
The VLDB Journal (2003) / Digital Object Identifier (DOI) 10.1007/s00778-003-0098-9

Fast and accurate text classification
via multiple linear discriminant projections

Soumen Chakrabarti, Shourya Roy, Mahesh V. Soundalgekar

IIT Bombay; e-mail: soumen@cse.iitb.ac.in

Edited by Y. Joannidis. Received: September 9, 2002 / Accepted: March 3, 2003
Published online: July 16, 2003 – c© Springer-Verlag 2003

Abstract. Support vector machines (SVMs) have shown su-
perb performance for text classification tasks. They are accu-
rate, robust, and quick to apply to test instances. Their only
potential drawback is their training time and memory require-
ment. Forn training instances held in memory, the best-known
SVM implementations take time proportional to na, where a
is typically between 1.8 and 2.1. SVMs have been trained on
data sets with several thousand instances, but Web directories
today contain millions of instances that are valuable for map-
ping billions of Web pages into Yahoo!-like directories. We
present SIMPL, a nearly linear-time classification algorithm
that mimics the strengths of SVMs while avoiding the train-
ing bottleneck. It uses Fisher’s linear discriminant, a classical
tool from statistical pattern recognition, to project training
instances to a carefully selected low-dimensional subspace
before inducing a decision tree on the projected instances.
SIMPL uses efficient sequential scans and sorts and is com-
parable in speed and memory scalability to widely used naive
Bayes (NB) classifiers, but it beats NB accuracy decisively. It
not only approaches and sometimes exceeds SVM accuracy,
but also beats the running time of a popular SVM implemen-
tation by orders of magnitude. While describing SIMPL, we
make a detailed experimental comparison of SVM-generated
discriminants with Fisher’s discriminants, and we also report
on an analysis of the cache performance of a popular SVM
implementation. Our analysis shows that SIMPL has the po-
tential to be the method of choice for practitioners who want
the accuracy of SVMs and the simplicity and speed of naive
Bayes classifiers.

Keywords: Text classification – Discriminative learning –
Linear discriminants

1 Introduction

Text classification is a well-studied problem in document man-
agement.A classifier or learner is first presented with training
documents d, each assigned a label, c, drawn from two possi-
ble labels: +1 or −1. Depending on the application, the label
may indicate some property of the document, e.g., whether a

news article is about sustainable energy or whether an email
is a “spam.”

The learner processes the training documents, generally
collecting term statistics and estimating various model param-
eters. Later, test instances are presented without the label, and
the learner has to choose one of the two labels for each test
document.

If an application demands more than two labels (e.g., aWeb
directory with 15 broad topics at the top level), it is common
to train one learner for each topic γ; documents marked with
γ are labeled +1 and all other documents are labeled −1 [8,
14]. This is called “one-vs.-rest” classification.

Text classification has numerous potential ap-
plications including the automatic maintenance of
topic directories such as the Open Directory (also
called Dmoz, see http://dmoz.org) and Ya-
hoo! (http://www.yahoo.com), filtering email for
spam [31], and collaborative filtering [2]. Naive Bayes (NB)
[3], maximum entropy (maxent) [28] and support vector
machines (SVMs) [8,14,37] are some of the best-known
classifiers employed to date on text data.

Not surprisingly, there is a trade-off between simplicity
and accuracy. NB classifiers are simple to understand and easy
to implement, access disk-resident data efficiently, and run
fast, but they may show mediocre accuracy. SVMs are among
the most accurate classifiers known for text applications: they
beat NB accuracy by a decisive margin and are generally bet-
ter than maxent classifiers. NB classifiers also tend to score
lower than maxent classifiers in terms of accuracy. Such accu-
racy differences are intriguing because SVM, maxent, and NB
classifiers all learn a hyperplane that separates the positive ex-
amples (c = 1) from the negative ones (c = −1), documents
being represented as vectors in a high-dimensional term space.
SVM and maxent undertake complex nonlinear numeric opti-
mizations (which are highly nontrivial to understand and im-
plement) to search for a high-quality separator, whereas NB
makes a quick but generally inferior choice.

NB takes time essentially linear in the numbern of training
documents [25,26], whereas SVMs take time proportional to
na, where a is typically between 1.8 and 2.1. Thanks to some
clever implementations [15,30], SVMs have been trained on
several thousand instances despite their near-quadratic com-

2 S. Chakrabarti et al.: Text classification via linear projections

plexity. However, scaling up to hundreds of thousands of in-
stances appears infeasible at this time. Memory footprint is
another issue; several popular SVM packages store training
vectors in memory. (Some exceptions are noted in Sect. 1.2.)

Scalability and memory footprint can become critical is-
sues as enormous training sets become increasingly available.
Web directories such as the Open Directory andYahoo! contain
millions of training instances that occupy tens of gigabytes,
whereas even high-end servers are mostly limited to 1–2 GB of
RAM. Given the sparsity of data in the text domain, sampling
the training data is dangerous because the sample may exclude
thousands of useful features. Joachims [14] shows that a large
fraction of terms reveal at least some useful class information,
and therefore every additional training document could po-
tentially be a source of features. We confirm this in Sect. 4.6,
where we see that the ability to scale better also translates to
a better accuracy-time trade-off.

In summary, despite the theoretical elegance and superior-
ity of SVMs, their IO behavior and CPU scaling are important
concerns. There is a need for easy-to-implement text classi-
fiers that match the simplicity and efficiency of NB classifiers
while giving an accuracy comparable to SVMs.

1.1 Our contribution

We design, implement, and evaluate a new, simple text classi-
fication algorithm that requires very little RAM, deals grace-
fully with out-of-RAM training data (which it accesses strictly
linearly), beats NB accuracy decisively, and even matches
SVM accuracy. Our main idea is to:

1. Find a series of projections of the training data by using
Fisher’s classical linear discriminant [17, Sect. 11.5] as a
subroutine

2. Project all training instances to the low-dimensional sub-
space found in the previous step

3. Induce a decision tree on the projected low-dimensional
data

We call this general framework SIMPL (Simple Iterative Mul-
tiple Projection on Lines). SIMPL has several important fea-
tures: it has very small footprint, linear in the number of terms
(dimensions)mplus the number of documentsn; it makes only
fast sequential scans over the input; its CPU time is almost lin-
ear in the total size of the training data; it can be expressed
simply in terms of joins, sorts, and GROUP BY operations;
and it can be parallelized easily.

To give a quick impression, SIMPL has been implemented
using only 600 lines of C++ code and trained on a 65524-
document collection in 250 seconds, for which SVM took
3850 seconds.1 We undertake a careful comparison between
SIMPL and SVM with regard to accuracy and performance.
We find that, in spite of its simplicity and efficiency, SIMPL
is comparable (and sometimes superior) to SVM in terms of
accuracy. Although there is no theoretical bound on the num-
ber of linear projections SIMPL may need, only two to three
projections are usually enough to achieve high accuracy.

The ability to scale to training sets much larger than main
memory is a key concern for the data mining community,

1 SIMPL is available at
http://www.cse.iitb.ac.in/∼soumen.

which has resulted in excellent out-of-core implementations
for traditional classifiers such as decision trees [34]. In the
last few years, the machine learning and text mining commu-
nities have evolved other powerful classifiers, such as SVMs
and maxent classifiers. The scaling and IO behavior of the
new and important class of SVM learners are not clearly un-
derstood. To this end, we carefully study the performance of
a popular SVM implementation accessing documents from a
LRU cache having limited size. If the SVM implementation
is given a cache of size comparable to the RAM required by
SIMPL, it spends a significant portion of its time servicing
cache misses, and the performance gap between SIMPL and
the SVM implementation grows further.

1.2 Related work

Although we are not aware of a hybrid learning strategy simi-
lar to our proposal, a few ideas that we discuss here were early
hints that a projection-based approach could be promising. A
1988 theorem by Frankl and Maehara [9] showed that a projec-
tion of a set of n points in R

m to a random subspace of dimen-
sion about (9/ε2) log n preserves (to within a 1± ε factor) all
relative interpoint distances with high probability. Later work
has established random projection as a valuable general tech-
nique for dealing with high-dimensional data. Kleinberg pro-
jected these points toΘ(m log2 m) randomly directed lines to
answer approximate nearest-neighbor queries efficiently [18].
Dasgupta [5,6] used random projection to learn a mixture of
Gaussians, showing en route that well-separated Gaussians
remain well separated upon projection.

For a classification task, we need not preserve all distances
carefully. We simply need a subspace that separates the posi-
tive and negative instances well (a special case of “projection
pursuits” [10,36]). In an early study by Schütze, Hull, and Ped-
ersen [33], even single linear discriminants compared favor-
ably with neural networks for the document routing problem.
Lewis et al. [22] reported accurate prediction using a variety
of regression strategies for good (single) linear predictors. The
recent success of linear SVMs adds further evidence that very
few projections could be adequate in the text domain.

In 1999, Shashua established that the decision surface
found by a linear SVM is the same as the Fisher discrimi-
nant for only the “support vectors” (see Sect. 2.4) found by a
SVM [35]. Although this result does not directly yield a better
SVM algorithm, it gave us the basic intuition behind our idea.
Our work is most closely related to linear discriminants [7] and
SVMs, which we discuss in detail in Sect. 2 and Sect. 3. Inde-
pendently, Cooke [4] has suggested discarding well-separated
training points before finding Fisher’s linear discriminant but
has not used multiple projections to generate a surrogate rep-
resentation to be used by a more powerful learning algorithm
such as a decision tree.

Many researchers have worked on reducing the memory
footprint and running time of SVM optimizations. One strat-
egy, pursued by Mangasarian and coworkers, is to change the
objective function slightly, which enables use of more efficient
mathematical programming machinery without affecting the
utility of the solution in practice. Lagrangian SVM [24], proxi-
mal SVM [11], and incremental SVM [12] are examples of this
paradigm; an incremental SVM can in fact retire and add new

S. Chakrabarti et al.: Text classification via linear projections 3

training data efficiently. These SVM variants involve invert-
ing an m×m matrix (m is the number of dimensions), which
is readily done for moderately large values of m (hundreds to
thousands) but demands too much main memory (O(m2)) and
too much time (O(m3)) in the text domain, wherem > 70000
is not uncommon. The inverted matrix is generally not sparse.
However, two other techniques from this family, successive
over-relaxation SVM [23] and reduced SVM (a sampling tech-
nique) [20], may compare favorably with SIMPL (apart from
being theoretically more elegant). Pavlov, Mao, and Dom have
developed a different sampling technique [29].

SIMPL may be interpreted as an approximation to boost-
ing [32]. Boosting seeks to improve a “weak” learner (which
makes decisions only slightly better than random guessing)
by running it many times on successively altered training dis-
tributions. The first training distribution is generated from the
training data by assigning equal probability 1/n to each in-
stance. Subsequent distributions are generated by boosting the
probability of instances that the weak learner labeled incor-
rectly. Each learner in the sequence also gets a score based on
its error rate. The overall learner is a weighted majority of the
set of weak learners, where the weights depend on the scores
of the weak learners. SIMPL simply throws away correctly
learned points but uses a more complex combination of the
weak learners.

Our approach is also related to oblique decision trees
(ODTs) [27], which try to find nonorthogonal hyperplane cuts
in the decision-tree setting. Inducing an ordinary decision tree
over the raw term space of a large document collection is
already extremely time consuming. ODTs draw on an even
more complex hypothesis space than decision trees (an ar-
rangement of simplicial polytopes) and involve a regression
over potentially allm dimensions at each node of the decision
tree. Consequently, SIMPL is much faster than ODT induc-
tion. It is also somewhat faster to apply on test instances than
ODTs because we only need to compute a small, fixed num-
ber of projections (usually two). We also found SIMPL to be
more accurate than orthogonal decision trees. A comparison
with ODTs may be worthwhile if ODTs can be trained within
reasonable time on high-dimensional data.

2 Preliminaries

A host of linear classifiers have been used for text classifica-
tion. A document d is represented as a “feature vector” d with
a component dt for each term t in the vocabulary. We will
overload d to mean d where there is no confusion. Generally,
the more often t occurs in d, the larger the value of dt. A linear
classifier is characterized by a vector α and a scalar constant
b, and it predicts the class of d as

cguess = sign(α · d+ b), (1)

where · indicates a dot-product and sign(x) = 0 if x = 0,
sign(x) = 1 if x > 0, and sign(x) = −1 if x < 0.

Linear classifiers work well for document classification
along the lines of broad topics. A document about (the game
of) cricket will tend to use terms like wicket, run, ball, and pitch
frequently and will also tend to use them together, compound-
ing the evidence that the document is about cricket. α and b

together represent a hyperplane, which cuts across each axis
(corresponding to a term) at some offset. The offset acts as a
threshold: if the term occurs more frequently, the document is
assigned the label +1. In general, if a linear combination of the
frequencies of important terms exceeds a threshold, the docu-
ment will lie on the “positive” (c = 1) side of the hyperplane.
This discussion may help explain why linear discriminants are
good at text classification.

2.1 Naive Bayes (NB) classifiers

Bayesian classifiers estimate a class-conditional document
distribution Pr(d|c) from the training documents and use
Bayes’ rule to estimate Pr(c|d) for test documents. The doc-
uments are modeled using their terms. The multinomial naive
Bayes model assumes that a document is a bag or multiset of
terms and the term counts are generated from a multinomial
distribution after fixing the document length �d, which, being
fixed for a given document, lets us write

Pr(d|c, �d) =
(

�d
{n(d, t)}

) ∏
t∈d

θ
n(d,t)
c,t (2)

where n(d, t) is the number of times t occurs in d and θc,t are
suitably estimated [1,26] multinomial probability parameters
with

∑
t θc,t = 1 for all c. For the two-class scenario through-

out this paper, we only need to compare Pr(c = −1|d) against
Pr(c = 1|d), or equivalently, log Pr(c = −1|d) against
log Pr(c = 1|d), which simplifies to a comparison between

log Pr(c = 1) +
∑

t∈d n(d, t) log θ1,t and
log Pr(c = −1) +

∑
t∈d n(d, t) log θ−1,t

(3)

where Pr(c = . . .), called the class priors, are the fractions
of training instances in the respective classes. Simplifying
Eq. 3, we see that NB is a linear classifier: it makes a de-
cision between c = 1 and c = −1 by thresholding the value
of αNB ·d+b for a suitable vector αNB (which depends on the
parameters θc,t) and constant b. Here d is overloaded to de-
note a vector of term frequencies (see Sect. 4) and “·” denotes
a dot-product.

2.2 Maximum entropy classifiers

Whereas Bayesian classifiers estimate class-conditional dis-
tributions Pr(d|c) for each class c, a maxent classifier directly
estimates a parametric model for Pr(c|d). There is a model
parameter µc,t for every class c and term t (as in NB). A com-
monly used parametric form of Pr(c|d) is

Pr(c|d) ∝
∏
t∈d

µ
n(d,t)/

∑
τ n(d,τ)

c,t (4)

Introducing a normalizing constant to make Pr(c|d) add up
to 1 over all c, we get

Pr(c|d) =
1

Z(d)

∏
t∈d

µ
n(d,t)/

∑
τ n(d,τ)

c,t (5)

Nigam et al. [28] discuss in detail how to optimize the param-
eters using training data. In the two-class case, using a maxent

4 S. Chakrabarti et al.: Text classification via linear projections

classifier to classify a test document d amounts to comparing
(after taking logs)

∑
t∈d

n(d, t)∑
τ n(d, τ)

logµ1,t and
∑
t∈d

n(d, t)∑
τ n(d, τ)

logµ−1,t

or
∑
t∈d

n(d, t) logµ1,t and
∑
t∈d

n(d, t) logµ−1,t (6)

again, clearly a linear discriminant.

2.3 Regression techniques

We can regard the classification problem as inducing a linear
regression from d to c of the form c = α · d + b, where α
and b are estimated from the data {(di, ci), i = 1, . . . , n}.
This view has been common in a variety of information re-
trieval (IR) applications. A common objective is to minimize
the square error between the observed and predicted class vari-
able:

∑
d(α · d + b − c)2. The least-square optimization fre-

quently uses gradient-descent methods, such as the Widrow-
Hoff (WH) update rule. Let each vector d be augmented by
one extra element, always set to 1, and a corresponding extra
dimension added toα, to simplify notation and get rid of b.The
WH approach starts with some initital estimate α(0) (with the
extra dimension representing b), considers di, ci one by one,
and updates α(i−1) to α(i) as follows:

α(i) = α(i−1) − 2η(α(i−1) · di − ci)di . (7)

The final α used for classification is usually the average of
all αs found along the way. Schütze, Lewis, et al. [22,33]
have applied WH and other update methods (such as the ex-
ponentiated gradient method) to design high-accuracy linear
classifiers for text, improving upon traditional Rocchio-style
relevance feedback. We will follow the WH approach, but we
will not minimize the square error because we are not depen-
dent on a single linear predictor. Instead, our goal is to maxi-
mize separation between the classes in the projected subspace,
for which we will optimize Fisher’s linear discriminant.

2.4 Linear support vector machines

Like NB, linear SVMs (LSVMs) also make a decision by
thresholding αSVM · d + b (the estimated class is +1 or −1
depending on whether the quantity is greater or less than 0)
for a suitable vector αSVM and constant b. αSVM is chosen
far more carefully than NB. Initially, let us assume that the n
training points in R

m from the two classes are linearly separa-
ble by a hyperplane perpendicular to a suitable α. SVM seeks
an α that maximizes the distance of any training point from
the hyperplane; this can be written as:

Minimize 1
2 α · α (= 1

2‖α‖2) (8)

subject to ci(α · di + b) ≥ 1 ∀i = 1, . . . , n

where {d1, . . . , dn} are the training document vectors and
{c1, . . . , cn} their corresponding classes. (We want an α such
that sign(α · di + b) = ci, so that their product is always

positive.)The distance of any training point from the optimized
hyperplane (called the margin) will be at least 1/‖α‖.

To handle the general case where a single hyperplane may
not be able to correctly separate all training points, fudge vari-
ables {ξ1, . . . , ξn} are introduced, and Eq. 8 is enhanced as:

Minimize 1
2α · α+ C

∑
i ξi (9)

subject to ci(α · di + b) ≥ 1− ξi ∀i = 1, . . . , n
and ξi ≥ 0 ∀i = 1, . . . , n∑

i ξi is the “sum of violations” of the misclassified training
points, which is traded off against the margin width 1

2α · α
using the tuned constant C.

SVM packages solve the dual of Eq. 9, involving scalars
λ1, . . . , λn, given by:

Maximize
∑

i λi − 1
2

∑
i,j λiλjcicj(di · dj) (10)

subject to
∑

i ciλi = 0
and 0 ≤ λi ≤ C ∀i = 1, . . . , n

Having optimized the λs, α is recovered as

αSVM =
∑

i λicidi (11)

If 0 < λi ≤ C, then di is a “support vector.” b can be estimated
as cj − αSVM · dj , where dj is some document for which
0 < λj < C.

It is common to set C to 1/r2, where r is the radius of
the smallest ball containing all training vectors, or the average
Euclidean norm of the d-vectors. A fixed choice of C saves
time but is rarely the best possible value in practice. In princi-
ple, the best value of b should fall out of the training process,
but in practice, tuning b helps as well. Practitioners generally
use a held-out validation data set to search over a large range
of values for C and a smaller range of values for b, which
means they have to run the (time-consuming) SVM induc-
tion program many, many times. It is natural to want to avoid
this extra work, so we compare SIMPL with two versions of
SVM: one in which C = 1/r2 and b is not tuned, and another
in which we search over C and b, which we call SVM-best.

Equation 10 represents a quadratic optimization problem.
SVM packages iteratively refine a few λs at a time (called the
working set), holding the others fixed. For all but very small
training sets, we cannot precompute and store all the inner
products di · dj . As a scaled-down example, if an average
document costs 400 bytes in RAM, and there are only n =
1000 documents, the corpus size is 400000 bytes, and the inner
products, stored as 4-byte floats, occupy 4× 1000× 1000
bytes, ten times the corpus size. Therefore, the inner products
are computed on demand, with an LRU cache of recent values,
to reduce recomputation. In all SVM implementations that
we know of, all the document vectors are kept in memory
so that the inner products can be quickly recomputed when
necessary. (This observation excludes SVM variants that do
not need quadratic programming, such as the ones discussed
in Sect. 1.2.)

2.5 Observations leading to our approach

It is natural to question the observed difference between the
accuracy of NB classifiers and linear SVMs, given that they

S. Chakrabarti et al.: Text classification via linear projections 5

use the same hypothesis space (half-spaces). In assuming at-
tribute independence, NB starts with a large inductive bias
(loosely speaking, a constraint not guided by the training data)
on the space of separating hyperplanes that it will draw from.
SVMs do not propose any generative probability distribution
for the data points and do not suffer from this form of bias.An-
other weakness of the NB classifier is that its parameters are
based only on sample means; it takes no cognizance of vari-
ance. Fisher’s discriminant does take variance into account
(see Fig. 2 below).

A linear SVM carefully finds a single discriminative hy-
perplane. Consequently, instances projected on the direction
αSVM normal to this hyperplane show large to perfect inter-
class separation. Intuitively, our hope is that we can be slightly
sloppy (compared to SVMs) with finding discriminative direc-
tions, provided we can quickly find a number of such directions
that can collectively help a decision tree learner separate the
classes in the projected space. To achieve speed and scalabil-
ity, it must be possible to cast our computation in terms of
efficient sequential scans over the data with a small number
of accumulators collecting sufficient statistics [13].

3 The proposed algorithm

Our proposed training algorithm has the broad outline shown
in Figure 1. The outer while-loop of SIMPL finds several linear
discriminants α(0), α(1), . . . one by one. To compute each α,
we need a hill-climbing step. To prepare the stage for the next
α, we need to remove some instances from the training set.
We will explain and rationalize these steps in this section.

Testing is simple, and essentially as fast as NB or SVM.
We preserve the linear discriminants α(0), . . . , α(k−1) as well
as the decision tree (in practice we found k = 2 . . . 3 to be
adequate). Given a test document d, we find its k-dimensional
representation (d ·α(0), . . . , d ·α(k−1)) and submit this vector
to the decision tree classifier, which outputs a class.

3.1 The hill-climbing step

Let the points with c = −1 (c = 1) be X (Y). Fisher’s linear
discriminant is a (unit) vector α such that the positive and
negative training instances, projected on the direction α, are
as “well-separated” as possible. The separation J(α), shown
in equation (13), is quantified as the ratio of the square of
the difference between the projected means to the sum of the
projected variances.

In matrix notation, if µX and µY are the means (centroids)
and ΣX = (1/|X|) ∑

X(x − µX)(x − µX)T and ΣY =
(1/|Y |) ∑

Y (y − µY)(y − µY)T are the covariance matrices
for point sets X and Y , the best linear discriminant can be
found in closed form, and has been used in pattern recognition:

arg max
α

J(α) =
(
ΣX +ΣY

2

)−1

(µX − µY) (12)

provided the matrix inverse exists.
However, inverting the covariance matrix is impracti-

cal in the document classification domain because it is too
large and very likely ill-conditioned. Moreover, inversion
will discard sparsity. Instead, we use a gradient ascent or

hill-climbing approach: we start from a reasonable starting
value of α = (α1, . . . , αm) and repeatedly find ∇J(α) =
(∂J/∂α1, . . . , ∂J/∂αm). Denoting the numerator (respec-
tively, denominator) in the rhs of Eq. 13 as N(α) (respec-
tively, D(α) = DX(α) +DY (α)), we can easily write down
∂N/∂αk, ∂DX/∂αk, and ∂DY /∂αk, as shown in Fig. 2.

From these values we can easily derive the value of
∂J/∂αi for all i in the term vocabulary. Once we find∇J(α),
we use the standard WH update rule with a learning rate η:

αnext ← αcurrent + η ∇J(α) (17)

As with C in SVM, setting the learning rate η is a practiced
science and art. A small η slows down learning, and a large η
may lead to instability and divergence. In neural networks, re-
searchers adapt the rate online as the training progresses [19].
Based on the experience of many WH users published on the
Web, we tried values between 0.05 and 0.2 and settled for 0.1.
This single, fixed value gave us results that were essentially as
good as we could get by tuning η separately for each data set.

We must also fix our “convergence policy.” In SIMPL, we
repeat hill-climbing until the increase in J(α) is less than 5%
over three successive iterations. This policy protects us from
mild oscillations near the local optimum.

The gist is that we need to maintain the following set of
accumulators as we scan the documents sequentially:

• ∑
X x · α (scalar)

• ∑
Y y · α (scalar)

• ∑
X xi for each i (m numbers)

• ∑
Y yi for each i (m numbers)

• ∑
X xi(x · α) for each i (m numbers)

• ∑
Y yi(y · α) for each i (m numbers)

together with the current α, which is another m numbers.
The total memory footprint is only 5m + O(1) numbers
(20mbytes), where m is the size of the vocabulary. For our
Dmoz data set (see Sect. 4), m ≈ 1.2× 106, which means we
need only about 24 MB of RAM. All the vectors have dense
array representations, so the time for one hill-climbing step
is exactly linear in the size of the input data. In the unlikely
situation that available RAM is smaller than 20mbytes, the
expressions in Fig. 2 can be expressed as GROUP BY and
aggregate operations, which can be executed efficiently with
limited memory.

3.2 Pruning the training set

After a suitable number of hill-climbing steps, we discard
points inD that are correctly classified by the currentα. This is
achieved by projecting all points inD along α, so that they are
now points on the line (each marked with c = 1 and c = −1)
and sweeping the line for a minimum-error position where

• most points on one side have c = 1 and most points on the
other side have c = −1, and

• the number of points on the “wrong” side is the minimum
possible.

It is easy to do this in one sort of an n-element array and one
sweep with O(1) extra memory, so the total time for identify-
ing correctly classified documents is O(n log n) (and the total
space needed is O(m+ n)).

6 S. Chakrabarti et al.: Text classification via linear projections

i← 0
initialize D to the set of all training documents
whileD has at least one positive and one negative instance do

initialize α(i) to the vector direction joining the positive class centroid to the negative class centroid
do hill-climbing to find a good linear discriminant α(i) for D
remove from D those instances that are correctly classified by α(i)

orthogonalize α(i) w.r.t. α(0), . . . , α(i−1) and scale it so that its L2 norm ‖α(i)‖ = 1
i← i + 1

end while
let α(0), . . . , α(k−1) be the k linear discriminant vectors found
for each document vector d in the original training set do

represent d as a vector of its projections (d · α(0), . . . , d · α(k−1))
train a decision tree classifier with the k-dimensional training vector

end for

Fig. 1. The proposed algorithm SIMPL finds several linear discriminants α(0), . . . , α(k−1) by using a hill-climbing procedure

J(α) =

N︷ ︸︸ ︷(
1

|X|
∑

X x · α− 1
|Y |
∑

Y y · α
)2

1
|X|
∑

X(x · α)2 −
(

1
|X|
∑

X x · α
)2

︸ ︷︷ ︸
DX

+ 1
|Y |
∑

Y (y · α)2 −
(

1
|Y |
∑

Y y · α
)2

︸ ︷︷ ︸
DY

(13)

∂J

∂αi
=

(DX + DY) ∂N
∂αi
−N ∂(DX+DY)

∂αi

(DX + DY)2
(14)

∂N

∂αi
= 2

(
1
|X|

∑
X

x · α− 1
|Y |

∑
Y

y · α
)(

1
|X|

∑
X

xi − 1
|Y |

∑
Y

yi

)
(15)

∂DX

∂αi
=

2
|X|

(∑
X

xi(x · α)− 1
|X|

(∑
X xi

) (∑
X x · α)

)
(16)

Fig. 2. The main equations involved in the hill-climbing step to find the Fisher’s linear discriminant

The intuition behind this algorithm is quite simple: having
found a discriminant αwe should retain only those points that
fail to be separated in that direction.Although the hill-climbing
steps will always converge to local optima, there is no bound
on the number of αs we will need to extract. In practice, each
new α helps us discard over 80% of D. To avoid scanning
through the original D for every hill-climbing pass, we write
out the surviving documents in a new file, which then becomes
our D for finding the next α.

Orthogonalizing the set of αs reduces the correlation be-
tween the components of the k-dimensional representation
of documents. Because decision trees implement orthogonal
cuts, we sometimes found a mild improvement in accuracy
from the orthogonalization step; it never hurt accuracy. If we
replace the decision tree by some other kind of learner, this
step may not be needed.

3.3 Inducing a decision tree

We used two roughly equivalent decision-tree pack-
ages using Quinlan’s C4.5 algorithm: C4.5 itself
(http://www.cse.unsw.edu.au/∼quinlan/) and
the Decision-tree package in WEKA [38] (which we simply
call WEKA; also see http://www.cs.waikato.-
ac.nz/∼ml/weka/). In our context, a decision tree seeks

to partition a set of labeled points {d} in a geometric space,
where each d is a vector (d0, . . . , dk−1).

The decision-tree induction algorithm uses a series of guil-
lotine cuts on the space, each of which is expressed as a com-
parison of some component di against a constant such that
each final rectangular region has only positive or only nega-
tive points. The hierarchy of comparisons induces the decision
tree, whose leaves correspond to final rectangular regions. To
achieve a recall-precision trade-off, just as we can tune the
offset b for a SVM, we can assign different weights to positive
(c = 1) and negative (c = −1) instances in WEKA.

A decision tree with “pure” (single-class) leaves usually
overfits the training data and does not generalize well to held-
out test data. Better generalization is achieved by pruning the
tree, trading off the complexity of the tree with the impurity
of the leaf rectangles in terms of mixing points belonging to
different classes. This does not work very well for large m
(number of dimensions), which is why decision trees induced
on raw text show poor accuracy. This is also why our dimen-
sionality reduction via projection pays off well.

C4.5 and WEKA hold the entire training data in memory,
which is usually not a problem because by this stage we have
transformed the training data to points with only two to three
dimensions. For example, with 100000 documents and three
projections, we will need only 1.2 MB. Should space become

S. Chakrabarti et al.: Text classification via linear projections 7

an issue, we can always use efficient, out-of-core decision-tree
implementations like SPRINT [34].

SIMPL induces fairly small decision trees. The number of
projected coordinates is already small (two to three) to start
with. It is rare to see more than two to three cuts on any one
projected dimension. In our experiments, we observe that typ-
ically, the depth of the decision tree is less than five, and there
are at most a total of 10–15 decision nodes in the tree.

4 Experiments

The core of SIMPL (excluding document scanning and pre-
processing) was implemented in only 600 lines of C++ code,
making generous use of ANSI templates. The core of C4.5 is
roughly another 1000 lines of C code. (In contrast, SVM-
light, a very popular SVM package, is over 6000 lines.)
“g++ -O3” was used for compilation. Programs were run
on Pentium III machines with 500–700 MHz CPUs and 512–
2048 MB of RAM.

Several implementations of SVM are widely used
and publicly available: Sequential Minimum Optimiza-
tion (SMO) by John Platt [8,30], NodeLib by Gary Flake
(http://www.neci.nec.com/homepages/flake/-
nodelib/html/), and SVMlight by Thorsten Joachims
[15]. We found SVMlight to be comparable or better in
accuracy compared to published SMO numbers. NodeLib has
no built-in support for massive, sparse input data at this time.
Our experiments are based on SVMlight, evaluating it for
C between 1 and 60 (SVMlight’s default is the reciprocal of
the average value of d · d, which range between 20 and 30 for
our TFIDF representation). We also evaluate several values of
b in a suitable band around the separator. Other settings and
flags are left at default values except where noted.

We use a few standard accuracy measures. For the follow-
ing contingency table

(Number of Estimated class
documents) c̄ c
Actual class c̄ n00 n01

c n10 n11

recall and precision are defined as R = n11/(n11 + n10)
and P = n11/(n11 + n01), respectively. F1 = 2RP/(R +
P) is also a commonly used measure. A classifier may have
parameters using which one can trade off R for P or vice
versa. When these parameters are adjusted to get R = P , this
value is called the “break-even point.”

4.1 Data sets

We use one synthetic data set and several standard real-life
benchmark data sets. We use the synthetic data to study prop-
erties of the discriminants found by SVM and SIMPL, and we
report precision and recall numbers on the real-life data sets.

4.1.1 Synthetic data

Our synthetic data generator is based on the “TCAT concept”
defined by Joachims [16].ATCAT concept is specified via a set

WebKB-course
pi ni fi Feature type
77 29 98 High-frequency positive (HFP)

4 21 52 High-frequency negative (HFN)
16 2 431 Medium-frequency positive (MFP)

1 12 341 Medium-frequency negative (MFN)
9 1 5045 Low-frequency positive (LFP)
1 21 24276 Low-frequency negative (LFN)

169 191 8116 Rest

Reuters-earn
pi ni fi Feature type
33 2 65 High frequency positive (HFP)
32 65 152 High frequency negative (HFN)

2 1 171 Medium frequency positive (MFP)
3 21 974 Medium frequency negative (MFN)
3 1 3455 Low frequency positive (LFP)
1 10 17020 Low frequency negative (LFN)

78 52 5821 Rest

Fig. 3. Parameters for the TCAT-based synthetic data generator

of 3-tuples {(pi, ni, fi), i = 1, 2, . . .}. The ith tuple specifies
a vocabulary subset having fi terms. The overall vocabulary
is the union of all these subsets. Positive documents (c = 1)
use pi out of the fi terms from subset i, whereas negative
documents (c = −1) use ni of the fi terms from subset i.
Note that the same term may be picked for both positive and
negative documents.

Joachims argued through examples that TCAT concepts
closely model real-life text classification tasks. He estimated
TCAT parameters for some well-known classification bench-
marks (Sect. 4.1.2), two of which are shown in Fig. 3 and are
used in our experiments.

We use a simple TCAT-based data generator, which
chooses the pi (respectively, ni) terms uniformly at random,
with replacement, from the fi available features in set i. This
implies all the synthetic documents have the same length
(number of words), which is not very realistic. Note that our
TCAT-based synthetic data are used purely to compare the lin-
ear discriminants computed by SVM and SIMPL under con-
trolled circumstances, not to judge overall accuracy. Joachims
used the TCAT characterization in a more powerful manner:
he proved that TCAT concepts are learnable by LSVMs with
small testing error, without making any assumptions about
how the words are picked and how often they are repeated. He
also derived results involving noise term distributions added
to the basic TCAT model.

4.1.2 Real-life data

We use the following real-life data sets. The first three are well
known in recent IR literature, small in size, and suitable for
controlled experiments on accuracy and CPU scaling. The last
two data sets are large; they approach the scale we envisage for
real applications. They were mainly used to compare run-time
performance.

8 S. Chakrabarti et al.: Text classification via linear projections

Reuters [21]:About 7700 training and 3000 test documents
(“MOD-APTE” split), 30000 terms, 135 categories. The raw
text takes about 21 MB.

20NG:About 18800 total documents organized in a di-
rectory structure with 20 topics. For each topic the
files are listed alphabetically and the first 75% cho-
sen as training documents. There are 94000 terms. The
raw concatenated text takes up 25 MB and can be
downloaded from http://kdd.ics.uci.edu/data-
bases/20newsgroups/20newsgroups.html

WebKB:About 8300 documents in 7 categories. About
4300 pages on 7 categories (faculty, project, etc.) were
collected from 4 universities, and about 4000 miscella-
neous pages were collected from other universities. For
each classification task, any one of the four university
pages are selected as test documents and rest as train-
ing documents. The raw text is about 26 MB and can
be downloaded fromhttp://www.cs.cmu.edu/afs/-
cs.cmu.edu/project/theo-20/www/data/.

OHSUMED:348566 abstracts from medical journals, hav-
ing around 230000 terms and 308511 topics and avail-
able at http://ftp.ics.uci.edu/pub/machine
-learning-databases/ohsumed/. The raw text is
400 MB. The first 75% are selected as training documents and
the rest are test documents.

Dmoz:From the RDF file published at
http://dmoz.org/, we picked a sample of 140000
URLs, successfully crawled some 120000 of them, and
stripped HTML tags, leaving plain text behind. The number
of distinct tokens was over 500000. Twelve top-level topics
of Dmoz were used; these were populated with 5000–21000
labeled documents each. The raw text (available on request)
occupied 271 MB.

4.2 Document representation

We use the standard multinomial model (Eq. 2) for NB and
the standard “TFIDF” document representation from IR for
SVM and SIMPL. In keeping with some of the best systems at
TREC (http://trec.nist.gov/), our IDF for term t is
log (|D|/|Dt|), whereD is the document collection andDt ⊆
D is the set of documents containing t. The term frequency
TF(d, t) = 1 + ln

(
1 + ln(n(d, t))

)
, where n(d, t) > 0 is the

raw frequency of t in document d (TF is zero if n(d, t) = 0). d
is represented as a sparse vector with the tth component being
IDF(t) TF(d, t). The L2 norm of each document vector is
scaled to 1 before submitting to the classifiers.

All our data sets sport more than two labels. For
each label (e.g., “cocoa”), a two-class problem (“co-
coa” vs. “not cocoa”) is formulated. All tokens are
turned to lowercase and standard SMART stopwords

Convergence of J(alpha)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
#Iterations

R
el

at
iv

e
J(

al
ph

a)

acq

grain

ship

wheat

Fig. 4. Hill-climbing to maximize J(α) is fast. Relative values of
J(α) (scaled to 1 at convergence) are plotted against the number of
hill-climbing steps

(ftp://ftp.cs.cornell.edu/pub/smart/) are re-
moved, but no stemming is performed. No feature selec-
tion is used prior to running any of our classification algo-
rithms: the naive Bayes classifier in the Rainbow library [25]
(with Laplace and Lidstone’s methods evaluated for parameter
smoothing), SVMlight, and SIMPL. Alternatively, one may
preprocess the collection through a common feature selector
and then submit them to each classifier, which adds a fixed
time to each classifier.

4.3 Hill climbing

The hill-climbing approach is fast and practical. We usually
settle at a maximum within 15–25 iterations: Fig. 4 shows that
J(α) quickly grows and stabilizes with successive iterations.
Our convergence policy (see Ssect. 3.1) guards well against
mild problems of local maxima and overshoots in case the
learning rate η in Eq. 17, which is set to 0.1 throughout, is
not the best possible choice. This condition usually manifests
itself in small oscillations in J(α), e.g., for topics ship and
wheat. Our results are insensitive, within a wide range, to the
specific choices of all these parameters.

An important concern for us was the lack of a guarantee of
global optimality in the hill-climbing step. Suppose the hill-
climbing process for α(0) gets trapped in a local maximum,
and we accept this value, continuing with α(1) etc. Might this
completely upset the optimization of subsequent αs and lead
us arbitrarily astray from the best set of αs?

It is difficult to find a perfect answer to this question be-
cause an exhaustive search for all the optimal αs is infeasible,
i.e., we have no access to “ground truth.” Instead, to get some
heuristic evidence of the robustness of SIMPL, we calculated
two different values of α(0):

• Perform hill climbing forα(0) until convergence (this may
give a global or a local optimum). Suppose this takes k
iterations.
• Degrade the value of α(0) deliberately by running the hill-

climbing process for only k/2 iterations.

S. Chakrabarti et al.: Text classification via linear projections 9

0

20

40

60

80

100

acq interest money-fx earn crudeData sets

F
1

=
2R

P
/(

R
+

P
)

F1
F1-sloppy

Fig. 5. Quitting hill climbing early has little or no impact on F1

accuracy; in fact, in some cases, accuracy improves

0

1

2

3

4

5

acq interest money-
fx

earn crude
Data set

E
xe

cu
tio

n
tim

e
(s

)

Time-a2
Time-a1

Fig. 6. For each topic, the first bar shows time to compute α(0) to
convergence, then the time to compute α(1) to convergence. The
second bar shows the time to compute α(0) sloppily, followed by
computing α(1) to convergence. Because earlier αs take more time
to compute, we may even save overall time

After finding α(0), subsequent αs are computed as usual. We
wish to study the implications of these two choices on both
the accuracy and the speed of SIMPL.

For several data sets, early termination of hill climbing for
α(0) had negligible effect on the overall accuracy of SIMPL
(see Fig. 5). We determined that later αs can compensate for
sloppiness in finding an earlier α. In fact, in some cases, be-
cause one of precision and recall falls less than the other, we
may even gain accuracy in F1 terms. Such resilience to vari-
ation in policy and parameters is very desirable.

Figure 6 shows the effect of incomplete hill climbing on
running time. For a given α, one iteration of hill climbing
takes a fixed time. Therefore, halving the number of iterations
also halves the time taken to find α(0). Finding α(0) sloppily
has two potential related effects: fewer training points may
be eliminated and a larger number of subsequent αs may be
required. We focus on the run time for finding α(1) in Fig. 6.
Although the time to find α(1) generally increases if α(0) is
found sloppily, the extra time required for α(1) (and subse-
quent αs) is very small compared to the time saved while
finding α(0).

We save overall time because we can lop off over 80%
of the current training set for every additional α(i) that we
find. For example, for the Dmoz data the numbers of surviv-
ing documents were 116528, 7074, 230, and 2 before finding
α(0), α(1), α(2), and α(3) respectively. Consequently, for all

our data sets, SIMPL generates only two to four linear projec-
tions before running out of training documents.

The preceding discussion raises the following question:
how will SIMPL behave if we push sloppiness to the limit,
i.e., we perform no hill climbing at all after initializing α?
We might need to find more αs, but each will be computed
trivially. Our main experimental observations, from a suitably
modified version of SIMPL, are:

• The number of surviving training points after each α tends
to be larger than in the hill-climbing case:

Hill climbing No hill climbing
7776→ 203→ 0 7776→ 250→ 5
5836→ 159→ 0 5836→ 520→ 2
5836→ 149→ 0 5836→ 406→ 1

• However, the number of extra αs required is almost al-
ways one or two compared to the previous number of αs
obtained through hill-climbing.
• The time saved onα(0) by avoiding any hill climbing over-

whelms any cost for finding extra αs; therefore, the total
time is smaller if no hill climbing is performed. For ex-
ample, in some runs with real-life data, we cut down total
time from 21 s to 6 s, from 35 s to 6 s, and 125 s to 28 s.
Both sets of times are substantially smaller than the time
taken by SVM.
• However, there is generally a drop in accuracy. For exam-

ple, in some runs, F1 was reduced from 0.96 to 0.945, and
from 0.73 to 0.6. In a few cases, hill climbing made the
difference between beating vs. not beating SVM.

4.4 Discriminants and projections

The next set of measurements shows the nature of discrimi-
nants found by SIMPL and other algorithms and the quality
of separation of the training (and test) data on these discrimi-
nants.

One indicator of the promise of SIMPL is the general
agreement between the directions α(0)

SIMPL and αSVM. Assum-
ing both vectors are scaled to unitL2 norm, the agreement can
be expressed as their dot-product, i.e., the cosine of the angle
between them, a single number between −1 (perfect anticor-
relation) and +1 (perfect correlation). We can also visualize a
scatterplot of points (α(0)

SVM(t), αSIMPL(t)) for each term t.

Note that a low correlation between α
(0)
SIMPL and αSVM

does not necessarily mean that SIMPL is in trouble because
SIMPL derives more directions for projection.

In Fig. 7, we show the scatterplots between the discrimi-
nants found by SVM and SIMPL. For synthetic data, the dis-
criminants found by SVM and SIMPL are virtually identical,
with typical cosines around 0.99. Real data sets contain noise,
and this is clear from scatterplots that appear to be more spread
out. However, the apparent density of points in the print is
misleading: the (+,+) and (−,−) quadrants have an over-
whelming majority of points (e.g., 234823) compared to the
(+,−) and (−,+) quadrants (e.g., 4833). The cosine remains
quite large, typically 0.78 to over 0.85. These may appear
small compared to 0.99, but keep in mind that the α vectors
have tens of thousands of dimensions, where slight noise in
each dimension is capable of turning the vectors away from

10 S. Chakrabarti et al.: Text classification via linear projections

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

-0.04-0.03-0.02-0.01 0 0.01 0.02

S
IM

P
L

SVM

TCAT-course

-0.02

-0.01

0

0.01

0.02

-0.02 -0.01 0 0.01 0.02

S
IM

P
L

SVM

WebKB-student

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

-0.01 -0.005 0 0.005 0.01

S
IM

P
L

SVM

Reuters-acq

Disagree 2522/26904 Disagree 4833/234823 Disagree 1651/26547
Cosine 0.99 Cosine 0.856 Cosine 0.812

Fig. 7. Comparison between αSVM and α(0) found by SIMPL. “Disagree x/y” means that x coordinates differed in sign and y coordinates
did not, i.e., there are in all x points in quadrants 2 and 4 and y points in quadrants 1 and 3. Cosine is as described in the text

a α(0) c Train, c = −1 e Test, c = −1

−0.05 0 0.05
10

0

10
1

10
2

10
3

Projection on alpha(0)

R
el

at
iv

e
de

ns
ity

 o
f p

oi
nt

s

c=+1
c=−1

"money-fx.lf" every 20 "money-fx.af" every 10

b α(0) and α(1) d Train, c = 1 f Test, c = 1
"money-fx.lt" every 2 "money-fx.at"

Fig. 8a–f. Although α(0) by itself may fail to separate the labels in the training data well (a), assistance from α(1) (and subsequent αs in
general) manages to separate the labels sufficiently well (b). For clarity, we separate training and test points for each c in parts c–f. We see
that the projections cluster training and test data in very similar ways, hinting that high-accuracy decision trees can be induced from the
reduced-dimension data

each other. Cosine values above 0.78 therefore indicate sub-
stantial agreement between the discriminants found by SVM
and SIMPL.

Agreement between these discriminants gives us hope that
if a linear SVM manages to separate the (projected) training
data by a wide margin, Fisher’s discriminant should achieve
separation that is almost as good. This, however, is not often
the case. As Fig. 8a shows, the “confusion zone” after project-

ing the training points to α(0) is still significant. If only one
Fisher’s discriminant were used for classification, we would
expect SIMPL’s accuracy to be poorer than LSVM’s.

Luckily, SIMPL can make use of multiple projections. Fig-
ure 8b shows the result of projecting the training points on to
the first two discriminants, α(0) and α(1). The confusion zone
in Fig. 8a is now stretched out over the y-axis, better separating
training points with different labels. One or two more projec-

S. Chakrabarti et al.: Text classification via linear projections 11

0.4

0.6

0.8

1

1 2 3#Alphas

Prec Recall

0.4
0.5
0.6
0.7
0.8
0.9

1 2 3#Alphas

Prec Recall

0.4
0.5
0.6
0.7
0.8
0.9

1 2 3#Alphas

Prec Recall

0.4

0.6

0.8

1

1 2 3#Alphas

Prec Recall

Crude Interest

Ship Wheat Fig. 9.Variation of precision and recall with the number
of linear projections used by C4.5. Two projections are
almost always adequate

Reuters

0.3 0.5 0.7 0.9

acq

earn

crude

ship

money-fx

interest

grain

trade

wheat

corn

AVG

T
op

ic
s

F1-->

NB

SIMPL

SVM

SVM-best

WebKB

0 0.2 0.4 0.6 0.8

other

student

faculty

course

project

AVG

T
op

ic

F1-->

NB

SIMPL

SVM

SVM-best

20NG 0.4 0.5 0.6 0.7 0.8 0.9 1

talk.politics.mideast

sci.med

rec.sport.hockey

sci.crypt

soc.religion.christian

sci.space

talk.politics.guns

rec.sport.baseball

rec.autos

rec.motorcycles

talk.politics.misc

alt.atheism

comp.sys.ibm.pc.hardware

comp.windows.x

talk.religion.misc

misc.forsale

sci.electronics

comp.sys.mac.hardware

comp.graphics

comp.os.ms-windows.misc

AVG

T
op

ic
s

F1-->

NB

SIMPL

SVM

SVM-best

Fig. 10.Aggregate F1 scores for NB, SIMPL, and SVM for some of the most populated topics of the Reuters, 20NG, and WebKB data sets.
We decisively beat NB (by a 15–20% margin) in most cases. We also frequently beat SVM (average 6% margin) and lose to SVM-best by a
narrow margin (average 3%). In some cases we win over even SVM-best

12 S. Chakrabarti et al.: Text classification via linear projections

tions generally suffice to separate all training collections we
have seen.

Obviously, it would be reassuring to know that the pro-
jected test points are also clustered similar to the projected
training points (otherwise a decision tree may perform poorly
with the projected representations). Figure 8c–f show projec-
tions of training and test data, separated into different plots for
the two classes. Clearly, projected points from training and test
data appear to be distributed similarly in the plane.

How many projections are needed to retain enough infor-
mation for C4.5 to achieve high accuracy? Figure 9 shows the
effect of including up to the first three αs. In all the cases,
the first two αs are sufficient for peak accuracy. The general
trend is that precision and recall approach each other as we
include more projections, improving F1. The loss in one is
more than compensated for by the gain in the other. This re-
sult also shows that we can improve beyond linear regression
(Sect. 2.3) by using additional projections. It is also reassuring
that including more αs (up to five) than necessary never hurt
accuracy.

4.5 Accuracy

How does SIMPL measure up against SVM in terms of overall
accuracy? Figure 10 shows a bird’s-eye view of many data sets
and all algorithms: it compares the F1 score for naive Bayes
(NB), SIMPL, SVM, and SVM-best (see Sect. 2.4). SIMPL
beats NB in 33 out of 35 cases, and usually by large margins.

SIMPL beats SVM in 23 out of 35 cases. On average we
are a few percent short of SVM-best, but there are several
cases (marked by stars) where we beat even SVM-best. (The
extent to which tuning the offset parameter b improved SVM-
best beyond SVM surprised us and is not reported elsewhere.
Tuning C had less effect.) We note that this is a comprehen-
sive study over many diverse, standard data sets, and the high
accuracy of SIMPL is very stable across the board.

F1, being the harmonic mean, favors algorithms whose
recall is close to precision, which is the case with SIMPL. To
be fair, a closer look shows that SIMPL usually loses to SVM-
best by a small margin in either recall or precision but beats it
in the other (Fig. 11).

In a few cases, we beat SVM in both recall and preci-
sion. This is possible because we are not limited to a single
planar separator. Because we use a decision tree in the pro-
jected space, we can learn, say, a function like EXOR (but we
don’t expect a text classification task to pose such a challenge),
which a linear SVM cannot. Although SVMs with more com-
plex kernels may be used, they are slower to train than linear
SVMs.

We also compared our accuracy with that of C4.5 run di-
rectly on the raw text, reported in earlier work [8,14]. We see
that although we too use C4.5, our accuracy is substantially
better, thanks to our novel feature combination and transfor-
mation steps. In addition, SIMPL runs much faster than C4.5
on the raw data.

Finally, we show a scatterplot of F1 scores against the
positive class skew (ratio of the number of documents to the
number of documents with c = 1) in Fig. 12. While all meth-
ods suffer somewhat from skew, clearly NB suffers most and
SIMPL suffers least.

1.0 0.5 0.0 0.5 1.0

acq

crude

money-fx

wheat

rec.motorcycles

sci.med

talk.politics.mideast

talk.politics.misc

Recall Precision

SVM-best

SIMPL

Fig. 11. Most often we lose to SVM-best by a small margin in one
of recall and precision and beat it in the other. Stars mark where we
win in both

0.2

0.4

0.6

0.8

1

0 30 60Skew (|D|/|D+|)

F
1

NB

SIMPL

SVM

Fig. 12. SIMPL shows the least adverse effect of class skew on F1

accuracy among naive Bayes (NB), SIMPL, and SVM

4.6 Performance

Having established that our accuracy is comparable to SVM,
we turn to a detailed investigation of the scalability and IO
behavior of the two algorithms. Throughout this part of the
paper, “SVM” means SVMlight. Comparison with the SVM
variants discussed in Sect. 1.2 could be a fruitful area of future
work.

We did not include the initial time required to turn the
raw training documents into the compact representation re-
quired for sequential scans in the case of SIMPL and the LRU
cache required by SVM. We started timing the algorithms only
after these initial disk structures were ready. The time con-
sumed for preprocessing depends on a host of nonstandard
factors such as the raw representation and system policies:
single vs. many files, stopword detection and word stemming
and truncation, term weighting, etc. We used the OHSUMED
and Dmoz data for performance measurements. We report on
Dmoz, OHSUMED being broadly similar.

We will first compare the scaling of CPU time with training
set size, assuming enough RAM is available. We observe in
Fig. 13 that, unlike SVM, the number of iterations needed for
our hill-climbing step is largely independent of the number

S. Chakrabarti et al.: Text classification via linear projections 13

SVM

0

5000

10000

15000

20000

25000

0 50000 100000

#Training docs

#I
te

ra
tio

ns

0

5

10

15

20

25

100 1000 10000 100000

#Training docs

#I
te

ra
tio

ns

SIMPL-0

SIMPL-1

Fig. 13.Number of iterations needed by one run of SVM and two runs
of SIMPL (one finding α(0), the other, α(1)). The number of SVM
iterations seems to scale up with the problem size, unlike SIMPL

CPU scaling

y = 11820x1.878

y = 425.26x0.9545

y = 273.33x0.9244

10

100

1000

10000

0.1 1Relative sample size

T
im

e
(s

)

SVM-time

SIMPL-time0

SIMPL-time

Fig. 14. Scaling of overall CPU time, excluding preprocessing time,
with training set size for SVM and SIMPL, keeping all training data in
memory. The line marked “SIMPL-time0” shows the time for finding
just the first α, and the line marked “SIMPL” shows the total time
for SIMPL. A sample of 65000 documents were chosen from Dmoz

0

5

10

15

5 10 15 20
Max new vars per iter

#I
te

ra
tio

ns

0

50

100

150

200

250

T
im

e
(m

s)
pe

r
ite

r

Iters
Time/Iter

Fig. 15.Although cache misses and time per iteration increase if the
number of new variables optimized per iteration is capped, the drastic
savings in the number of iterations reduces overall time. The corpus
and cache sizes were 24000 and 2000 documents and “-q 20” was
used

of training documents. The time taken by single hill-climbing
iteration is linear in the total input size, defined as

∑
d |{t ∈

d}|, plus O(n log n) for n documents. Because log n is small
and the time for sorting is very small compared to theα update
step, the total time for SIMPL is expected to be essentially
linear.

This is confirmed in the log-log plot shown in Fig. 14,
where the least-square fit for SIMPL is roughly t ∝ n0.955,

0

200

400

600

800

1000

1200

1400

1600

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

#Docs in cache-->T
im

e
(s

)-
->

CPU Hit

Evict Miss

Fig. 16.CPU time, cache hit time, miss time, and eviction time plotted
against the relative size of cache available to SVM

y = 361.81x0.9536

y = 17834x1.9077

10

100

1000

10000

0.1 1Sample fraction

T
im

e
(s

)

SIMPL

SVM

Fig. 17.When SVM and SIMPL are given the same amount of RAM
as we scale up the size of the training set, SIMPLperforms far better

where t is the execution time. In contrast, the regression for
the running time of SVM is t ∝ n1.88, which corroborates
earlier measurements by Platt, Joachims, and others. This dif-
ference translates to a running time ratio (SVM to SIMPL) of
almost two orders of magnitude for n as small as 65000. For
collections at the scale of Yahoo! or the full Dmoz data set
(millions of documents) the ratio will reach several orders of
magnitude.

All public (quadratic programming) SVM implementa-
tions that we know of, including SVMlight and SMO, load
all the training document vectors into memory. With limited
memory, we expect the performance gap between SVM and
SIMPL to be even larger. In our final set of experiments, we
study the behavior of SVM with limited memory.

As mentioned above (Sect. 2.4), SVM optimizes the λs
corresponding to a small working set of documents at a time.
In SVMlight, the size of this working set (typically 10–50) is
set by the “-q” option. There are standard heuristics for pick-
ing the next working set to speed up convergence, but applying
these may replace the entire working set, reducing cache local-
ity. SVMlight provides another option, “-n,” which limits
the number of new λs that are permitted to enter the working
set in each iteration. Reducing this increases cache locality but
can lead to more iterations. A sample of this trade-off is shown

14 S. Chakrabarti et al.: Text classification via linear projections

Top.Computers

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600Relative time

SIMPL

LSVM

Top.Health

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400Relative time

SIMPL

LSVM

Top.Recreation

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600Relative time

SIMPL

LSVM

F1 F1 F1

Fig. 18. Because SIMPL scales better than SVMlight, we can achieve F1 comparable to SVMlight in much shorter time. To match our time,
SVMlight must sample the training data, which reduces accuracy. For three Dmoz topics, we plot F1 vs. relative execution time

in Fig. 15. Even though a heavy replacement rate decreases
cache hits and increases the time per iteration, the number of
iterations is cut so drastically that a large value for-n is almost
always a better choice.

How do cache hits and misses translate into running time
overheads? This can be measured either by limiting physical
memory available to the computer (in Linux, using a line of
the form append="mem=512M" in /etc/lilo.conf),
or by letting SVM do its own document cache management
and instrumenting this cache. The former option is appeal-
ing to the end user. However, system processes, OS buffer
cache, device interrupts, and paging make measurements un-
reliable. Moreover, the OS cache is physical and cannot exploit
the structure of the SVM computation. Therefore, we expect
large-scale SVM packages to implement their own caching.
We used a disk without any file system as a raw block device
(an ATA/66 7200RPM Seagate-ST330630A drive with 2 MB
on-board cache on /dev/hdc1), which precluded interfer-
ence owing to OS buffering. We built an LRU cache on it with
a preconfigured main-memory quota. Servicing a miss usually
involved exactly one seek on disk unless the data were in the
disk’s on-board cache.

Figure 16 shows a break-up of times spent in computation
(CPU), hit, miss, and eviction processing. This sample from
Dmoz had 23428 documents (23 MB of sparse term vectors)
with 360000 features, so SIMPL needs only 6 MB of RAM
and runs for only 80 s with close-to 100% CPU utilization. In
contrast, if SVM is given 6 MB of cache (about 6000 docu-
ments), it takes over 1300 seconds, of which 60% is spent in
servicing evictions and misses.

Extending from the small-scale experiment above, we
present in Fig. 17 a large-scale experiment where we go from
a 10% to a 100% sample of our Dmoz data (117920 docu-
ments, 110 MB in RAM). For each sample we determine the
amount of RAM needed by SIMPL, give that quantity of cache
to SVM, and compare the running times. The graph is superfi-
cially similar to Fig. 14, but a closer look shows that the ratio
of SVM to SIMPL running times is larger owing to cache over-
heads. Summarizing, SIMPL beats SVM with respect to both
CPU and cache performance, but the near-quadratic CPU scal-
ing of SVM makes cache overheads appear less serious than
they really are: the total time spent by SIMPL is less than 20%
of the time spent by SVM on cache management alone.

Finally, we show some examples of the overall trade-off
between accuracy and running time of SIMPL and (quadratic

programming) SVMS. In Fig. 18, we consider three of the
top-level topics of Dmoz. The plots show F1 accuracy against
training time. Points are generated by taking uniform random
samples of different sizes (1, 5, 10%, etc.) of the entire training
set of 120000 documents. SVMlight approaches the best F1
at a large value of execution time, whereas SIMPL achieves
peak F1 with very short execution times because it can han-
dle much larger samples within that time. Obviously, smarter
sampling techniques [20,29] will fare better than uniform sam-
pling and should be compared to SIMPL in future work.

5 Conclusion

We have presented SIMPL, a new classifier for high-
dimensional data such as text. SIMPL is very simple to under-
stand and easy to implement. SIMPL is very fast, scaling lin-
early with input size, as opposed to SVM involving quadratic
programming, which shows almost quadratic scaling. SIMPL
uses efficient sequential scans over the training data, unlike
popular SVM implementations, which have less efficient disk
and cache access patterns and poorer locality of reference.
This performance boost carries little or no penalty in terms of
accuracy: we often beat SVM in the F1 measure and closely
match SVM in recall and precision. SIMPL beats naive Bayes
and decision-tree classifiers decisively for text learning tasks.

Our work shows that even though SVMs are elegant, pow-
erful, and theoretically appealing, they have not rendered the
search for practical and IO-efficient alternatives unnecessary
or fruitless. A natural area of future work is to identify prop-
erties of data sets that guarantee near-SVM accuracy using
SIMPL. Another area of applied work is to test SIMPL vis-a-
vis a nonlinear SVM for nontextual training data, which are
more difficult to separate than text. It would also be of interest
to compare SIMPL with SVM variants as well as use the suc-
cess of SIMPL to guide the search and optimization process
in SVMs.

Acknowledgements. Thanks to Pedro Domingos, Gary Flake, and
Vladimir Vapnik for helpful discussions, Thorsten Joachims for gen-
erous help with SVMlight, Kunal Punera for help with preparing
some data sets, and Shantanu Godbole for helpful comments on the
manuscript. This research was partially supported by Tata Consul-
tancy Services and IBM Corporation.

S. Chakrabarti et al.: Text classification via linear projections 15

References

1. Agrawal R, Bayardo RJ, Srikant R (2000) Athena: mining-
based interactive management of text databases. In: Pro-
ceedings of the 7th international conference on extending
database technology (EDBT), Konstanz, Germany, March 2000.
http://www.almaden.ibm.com/cs/people/
ragrawal/papers/athena.ps

2. Basu C, Hirsh H, Cohen WW (1998) Recommendation as clas-
sification: using social and content-based information in recom-
mendation. In: Proceedings of the 15th national conference on
artificial intelligence, Madison, WI, July 1998, pp 714–720

3. Chakrabarti S, Dom B, Agrawal R, Raghavan P (1998) Scalable
feature selection, classification and signature generation for or-
ganizing large text databases into hierarchical topic taxonomies.
VLDB J http://www.cs.berkeley.edu/
∼soumen/VLDB54 3.pdf

4. Cooke T (2002) Two variations on Fisher’s linear discriminant
for pattern recognition. IEEE Trans Patt Analysis Machine Intell
(PAMI) 24(2):268–273 http://www.computer.org/-
tpami/tp2002/
i0268abs.htm

5. Dasgupta S (1999) Learning mixtures of Gaussians. In: FOCS,
pp 634–644 http://charlotte.ucsd.edu/users/
dasgupta/papers/focs2.ps

6. Dasgupta S (2000) Experiments with random projection. UAI
16:143–151 http://charlotte.ucsd.edu/users/
dasgupta/papers/random.ps

7. Duda R, Hart P (1973) Pattern classification and scene analysis.
Wiley, New York

8. Dumais S, Platt J, Heckerman D, Sahami M (1998)
Inductive learning algorithms and representations for
text categorization. In: Proceedings of the 7th confer-
ence on information and knowledge management, 1998.
http://www.research.microsoft.com/∼jplatt/
cikm98.pdf

9. Frankl P, Maehara H (1988) The Johnson-Lindenstrauss lemma
and the sphericity of some graphs. J Combin Theory B 44:355–
362

10. Friedman JH (1987) Exploratory projection pursuit. J Am Stat
Assoc 82:249–266

11. Fung G, Mangasarian OL (2001) Proximal support vector classi-
fiers. In: Provost F, Srikant R (eds) Proceedings of the 7th ACM
SIGKDD international conference on knowledge discovery and
data mining, San Francisco, August 2001, pp 77–86 Univer-
sity of Wisconsin Data Mining Institute Technical Report 01-02,
http://www.cs.wisc.edu/∼gfung/

12. Fung G, Mangasarian OL (2002) Incremental support vector
machine classification. In: Proceedings of the 2nd SIAM inter-
national conference on data mining, Arlington, VA, April 2002,
pp 247–260 University ofWisconsin Data Mining Institute Tech-
nical Report 01-08, ftp://ftp.cs.wisc.edu/
pub/dmi/tech-reports/01-08.ps

13. Graefe G, Fayyad UM, Chaudhuri S (1998) On the efficient
gathering of sufficient statistics for classification from large SQL
databases. In: Knowledge discovery and data mining, vol 4.
AAAI Press, New York, pp 204–208

14. Joachims T (1998) Text categorization with support vector ma-
chines: learning with many relevant features. In: Nédellec C,
Rouveirol C (eds) Proceedings of ECML-98, 10th European con-
ference on machine learning, Lecture notes in computer science,
vol 1398. Springer, Berlin Heidelberg New York, pp 137–142

15. Joachims T (1999) Making large-scale SVM learning practical.
In: Schölkopf B, Burges C, Smola A (eds) Advances in kernel

methods: support vector learning. MIT Press, Cambridge, MA
http://www-ai.cs.uni-dortmund.de/
DOKUMENTE/joachims 99a.pdf

16. Joachims T (2001) A statistical learning model of text classifi-
cation for support vector machines. In: Croft WB, Harper DJ,
Kraft DH, Zobel J (eds) Proceedings of the international con-
ference on research and development in information retrieval,
vol 24, New Orleans, September 2001, ACM Press, New York,
pp 128–136

17. Johnson RA, Wichern DW (2001) Applied multivariate statisti-
cal analysis, 3rd edn. Prentice-Hall, New Delhi

18. Kleinberg JM (1997) Two algorithms for nearest-neighbor
search in high dimensions. In: Proceedings of the ACM sympo-
sium on theory of computing, pp 599–608

19. LeCun Y, Simard PY, Pearlmetter B (1993) Automatic learning
rate maximization by on-line estimation of the Hessian’s eigen-
vectors. In: Hanson SJ, Cowan JD, Lee-Giles C (eds) Advances
in neural information processing systems, vol 5. Morgan Kauf-
mann, San Mateo, CA, pp 156–163

20. Lee YJ, Mangasarian OL (2001) RSVM: reduced support
vector machines. In: Proceedings of the 1st SIAM inter-
national conference on data mining, Chicago, April 2001.
http://www.siam.org/meetings/sdm01/
pdf/sdm01 13.pdf

21. Lewis DD (1997) The reuters-21578 text categorization test
collection, 1997. http://kdd.ics.uci.edu/
databases/reuters21578/reuters21578.html

22. Lewis DD, Schapire RE, Callan JP, Papka R (1996) Training
algorithms for linear text classifiers. In: Frei HP, Harman D,
Schäuble P, Wilkinson R (eds) Proceedings of SIGIR-96, 19th
ACM international conference on research and development in
information retrieval, ACM Press, New York, pp 298–306

23. Mangasarian OL, Musicant DR (1999) Successive over-
relaxation for support vector machines. In: IEEE Trans Neural
Netw 10:1032–1037 ftp://ftp.cs.wisc.edu/
math-prog/tech-reports/98-18.ps

24. Mangasarian OL, Musicant DR (2000) Lagrangian sup-
port vector machines. Technical Report 00-06, Data Min-
ing Institute, University of Wisconsin, Madison, June 2000.
http://www.cs.wisc.edu/∼musicant/

25. McCallum A (1998) Bow: a toolkit for statistical language mod-
eling, text retrieval, classification and clustering. Software avail-
able from http://www.cs.cmu.edu/
∼mccallum/bow/

26. McCallum A, Nigam K (1998) A comparison of event
models for naive Bayes text classification. In: AAAI/-
ICML-98 workshop on learning for text categorization, AAAI
Press, pp 41–48 Also technical report WS-98-05, CMU,
http://www.cs.cmu.edu/∼knigam/
papers/multinomial-aaaiws98.pdf.

27. Murthy SK, Kasif S, Salzberg S (1994) A system for induction
of oblique decision trees. J Artif Intell Res 2:1–32

28. Nigam K, Lafferty J, McCallum A (1999) Using maxi-
mum entropy for text classification. In: IJCAI-99 work-
shop on machine learning for information filtering, pp
61–67. http://www.cs.cmu.edu/∼knigam/ and
http://www.cs.cmu.edu/∼mccallum/papers/
maxent-ijcaiws99.ps.gz

29. Pavlov D, Mao J, Dom B (2000) Scaling-up support vector ma-
chines using boosting algorithm. In: Proceedings of the inter-
national conference on pattern recognition (ICPR), Barcelona,
September 2000. http://www.cvc.uab.es/
ICPR2000/

16 S. Chakrabarti et al.: Text classification via linear projections

30. Platt J (1998) Sequential minimal optimization: a
fast algorithm for training support vector machines.
Technical Report MSR-TR-98-14, Microsoft Research.
http://www.research.microsoft.com/users/
jplatt/smoTR.pdf

31. Sahami M, Dumais S, Heckerman D, Horvitz E (1998) A
Bayesian approach to filtering junk E-mail. In: Learning for
text categorization: papers from the 1998 workshop, Madison,
WI, AAAI Technical Report WS-98-05

32. Schapire RE (2001) The boosting approach to machine learn-
ing: an overview. In: Proceedings of the MSRI workshop on
nonlinear estimation and classification, Berkeley, CA, March
2001. http://stat.bell-labs.com/who/
cocteau/nec/ andhttp://www.research.att.com/
∼schapire/boost.html

33. Schutze H, Hull DA, Pederson JO (1995) A comparison of clas-
sifiers and document representations for the routing problem. In:
SIGIR, pp 229–237. ftp://parcftp.xerox.com/
pub/qca/SIGIR95.ps

34. Shafer JC, Agrawal R, Mehta M (1996) SPRINT: A scalable
parallel classifier for data mining. VLDB, pp 544–555

35. Shashua A (1999) On the equivalence between the sup-
port vector machine for classification and sparsified Fisher’s
linear discriminant. Neural Processing Lett 9(2):129–139
http://www.cs.huji.ac.il/∼shashua/papers/
fisher-NPL.pdf

36. Swayne DF, Cook D, Buja A (1998) XGobi: interactive dynamic
data visualization in the x window system. J Computat Graph
Stat 7(1) http://lib.stat.cmu.edu/
general/XGobi/

37. Vapnik V, Golowich S, Smola AJ (1996) Support vector method
for function approximation, regression estimation, and signal
processing. In: Advances in neural information processing sys-
tems. MIT Press, Cambridge, MA

38. Witten IH, Frank E (1999) Data mining: practical machine learn-
ing tools and techniques with Java implementations. Morgan
Kaufmann, San Francisco

