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Abstract. We explore how to organize large text databasesa pressing need to support efficient and effective informa-
hierarchically by topic to aid better searching, browsing andtion retrieval (IR), search and filtering. A manifestation of
filtering. Many corpora, such as internet directories, digi-this need is the recent proliferation of over 100 commercial
tal libraries, and patent databases are manually organizext search engines that crawl and index the web, and sev-
into topic hierarchies, also calledxonomiesSimilar to in-  eral subscription-based information multicast mechanisms.
dices for relational data, taxonomies make search and adNevertheless, there is little structure on the overwhelming
cess more efficient. However, the exponential growth in theinformation content of the web.

volume of on-line textual information makes it nearly im- It is common to manage complexity by using a hierar-
possible to maintain such taxonomic organization for largechy!, and text is no exception. Many internet directories,
fast-changing corpora by hand. such asvahoo!?, are organized as hierarchies. IBM’s patent

We describe an automatic system that starts with a smaltiatabasgis organized by the US Patent Office’s class codes,
sample of the corpus in which topics have been assigned bwhich form a hierarchy. Digital libraries that mimic hard-
hand, and then updates the database with new documents espy libraries support some form of subject indexing such
the corpus grows, assigning topics to these new documentss the Library of Congress Catalogue, which is again hier-
with high speed and accuracy. archical.

To do this, we use technigues from statistical pattern  We will explore the opportunities and challenges that are
recognition to efficiently separate tlfieaturewords, ordis- posed by such topic hierarchies, also cali@xonomiesAs
criminants from thenoisewords at each node of the taxon- we shall show, taxonomies provide a means for designing
omy. Using these, we build a multilevel classifier. At eachvastly enhanced searching, browsing and filtering systems.
node, this classifier can ignore the large number of “noise"They can be used to relieve the user from the burden of
words in a document. Thus, the classifier has a small modedifting specific information from the large and low-quality
size and is very fast. Owing to the use of context-sensitiveresponse of most popular search engines [9, 35]. Querying
features, the classifier is very accurate. As a by-product, wevith respect to a taxonomy is more reliable than depending
can compute for each document a set of terms that occuon presence or absence of specific keywords. By the same
significantly more often in it than in the classes to which it token, multicast systems such asintCast* are likely to
belongs. achieve higher quality by registering a user profile in terms

We describe the design and implementation of our sysof classes in a taxonomy rather than keywords.
tem, stressing how to exploit standard, efficient relational op- The challenge is to build a system that enables search
erations like sorts and joins. We report on experiences withand navigation in taxonomies. Several requirements must
the Reuters newswire benchmark, the US patent databasbe met. First, apart from keywords, documents loaded into
and web document samples frorahoo!. We discuss appli- such databases must be indexedtopic pathsin the tax-
cations where our system can improve searching and filteringnomy, for which aeliable automatic hierarchical classifier
capabilities. is needed. As one goes deep into a taxonomy, shared jargon
makes automatic topic separation difficult. Documents on
stock prices and on impressionist art look very different to
us, but may be carelessly filed as “human affairs” by a Mar-
tian. Second, the taxonomy should be used also to present to

1 Introduction _
1 A hierarchy could be any directed acyclic graph, but in this paper we

. . only deal with trees.
The amount of on-line data in the form of free-format text 2 . /sww.yahoo.com

is growing extremely rapidly. As text repositories grow in 3 np:/www.ibm.com/patents
number and size and global connectivity improves, there is 4 http://iwww.pointcast.com



164

the user a series of progressively refingeelvsof document 2 Capabilities and features
collections in response to queries. Third, the system must

be fast especially since it will often be used in conjunction \we discuss two important contexts in which accurate, high-

with a crawler or newswire service. Fourth, the system mustesolution topic identification is needed: querying and filter-
efficiently updateits knowledge when it makes mistakes and jng.

a human intervenes, or when an incremental update is made
to the topic taxonomy. Querying. Most queries posted to search engines are very

We describe such atonomy-ad-path-exhancedetrie-  short. Such queries routinely suffer from tldundance
val system calledAPER . For every node in the taxonomy, Pproblem: there are many aspects to, and even different in-
it separatedeatureand noiseterms by computing the best terpretations of the keywords typed. Most of these are un-
discriminantsfor that node. When classifying new docu- likely to be useful. Consider the wildlife researcher asking
ments, only the feature terms are used. Good features artaVista® the quenjaguar speed [9]. A bewildering va-
few in number, so the class models are small and the clagiety of responses emerge, spanning the car, the Atari video
sification is speedy. In contrast to existing classifiers thagame, the football team, and a LAN server, in no partic-
deal with a flat set of classes, the feature set changes bylar order. The first page about the animal is ranked 183,
context as the document proceeds down the taxonomy. Thignd is a fable. Thwarted, she trigguar speed -car
filters out common jargon at each step and boosts accuracyuto . The top response goes as follows: “If you own a
dramatically. Addition and deletion of documents is easily classic Jaguar, you are no doubt aware how difficult it can
handled and discriminants recomputed efficiently. The textoe to find certain replacement parts. This is particularly true
models built at each node also yield a means to summarizef gearbox parts.” The wordsar andauto do not occur
a number of documents using a few descriptive keywordson this page. There is no cat in sight for the first 50 pages.
which we call theirsignature(these are distinct from, and She triesLiveTopics’, but all the clusters are about cars or
not necessarily related to, the features). football. She tries agairjaguar speed +cat . None of

In addition to the algorithmic contributions, we describe the top 24 hits concern the animal, but all these pages in-
the design and implementation of our system in terms ofclude the termcat frequently. The 25th page is the first
familiar relational database idioms. This has the following with information about jaguars, but not exactly what
benefits. Our system can handle extremely large numbers of€ need. Instead, we can go Yahoo!, and visit the likely
classes, documents and terms, limited essentially by wordlirectory Science:Biology, and queryjaguar . This takes
size of the computer. It adapts to a wide range of physicaHs to Science:Biology:Zoology:Animals:Cats:Wild_Cats and
memory sizes, while maximizing fast sequential scans orcience:Biology:Animal_Behavior, but we could not find a
disk when needed. Moreover, our design leads to insightSuitable page about jaguars there
into how database text extenders can exploit the core relqi
tional engine.

We report on our experience WIithAPER using the

iltering. Another paradigm of information retrieval f#-
tering, in which a continual stream of documents are gen-

. erated on-line, as in newsgroups and newsfeed. The system
Reuters newswire benchmarithe US patent database, and collectsinterest profiledrom users and uses these to imple-

samples of web documents frovahool. Depending on the ment either content-based or collaborative filtering, i.e., it

I . 0,
corpus, we can classify 66-87% of the documents CorreCtlyhotifies the user only of the documents they are likely to be

which is comparable to or better than the best known num- - rested in [4, 19, 29, 41]
bers. We can process raw text at 4-8 MB/min on a 133- . AL _
In its simplest form, a profile may be a set of terms

MHz RS6000/43P with 128 MB memory. Our largest train- and phrases specified explicitly by the user. This has the

wgsn:/\?itsr’] tg\l/({lar;gzuioog) t?) dlig (g]\fél#dzlré% foec';((:)hg Igl_vl egﬁggoevsg;same problem as querying without topic context as discussed
' pICS, ' ’ above. A better notion of a profile is the set of documents

Sggggg a?irgr?ue?(:)eerrr?niggl( i:iv\'; ttr:)eun;ost extensive web pa%e_ user has seen and/o.r Iik_ed, perhaps with scores. This is
' a fine-grained characterization of the user, and may work
o well with small systems, but for thousands of users and the
Organization of the paper. In Sect. 2, we demonstrate that \ep at large, a system storing this level of detail will not
using a taxonomy, topic paths, and signatures can greatly imscgle. A promising alternative is to characterize profiles not
prove retrieval. Next, in Sect. 3, we study the problems thatyt the individual document level, but at the level of nar-
must be solved to provide the above functionality. The prob-yow pbut canonical topics, such as the taxonomyyafioo!.
lems are hierarchical classification, feature selection, andy,ch an approach is used in Surf Advisor, a collaborative
document signature extraction. These are explored in derecommendation system [31].
tail m_Subsects. 32 3.3, and 3.5, respectively. Section 3.4 e identify a few core capabilities from these examples.
describes the architecture of our prototype. The proof ofrext search must be based on topical context as well as
quality of signatures is necessarily anecdotal at this pomtkeywords. Once the broad topic of a document is known, it
some examples can be found in Sect. 2. More rigorous evalsan pe characterized by terms that are frequent compared to
uation of feature selection and classification is presented igne topic model. To identify document topics, an automatic

Sect. 4. Related work is reviewed in Sect. 5, and concluding;|assification system needs to separate words that contain
remarks made in Sect. 6.

6 http://www.altavista.digital.com
7 http://www.altavista.digital.com/av/lt/help.html
5 http://Iwww.research.att.com/"lewis 8 The anecdote relates to the time of writing
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topic information and words that are essentially noise. We Jaundice, dampen, dehydration, lethargic, hydrate, forcibly,
discuss these at length next. caregiver, laxative, disposable.

This tells us the document is about treating jaundice. The
second-level classification islealth:Nursing. Shifting our

2.1 Querying in a taxonomy reference class, we compute the new signature to be

In a database that associated not only keywords but also Baby, water, breast-feed, monitor, new-born, hormone.
topics with documents, the quefgguar speed could

elicit not a list of documents, but a list of topic paths: Now we know the document is about nursibgbies this

information comes from both the path and the signatures.

Business_and-Economy:Companies:Automotive In Sect. 3.5, we shall propose some means of computing
Recreation: context-sensitive signatures. Thus, significant improvement
Automotive

Games-Video Games in search qual'ity'may be possible by maintaining .function-
Sports:#ootba]l ally separate indices at each taxonomy node, using only a
Science:Biology:Animal_Behavior few signature terms from each document.
Another application of context-sensitive signatures is
The user can now restrict queries bgncept not by key-  finding term associations. Using phrases for search and clas-
word. Using samples, it is possible to show the above re-sjfication can potentially boost accuracy. The usual way to
sponse even as the user types the queejoreactually is-  find phrases is to test a set of terms for occurrence rate
suing a search. At this point, the user can restrict the searctyr above that predicted by assuming independence between
to only a few topic paths. The artificial limit to the length terms. Unfortunately, associations that are strong for a sec-
of the response list from search engines, together with Pag&fon of the corpus may not be Strong g|oba||y and go unno-
on cars and video games, will not crowd out pages relatediced. For exampleprecisionmay be visibly associated with
to the cat. As we have shown above, enforcing or forbiddingrecall in a set of documents on information retrieval, but not
additional keywords cannot always be as effective. If newjn a collection also including documents on machine tools.

documents can be binned into these topic paths in real-timezomputing signatures at each node makes it more likely that
this ability may be very useful for multicast channels as well. 3|| such associations get exposed.

User profiles will be topic paths rather than keywords.

. . 2.3 Context-sensitive feature selection
2.2 Context-sensitive signatures

A haustive k d ind Altavi . h Separating feature terms from noise terms is central to all of
n exhaustive keyword Index, as Witavista, IS pernaps o canapilities we have talked about. In the above examples,
more of a problem than a solution. A single occurrence of &.ar andautoshould be “stopwords” withifRecreation:Auto-

te"{: mha docun|1ent, ev_er(lj_onte tha}ttlhs notatl sttopwc_)rc(jj, NOmotive and hence be pruned from the signatures. Feature
matler how Useless an Inaicator of the CONtents, IS INUEXEG, 4 nyise terms must be determined at each node in the

The IR literature has advanced further; there exist prOtO'taxonomy
types that extracignatureterms, which are then used for . It is tricky to hand-craft the stopwords out of domain
indexing. The§e signatures can also be used as Su'T‘m":mﬁﬁowledge of the languagean is frequently included in

or thumbna!ls, their descr_lptlve power can often Comparestopword lists, but what about a corpus on waste manage-
favorably with that .Of arbitrary sentences as extracted k?yment’? The contents of a stopword list should be highly de-
popular search engines. They are also effective for descr'b{)endent on the corpus. This issue looms large in searching
ing a document cluster [2]. using categories and clusters. In hierarchical categories, the

We claim that the common notion of a documgnt at?St.raclimportance of a search term depends on the position in the
or signature as a function of the document alone is of Ilmltedhierarchy [35]

utility. In the case of a taxonomy, we argue that a useful sig- | " g5 3, we will design an efficient algorithm to find,

natur.e IS a_functlon .Of both the document %nd the .rgferenc?or each node in the taxonomy, the terms that are best suited
node; the signature includes terms that are “surprisgiigen for classifying documents to the next level of the taxonomy.
the path from the root to the referen_ce node. In the abov onversely, we detect the noise words that are of little help
example car and auto may be _good signature terms at the to distinguish the documents. We reuse the term “feature se-
top level or even at th&ecreation level, but not when the 0o from pattern recognition to describe this operation.
user has zoomed down inRecreation: Automotive. Here is Feature selection enables fine-grained classification on a
anothe'r |IIusFrat|on from a documérin Health:Nursing that taxonomy. For diverse top-level topics, a single-step classi-
starts like this: fier suffices. But as a document is routed deep into a taxon-
Beware of the too-good-to-be-true baby that is sleeping and ~ omy, shared jargon makes sophisticated feature selection a
sleeping and doesn’t want to nurse. Especially monitor the number  necessity. Together with feature selection, we have to pick

of wet diapers, as seriously jaundiced babies are lethargic. models for each class and a classifier. Many options have
The first-level classification isiealth. We can compute the Peen evaluated [40]. In spite of its simplicity, naive Bayesian
top signature terms with respect zalth as: classifiers are often almost as accurate as more sophisticated

classifiers [24]. For a fixed number of features, naive Bayes
9 http://www2.best.com/"goodnews/practice/fag.htm is faster than more complex classifiers. However, to ap-
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proach the latter in accuracy, naive Bayes typically needdVe will assume a Bernoulli model of document generation
many more features. for most of the paper. In this model, a documeéns gener-
Finding feature terms for each node mitigates this prob-ated by first picking a class. Each claskas an associated
lem. Often, fewer than 5-10% of the terms in the lexicon multifaced coif® each face represents a tettand has some
suffice to discriminate between documents at any node irassociated probabilit§(c, t) of turning up when “tossed.”
the taxonomy. This can greatly speed up classification. The Conceptually, as the training text is being scanned, our
need for fast multilevel classification is not restricted to theclassifier database will be organized as a (very sparse) three-
time a text database is populated. With increasing connecdimensional table. One axis is feerms their string forms
tivity, it will be inevitable that some searches will go out to being replaced by 32-bit IDs, we call them TIDs and denote
remote sites and retrieve results that are too large for diredhemt in formulae. The second axis is for documents; these
viewing. There are already several “meta-search” tools thatre calledd in formulae. The third axis is foclassesor
forward queries to a number of search engines and combintopics. Topics have a hierarchy defined on them; for this
the results; we have seen how a hierarchical view is muclpaper, we will assume a tree hierarchy. These classes are
better. also assigned IDs and called CIDs; we denote themn

C . . formulae.
Applications of feature selection. Feature selection is use-

ful i i h lent distincti ht b The measure maintained along these dimensitnk 4)
tu In a;ny seting w e;re ?:yen IS tlncclons .‘a”e tshoug ®is calledn(t, d, c), which is the number of timesoccurs in
ween two or more sets of documents. Consider the scenarig _ . this number is non-zero only where d € c. t € d

where a set of docqments (e.0., a keyword_ query result eans ternt occurs in documeni, andd € ¢ meansd is a
2 been lsred o subety and e vl I ol Gt e i st s spacias
ters as given classes, and )l/Jse feéture selecti(g)]n to find thegg ¢ I.€., an ancestor in the topic tree, m_herltsdakt .
' L X X . Aggregations along the dimensions give some important
keywords. Other example applications include dn‘ferentlat—Statistics about the cor
: : . pus.
ing between patents filed by two companies, or by the same
company at different times (to expose any trend along time). — Thelengthof documentl is given byn(d, c¢) = >, n(t, d,
We shall see some examples of such applications in Sect. 4. ¢). The length of all documents can be found using a
GROUP BY¥n (d, o).

— The total length of training documents in classlenoted
3 Models, algorithms and data structures n(c).

— The total number of times term appeared in training
In this section, we will deal with the core components of ~ documents of class. _ .
our system. Consider first the task of computing the terms — The fraction of times¢ occurs ind € ¢, i.e., f(t,d, c) =
that induce the best distinction between the subtopics of a ™t d,¢)/ -, n(t,d, c). This can be computed from the
given topic. To do this, we have to find terms that occur above, but we materialize this value for efficiency rea-
significantlymore frequently in some subtopics compared to ~ S0ns. We will need the sum gfand /> over documents
others, as against those that show this property “by chance” in & class as explained later. We will oreitvhen it is
owing to a finite sample. We can make such judgements clear from the context. .
only on the basis of some statistical model of document — Thenumberof training documents in classthat have at
generation. This we discuss in Sect. 3.1. The model leads least one occurrence of a specific tetnThis is denoted
to a natural classification procedure, described in Sect. 3.2. m(t, c). o i
Finding good features for the classifier to use is discussed in— The number of training documents in classdenoted
Sect. 3.3. Performing all the above functions efficiently on <.

large databases ranging into tens of gigabytes raises sevenle will describe the details of arranging this table later in
performance issues that are discussed in Sect. 3.4; we al$txct. 3.4.

give details of our data structures and implementation there.  Assuming the Bernoulli model with parametei;, ¢),
Finally, in Sect. 3.5, we discuss how to use the class models

" . — n(d, n(d,
to extract context-sensitive document signatures. Pridle] = ;) TT, e, )"0, 1)
Where({ééfﬁ)}) = W%&'HT is the multinomial coeffi-
3.1 Document model cient. The above Bernoulli model makes the assumption that

the term occurrences avacorrelated which is certainly not

There have been many proposals for statistical models oforrect. F”Stv given a term ha_s occurred once in a document
ft is more likely to occur again compared to a term about

text generation. One of the earliest indicators of the power o hich h inf on. S 4 th :
simple rules derived from both quantitative and textual dataV'ch We have no information. Second, the term frequency

is Zipf's law [48]. The models most frequently used in the IR distributions are correlated.

community are Poisson and Poisson mixtures [37, 42Jx(if _ ©ur independence assumption leads to what is called a
is distributed Poisson with rafe, denotedX ~ (), then naive Bayes_claSS|f|e_r. (A naive Bayes classifier in essence
PrIX = 2] = e “u*/z! and if Y is distributed Bernoulli builds density functions for each class that are marginally

with n trials and meamp, denotedY ~ .7Z(n,p), then independent, and then classifies a data point based on which
PIY = 4] = (")p*(1 _p)n_'y As 1 — 0o andp V0. the density function has the maximum value at that point.) In
Y ’ !

distributions. 2(n, p) and &’(np) converge to each other.) 19 we use the terntoin here for what is perhaps better callediie.
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practice, these simple classifiers perform surprisingly well3.2 Hierarchical classification
compared to more sophisticated ones that attempt to approx-
imate the dependence between attributes. A classifierinputs a document and outputs a class. For a
Recently, this phenomenon has been investigated ilocument with a pre-specified class, if the class output by the
depth by Friedman [17]. A classifier that uses an estimate otlassifier does not match the pre-specified class, we say the
class densities is subjectbias (decision boundaries that are classifiermisclassifiedhat document. Typically, a classifier
shifted from the “best” position, because the model is inac-is trained by giving it example documents with class labels
curate) andvariance (decision boundaries thawerfitnoisy  attached.
data). Friedman analyzes how the low variance of naive den- Our system has a classifier at each internal node in the
sity estimates can mitigate the high bias to give simple clastaxonomy, with diverse feature sets. Given a new document
sifiers that can often beat more sophisticated ones. It willd, the goal is to find a leaf node such that the posterior
also be clear from Sect. 3.4 that this simplicity lets us de-Prc|d] is maximized among all leaves. There is a danger in
sign a system that can handle enormous problem sizes. greedily picking one’s way down the tree: an irrevocable er-
ror may be made early in the process [24]. Let the path to a
leaf ¢ from the root bery, ¢y, . . ., ¢, = ¢. Since the root sub-
sumes all classes, Pg[d] = 1 for all d. Furthermore, we can
write Prlc;|d] = Prlc;_1|d] Prlei|c;—1,d], for @ = 2,... k.
Taking logs, log Pi;|d] = log Prlc;_1|d] +log Prlc;|c;—1, d].
guppose in the taxonomy we mark edge (, ¢;) with the
edge cost- log Prc;|c;—1, d]. We are then seeking the least
8ost path from the root; to some leaf.
Computing the one-step conditional probability

rle;|ci—1, d] is straightforward. For notational convenience,
namec;_1 asro and its children{r;}. Then, the probability
that the document belongs to the child node, given that

Rare events and laws of successionMe return to the issue
of estimating the model parametdi, ¢), the rate at which
termt¢ occurs in documents of class

The average English speaker uses about 20,000 of th
1,000,000 or more terms in an English dictionary [36]. In
that sense, many terms that occur in documents are “rar
events.” This means that, with reasonably small sample set
we will see zero occurrences of many, many terms, an
will still be required to estimate a non-zero value fit;, ¢).
The maximum likelihood estimatef(c, t) = n(c, t)/n(c), is . T -
problematic: a class witlfi(c, t) = Owi(ll re)ject :Emy)d/oéu)ment it belongs to the parent node, |s_g|ven by Pri;[ro,d] =
containingt. Pr[n-.\d]/ Prlro|d], whe.re' Priold] = Zj Prlr;|d] (where

Finding such estimates, also calls of successign 2_; i over all the siblings ofr;). Note that Prf;|d] =
has been pursued in classical statistics for centuries. Lapladgrld. r:]/ >_; Prld, r;] by Bayes' rule. If we use the Bernoulli

showed that, given the results oftosses of &-sided coin, model as before, Ri[r;] = ({nfzgdi)}) I, e(rj7t)TL(<z,t)_ Care
i.e., the number of times each face occurred,.. ., nx, the s needed here with finite-precision numbers, because the

correct Bayesian estimate for the pr;ll:iability of facele-  propapilities are very small (often less tham 289 and the
noted P (i|{n.},n), is notn;/n, but 252 [26]. This is the  gcaling needed to condition the probability prevents us from
result of assuming that all possible associdtetbmponent maintaining the numbers always in log-form. For example,
vectors of face probabilitiegq, .. ., p;) area priori equally given very small positive numbers,, ..., p., which can
likely. This is called theuniform prior assumption. The only be stored as their logs = logp;, we need to normalize
above value of Ri(i[{n;},n) is obtained by using Bayes the sum to one, i.e., compute/ Y, p; = el el We

. 1 . .
rule and evaluatmg,ﬁTd .fo 0 I.Dr[n'i\.e]dé. Alternatlye priors first computey = max; £; and then comput§:j eli—i by
have been suggested and justified. We experimented witBdding the terms in increasing order of magnitude.
many of these, and found that Laplace’s law wins by a few

percent better classification accuracy all the time. We re-

fer the reader to Ristad’s paper for details [36]. With this 3.3 Feature selection

adjustment (and returning to our earlier notatiofi;, t) is

estimated as (1n(c, t))/(n(c) + L(c)), whereL(c) is the size  Now we will discuss how to select terms that the classifier

of the lexicon of clasg. will use in its models. Suppose we are given two sets of
points inn-dimensional Euclidean space, interpreted as two
classesFisher’s discriminant methodinds a direction on

The binary model. Thus far, our model has been quite Which to project all the points so as to maximize (in the

sensitive to the number of times a term is repeated in 4€Sulting one-dimensional space) the relative class separa-

document. The obvious criticism is that, given a term hastion as measureq py the ratio of interclass to.mtraclass vari-

occurred once, we expect it to occur again and again, ANCe. More specifically, lek andY” be the point sets, and

model at the other extreme is the binary model, in which/x: /v be the respective centroids, i.g.x = (3_x 2)/[X]

the repetition count is ignored. The parameftér,t) then ~ anduy =(22y y)/|Y|. Further, let the respective x n co-

becomes the fraction of documents in claghat contained ~Variance matrices b&x = (1/|X) 3 y(z — px)(@ — ux)"

¢ at least once. Laplace’s correction can be applied her@nd Xy = (1/|Y ) >y (y — py)(y — py)”.

as well. TheTAPER framework also makes it possible to Fisher’'s discriminant seeks to find a vectorsuch that

explore various models in between Bernoulli and binary,the ratio of the projected difference in meajs’ (1 x —

for example, models in which term counts are thresholded:y)| to the average variancga”(Xx + Xy)a = o Yo

or bucketed into ranges, etc. Detailed investigation of theis maximized. It can be shown that = X~ Y(ux — puy)

predictive accuracy of such models is left as future work. achieves the extremum whel—! exists. Also, whenX
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andY are drawn from multivariate Gaussian distributions Bernoulli model introduced in Sect. 3.1:

with X'y = Xy, this is the optimal discriminator in that ()1 0(c, )"
thresholding ora” ¢ for a test poiniy is the minimum error  Prc|d, F}] = ; tEANT 00 )’ 4)
classifier [14, 47]. >0 ™) [ ieanr, (¢, )"

Computing« involves a generalized eigenvalue prob- wherer is the prior distribution on the classes. Le{d) be
lem involving the covariance matrices. In applications like the “true” class ofd € 7, then Ny, = 3", N(d), where
signal processing where Fisher’s discriminant is useds .
typically a few hundred at most; in the text domainjs  N(d) = {é’ itchzrf/i/i(gzz. Pricld, Fi] > Prle.(d)|d, Fi] (5)
typically 50,000-100,000; and the covariance matrices may ’
not be suitably sparse for efficient computation. Moreover,
it is hard to interpret a discriminant that is a linear sum of 3 4 pata structures and pseudocode
term frequencies, possibly with negative coefficients!

Our approach is to take the directions as given, The modules described so far are parts of a topic analysis
namely, a coordinate axis for each term. We assign eacBystem that we have built, called TAPER. In building an
term (i.e., each dimension) a figure of merit, which we call “industry grade” topic analyzer, we set the following goals.

its Fisher index based on the variance figures above, which We must handle thousands of classes and millions of

T
is % in the two-class case. For each term = ¢, documents; the current limits aré®xlasses, & unique
is a unit vector in the direction of Given the discriminat- tokens, and 3P documentsl on a 32-bit architecture. By
ing power of terms, we will pick terms greedily until we get using the tinsigned long long " datatype or a 64-
good discrimination between classes. bit architecture, we can easily get up t& 2lasses and
In general, given a set of two or more clasge$, with 254 tokens and documents. We make the reasonable as-
|c| documents in class, we compute the ratio of the so- sumption that we can hold a simple pointer representa-
called between-class to within-class scatter. Switching back tion of the taxonomy tree in memory with a few words
to our term frequency notations, we express this as: per node (class).
2 — Training must be essentially on-line, say, as in a crawling
ch,cz (u(cl,t) — u(cz,t)> and indexing application. Testing or applying must be
Fisherf) = > (2) interactive. As we will see in Sect. 4, we can train at
Yo ﬁ(m(d, t) — ulc, t)) 140 us per token and test at 3@s per term. Training
1 should preferably make a single pass over the corpus.
where p(c,t) = e, 2(d, ). 3 — Since our statistics modules maintain combinable aggre-

gates, it is simple to incrementally update a fixed taxon-
omy with new document, and correct misclassifications
by moving a document from an incorrect class to one ad-
judged correct. With some more work, it is also possible
to reorganize entire topic subtrees.

The information theory literature provides some other
notions of good discriminants. One of the best known is
mutual information[11]. Closer inspection shows that its
computation is more complicated and not as easily amenable
to the optimizations we implement in our system for the
Bernoulli model. We will discuss other related work in text A sketch of the TAPER system is shown in Fig. 1. The
feature selection later in Sect. 5. training documents are randomly split into two subsets: one

The remaining exercise, having sorted terms in decreasSUbset for CO”eCting term statistics and estimating term pa-
ing order of Fisher index, is to pick a suitable number of rameters, and another subset for “pruning” the models by
top-ranking terms. Lef” be the list of terms in our lexicon deciding which terms are noise.
sorted by decreasing Fisher index. Our heuristic is to pick TAPER supports leave-one-out cross validation, or a pre-
from F a prefix F}, of the k most discriminating termst},  liminary partitioning (typically 3 : %) of the pre-classified
must include most features and exclude most noise term&Orpus into training and validation documents. The resulting
If F, is small in size, we can cache a larger portion of theclass models restricted to features alone are stored on disk
term statistics in memory. This results in faster classifica-Using an indexed access method. For some corpora, these
tion. Too large anF, will fit the training data very well, statistics can be effectively cached in main memory. During
but will result in degraded accuracy for test data, due toclassification the classifier loads, these model statistics on
overfitting There are various techniques for pruning featuredemand and emits a set of the most likely classes for the
sets. We minimize classification error on a set of documentsnput document.
kept aside fomodel validation shown in Fig. 1. Some oth- TAPER has the following modules.
ers approaches are to use the minimum description length

principle, resampling or cross-validation. We randomly par- — Maps between terms and 32-bit IDs, and between classes

tition the preclassified samples intg, the training set and and 16-bit IDs. . e
7", the validation set. We compute the Fisher index of each ~ A tree data structure for storing class-specific informa-
tion

term based o7, and then classifyZ” using various pre-
fixes F}.. Let N, be the number of misclassified documents
using Fj; then we seek that value @&f sayk*, for which
Ny, is minimized.

For classification, we choose the clasthat maximizes
the following a posteriori class probability based on the We will discuss the last three in detail.

— A module for statistics collection.

— A module for feature selection.

— A module for applying the classifier to a new or test
document.
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Fig. 1. A sketch of the TAPER hierarchical feature selection and classification engine

g(d,t)
;c n(d) g
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TID PCID KCID SMC SNC SF1 SF2
A AN
Sorted Number of Total count of
unique key documentsin the the term t in

class ¢ having the .

documentsin
termt at least
theclassc

once

Fig. 2. The columns of the frequency table after aggregation on (TID, PCID, KCID). PCID is not explicitly stored; it is looked up from the taxonomy tree
stored in memory

3.4.1 Statistics collection one onwards. PCID represents the parent of KCID (zero if
KCID is the root). There are four other numeric fields per
The goal of this module is to collect term statistics from FOW: All these four numbers are additive over documents,
a document and dispense with it as fast as possible. Aftef®: for ach document and termt, we can just append a
simple stopword filtering and stemming while scanning, the"®W to the frequency table, with SMC set to one, SNC set to
document is converted to a sequence of 32-bit TIDs (ternf® Number of times occurred ind, calledn(d, ?), SF1 set
IDs). The main table maintained on disk is thequency ta- 1@ "Ud, 1)/ 22, n(d, 1) = n(d,t)/n(d) and SF2 set to (SF3)
ble shown in Fig. 2. TID corresponds to a term that occurs inSMC 1S used in the binary model; SNC is needed in the
some document belonging to a class corresponding to kcipernoulli model. Intermittently, this run is 'sorted and ag-
(kid class ID). CIDs (KCIDs and PCIDs) are numbered from 9regated on (TID,PCID,KCID) and merged into a table with
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Fig. 3. Scanning the frequency table and com-
puting the Fisher index of each term

Decreasing
Fisher index

===
Fisher — 5= ]
index —a—

Selected
PCID Fl TID features
Fig. 4. The Fisher table. When sorted using
the (PCID FI) key, we get a contiguous run for
H—/ ] each internal topic node, the run containing the
Discarded best features first. If a suitable feature set size
Key features is specified, we can truncate the run to produce

a table of feature TIDs for each internal topic

unique key (TID, PCID, KCID), other fields being aggre- a sort. In our current implementation, processing documents
gated. PCID is not stored explicitly, as it can be looked upstops while the sorting is in progress. To meet tough real-
from the taxonomy tree stored in memory. Figure 2 showstime requirements, one can open a new frequency table and
the contents of the fields after such aggregation: SMC confork a thread, perhaps on another processor, to aggregate the
tains the number of documents in the class KCID that condast run while more documents continue to be accepted.
tains the term TID at least once, SNC contains the total count We could have chosen an indexed access method in-
of term TID in documents of class KCID, SF1 contains stead of the frequency table, and looked up and updated
> aeenld, t)/n(d) and SF2 containg” . .(n(d, t)/n(d))?, SMC, SNC, SF1 and SF2 as we scanned each document.
wherec corresponds to class KCID. That would have resulted in index lookups and random I/O
This trades off space for time, and the frequency tablepotentially for every term in the training set. It was far more
grows rather quickly, but with a lot a duplicate keys. De- efficient to append statistics in a logged fashion. The fre-
pending on how much disk space exists, once in a while wequency table is a temporary file and no direct indexed access
must pause to catch our breath and sort and aggregate the it is actually required later. Another benefit is compact-
duplicate keys. For large corpora, this is vastly preferable taness: this is the most space-intensive phase of training, and
a disk hash table with random 1I/O. Since sorting is a superwe avoid the storage overheads of indexed access and take
linear operation, it is good to keep the size of the currentcontrol of compaction explicitly. The space overhead of stor-
run of the frequency table small, not only to conserve disking TID and PCID redundantly is moderate, as the rest of
space, but also for faster sorting. We use simple heuristiceach row is already 18 bytes long.
to start a sort phase. First, we configure some upper bound
to the number of rows for which a sort must be initiated
to conserve space. We also estimate the sorting time giveB.4.2 Feature selection
the number of rows and the average number of rows that

a document adds to the table. From previous sorts, we alsBefore beginning feature selection, we aggregate the fre-
maintain an estimate of the fraction of rows compacted bygency table one last time, if necessary, to eliminate all du-
aggregation. We can also do this guided by recent samplingicates. We rewind the frequency table and prepare to scan
techniques [1]. _ , o it. At this stage, all rows with the same TID are collected
Given a moment in the execution and an infinite supplyin a contiguous run, going through all CIDs where that TID
of documents, we can continue training until we hit the up-qoccyrred (see Fig. 3), with all the children KCID of parent
per bound dictated by space limits, and then sort. We caRjass PCID collected together. We also prepare to output
estimate the time to complete this. We can also estimate thgngther file, called th&isher table For the following dis-
total time needed if we sorted right away, trained the sam&ssjon, we will assume it has the format shown in Fig. 4.
number of documents (which need not create an overflowgows are keyed by PCID and a floating point number FI
and sorted again. If the latter estimate is smaller, we initiatetH stands forFisher indey, where for each fixed PCID the
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etqable 4 Fig. 5. Creating an indexed topic model statis-
tics table that is used by the classifier while
- — classifying new documents

rows are sorted in decreasing order of FI. The last columrFix a test documeni € 7" and consider what happens as
is the TID whose corresponding CID and FI are the firstwe grow the prefixk. Typically, d will be misclassified up
and second columns. Note that the notion of Fl is associatetb some prefix, because there are not enough discriminating
only with internal nodes PCID. terms in the prefix, and then at some point it may get cor-

Because TID is the primary key in the frequency table, asrectly classified owing to some good features being included.
we scan it, we will get a sequence of runs, each run havind-or some documents, at a larger prefix, a noise term may
a fixed TID. Associated with each topic node in memory, enter into the feature set and caus® be misclassified. Let
we keep a few words of statistics (derived from SMC, SNC,this 0-1 function (1 iffd is misclassified) béVy(d); then we
etc.). When we start a run for a given TID, we clear these.seek to find)_ , N(d) for all k. A naive approach to this
As we scan through the various KCID’s for the given TID in would be the following pseudocode:

the frequency table, we locate the node corresponding to the Naive algorithm:

KCID in the taxonomy and update these statistics. In a large For all (or suitably many) values d&f

taxonomy, very few of the nodes will be updated during a Prepare models with only features

run. If a node is updated, its parent will be updated as well. For each document € 7

We can therefore reset these statistics efficiently after each DetermineNy(d) and add on taVy.

run. This approach would make many unnecessary passes

When the run for a given TID completes, we can com-over the input text, wasting time tokenizing and mapping
pute, exploring only the updated nodes, the Fisher index ofDs. If one has enough disk space, part of this cost can be
that term for every internal node in the taxonomy (using Eqg.avoided by storing tokenized text, but a closer look at the
2). For each of these PCIDs, we append a row to the Fishetdletermination ofV(d) also reveals that computation would
table. Next, we sort the Fisher table on the key (PG also be repeated in determinitg,(d) for a model M, that
This collects all classes into contiguous segments, and fouses a superset of features used by another mafelin
each PCID, orders terms by decreasing values of FI. fact, one can comput&;(d) under M, very efficiently and

Consider now the case in which, for each internal topicdirectly, provided the documeitis held fixed and succes-
¢, the numbek*(c) of features to pick is specified to TAPER sive models are built by adding more and more features.
directly. (The next section discusses héwis determined We wish to compute this aggregate functidf in only
in one pass over the portion of the training documents sebne pass over all internal taxonomy nodes and all validation
apart earlier for model pruning.) Giveli*(c), we scan the documents inZ". For a small number of internal nodes in
sorted Fisher table, copying the first(c) rows for the run  the taxonomy, we can assume that tkig functions for all
corresponding to classto an output table, and discarding the internal nodes can be held in memory (a lexicon of size
the remaining terms. This involves completely sequentiall00,000 takes only 400 KB). But for a larger taxonomy, we
I/O. must be able to contain memory usage.

Next we sort the truncated Fisher table on (TID, PCID)  We associate an output file with every internal node
and merge it with the frequency table, which is already sortedf the taxonomy. (If this requires too many open file han-
on (TID, PCID, KCID). We consider rows of the Fisher table dles, we resort to simple batch writes and keep most handles
one by one. For each row, once we find the beginning of aclosed.) We start scanning through the validation documents
key-matched row of the frequency table, we read it as longone by one. Consider documefhtwith an associated (leaf)
as the key remains unchanged, constructing a memory buffeslassc. We locatec in the taxonomy, and its parent, say
of the form (KCID, SMC, SNC). This buffer is then written r. Earlier we have computed the Fisher score for all terms
into a hash table on disk as shown in Fig. 5. seen at node. We sort the terms in documedtin decreas-

ing order of this score; terms id that are not found at
o are discarded. Let these terms have rapko, ...t 4. We
3.4.3 Finding a good cutoft” construct a sequence of classifiers foiThe first uses terms

Given terms in decreasing Fisher index order, we wish toranked between 1 and, the second uses terms ranked be-

find a good value fork*, the number of chosen features. tween 1 and;, etc. For the classifier using terms ranked 1
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throught, we see ifd is correctly routed fromr to c or not,  unresolved, we believe its design will make reorganization
and compare this outcome with that for using terms rankedelatively simple. Notice that in TAPER, a parent class in-
1 throught — 1. If the outcome changes from— 1 to ¢, herits, in anadditive fashion, the statistics of its children,
we record the jump iV, (d) by writing out a “delta” record  since each training document generates rows for each topic
“t,+1” to the output file associated with (+1 means no node from the assigned topic up to the root. We thus en-
error att — 1, error att; and vice versa). Finally, the output visage a procedure of reassigning CIDs and writing out a
file at eachr is sorted on the term rank column, and a cu- new frequency table with some negative “correction” en-
mulative sum generates;, for noder. Before discarding! tries. Consider detaching a subtree under nedand at-
from memory, we perform the above step for all the edgegaching it elsewhere under nodg Statistics at or above the

on the path betweea and the root of the taxonomy. least common ancestaey of ¢; and ¢, remain unchanged.
Negative (respectively, positive) rows are appended to the
I/O-efficient algorithm: frequency table corresponding to all classes betweédn-
For each document € Z° clusive andc; (respectively,c;) exclusive. And the parent
Consider the edge-(c) as above and child links have to be modified in the taxonomy tree.
Sort the terms ofl in decreasing order
of score atr
Let the term ranks bey, 5, ..., ¢4 3.4.5 Classification
Fori=12,...,|d|
Construct a classifier for with terms The rationale for the data organization described earlier be-
ranked 1..¢; comes clear when we consider what happens when the clas-
Let N, (d) be 1 iff this classifier sifier is invoked on a document. In the basic API, one loads
misclassifies? a taxonomy and its precomputed statistics, and submits a
Compare withN,, ,(d) and output delta document (represented by term counts) to the classifier. In
if different our model, the probability that the document is generated by
Repeat for all edges fromto root the root topic is 1 by definition and decreases down any path
For each node in the taxonomy. Accordingly, also specified in the APl is a
Sort files by term rank (first column) probability cutoff for nodes reported back as close matches.
Compute cumulative sums of the second column Consider the documernt at some internal nodey with

children ¢; and ¢,. TAPER needs to interseet with the

feature set ato, then, for each surviving terr look up the
3.4.4 Updates to the database class models foe; andc,. It is thus best for both space and

I/O efficiency to index the statistics byq(t) and include
For a batch job, the large frequency and Fisher tables caif! the record a vector of statistics for each: = 1,2. The
now be deleted, leaving the relatively smaller indexed topicobvious pseudocode has to be slightly modified to reflect
statistics and the term-to-TID maps. If the system is usedhis (/. denotes log P - - -]).
in a setting where new documents will be added to classes,
it is necessary to preserve the frequency table. It continues
to be used in the same way as before: rows are appended
and occasionally it is compacted to aggregate duplicate keys.
Running feature selection integrates the new data into the in-
dexed statistics. Like running statistics generation for a rela-
tional server, feature selection is not an interactive operation.
For example, on a database with 2000 classes, average 150
documents per class, and average 100 terms per document,

Naive index lookup:
For each childz; of ¢g,i=1,2,...
Initialize ¢,, to O
For each ternt € d
Lookup term statistics forc(, t)
Update/,,
Normalize) ", exp(.,) to one
Add ¢, to each/,,.

it may take a couple of hours. So this is invoked only when Optimized index lookup:

there is reason to believe that the refreshed statistics will Initialize all /., to zero

improve classification. Automatically detecting such times For each termt € d

is an interesting question. Skip if key (co, t) is not in index
Another issue is deletion of documents and moving of Retrieve record fordp, t)

documents from one class to another (perhaps because clas- For eachc; that appears in the record

sification was poor or erroneous for those documents). Since Update/,.,

feature selection is always preceded by a frequency table ag- Normalize etc.

gregation, we can always place negative “correction” entries

in it! This means, we produce a frequency table row corre-

sponding to each term in the deleted document and negat®.5 Context-sensitive document signatures

SMC, SNC, SF1 and SF2 for the class(es) the document is

being deleted from. (Here, we cannot ensure that the docudp to a point, the user can sift a query response based only

ment was originally included in the aggregate, but that caron the topic paths. However, even the leaf classes are neces-

be done by preserving IDs for training documents.) sarily coarser than individual documents; support is therefore
A more difficult issue is the reorganization of the tax- needed to browse quickly through many documents without

onomy itself. Although the current system leaves this issudooking into the documents in detail. Most search engines
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attach a few lines from each document. Often these are thhighest “match.” Let the set of “true” classes @g(d). Then

title and first few lines; or they are sentences with the mosiprecisionis defined as _, |C(d) N C.(d)|/ >, |Cr(d)| and

search terms. For many documents, better keyword extraaecall is defined as)_,|Cx(d) N C.(d)|/ >, 1Cx«(d)|. By

tion is needed. Moreover, as we have argued, these sign@hangingk, one can achieve a trade-off between recall and

tures should be extracted relative to a node in the taxonomyprecision. The point where recall equals precision is called
Given this reference node one approach is to concate- the break-even point

nate the training documents associated witimto a super

document/, and then rank termise d in decreasing order of

the number of standard deviations thd#l, t) is away from 4.2 Evaluation of feature selection

f(c, t). Here, our earlier simplistic document model gets into

trouble: as mentioned in Sect. 3.1, a term that has occurredlthough Reuters has provided a taxonomy for its articles,

once in a document is more likely to occur again. Since thethe data available does not include taxonomy codes in the

Bernoulli model does not take this into account, frequentclass header. For this subsection, we will work with other

terms often remain surprising all along the taxonomy path. corpora where such information is explicitly provided.
Matters are improved by moving to the binary model. = The sample oUSPatent that we used has three nodes

First, suppose we have a single test docurdeand consider  in the first level,Communication, Electricity and Electronics.

t € d. If the observed fraction of training documents in classEach has four children in the second level. Figure 6 shows

¢ containing termt is 0(c,t), we simply sort allt € d by  the taxonomy we used. The overlap in vocabulary between

increasingf(c, t) and report the top few. If there afe> 1 some of the nodes, e.g., modulator, demodulator, amplifier,

test documents in, we find the fractiony(t) that containg, oscillator; and motive, heating, resistor make the classifica-

and sort thets in increasing order of0le)—sWVe oy tion task appear more challenging than Reuters, which deals

_ V/0(e,t)(1-0(c,t)) with a more diverse set of topics.
in fact, correspond td’-values computed using the normal

approximation to the binomial distribution.

4.2.1 Classification error vs feature set size
4 Performance Figure 7a—d shows the results of validation experiments

In this section, we study the performance of our system.over the patent database. Five hundred training patents and

There are three aspects to performance: first, to what exterﬁ??hgall'gallggcege};egﬁs \ge[I?hgllgli(ser?eraitnzia&dgigefrri?wm ?\?ecg
this paradigm assists in text search and browsing; secon 9. 0. 99

how accurate our techniques for feature selection and hierag’:ggj ffgtﬂﬁgcigr'r?]g%sﬂf:;att&n :)::O;”W Ig](;nojggttgrfrﬁ\g irr:ug["
chical classification are; and third, how efficient or scalable ' ghly 29,

our system is. The first item is at this point a matter of lexicon. For some classes, the error goes up slightly (not

gualitative judgement, as is the evaluation of the signaturey.'s.Ible in the range shpvyn) after a m|n|mum'due to over-
fitting. The smallest minima and corresponding errors are

finding techniques. The quality of feature selection and clas- o i o
sification can be measured precisely, and we present theigughly at 160 terms, 25.1% fdtatent; 200 terms, 11.7%

SN o e
results here. As regards efficiency and scalability, we quot 0{38?6“;%[{5”'?2'%%/’ fsc?E?e(t:?r:)r:ii; 1T7h2/r(;1 il;loirilgcérrlgltzbta\?ecjr
TAPER s running times for specific platforms, show that , ~0-270 ' y

they scale favorably with corpus size, and compare with thefr?:i;%rgrlﬁotze ?;\éﬁzselt)éf()f itchk?nfeaauf‘ifezerﬁjrlrfszrsgmll r?wlcj)itsﬁ‘lr%rjs
performance of a well-known text classifier from the prior p P 9
art [3]. quent terms in each class as features.

4.1 Datasets and measures 4.2.2 Best discriminants and applications

We used three data sources: the Reuters benchmark us¥¥e list the best features in the patent taxonomy below; notice

widely in the IR community, the US patent database, herehow the sets change down the levels.

after referred to a®JSPatent, and Yahoo!. For evaluation,  paent: Signal, modulate, motor, receive, antenna, telephone, transmit, fre-

the simple scenario is am-class problem, where each doc- quency, modulation, modulator, demodulator, current, voltage, data,

ument belongs to exactly one class. We can draw up an carrier, power, amplifier, phase, call, amplitude.

m X m Cont|ngency table7 entryz’(]) Show|ng hOW many Patent:Communication: Antenna, telepho.ne, modulator, demodulator, Sig-

test documents of classvere judged to be of clags This is nal, modulate, outpult, call, modulation, input, demodulated, frquency,
. . : phase, communication, radar, demodulating, space, detector, line, de-

called theconfusmn' matrleng important number to com- modulation, transmit, circuit.

pute from a confusion matrix is the sum of diagonal entrieSpaentEiectricity: Motor, heat, voltage, transistor, output, circuit, connect,

divided by the sum of all elements: this gives the fraction of  input, weld, extend, surface, current, position, gate, speed, control,

documents correctly classified. If each document has exactly terminal, drive, regulator, signal, rotor.

one CIaSS, this number is the Samenasroaveraged reca” Patent:Electronics: Ampllfler, oscillator, input, output, frequency, transistor,

and precisionas defined by Lewis [27]. He also proposes signal, laser, emitter, cguple, am_plify, gain, resistance, connect, extend,

how to evaluate performance on data sets in which docu- form, contact, differential, matsrial, resistor.

ments have multiple classes. The classifier is required to out- We have also applied the feature selection algorithm to

put for document! the setCy(d) of the k classes having the find salient differences between various sets of documents.
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Fig. 7a—d. Evaluation of feature selection

One application is to find descriptions for clusters in unsu-ciuster 1: Tissue, thymus, transplanted, hematopoietic, treatment, exem-
pervised document clustering. For example, the quaryse plary, organ, immunocompromised, host, trypsin.

gets hundreds of responses from the IBM Patent Server. Tgluster 22 Computer, keyboard, hand, edge, top, location, keys, support,
cleaning.

quickly zoom in to the rlg.ht notion, one clusters the re- Cluster 3: Point, select, environment, object, display, correspondence, di-
sponse and runs TAPER with the clusters treated as classes. oo image.

A sample of results is shown:
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Fig. 8a. Choice between the Bernoulli and binary text models for classification. Bernoulli appears consistently superior in our expbrieefitation
that the training set is adequate

These “cluster digests” lets the user easily refine the querySufficiency of training data. Before we compare TAPER

In the context of the patent database, TAPER can alsavith other known approaches, we ensure that the training
be used, for example, to compare and contrast the paterset is adequate. To do this, we train using random samples
portfolios of two assignees or one assignee at two differendbf increasing sizes from the training set and verify that the
times. For example, a comparison betw&em Microsystems test performance has saturated. This is shown in Fig. 8b.
and Silicon Graphicsgives the following:

Sun Microsystems Silicon Graphics

e General-purpose programmablee Information-processing system 4.3 The Reuters benchmark

digital computer systems organization o

e Electrical computers and e Data presentation, computer The Reuters benchmark has 7775 training documents and
data-processing systems graphics 3019 testing documents from 115 classes. We experimented
¢ Integrated circuit, processor, | e Surface detalil, texture with Reuters to ensure that our basic classifier is of accept-
voltage, interface ;églg?t:jr‘e%jso'”t'on or able quality. Less than a tenth of the articles are assigned

multiple classes. In fact, in some cases, some class labels
An even more interesting example is comparing Intel patentgvere refinements of others, e.grain and wheat and it
in 1993-94 with those in 1994-95. TAPER detects a newwould be incorrect to regard them as classes at the same

line of research and patenting in the second year: level, since some classes imply others.
In our first experiment, we used only the first of the

'”tg" 199?'94 bl‘ Intel, 199.4'95| TR T classes assigned to each document. Our micro-averaged re-
aigi;'rifr;gldzgfssisﬁgﬂamma :e:jnlji{ii%t'\s’ssttzav's'on andwidt call, which, for this setup, equals the micro-averaged preci-
« Chip fabrication « Involving difference transmission ~ SION, was 87%. We also studied recall-precision trade-offs
Counter, input o Field or frame difference in the multi-class scenario. The results are shown in Fig. 9.
e Involving adaptive transform Our interpolated breakeven point is 76%. Since only 9% of
coding the documents have two or more classes, the best policy is

return the top class at a recall of 71.3% and precision of
.6%.

For this benchmark, there is no benefit from hierarchy.
To test the effect of our feature selection, we compared
it with an implementation that performs singular value de-
composition (SVD) on the original term-document matrix,
projects documents down to a lower dimensional space,
and uses a Bayesian classifier in that space, assuming the
Binary vs Bernoulli. TAPER supports both the Bernoulli Gaussian distribution (S. Vaithyanathan, personal commu-
(term counts are significant) and the binary (term count jshication). Our classifier was more accurate by 10-15%, in
éplte.of its simplicity. Our gxplanat!on is that the S.VD,'ln
Bernoulli model might be criticized as paying too much at- '9n0ring the class labels, finds projections along directions
tention to each additional occurrence of a term, so we com-of large varance, which may not comcu_:le W.'th directions of
pare Bernoulli with binary in Fig. 8a. The Bernoulli classifier P€St Separation between documents with different classes.
appears to be more effective in exploiting the count infor-

mation, so, for the rest of the paper, we restrict ourselves to

this model.

(It is possible to get the coherent phrases because the pat%
database effectively stores them as single terms associat
with patents.)

4.2.3 Choice of system configurations
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1
Table 3. The benefits of hierarchy. The prefix field in the second row
‘ correspond to the four internal nodes in thusSPatent tree: /Patent,
0.8 /Patent/Communication, /Patent/Electricity and /Patent/Electronics
Classifier Prefix Parameters  Recall Time/doc
S 06 Flat 250 2651 0.60 15ms
) Taxonomy  950;200;400;800 2649 0.63 6ms
[S]
()
a 0.4
X ported [38]. We pick one version recommended by Sparck-
0.2 x Jones [20, 23].
o nmadd) = MaXeq n(d, t)
0 02 04 06 08 1 m = number of classes
Recall ne = . sign@(c, t))
Fig. 9. Recall-precision trade-off on Reuters. Our break-even pointis 76%  w(c,t) = (1 + :rfi’(g))(l +lg )
Xdq - W
Score(c, d) = —+ —<
|Xd‘ ‘WC|

Table 1. Confusion matrix for the weighted cosine one-level classifier. Each . L
row sums to 100, modulo rounding. The diagonal elements add up to only V€ See a substantial gain in accuracy over the standard

0.48 of the total number of the documents. This is the microaveraged recaWeighted-cosine classifier. We did further experiments to see
how much of the gains was from feature selection as against

Class name  |329 332 343 37807 318 323 21830 331 338 361 . . . .
379Demodulaiof 519 2 1 0 6 5 2 12 110 2 the h|_grarghy. To do this, we can fix the feature selection and
332Modulator | 21 27 3 2 3 7 6 410 12 2 2 classification modules, and only change the taxonomy: one
343Antennas |10 6 47 3 4 2 6 1 1 4 14 3 will be the taxonomy in Fig. 6, the other will have the root
379Telephony | 9 1 165 1 5 2 § 3 1 5 3 and the 12 leaves. We have to be very careful to make this a
S07Transmission 1 1 1 15 2 8 § 0 119 4 fair competition, making sure that the class models are rep-
g;gg’ggn&or g ‘31 i é % 41 5; 1; 1; f 2 g’ resented with the same complexity (number of parameters)
219 Heating 5 1.0 0 018 9 4412 1 2 5 in the two settings. In counting thg number of parameters
330.Amplifier 6 5§ 1 4 1 17 1 §53 3 4 1 we must also account for the sparsity of the term frequency
3310scillator | 10 2 3 d 6 9 4 710 33 13 4 tables; we have no direct control on this. By trial and er-
338 Resistor 0 0 003 0 3 20 087 4 ror, we came up with the comparative evaluation shown in
361 System 2 11 1 9 8 8 9 1 1 30 29 Table 3.

In this dataset, the accuracy benefit from hierarchy is
modest compared to the benefit from feature selection. How-
ever, note that the flat classifier has a steep performance
penalty, because it has to compare too many classes all
at once. This gap is dramatic for larger taxonomies, such

Table 2. Confusion matrix for our multilevel classifier, showing much larger
diagonal elements, i.e, more frequently correct classification. The microav.
eraged recall is 0.66

Class name __|329 332 343 37807 318 323 21830 331 338 361 55 vapgo1 How to allocate a fixed number of parameters

329Demodulatof 80 5 0 d 0 2 0 3 5 4 0 O the t des for best Il classification i

332Modulator | 16 55 1 0 1 2 1 4 9 11 0 0 among the taxonomy nodes for best overall classification is

343Antennas | 5 563 1 1 0 2 0 0 2 15 6  aninteresting issue. o

379Telephony | 4 2 18 0 1 0 2 1 1 1 4 Summarizing, we showed that our feature selection is

307Transmissioh 0 0 O 05 2 3 3 0 2 26 8 effective, and that our classifier is significantly more accurate

318Motive 6 4 0 2 348 5168 5 1 2 than cosine-based ones and comparable to the best known for

gﬁszgggm i 1 (1) g g 13 8‘11 79 g 8 ; i flat sets of classes. Hierarchy enhances accuracy in modest
4 .

330 Ampiifier T 5 0 o 0 10 0 15 § o0 1 amounts, but greatly increases speed.

331.0Oscillator 15 8 0 Q 0 4 0 7 8 47 5 4

338 Resistor 0 00 g1 0 2 g1 0292 4

361.System 1 0 0 0 2 6 6 10 1 1 12 61 4.5 Running times

] ] ] o TAPER has undergone extensive revisions to make it effi-
it should use, and it uses the disk intelligently to stage larger
In this section, we describe our experience with the hierardata. Here, we will merely give some examples of the cur-
chicalUSPatent dataset. We compare the hierarchical classi-rent performance, not compare it with all the preliminary
fier with a standard vector-space-based [38] classifier. Eackiersions. Also, an extensive comparison with other existing
document is a vector in term space; each class is the sumpackages on a common hardware platform is left for fu-
or centroid of its document vectors. The similarity betweenture work. TAPER has been evaluated on two platforms: a
two vectors is their cosine. Weighting the terms usually re-133-MHz RS 6000/43P with 128 MB RAM, and a 200-MHz
sults in better relevance ranking. There are over 287 variantBentium-II with 256 MB RAM. On the former, we can train
of term-weighting schemes with tuned magic constants reat 140us per term and test at 30s per term. These times
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are measured after the document is in memory, and they adyy corpora ranging into tens to hundreds of gigabytes, rather
count for the database reorganization costs during trainingthan exploring many variants of learning algorithms on small
The whole Reuters experiments, including 1/0 time for text, corpora and lexicon (10,000 documents and terms).
takes less than 610 seconds. Most closely related to our work [7] are the concurrent

The running time performance of the classifier of Apte investigations made by Koller and Sahami [24] and Yang
et al [3] is not published, although its break-even point, atand Pedersen [46]. Koller and Sahami propose a sophisti-
80.5%, is 4.5% above ours. A classifier using a similar tech-cated feature selection algorithm that uses a Bayesian net to
nology and with similar accuracy called KitCat has a train- learn interterm dependencies. The complexity in the num-
ing time that is about 60 times the training time of TAPER. ber of features is supralinear (e.g., quadratic in the number
On larger corpora where efficient /O management is moreof starting terms and exponential in the degree of depen-
important, the difference in performance is even more sig-dence between terms). Consequently, the reported experi-
nificant. ments have been restricted to a few thousand features and

On the latter platform, 266,000 web documents fromdocuments. Yang and Pedersen’s experiments appear to in-
2118 Yahoo! classes have been trained (from a disk imagedicate that much simpler methods suffice, in particular, that
obtained by crawling) in about 19 h. TAPER processes docthe approach of Apte et al. [3] of picking a fixed fraction
uments that are several hundred words long in about the timef most frequent terms per class performs reasonably. There
needed for a disk access. This makes it possible to directlys a possible danger that this fraction is very sensitive to
connect TAPER to a web crawler and populate the searcleorpus and methodology (e.g., whether stemming and stop-
database with topic information as well as keyword index,wording is performed). This is indicated by the poor perfor-
on the fly. mance of such simplistic methods observed in recent work

by Mladenic [30].
Our goal has been to look for techniques that have good

5 Related work statistical foundation, while remaining within almost linear
time and one pass over the corpus, even when doing feature

We survey th? fOHOW'.ng overlappmg areas of related '€ selection simultaneously for many nodes in a large topic tax-
search and point out differences with our work where appro-

7 L - ~—onomy. Koller and Sahami also emphasize the importance
priate: IR systems and text databases, Qata mining, Stalisticay pierarchies, but they use a greedy search for the best leaf
pattern recognition, and machine learning. '

and point out the potential dangers of this approach. Our
Data mining, machine learning, and pattern recognition.  formulation fixes this problem. Also, our approach of com-
The supervised classification problem has been addressed puting context-dependent document signatures to aid search
statistical decision theory (both classical [44] and Bayesiarand browsing appears to be a new extension to the scatter-
[5]), statistical pattern recognition [14, 18] and machine gather type of retrieval interface [12].

learning [5, 32, 45]. Classifiers can be parametric or non-

parametric. Two well-known classes of non-parametric clas-

sifiers are decision trees, such as CART [6] and C4.5 [34],

and neural networks [21, 22, 28]. For such classifiers, featur® Conclusion

sets larger than 100 are considered extremely large. Docu-

ment classification may require feature selection from more

than 500,000 features, and result in models with over 10,008Ve have demonstrated that hierarchical views of text data-
features. bases can improve search and navigation in many ways,
and presented some of the tools needed to maintain and
navigate in such a database. A combination of hierarchy,
feature selection, and context-sensitive document signatures
I greatly enhanced the retrieval experience.

IR systems and text databases.The most mature ideas
in IR, which are also successfully integrated into commer-
cial text search systems such serity!?, ConText'? and

AltaVista, involve processing at a relatively syntactic leve Our work raises several questions for future investiga-

e.gi, St_or:jv_vord flltermgt,_ tokhemz_mtg, tstemmlng,htbunmgg N tion. Usually, TAPER finds good feature set sizes indepen-
Verted indices, computing heunistic term weignts, an COm'dently for each internal node; the space needed to store the
puting similarity measures between documents and queri

e : L
in the vector-space model [16, 39, 42] rQESUItmg model was not explicitly controlled. In Sect. 4.4,

M i K includ watistical modeli fd we raised the question of designing classifiers that maxi-

ct)re recen worwllnctu €S S ahls 'C% mo e|rt1g 0 oct- mize accuracy given bounded space, i.e., model size, and

uments,unsuperviseciustering (W ere documents are not 1, ,,4ed time. Table 3 suggests the interesting problem of
labeled with topics and the goal is to discover coherent clus

. e I ) allocating the total space among nodes of a hierarchy for
ters) [2], supervisectlassification (as in our work) [3, 10], best overall accuracy. Resolving the following performance

query expansion [40, 43.]' Singular value decomposition Mssue can greatly cut down space and time during training:
':_he I}erml—dto%ug]ent mattrlxthastgeen four?;jt';]o clgster tserr?ar]-s it possible to prune off terms with poor Fisher index even
klca y rg a i3 ??gurgen S togetner eve1n5| €y do ot Shalgys term statistics are being collected? Another issue related
eywords [13, 33]. For a survey see [15]. to accuracy is whether the classifier can reliably stop at a
Contrast with our work. Our work emphasizes the per- shallow level of the tree when classifying a document about
formance issues of feature selection and classification raiseghich it is uncertain. Finally, in recent work, we have found
11 http:/vww.verity.com that adding hyperlink information to the feature set used by

12 htp:/iwww.oracle.com/products/oracle7ioracle7.3/htmlicongexhtml  TAPER greatly improves accuracy [8].
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