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Abstract

Support vector machines (SVMs) have shown
superb performance for text classification tasks.
They are accurate, robust, and quick to apply
to test instances. Their only potential drawback
is their training time and memory requirement.
For n training instances held in memory, the
best-known SVM implementations take time
proportional to na, where a is typically between 1.8
and 2.1. SVMs have been trained on data sets with
several thousand instances, but Web directories
today contain millions of instances which are
valuable for mapping billions of Web pages into
Yahoo!-like directories. We present SIMPL, a
nearly linear-time classification algorithm which
mimics the strengths of SVMs while avoiding
the training bottleneck. It uses Fisher’s linear
discriminant, a classical tool from statistical
pattern recognition, to project training instances
to a carefully selected low-dimensional subspace
before inducing a decision tree on the projected
instances. SIMPL uses efficient sequential scans
and sorts, and is comparable in speed and memory
scalability to widely-used naive Bayes (NB)
classifiers, but it beats NB accuracy decisively. It
not only approaches and sometimes exceeds SVM
accuracy, but also beats SVM running time by
orders of magnitude. While developing SIMPL,
we also make a detailed experimental analysis of
the cache performance of SVMs.

1 Introduction

Text classification is a standard problem in
information retrieval (IR). A learner is first
presented with training documents d, each labeled
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as containing or not containing material relevant
to a given topic; the label is denoted c ∈
{−1, 1} (we can turn multi-topic problems into
an ensemble of two-topic problems by building a
yes/no classifier for each topic—this is standard).
The learner processes the training documents,
generally collecting term statistics and estimating
various model parameters. Later, test instances
are presented without the label, and the learner
has to guess if each test document is or is not
relevant to the given topic. Naive Bayes (NB),
rule induction, decision trees, and support vector
machines (SVMs) are some of the best-known
classifiers employed to date.

Not surprisingly, the techniques that are easiest
to code and fastest to execute are not very
accurate, and vice versa. SVMs are the most
accurate classifiers known for text applications
[4, 8]: they beat NB accuracy by a decisive margin.
The accuracy boost is intriguing, because both
SVM and NB classifiers learn a hyperplane which
separates the positive examples (c = 1) from the
negative ones (c = −1), represented as vectors in
a high-dimensional term space. The difference is
that SVM picks a hyperplane embedded midway in
the thickest possible slab passing between positive
and negative examples and containing no training
point.

NB takes time essentially linear in the number
n of training documents [13, 14], whereas SVMs
take time proportional to na, where a is typically
between 1.8 and 2.1. Thanks to some clever
implementations [17, 9], SVMs have been trained
on several thousand instances despite their near-
quadratic complexity. However, to achieve this,
they hold the entire training data in main memory.

Scalability and memory footprint can become
critical issues as enormous training sets become
increasingly available. Web directories such as the
Open Directory (also called Dmoz) and Yahoo!
contain millions of training instances which occupy
tens of gigabytes, whereas even high-end servers
are mostly limited to 1–2 GB of RAM. Sampling
down the training set hurts accuracy in such high-
dimensional regimes: every additional training
document helps, and most features reveal some
useful class information [8]. In summary, despite



the theoretical elegance and superiority of SVMs,
their IO behavior and CPU scaling are important
concerns.

1.1 Our contribution

We design, implement, and evaluate a new, simple
text classification algorithm which needs very little
RAM, deals gracefully with out-of-RAM training
data (which it accesses strictly linearly), beats
NB accuracy decisively, and even matches SVM
accuracy. Our main idea is to:

1. Find a series of projections of the training
data by using Fisher’s classical linear discrim-
inant as a subroutine

2. Project all training instances to the low-
dimensional subspace found in the previous
step

3. Induce a decision tree on the projected low-
dimensional data.

We call this general framework SIMPL (Simple
Iterative Multiple Projection on Lines). SIMPL

has several important features: it has very
small footprint, linear in the number of terms
(dimensions) m plus the number of documents
n (with more careful coding, even the linear
dependence on n can be removed); it makes only
fast sequential scans over the input; its CPU time
is linear in the total size of the training data, it can
be expressed simply in terms of joins, sorts, and
GROUP BY operations, and it can be parallelized
easily.

To give a quick impression, SIMPL has been
implemented using only 600 lines of C++ code,
and trained on a 65524-document collection in
250 seconds, for which SVM took 3850 seconds.
We undertake a careful comparison between
SIMPL and SVM with regard to accuracy and
performance. We find that in spite of its
simplicity and efficiency, SIMPL is comparable
(and sometimes superior) to SVM in terms of
accuracy. It usually achieves such high accuracy
with only two linear projections.

The ability to scale to training sets much
larger than main memory is a key concern
for the data mining community, which has
resulted in excellent out-of-core implementations
for traditional classifiers such as decision trees [20].
In the last few years, the machine learning and text
mining communities have evolved other powerful
classifiers, such as SVMs and maximum entropy
learners. The scaling and IO behavior of the
new and important class of SVM learners are not
clearly understood. To this end, we carefully study
the performance of SVM accessing documents from

a LRU cache having limited size. If SVM is given
a cache of size comparable to the RAM required
by SIMPL, it spends a significant portion of its
time servicing cache misses, and the performance
gap between SIMPL and SVM grows further.

1.2 Related work

Although we are not aware of a hybrid learning
strategy similar to our proposal, a few ideas that
we discuss here were early hints that a projection-
based approach could be promising. A 1988
theorem by Frankl and Maehara [5] showed that
a projection of a set of n points in Rm to a random
subspace of dimension about (9/ε2) logn preserves
(to within a 1 ± ε factor) all relative inter-point
distances with high probability. On a related note,
Kleinberg projected these points to Θ(m log2m)
randomly directed lines to answer approximate
nearest-neighbor queries efficiently [10].

For a classification task, we need not preserve
all distances carefully. We simply need a subspace
which separates the positive and negative instances
well. In an early study by Schütze, Hull and
Pedersen [19], even single linear discriminants
compared favorably with neural networks for the
document routing problem. Lewis and others
[11] reported accurate prediction using a variety
of regression strategies for good (single) linear
predictors. The recent success of SVMs adds
further evidence that very few projections could
be adequate in the text domain.

In 1999, Shashua established that the decision
surface found by a linear SVM is the same as
the Fisher discriminant for only the “support
vectors” (see §2.3) found by a SVM [21]. Although
this result does not directly yield a better SVM
algorithm, it gave us the basic intuition behind our
idea. Our work is most closely related to linear
discriminants [3] and SVMs, which we discuss in
detail in §2 and §3. Independently, Cooke [2]
has suggested discarding well-separated training
points before finding Fisher’s linear discriminant,
but has not used multiple projections as a highly
compressed representation for a more powerful
learning algorithm such as a decision tree.

Pavlov, Mao and Dom also appreciate the
importance of scaling up SVMs, but their approach
is to run SVM as-is on 2–4% samples of the
training set (which fit in memory) and then
use boosting [16]. Their accuracy at best
matches a classifier induced on the entire data
set. Mangasarian and Musicant [12] propose an
enhanced SVM formulation that learns on millions
of data points in a few minutes, but they use
several gigabytes of RAM. Fung and Mangasarian
[6] propose to relax the SVM optimization problem



to a simpler one involving linear optimization.
Both these techniques depend on inverting either
an n × n or an m × m matrix (n is the number
of instances and m is the number of dimensions).
In traditional data mining, n � m, and the
latter inversion is preferred. For typical text
classification benchmarks, both n and m range into
tens of thousands, and matrix inversion takes time
cubic in n or m. Fung, Mangasarian and Musicant
experimented with m typically between 6 and 34
(maximum 123). Our data sets have 30000 to
1229663 dimensions.

Our approach may be regarded as a punch
between oblique decision trees (ODTs) [15], which
tries to find non-orthogonal hyperplane cuts in
the decision-tree setting, and an extreme case
of boosting [18], in which instances separated
with the help of existing linear projections are
completely removed from consideration. Inducing
an ordinary decision tree over the raw term space
of a large document collection is already extremely
time-consuming. ODTs draw on an even more
complex hypothesis space than decision trees (an
arrangement of simplicial polytopes) and involve
a regression over potentially all m dimensions at
each node of the decision tree. Consequently,
SIMPL is much faster than ODT induction. It
is also somewhat faster to apply on test instances
than ODTs because we only need to compute a
small, fixed number of projections (usually 2).
We also found SIMPL to be more accurate than
decision trees. A comparison with ODTs may be
worthwhile.

2 Preliminaries

2.1 Naive Bayes (NB) classifiers

Bayesian classifiers estimate a class-conditional
document distribution Pr(d|c) from the training
documents and use Bayes rule to estimate Pr(c|d)
for test documents. The documents are modeled
using their terms. The multinomial naive Bayes
model assumes that a document is a bag or
multiset of terms, and the term counts are
generated from a multinomial distribution after
fixing the document length `d, which, being fixed
for a given document, lets us write

Pr(d|c, `d) =
(

`d
{n(d, t)}

)∏
t∈d

θ
n(d,t)
c,t , (1)

where n(d, t) is the number of times t occurs in d,
and θc,t are suitably estimated [1, 14] multinomial
probability parameters with

∑
t θc,t = 1 for all c.

For the two-class scenario throughout this paper,
we only need to compare Pr(c = −1|d) against

Pr(c = 1|d), or equivalently, log Pr(c = −1|d)
against log Pr(c = 1|d), which simplifies to a
comparison between

log Pr(c = 1) +
∑
t∈d n(d, t) log θ1,t and

log Pr(c = −1) +
∑
t∈d n(d, t) log θ−1,t,

(2)

where Pr(c = . . .), called the class priors, are
the fractions of training instances in the respective
classes. Simplifying (2), we see that NB is a linear
classifier: it makes a decision between c = 1 and
c = −1 by thresholding the value of αNB · d +
b for a suitable vector αNB (which depends on
the parameters θc,t) and constant b. Here d is
overloaded to denote a vector of term frequencies
(see §4) and ‘·’ denotes a dot-product.

2.2 Regression techniques

We can regard the classification problem as
inducing a linear regression from d to c of the form
c = α · d + b, where α and b are estimated from
the data {(di, ci), i = 1, . . . , n}. This view has
been common in a variety of IR applications. A
common objective is to minimize the square error
between the observed and predicted class variable:∑
d(α · d + b − c)2. The least-square optimization

frequently uses gradient-descent methods, such as
the Widrow-Hoff (WH) update rule. The WH
approach starts with some rough estimate α(0),
considers (di, ci) one by one and updates α(i−1)

to α(i) as follows:

α(i) = α(i−1) + 2η(α(i−1) · di − ci)di. (3)

The final α used for classification is usually the
average of all αs found along the way. Schütze,
Lewis and others [19, 11] have applied WH and
other update methods (such as the Exponentiated
Gradient method) to design high-accuracy linear
classifiers for text. We will follow the WH
approach, but we will not minimize the square
error, because we are not dependent on a single
linear predictor. Instead, our goal is to maximize
separation between the classes in the projected
subspace, for which we will optimize Fisher’s linear
discriminant.

2.3 Linear support vector machines

Like NB, linear SVMs also make a decision by
thresholding αSVM · d + b (the estimated class is
+1 or −1 according as the quantity is greater
or less than 0) for a suitable vector αSVM and
constant b. αSVM is chosen far more carefully than
NB. Initially, let us assume that the n training
points in R

m from the two classes are linearly
separable by a hyperplane perpendicular to a
suitable α. SVM seeks an α which maximizes the



distance of any training point from the hyperplane;
this can be written as:

Minimize 1
2 α · α (= 1

2‖α‖
2) (4)

subject to ci(α · di + b) ≥ 1 ∀i = 1, . . . , n,

where {d1, . . . , dn} are the training document vec-
tors and {c1, . . . , cn} their corresponding classes.
(We want an α such that sign(α·di+b) = ci, so that
their product is always positive.) The distance of
any training point from the optimized hyperplane
(called the margin) will be at least 1/‖α‖.

To handle the general case where a single
hyperplane may not be able to correctly separate
all training points, fudge variables {ξ1, . . . , ξn} are
introduced, and (4) enhanced as:

Minimize 1
2α · α+ C

∑
i ξi (5)

subject to ci(α · di + b) ≥ 1− ξi ∀i = 1, . . . , n,
and ξi ≥ 0 ∀i = 1, . . . , n.

If di is misclassified, then ξi ≥ 1, so
∑
i ξi upper

bounds the number of training errors, which is
traded off against the margin using the tuned
constant C. SVM packages solve the dual of (5),
involving scalars λ1, . . . , λn, given by:

Maximize
∑
i λi −

1
2

∑
i,j λiλjcicj(di · dj) (6)

subject to
∑
i ciλi = 0

and 0 ≤ λi ≤ C ∀i = 1, . . . , n.

The ‘ 1
2 ’ in the objective (4) is not needed, but

makes the dual look simpler. Having optimized the
λs, α is recovered as

αSVM =
∑
i λicidi. (7)

If 0 < λi ≤ C, di is a “support vector”. b can
be estimated as cj − αSVM · dj , where dj is some
document for which 0 < λj < C. One can tune C
and b based on a held-out validation data set and
pick the values that gives the best accuracy. We
will refer to such a tuned SVM as SVM-best.

Formula (6) represents a quadratic optimization
problem. SVM packages iteratively refine a few
λs at a time (called the working set), holding
the others fixed. For all but very small training
sets, we cannot precompute and store all the inner
products di · dj . As a scaled-down example, if an
average document costs 400 bytes in RAM, and
there are only n = 1000 documents, the corpus
size is 400000 bytes, and the inner products, stored
as 4-byte floats, occupy 4 × 1000 × 1000 bytes,
ten times the corpus size. Therefore the inner
products are computed on-demand, with a LRU
cache of recent values, to reduce recomputation. In

all SVM implementations that we know of, all the
document vectors are kept in memory so that the
inner products can be quickly recomputed when
necessary.

2.4 Observations leading to our approach

It is natural to question the observed difference
between the accuracy of NB classifiers and linear
SVMs, given that they use the same hypothesis
space (half-spaces). In assuming attribute
independence, NB starts with a large inductive
bias (loosely speaking, a constraint not guided
by the training data) on the space of separating
hyperplanes that it will draw from. SVMs do not
propose any generative probability distribution for
the data points and do not suffer from this form
of bias. Another weakness of the NB classifier
is that its parameters are based only on sample
means; it takes no cognizance of variance. Fisher’s
discriminant does take variance into account (see
Figure 2 later).

A linear SVM carefully finds a single dis-
criminative hyperplane. Consequently, instances
projected on the direction ~αSVM normal to
this hyperplane show large to perfect inter-class
separation. Intuitively, our hope is that we
can be slightly sloppy (compared to SVMs) with
finding discriminative direction(s), provided we
can quickly find a number of such directions
which can collectively help a decision tree learner
separate the classes in the projected space. To
achieve speed and scalability, it must be possible
to cast our computation in terms of efficient
sequential scans over the data with a small number
of accumulators collecting sufficient statistics [7].

3 The proposed algorithm

Our proposed training algorithm has the broad
outline shown in Figure 1. The important steps are
hill-climbing and removing instances from the
training set, which we will explain and rationalize
shortly. Testing is simple, and essentially as fast as
NB or SVM. We preserve the linear discriminants
α(0), . . . , α(k−1) as well as the decision tree (in
practice we found k = 2 . . . 3 to be adequate).
Given a test document d, we find its k-dimensional
representation (d · α(0), . . . , d · α(k−1)) and submit
this vector to the decision tree classifier, which
outputs a class.

3.1 The hill-climbing step

Let the points with c = −1 (c = 1) be X
(Y ). Fisher’s linear discriminant is a (unit) vector
α such that the positive and negative training
instances, projected on the direction α, are as
“well-separated” as possible. The separation J(α),



i← 0
initialize D to the set of all training documents
while D has at least one positive and one negative instance do

initialize α(i) to the vector direction joining the positive class centroid to the negative class centroid
do hill-climbing to find a good linear discriminant α(i) for D
orthogonalize α(i) w.r.t. α(0), . . . , α(i−1) and scale it so that its L2 norm ‖α(i)‖ = 1
remove from D those instances that are correctly classified by α(i)

i← i+ 1
end while
let α(0), . . . , α(k−1) be the k linear discriminant vectors found
for each document vector d in the original training set do

represent d as a vector of its projections (d · α(0), . . . , d · α(k−1))
train a decision tree classifier with the k-dimensional training vector

end for
Figure 1: The proposed multiple linear discriminant algorithm.

shown in equation (8), is quantified as the ratio of
the square of the difference between the projected
means to the sum of the projected variances.

In matrix notation, if µX and µY are the means
(centroids) and ΣX = (1/|X|)

∑
X(x − µX)(x −

µX)T and ΣY = (1/|Y |)
∑
Y (y−µY )(y−µY )T are

the covariance matrices for point sets X and Y ,
the best linear discriminant can be found in closed-
form, which has been used in pattern recognition:

arg max
α

J(α) =
(

ΣX + ΣY
2

)−1

(µX − µY ), (11)

provided the matrix inverse exists.
However, inverting the covariance matrix is

impractical in the document classification domain,
because it is too large, and very likely ill-
conditioned. Moreover, inversion will discard
sparsity. Instead, we use a gradient ascent or hill-
climbing approach: we start from a reasonable
starting value of α and repeatedly find ∇J(α) =
(∂J/∂α1, . . . , ∂J/∂αm). Denoting the numerator
(respectively, denominator) in the rhs of (8) as
N(α) (respectively, D(α) = DX(α) + DY (α)), we
can easily write down ∂N/∂αk, ∂DX/∂αk, and
∂DY /∂αk, as shown in Figure 2. From these values
we can easily derive the value of ∂J/∂αi for all i
in the term vocabulary. Once we find ∇J(α), we
use the standard WH update rule with a learning
rate η:

αnext ← αcurrent + η ∇J(α). (12)

The gist is that we need to maintain the
following set of accumulators as we scan the
documents sequentially:

•
∑
X x · α (scalar)

•
∑
Y y · α (scalar)

•
∑
X xi for each i (m numbers)

•
∑
Y yi for each i (m numbers)

•
∑
X xi(x · α) for each i (m numbers)

•
∑
Y yi(y · α) for each i (m numbers)

together with the current α, which is another m
numbers. The total memory footprint is only 5m+
O(1) numbers (20m bytes), where m is the size of
the vocabulary. For our Dmoz data set (see §4),
m ≈ 1.2 × 106, which means we need only about
24 MB of RAM. All the vectors have dense array
representations, so the time for one hill-climbing
step is exactly linear in the size of the input data.
It is also easy to see that all the expressions in
Figure 2 can be expressed as simple GROUP BY and
aggregate operations.

3.2 Pruning the training set

After a suitable number of hill-climbing steps,
we need to discard points in D which are “well-
separated” by the current α. This is achieved by
projecting all points in D along α, so that they are
now points on the line (each marked with c = 1
and c = −1), and sweeping the line for a minimum-
error position where

• Most points on one side have c = 1 and most
points on the other side have c = −1, and

• The number of points on the ‘wrong’ side is
the minimum possible.

It is easy to do this in one sort of an n-element
array and one sweep with O(1) extra memory,
so the total time for identifying well-separated
documents is O(n log n) (and the total space
needed is O(m+ n)).

Typically, each new α helps us discard over 80%
of D. To avoid scanning through the original D for
every hill-climbing pass, we write out the surviving



J(α) =

N︷ ︸︸ ︷(
1
|X|
∑
X x · α−

1
|Y |
∑
Y y · α

)2

1
|X|
∑
X(x · α)2 −

(
1
|X|
∑
X x · α

)2

︸ ︷︷ ︸
DX

+ 1
|Y |
∑
Y (y · α)2 −

(
1
|Y |
∑
Y y · α

)2

︸ ︷︷ ︸
DY

(8)

∂N

∂αi
= 2

(
1
|X|

∑
X

x · α− 1
|Y |

∑
Y

y · α

)(
1
|X|

∑
X

xi −
1
|Y |

∑
Y

yi

)
(9)

∂DX

∂αi
=

2
|X|

(∑
X

xi(x · α)− 1
|X|

(
∑
X xi) (

∑
X x · α)

)
(10)

Figure 2: The main equations involved in the hill-climbing step.

documents in a new file, which then becomes our
D for finding the next α.

The intuition behind this algorithm is quite
simple: having found a discriminant α we should
retain only those points which fail to be separated
in that direction. Furthermore, orthogonalizing
the set of αs reduces the correlation between the
components of the k-dimensional representation
of documents, thus helping the decision tree find
simpler orthogonal cuts in the feature space.

3.3 Inducing a decision tree

We used two roughly equivalent decision tree pack-
ages using Quinlan’s C4.5 algorithm: C4.5 itself
(http://www.cse.unsw.edu.au/~quinlan/) and
the decision tree package in WEKA [22] (which
we simply call WEKA; also see http://www.cs.
waikato.ac.nz/~ml/weka/). In our context, a
decision tree seeks to partition a set of labeled
points {d} in a geometric space, where each d is
a vector (d0, . . . , dk−1).

The decision tree induction algorithm uses a
series of guillotine cuts on the space, each of which
is expressed as a comparison of some component di
against a constant, such that each final rectangular
region has only positive or only negative points.
The hierarchy of comparisons induces the decision
tree, whose leaves correspond to final rectangular
regions. To achieve a recall-precision trade-off, just
as we can tune the offset b for a SVM, we can assign
different weights to positive (c = 1) and negative
(c = −1) instances in WEKA.

A decision tree with ‘pure’ (single-class) leaves
usually overfits the training data and does not
generalize well to held-out test data. Better
generalization is achieved by pruning the tree,
trading off the complexity of the tree with the
impurity of the leaf rectangles in terms of mixing
points belonging to different classes. This does not
work too well for large m, which is why decision

trees induced on raw text show poor accuracy.
This is also why our dimensionality reduction via
projection pays off well.

4 Experiments

The core of SIMPL (excluding document scanning
and preprocessing) was implemented in only 600
lines of C++ code, making generous use of ANSI
templates. The core of C4.5 is roughly another
1000 lines of C code. (In contrast, SVMlight,
a very popular SVM package, is over 6000 lines.)
“g++ -O3” was used for compilation. Programs
were run on Pentium3 machines with 500–700 MHz
CPUs and 512–2048 MB of RAM.

Two versions of SVM are publicly available:
Sequential Minimum Optimization (SMO) by John
Platt [17, 4] and SVMlight by Thorsten Joachims
[9]. We found SVMlight to be comparable
or better in accuracy compared to published
SMO numbers. Our experiments are based on
SVMlight, evaluating it for C between 1 and 60
(SVMlight’s default is 21.37). We also evaluate
several values of b in a suitable band around the
separator. Other settings and flags are left at
default values except where noted.

We use a few standard accuracy measures. For
the following contingency table:

(Number of Estimated class
documents) c̄ c
Actual class c̄ n00 n01

c n10 n11

recall and precision are defined as R = n11/(n11 +
n10) and P = n11/(n11 +n01). F1 = 2RP/(R+P )
is also a commonly-used measure. A classifier may
have parameters using which one can trade off R
for P or vice versa. When these parameters are
adjusted to get R = P , this value is called the
“break-even point”.

http://www.cse.unsw.edu.au/~quinlan/
http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.waikato.ac.nz/~ml/weka/
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Figure 3: Hill-climbing to maximize J(α) is fast.

We use the standard “TFIDF” document
representation from IR. In keeping with some of
the best systems at TREC (http://trec.nist.
gov/), our IDF for term t is log (|D|/|Dt|) where
D is the document collection and Dt ⊆ D is the
set of documents containing t. The term frequency
TF(d, t) = 1+ln

(
1+ln(n(d, t))

)
, where n(d, t) > 0

is the raw frequency of t in document d (TF is zero
if n(d, t) = 0). d is represented as a sparse vector
with the tth component being IDF(t) TF(d, t). The
L2 norm of each document vector is scaled to 1
before submitting to the classifier.

We use the following data sets. The first three
are well-known in recent IR literature, small in
size and suitable for controlled experiments on
accuracy and CPU scaling. The last two data sets
are large; they were mainly used to test memory
scaling (but we verified that they show similar
patterns of accuracy as the smaller data sets).

Reuters: About 7700 training and 3000 test
documents (“MOD-APTE” split), 30000 terms,
135 categories. The raw text takes about 21 MB.

20NG: About 18800 total documents organized
in a directory structure with 20 topics. For each
topic the files are listed alphabetically and the
first 75% chosen as training documents. There are
94000 terms. The raw concatenated text takes up
25 MB.

WebKB: About 8300 documents in 7 categories.
About 4300 pages on 7 categories (faculty, project,
etc.) were collected from 4 universities and about
4000 miscellaneous pages were collected from other
universities. For each classification task, any one
of the four university pages are selected as test
documents and rest as training documents. The
raw text is about 26 MB.
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Figure 4: For each topic, the first bar shows time to
compute α(0) to convergence, then the time to compute
α(1) to convergence. The second bar shows the time
to compute α(0) sloppily, followed by computing α(1)

to convergence. Because earlier αs take more time to
compute, we may even save overall time.

OHSUMED: 348566 abstracts from medical
journals, having around 230000 terms and 308511
topics. The raw text is of size 400 MB. The first
75% are selected as training documents and the
rest are test documents.

Dmoz: A cut was taken across the Dmoz
(http://dmoz.org/) topic tree yielding 482 topics
covering most areas of Web content. About 300
training documents were available per topic. The
raw text occupied 271 MB.

The last two data sets start approaching the
scale we envisage for real applications.

All our data sets sport more than two
labels. For each label (e.g., ‘cocoa’), a two-
class problem (‘cocoa’ vs. ‘not cocoa’) is for-
mulated. All tokens are turned to lowercase
and standard SMART stopwords (ftp://ftp.cs.
cornell.edu/pub/smart/) are removed, but no
stemming is performed. No feature selection is
used prior to running any of our classification
algorithms: the naive Bayes classifier in the
Rainbow library [13] (with Laplace and Lidstone’s
methods evaluated for parameter smoothing),
SVMlight and SIMPL. Alternatively, one may
preprocess the collection through a common
feature selector and then submit them to each
classifier, which adds a fixed time to each classifier.

4.1 Accuracy

The hill-climbing approach is fast and practical.
We usually settle at a maximum within 15–25
iterations: Figure 3 shows that J(α) quickly
grows and stabilizes with successive iterations.
Our default ‘convergence’ policy is to repeat hill-
climbing until the increase in J(α) is less than
5% over 3 successive iterations. Such a policy

http://trec.nist.gov/
http://trec.nist.gov/
http://dmoz.org/
ftp://ftp.cs.cornell.edu/pub/smart/
ftp://ftp.cs.cornell.edu/pub/smart/


guards against mild problems of local maxima and
overshoots in case the learning rate η in equation
(12), which is set to 0.1 throughout, is slightly
off. This condition usually manifests itself in small
oscillations in J(α), e.g., for topics ship and wheat.
Our results are insensitive, within a wide range, to
the specific choices of all these parameters, as the
following experiment will also show.
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Figure 5: Quitting hill-climbing early has a modest
impact on F1 accuracy; in fact, in some cases, accuracy
improves.

An interesting feature of SIMPL is that later αs
can compensate for some sloppiness in finding an
earlier α. For several problems, we first optimized
α(0) to convergence and noted the number of
iteration required. (We also found α(1) etc.)
Then we reran the experiment with only half as
many iterations for α(0), which was therefore sub-
optimal. We had to pay for this sloppiness during
the estimation of subsequent αs (Figure 4), but
because the training data has shrunk significantly,
this actually saves us time.

In Figure 5 we note that even though
terminating the hill-climbing for α(0) halfway
through saves almost half the training time, it
entails little loss in accuracy. In fact, in some
cases, because one of precision and recall falls less
than the other, we may even gain accuracy in F1

terms. Such resilience to variation in policy and
parameters is very desirable.

We also show some scatter-plots of training and
test data projected along (α(0), α(1)) by SIMPL,
shown in Figure 6. This is for the relatively
difficult topic money-fx in the Reuters data, which
a linear SVM could not separate. We see that the
α(0) direction is already quite effective for class
discrimination, and most points in the confusion
zone of α(0) are effectively separated by α(1) in
the 2d map. α(1) successfully clusters most of
the negative class in the upper portion, while
the positive class is more evenly spread out on
the y-axis. These observations support Joachim’s
experience that the VC-dimension of many text

Train, c = −1 Test, c = −1
"money-fx.lf" "money-fx.af"

Train, c = 1 Test, c = 1
"money-fx.lt" "money-fx.at"

Figure 6: Training and test data projected on to
the first two αs found by SIMPL, hinting that high-
accuracy decision trees can be induced from the
reduced-dimension data.

classification benchmarks is very low.
Another reason for SIMPL’s high speed is

that typically, we can lop off over 80% of the
current training set for every additional α(i) that
we find. For example, for the Dmoz data, the
numbers of surviving documents were 116528,
7074, 230, and 2 before finding α(0), α(1), α(2) and
α(3) respectively. Consequently, SIMPL generates
only 2–4 linear projections before running out of
training documents. How many projections are
needed to retain enough information for C4.5 to
achieve high accuracy? Figure 7 shows the effect
of including up to the first three αs. In all
the cases, the first two αs are sufficient for peak
accuracy. The general trend is that precision and
recall approach each other as we include more
projections, improving F1. The loss in one is more
than made up by the gain in the other. This result
also shows that we can improve beyond linear
regression (§2.2) by using additional projections.
It is also reassuring that including more αs (up
to 5) than necessary never hurt accuracy.

How does SIMPL measure up against SVM
overall? Figure 8 shows a bird’s-eye view of all
data sets and all algorithms: it compares the F1

score for naive Bayes (NB), SIMPL, SVM, and
SVM-best (see §2.3). SIMPL beats NB in 33 out
of 35 cases. (Lidstone smoothing had only mild
effects on NB accuracy.) SIMPL beats SVM in 23
out of 35 cases. On an average we are a few percent



#Alphas crude-P crude-R interest-P interest-R ship-P ship-R wheat-P wheat-R
1 0.7231 0.9259 0.8524 0.3969 0.8139 0.7865 0.8775 0.6056
2 0.8579 0.8942 0.7544 0.6565 0.7955 0.7865 0.875 0.7887
3 0.8579 0.8942 0.7544 0.6565 0.7955 0.7865 0.875 0.7887
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Figure 7: Variation of precision and recall with the
number of linear projections used by C4.5. Two
projections are almost always adequate.

short of SVM-best, but there are several cases
(marked by stars) where we beat even SVM-best.
(The extent to which tuning the offset parameter
b improved SVM-best beyond SVM surprised us,
and is not reported elsewhere. Tuning C had less
effect.) We note that this is a comprehensive study
over many diverse, standard data sets, and the
high accuracy of SIMPL is very stable across the
board.
F1, being the harmonic mean, favors algorithms

whose recall is close to precision, which is the
case with SIMPL. To be fair, a closer look shows
that SIMPL usually loses to SVM-best by a small
margin in either recall or precision, but beats it in
the other (Figure 9. In a few cases we beat SVM in
both recall and precision. This is possible because
we are not limited to a single planar separator.
Because we use a decision tree in the projected
space, we can learn, say a function like EXOR
which a linear SVM cannot. Although SVMs with
more complex kernels may be used, they are slower
to train than linear SVMs.

We also compared our accuracy with that of
C4.5 run directly on the raw text, reported in
earlier work [4, 8]. We see that although we
too use C4.5, our accuracy is substantially better,
thanks to our novel feature combination and
transformation steps. In addition, SIMPL runs
much faster than C4.5 on the raw data.

Finally, we show a scatter-plot of F1 scores
against the positive class skew (ratio of the number
of documents to the number of documents with
c = 1) in Figure 10. While all methods suffer
somewhat from skew, clearly NB suffers most and
SIMPL suffers least.

4.2 Performance

Having established that our accuracy is compara-
ble to SVM, we turn to a detailed investigation
of the scalability and IO behavior of the two

NB SIMPL SVM SVM-best
acq 0.9479 0.9691 0.9507 0.9674
earn 0.9176 0.9779 0.9801 0.9829
crude 0.7531 0.8792 0.7016 0.8684
ship 0.72 0.8092 0.5581 0.8491
money-fx 0.614 0.8 0.6465 0.8
interest 0.597 0.736 0.6699 0.782
grain 0.556 0.8737 0.8647 0.911
trade 0.62 0.6983 0.573 0.7878
wheat 0.6 0.8444 0.8033 0.8905
corn 0.373 0.7523 0.7273 0.8717
AVG 0.66986 0.83401 0.74752 0.87108
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NB SIMPL SVM SVM-best
other 0.808837 0.800678 0.792445 0.861863
student 0.374433 0.587013 0.535576 0.597298
faculty 0.185303 0.549327 0.441062 0.498841
course 0.050757 0.461722 0.471501 0.483739
project 0.012499 0.257102 0.143308 0.216332
AVG 0.286366 0.531168 0.476778 0.531615
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Figure 8: Aggregate F1 scores for NB, SIMPL, and
SVM for some of the most populated topics of the
Reuters and WebKB data sets. We decisively beat
NB (by a 15–20% margin) in most cases. We also
frequently beat SVM (average 6% margin), and lose
to SVM-best by a narrow margin (average 3%).

Precision Recall
SIMPL SVM-best SIMPL SVM-best

acq 0.93 -0.95 0.9787 0.964 -0.9597 -0.9707
crude 0.62 -0.84 0.855 0.8638 -0.9048 -0.873
money-fx 0.47 -0.74 0.75 0.786 -0.8547 -0.8212
wheat 0.33 -0.49 0.8906 0.9523 -0.8028 -0.845
rec.motorcycles 0.52 -0.97 0.9242 0.9344 -0.8628 -0.9469
sci.med 0.78 -0.87 0.961 0.9606 -0.8717 -0.8628
talk.politics.mideast 0.89 -0.91 0.9163 0.9244 -0.9541 -0.939
talk.politics.misc 0.53 -0.82 0.8794 0.8111 -0.6966 -0.7865
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Figure 9: Most often we lose to SVM-best by a small
margin in one of recall and precision and beat it in the
other. Stars mark where we win in both.
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Figure 10: SIMPL shows the least adverse effect of
class skew on F1 accuracy among naive Bayes (NB),
SIMPL, and SVM.

algorithms. We will first compare the scaling of
CPU time with training set size, assuming enough
RAM is available.

We did not include the initial time required to
turn the raw training documents into the compact
representation required for sequential scans in the
case of SIMPL and the LRU cache required by
SVM. We started timing the algorithms only after
these initial disk structures were ready. The
time consumed for preprocessing depends on a
host of non-standard factors, such as the raw
representation and system policies: single vs. many
files, stopword detection and word truncation,
term weighting, etc. We used the OHSUMED
and Dmoz data for performance measurements.
We report on Dmoz, OHSUMED being broadly
similar.

corpusFractestFrac Train0 SVM-iter SVM-time SIMPL-iter0SIMPL-time0Train1
0.1 0 0.1 11692 4079 145.7 16 33.44 267
0.2 0.3 0.14 16272 5523 316 13 42.38 526
0.4 0.3 0.28 32812 11450 1126 14 86.63 1644
0.6 0.3 0.42 49087 16046 2305 13 121.7 2702
0.8 0.3 0.56 65524 20690 3850 12 159.7 3872
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Figure 11: Number of iterations needed by one run of
SVM and two runs of SIMPL (one finding α(0), the

other, α(1)). The number of SVM iterations seem to
scale up with the problem size, unlike SIMPL.

We first observe in Figure 11 that, unlike
SVM, the number of iterations needed for our hill-
climbing step is largely independent of the number
of training documents. The time taken by single
hill-climbing iteration is linear in the total input
size, defined as

∑
d |{t ∈ d}|, plus O(n log n) for

n documents. Because log n is small and the time
for sorting is very small compared to the α update
step, the total time for SIMPL is expected to be
essentially linear.

This is confirmed in the log-log plot shown in
Figure 12, where the least-square fit for SIMPL
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Figure 12: Scaling of overall CPU time, excluding
preprocessing time, with training set size for SVM and
SIMPL, keeping all training data in memory. The line
marked “SIMPL-time0” shows the time for finding just
the first α, and the line marked “SIMPL” shows the
total time for SIMPL. A sample of 65000 documents
were chosen from Dmoz.

is roughly t ∝ n0.955, where t is the execution
time. In contrast, the regression for the running
time of SVM is t ∝ n1.88, which corroborates
earlier measurements by Platt, Joachims, and
others. This difference translates to a running time
ratio (SVM to SIMPL) of almost two orders of
magnitude for n as small as 65000. For collections
at the scale of Yahoo! or the full Dmoz data set
(millions of documents) the ratio will reach several
orders of magnitude.

All public SVM implementations that we know
of, including SVMlight and SMO, load all the
training document vectors into memory. With
limited memory, we expect the performance gap
between SVM and SIMPL to be even larger. In
our final set of experiments, we study the behavior
of SVM with limited memory.

As mentioned before (§2.3), SVM optimizes
the λs corresponding to a small working set of
documents at a time. In SVMlight, the size of
this working set (typically 10–50) is set by the ‘-q’
option. There are standard heuristics for picking
the next working set to speed up convergence,
but applying these may replace the entire working
set, reducing cache locality. SVMlight provides
another option ‘-n’ which limits the number of
new λs that are permitted to enter the working set
in each iteration. Reducing this increases cache
locality, but can lead to more iterations. A sample
of this trade-off is shown in Figure 13. Even though
a heavy replacement rate decreases cache hits and
increases the time per iteration, the number of
iterations is cut so drastically that a large value
for ‘-n’ is almost always a better choice.
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Figure 13: Although cache misses and time per
iteration increase if the number of new variables
optimized per iteration is capped, the drastic savings
in the number of iterations reduces overall time. The
corpus and cache sizes were 24000 and 2000 documents
and ‘-q 20’ was used.

How do cache hits and misses translate into
running time overheads? This can be measured
either by limiting physical memory available to
the computer (in Linux, using a line of the
form append="mem=512M" in /etc/lilo.conf),
or by letting SVM do its own document cache
management and instrumenting this cache. The
former option is appealing to the end-user.
However, system processes, OS buffer cache,
device interrupts and paging make measurements
unreliable. Moreover, the OS cache is physical
and cannot exploit the structure of the SVM
computation. Therefore we expect large-scale
SVM packages to implement their own caching.
We used a disk without any file system as a
raw block device (an ATA/66 7200RPM Seagate-
ST330630A drive with 2 MB on-board cache on
/dev/hdc1), which precluded interference owing to
OS buffering. We built a LRU cache on it with
a preconfigured main memory quota. Servicing
a miss usually involved exactly one seek on disk
unless the data was in the disk’s on-board cache.

Figure 14 shows a break-up of times spent
in computation (CPU), hit, miss and eviction
processing. This sample from Dmoz had 23428
documents (23 MB of sparse term vectors) with
360000 features, so SIMPL needs only 6 MB of
RAM and runs for only 80 seconds with close-
to-100% CPU utilization. In contrast, if SVM is
given 6 MB of cache (about 6000 documents), it
takes over 1300 seconds, of which 60% is spent in
servicing evictions and misses.

Extending from the small-scale experiment
above, we present in Figure 15 a large-scale
experiment where we go from a 10% to a 100%
sample of our Dmoz data (117920 documents,
110 MB in RAM). For each sample we determine
the amount of RAM needed by SIMPL, and give
that quantity of cache to SVM, and compare the
running times. The graph is superficially similar
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Figure 14: CPU time, cache hit time, miss time and
eviction time plotted against the relative size of cache
available to SVM.

to Figure 12, but a closer look shows that the ratio
of SVM to SIMPL running times is larger owing
to cache overheads. Summarizing, SIMPL beats
SVM w.r.t. both CPU and cache performance, but
the near-quadratic CPU scaling of SVM makes
cache overheads appear less serious than they
really are: the total time spent by SIMPL is less
than 20% of the time spent by SVM on cache
management alone.

5 Conclusion

We have presented SIMPL, a new classifier for
high-dimensional data such as text. SIMPL is
very simple to understand and easy to implement.
SIMPL is very fast, scaling linearly with input
size, as against SVM, which shows almost
quadratic scaling. SIMPL uses efficient sequential
scans over the training data, unlike SVM, which
has an inferior disk and cache access pattern and
locality of reference. This performance boost
carries little or no penalty in terms of accuracy:
we often beat SVM in the F1 measure, and closely
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Figure 15: When SVM and SIMPL are given the same
amount of RAM as we scale up the size of the training
set, SIMPLperforms far better.



match SVM in recall and precision. SIMPL beats
naive Bayes and decision tree classifiers decisively
for text learning tasks. We also present a detailed
study of the IO behavior of SVM, which shows
that, in contrast to SIMPL’s efficient sequential
scans, SVM’s cache locality is relatively poor.

Our work shows that even though SVMs are
elegant, powerful, and theoretically appealing,
they have not rendered the search for practical and
IO-efficient alternatives unnecessary or fruitless. A
natural area of future work is to identify properties
of data sets which guarantee near-SVM accuracy
using SIMPL. Another area of applied work is
to test SIMPL vis-a-vis non-linear SVM for non-
textual training data with somewhat higher VC-
dimension.
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