is of the form
http://host /path , the crawler may truncate com-
ponents of path and try to fetch these URL’s. If links
could be traversed backward, e.g. using metadata at
the server [9], the crawler may also fetch pages that
point to the page being ‘expanded.’

3.3 Evaluation setup

We picked about twenty topics that could be repre-
sented by one or few nodes in a master category list
derived from Yahoo!, such as gardening, mutual funds,
cycling, HIV, etc. On most of these topics, the main

performance indicators were comparable, so we present
a representative sample of results. We were limited
only by experimentation time: we did not want to
overload the network and disrupt our firewall. A full-
scale crawler never operates through a firewall. Al-
though we had access to machines outside the firewall,
we decided to demonstrate the viability of our system
by running it inside the firewall and consuming negli-
gible network resources. We ran the crawler with rel-
atively few threads compared to what it can handle.
In our opinion, it was more important to study the
behavior of the system for many different topics, than
study extremely large crawls, although a few crawls
were left running for days.

3.4 Harvest rate or precision

By far the most important indicator of the success of
our system is the harvest rate, or the average frac-
tion of crawled pages that are relevant. We want
the crawler to spend most of its time acquiring use-
ful pages, not eliminating irrelevant pages.

Human judgment, although subjective and even
erroneous, would be best for measuring relevance.
Clearly, even for an experimental crawler that acquires
only ten thousand pages per hour, this is impossible.
Therefore we use our classifier to estimate the rele-
vance of the crawl graph. This methodology may ap-
pear flawed, but is actually not flawed. It is to be
noted carefully that we are not, for instance, training
and testing the classifier on the same set of documents,
or checking the classifier’s earlier evaluation of a doc-
ument using the classifier itself.

Just as human judgment is prone to variation and
error [25], we have a statistical program that makes
mistakes. Based on such imperfect recommendation,
we choose to or not to expand pages. Later, when a
page that was chosen is visited, we evaluate its rele-
vance, and thus the value of that decision. Thus we
are evaluating not the classifier but the validity and
viability of the architecture.

Representative crawls on bicycling starting from the
result of topic distillation with keyword search cycl*
bicycl* bike are studied in Figure 5(a) (standard

http://www.yahoo.com

Harvest Rate (Cycling, Unfocused)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

#URLs fetched

A
ve

ra
ge

 R
el

ev
an

ce

Avg over 100

Harvest Rate (Cycling, Soft Focus)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

#URLs fetched

A
ve

ra
ge

 R
el

ev
an

ce

Avg over 100
Avg over 1000

Figure 5: Our system acquires relevant pages at a high
harvest rate, whereas a standard crawler starting at the
same set of URL’s quickly loses its way. The relevance of
pages acquired by our system is typically three orders of
magnitude higher than a standard crawler.

crawler) and (b) (our system). More extensive exper-
iments with other topics are reported elsewhere [10].
The x-axis shows the number of pages acquired (as a
representative of real time). The y-axis shows a mov-
ing average of R(p), where p represents pages collected
within the window. It is immediately evident that
relevant resource discovery does not happen by acci-
dent; it has to be done very deliberately. The standard
crawler starts out from the same set of dozens of highly
relevant links as our crawler, but is completely lost
within the next hundred page fetches: the relevance

URL Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000
#URLs crawled by test crawler

F
ra

ct
io

n
of

 r
ef

er
en

ce
 c

ra
w

l

Server Coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000
#URLs crawled by test crawler

F
ra

ct
io

n
of

 r
ef

er
en

ce
 c

ra
w

l

Figure 6: Coverage experiment. A reference crawl is pre-
pared by running our crawler from one start set. Then a
disjoint second start set is picked and a test crawl started
to see how fast it visits the relevant URL’s (a) and web
sites (b) visited by the reference crawler.

goes quickly toward zero. In contrast, it is heartening
to see that our crawler keeps up a healthy pace of ac-
quiring relevant pages. On an average, every second
page is relevant.

3.5 Estimating recall or coverage

For a closed, self-contained data set, precise measure-
ments of recall or coverage can be made. For the
web, recall is essentially impossible to assess. How-
ever we must produce some reasonable evidence of
robust coverage. So we take recourse to the follow-
ing measurement, similar to Cho et al [13]. We first
build a reference crawl by selecting a random set S1

of start URLs from a set of sources, e.g., Yahoo!, In-
foseek, and Excite. We run our crawler starting from
S1 for some fixed time (one hour). Then we collect
another random set S2 of start sites from Alta Vista,
making sure that S1 ∩ S2 = ∅, i.e. the start sets are
disjoint. Then we start a separate crawl from S2, mon-
itoring along time the fraction of the relevant16 URLs
in the reference crawl that are visited by the second
test crawl. This ought to give a reasonable feel for how
robust the system is. We used a relevance threshold of
logR(u) > −1 to include a page u, but the conclusions
are not sensitive to this choice. The results are shown
in Figure 6(a). It is encouraging to see that within an
hour of crawling, the test crawler collects up to 83% of
the relevant URLs collected by the reference crawler.
It is also important to measure the rate at which web
servers visited by the reference crawl are visited for
the first time by the test crawl; this is shown in Fig-
ure 6(b). Within an hour, this number reaches 90%.

3.6 Evidence of large-radius exploration

After one hour of crawling, we collected the top hubs
and authorities from the crawl. We list the hubs for
cycling in Figure 7 and strongly encourage the reader
to follow these links (verified to be accessible on Febru-
ary 22, 1999). How do these compare with traditional
topic distillation? We need to provide evidence that we
did not unduly help our system by starting it at or near
some of the best sites above. To do this, we will plot
histograms of the shortest distance (number of links)
of the top 100 authorities from the start set. If most
of the best authorities are very close to the start set,
we cannot claim significant value in the goal-driven
exploration. Fortunately, the plots in Figure 7 sug-
gest that this is not the case: excellent resources were
found as far as 12–15 links from the start set. Often,
there are millions of pages within such distances of any
web page. Therefore, our system was performing non-
trivial on-line filtering, which was crucial to identifying
these resources by crawling only about 6000 pages.

Thus, distillation applied to the goal-directed crawl
performs qualitatively better than distillation applied
to the result of keyword search, which reconfirms the
value of our approach. However, note that superior
distillation is just one application of resource discovery.
We envisage that a standard search over the corpus,
or unsupervised clustering, are likely to be much more
satisfying in the scope of the focused corpus. We will
explore these in future work.

3.7 Crawl monitoring and tweaking

The ease with which we wrote ad-hoc utilities to mon-
itor the crawler demonstrated the value of using a re-
lational database. We created an applet with a JDBC
connection to CRAWL to plot Figure 5 continuously. The
query was simply

16It does not matter if the irrelevant pages are different.

Distance to top authorities

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12
Shortest distance found (#links)

F
re

qu
en

cy

http://www.truesport.com/Bike/links.htm
http://reality.sgi.com/billh_hampton/jrvs/links.html
http://www.acs.ucalgary.ca/~bentley/mark_links.html
http://www.cascade.org/links.html
http://www.bikeride.com/links/road_racing.asp
http://www.htcomp.net/gladu/’drome/
http://www.tbra.org/links.shtml
http://www.islandnet.com/~ngs/SVCyclingLinks.html
http://www.novit.no/dahls/Cycling/hotlist.html
http://members.aol.com/velodromes/MajorTaylor/links.htm
http://www.nashville.com/~mbc/mbc.html
http://www.bikindex.com/bi/races.asp
http://www.louisvillebicycleclub.org/links.htm
http://world.std.com/~nebikclb/misc/netresources.html
http://crisny.org/not-for-profit/cbrc/links.htm
http://members.aol.com/velodromes/index.htm

Figure 7: Histogram of shortest number of links to the top
100 authorities on cycling and a few top hubs, found after
one hour (6000 page fetches). The reader is encouraged to
follow these links.

select minute(lastvisited), avg(exp(relevance))
from CRAWL
where lastvisited + 1 hour > current timestamp
group by minute(lastvisited)
order by minute(lastvisited).

Only one crawl dropped in relevance (mutual
funds). To diagnose why, we asked:

with CENSUS(kcid, cnt) as
(select kcid, count(oid) from CRAWL group by kcid)

select kcid, cnt, name from CENSUS, TAXONOMY
where CENSUS.kcid = TAXONOMY.kcid order by cnt

This query immediately revealed that the neighbor-
hood of most pages on mutual funds contained pages
on investment in general, which was an ancestor of
mutual funds. One update statement marking the an-
cestor good fixed this stagnation problem. Finally, we
will give an example of how the distillation program
can help the crawler modify its priority to get good
pages it was otherwise neglecting. Suppose ψ is the
90th percentile of hub scores. To ask about possibly
missed neighbors of great hubs, we write

select url, relevance from CRAWL where oid in
(select oid_dst from LINK
where oid_src in

http://www.yahoo.com
http://www.infoseek.com
http://www.infoseek.com
http://www.excite.com
http://www.altavista.com
http://www.truesport.com/Bike/links.htm
http://reality.sgi.com/billh_hampton/jrvs/links.html
http://www.acs.ucalgary.ca/~bentley/mark_links.html
http://www.cascade.org/links.html
http://www.bikeride.com/links/road_racing.asp
http://www.htcomp.net/gladu/'drome/
http://www.tbra.org/links.shtml
http://www.islandnet.com/~ngs/SVCyclingLinks.html
http://www.novit.no/dahls/Cycling/hotlist.html
http://members.aol.com/velodromes/MajorTaylor/links.htm
http://www.nashville.com/~mbc/mbc.html
http://www.bikindex.com/bi/races.asp
http://www.louisvillebicycleclub.org/links.htm
http://world.std.com/~nebikclb/misc/netresources.html
http://crisny.org/not-for-profit/cbrc/links.htm
http://members.aol.com/velodromes/index.htm

Classification running time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

SQL BLOB CLI

R
e

la
tiv

e
 ti

m
e

CPU

Probe Stat

Scan Doc

Memory Scaling

0

500

1000

1500

2000

2500

3000

3500

4000

128 328 528 728 928
Buffer Pool (x 4kB)

R
e

la
tiv

e
Ti

m
e

BulkTotal
BulkJoin
SingleTotal
SingleProbe

Output size scaling

0.1

1

10

100

1000

1000 10000 100000 100000
0

1E+07 1E+08

#KCID x #DID

R
e

la
tiv

e
 ti

m
e

Distillation running time

0

1

2

3

4

5

6

Index Join

R
e

la
tiv

e
 ti

m
e

Update

Lookup

Scan

(a) (b)

(c) (d)

Figure 8: Performance of I/O conscious algorithms against simpler equivalents. (a), (b) and (c) show classification and (d)
shows distillation results. (a) shows running time of SingleProbe with SQL (left) and BLOB (middle) broken down into
CPU time, PROBE time, and document scanning time; and BulkProbe (marked CLI). (b) shows how SingleProbe
(BLOB) and BulkProbe scale with memory (a smaller dataset was used to collect many data points for SingleProbe
which is slow). SingleProbe shows poor utilization of additional buffer pool whereas BulkProbe has better locality.
(c) shows that the running time of BulkProbe is essentially proportional to output size. (d) compares the running time
of naive distillation using sequential link table scan against a better join-based implementation. Time is broken down
into scanning of LINK, index lookups for HUBS and AUTH tables, and update of authority and hub scores.

(select oid from HUBS
where score > ψ)

and sid_src <> sid_dst)
and numtries = 0

3.8 I/O performance

Figure 8(a) shows the performance of three variants
of the classifier. The second bar (BLOB) uses the
BLOB tables, the first (SQL) and third (CLI) bars
don’t. The first and second measure SingleProbe;
the third measures BulkProbe. Relative time per
document is charted, broken down when appropriate
into time for reading DOCUMENT, time for computation,
and time for probing the statistics. Over an order of
magnitude reduction in overall running time is seen
using the bulk formulation. Figure 8(b) plots relative

running time per document as the buffer pool size is
varied, for SingleProbe and BulkProbe. Because
there is little locality, SingleProbe shows continual
reduction in running time as buffer pool is increased.
For much smaller buffer pool size, the running time
of BulkProbe steeply drops and stabilizes, showing
the superior memory usage of the bulk approach. Fig-
ure 8(c) shows, for various c0’s and sets of documents
{d}, a scatter of running times against the product
|{ci}| |{d}| (the output size). We see that the bulk al-
gorithm is roughly linear in output size. Figure 8(d)
shows the performance of two variants of the distiller:
one derived from sequential edge-list walking as in
earlier main-memory implementations, the other ex-
pressed as a join as in Figure 4. For the former, time is
broken down into edge scan, end-vertex index lookup,

and score updates. The join approach is a factor of
three faster.

4 Conclusion

We have demonstrated that goal-directed web resource
discovery is a powerful means to structure web content
so that questions combining structured linkage and
meta-data with unstructured topic information can be
answered efficiently. We have architected such as re-
source discovery system around a relational database,
using it not only as a robust data repository but also
as an I/O-efficient hypertext mining engine. It would
be interesting to further automate the administration
of the system.

Acknowledgements: We are grateful to Global
Web Solutions, IBM Atlanta, for partially funding this
project. We thank Tom Mitchell, Dan Oblinger and
Steve Gates for helpful discussions, Myron Flickner for
generously contributing disks and computers, David
Gibson for contributing code to the Java user inter-
face, and Sunita Sarawagi, Amit Somani and Kiran
Mehta for advice with DB2/UDB.

References
[1] C. Apte, F. Damerau, and S. M. Weiss. Automated learning of

decision rules for text categorization. ACM Transactions on
Information Systems, 1994. IBM Research Report RC18879.

[2] I. Ben-Shaul, M. Herscovici, M. Jacovi, Y. S. Maarek, D. Pelleg,
M. Shtalheim, V. Soroka, and S. Ur. Adding support for dy-
namic and focused search with Fetuccino. In 8th World Wide
Web Conference. Toronto, May 1999.

[3] K. Bharat and A. Broder. A technique for measuring the rela-
tive size and overlap of public web search engines. In Proceed-
ings of the 7th World-Wide Web Conference (WWW7), 1998.
Online at http://www7.scu.edu.au/programme/fullpapers/1937/
com1937.htm; also see an update at http://www.research.
digital.com/SRC/whatsnew/sem.html.

[4] K. Bharat and M. Henzinger. Improved algorithms for topic
distillation in a hyperlinked environment. In Proceedings
of the 21st International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 469–
477, 1998. Online at http://www.research.digital.com/SRC/
personal/monika/papers/sigir98.ps.gz.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the 7th World-Wide Web
Conference (WWW7), 1998. Online at http://decweb.ethz.
ch/WWW7/1921/com1921.htm.

[6] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Scal-
able feature selection, classification and signature generation
for organizing large text databases into hierarchical topic tax-
onomies. VLDB Journal, Aug. 1998. Invited paper.

[7] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Ragha-
van, and S. Rajagopalan. Automatic resource compilation by
analyzing hyperlink structure and associated text. In Proceed-
ings of the 7th World-wide web conference (WWW7), 1998.
Online at http://www7.scu.edu.au/programme/fullpapers/1898/
com1898.html and at http://www.almaden.ibm.com/cs/people/
pragh/www98/438.html.

[8] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. In SIGMOD. ACM, 1998. On-
line at http://www.cs.berkeley.edu/~soumen/sigmod98.ps.

[9] S. Chakrabarti, D. Gibson, and K. McCurley. Surfing the web
backwards. In 8th World Wide Web Conference, Toronto,
Canada, May 1999.

[10] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawl-
ing: A new approach to topic-specific resource discovery. In
8th World Wide Web Conference, Toronto, May 1999.

[11] D. Chamberlin. A complete guide to DB2 universal database.
Morgan-Kaufmann, 1998.

[12] C. Chekuri, M. Goldwasser, P. Raghavan, and E. Upfal. Web
search using automatic classification. In Sixth World Wide
Web Conference, San Jose, CA, 1996.

[13] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling
through URL ordering. In 7th World Wide Web Conference,
Brisbane, Australia, Apr. 1998. Online at http://www7.scu.
edu.au/programme/fullpapers/1919/com1919.htm.

[14] W. W. Cohen. Fast effective rule induction. In
Twelfth International Conference on Machine Learning,
Lake Tahoe, CA, 1995. Online at http://www.research.
att.com/~wcohen/postscript/ml-95-ripper.ps and http://www.
research.att.com/~wcohen/ripperd.html.

[15] J. Dean and M. R. Henzinger. Finding related pages in the
world wide web. In 8th World Wide Web Conference, Toronto,
May 1999.

[16] P. DeBra and R. Post. Information retrieval in the world-wide
web: Making client-based searching feasible. In Proceedings of
the First International World Wide Web Conference, Geneva,
Switzerland, 1994.

[17] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Induc-
tive learning algorithms and representations for text catego-
rization. In 7th Conference on Information and Knowledge
Management, 1998. Online at http://www.research.microsoft.
com/~jplatt/cikm98.pdf.

[18] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In VLDB,
volume 24, pages 26–37, New York, Sept. 1998. Online at
http://www-db.stanford.edu/pub/papers/proximity-vldb98.ps.

[19] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakon-
stantinou, J. Ullman, and J. Widom. Information transla-
tion, mediation, and mosaic-based browsing in the TSIM-
MIS system. In SIGMOD Exhibit, page 483, San Jose, CA,
June 1995. Online at ftp://www-db.stanford.edu/pub/papers/
mobie-demo-proposal.ps.

[20] T. Joachims, D. Freitag, and T. Mitchell. WebWatcher: A
tour guide for the web. In IJCAI, Aug. 1997. Online at http:
//www.cs.cmu.edu/~webwatcher/ijcai97.ps.

[21] L. Katz. A new status index derived from sociometric analysis.
Psychometrika, 18(1):39–43, Mar. 1953.

[22] T. Kistler and H. Marais. WebL—a programming language
for the web. In 7th World Wide Web Conference, Brisbane,
Australia, 1998. Online at http://www.research.digital.com/
SRC/personal/Johannes_Marais/pub/www7/paper.html and http:
//www.research.digital.com/SRC/WebL.

[23] J. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. In Proc. ACM-SIAM Symposium on Discrete Al-
gorithms, 1998. Also appears as IBM Research Report RJ
10076(91892), and online at http://www.cs.cornell.edu/home/
kleinber/auth.ps.

[24] D. Konopnicki and O. Shmueli. WWW information gath-
ering: The W3QL query language and the W3QS system.
TODS, 1998. Online at http://www.cs.technion.ac.il/~konop/
todsonline.ps.gz.

[25] S. Macskassy, A. Banerjee, B. Davidson, and H. Hirsh. Human
performance on clustering web pages: A performance study.
In Knowledge Discovery and Data Mining, volume 4, pages
264–268, 1998.

[26] A. Mendelzon and T. Milo. Formal models of the web. In
PODS, Tucson, AZ, June 1997. Online at ftp://ftp.db.
toronto.edu/pub/papers/pods97MM.ps.

[27] A. Mendelzon and T. Milo. Formal models of the web. In
PODS, Tucson, Arizona, June 1997. ACM. Online at ftp:
//ftp.db.toronto.edu/pub/papers/pods97MM.ps.

[28] M. S. Mizruchi, P. Mariolis, M. Schwartz, and B. Mintz. Tech-
niques for disaggregating centrality scores in social networks.
In N. B. Tuma, editor, Sociological Methodology, pages 26–48.
Jossey-Bass, San Francisco, 1986.

[29] W. Niblack, X. Zhu, J. Hafner, T. Breuel, D. Ponceleon,
D. Petkovic, M. Flickner, E. Upfal, S. Nin, , S. Sull, B. Dom,
B. Yeo, S. Srinivasan, D. Zivkovic, and M. Penner. Updates
to the QBIC system. In Storage and Retrieval for Image and
Video Databases VI, volume 3312 of Proceedings of SPIE, Jan.
1998.

[30] M. Pazzani, L. Nguyen, and S. Mantik. Learning from hotlists
and coldlists: Towards a www information filtering and seeking
agent. In Seventh International Conference on Tools with
Artificial Intelligence, 1995. Online at http://www.ics.uci.
edu/~pazzani/Publications/Coldlist.pdf.

[31] J. Savoy. An extended vector processing scheme for searching
information in hypertext systems. Information Processing and
Management, 32(2):155–170, Mar. 1996.

[32] L. Terveen and W. Hill. Finding and visualizing inter-
site clan graphs. In Computer Human Interaction
(CHI), pages 448–455, Los Angeles, CA, Apr. 1998. ACM
SIGCHI. Online at http://www.research.att.com/~terveen/
chi98.htm and http://www.acm.org/pubs/articles/proceedings/
chi/274644/p448-terveen/p448-terveen.pdf.

[33] S. Wasserman and K. Faust. Social Network Analysis. Cam-
bridge University Press, 1994.

http://www7.scu.edu.au/programme/fullpapers/1937/com1937.htm
http://www7.scu.edu.au/programme/fullpapers/1937/com1937.htm
http://www.research.digital.com/SRC/whatsnew/sem.html
http://www.research.digital.com/SRC/whatsnew/sem.html
http://www.research.digital.com/SRC/personal/monika/papers/sigir98.ps.gz
http://www.research.digital.com/SRC/personal/monika/papers/sigir98.ps.gz
http://decweb.ethz.ch/WWW7/1921/com1921.htm
http://decweb.ethz.ch/WWW7/1921/com1921.htm
http://www7.scu.edu.au/programme/fullpapers/1898/com1898.html
http://www7.scu.edu.au/programme/fullpapers/1898/com1898.html
http://www.almaden.ibm.com/cs/people/pragh/www98/438.html
http://www.almaden.ibm.com/cs/people/pragh/www98/438.html
http://www.cs.berkeley.edu/~soumen/sigmod98.ps
http://www7.scu.edu.au/programme/fullpapers/1919/com1919.htm
http://www7.scu.edu.au/programme/fullpapers/1919/com1919.htm
http://www.research.att.com/~wcohen/postscript/ml-95-ripper.ps
http://www.research.att.com/~wcohen/postscript/ml-95-ripper.ps
http://www.research.att.com/~wcohen/ripperd.html
http://www.research.att.com/~wcohen/ripperd.html
http://www.research.microsoft.com/~jplatt/cikm98.pdf
http://www.research.microsoft.com/~jplatt/cikm98.pdf
http://www-db.stanford.edu/pub/papers/proximity-vldb98.ps
ftp://www-db.stanford.edu/pub/papers/mobie-demo-proposal.ps
ftp://www-db.stanford.edu/pub/papers/mobie-demo-proposal.ps
http://www.cs.cmu.edu/~webwatcher/ijcai97.ps
http://www.cs.cmu.edu/~webwatcher/ijcai97.ps
http://www.research.digital.com/SRC/personal/Johannes_Marais/pub/www7/paper.html
http://www.research.digital.com/SRC/personal/Johannes_Marais/pub/www7/paper.html
http://www.research.digital.com/SRC/WebL
http://www.research.digital.com/SRC/WebL
http://www.cs.cornell.edu/home/kleinber/auth.ps
http://www.cs.cornell.edu/home/kleinber/auth.ps
http://www.cs.technion.ac.il/~konop/todsonline.ps.gz
http://www.cs.technion.ac.il/~konop/todsonline.ps.gz
ftp://ftp.db.toronto.edu/pub/papers/pods97MM.ps
ftp://ftp.db.toronto.edu/pub/papers/pods97MM.ps
ftp://ftp.db.toronto.edu/pub/papers/pods97MM.ps
ftp://ftp.db.toronto.edu/pub/papers/pods97MM.ps
http://www.ics.uci.edu/~pazzani/Publications/Coldlist.pdf
http://www.ics.uci.edu/~pazzani/Publications/Coldlist.pdf
http://www.research.att.com/~terveen/chi98.htm
http://www.research.att.com/~terveen/chi98.htm
http://www.acm.org/pubs/articles/proceedings/chi/274644/p448-terveen/p448-terveen.pdf
http://www.acm.org/pubs/articles/proceedings/chi/274644/p448-terveen/p448-terveen.pdf

	Introduction
	Problem formulation
	Rationale and discussion
	Contributions
	Related work

	Architecture
	Classification
	Classifier computations
	Modifications for resource discovery
	I/O efficient implementation

	Distillation
	Query-based distillation review
	Enhancements for resource discovery
	I/O efficient implementation

	Experiments
	Using a DBMS
	Controlling the crawler
	Evaluation setup
	Harvest rate or precision
	Estimating recall or coverage
	Evidence of large-radius exploration
	Crawl monitoring and tweaking
	I/O performance

	Conclusion

