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Motivation: Web search

» User query g, Web pages {v}
» (g, v) can be represented with a rich feature vector

» Text match score with title, anchor text, headings, bold
text, body text, ..., of v as a hypertext document

» Pagerank, topic-specific Pageranks, personalized
Pageranks of v as a node in the Web graph

» Estimated location of user, commercial intent, ...
» Must we guess the relative importance of these features?

» How to combine these into a single scoring function on
(g, v) so as to induce a ranking on {v}?
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Motivation: Ad and link placement

Here, the “query” is the surfer's contextual information

More noisy than queries, which are noisy enough!

>
| 4

» Plus page and site contents

» A response is an ad to place, or a link to insert
>

Must rank and select from a large pool of available ads or
links

v

(In this tutorial we will ignore issues of bidding and
visibility pricing)
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Motivation: Desktop search

>

The Web has only a few kinds of hyperlinks: same-host
subdirectory, same-host superdirectory, same-host
across-path, different-host same-domain, different-domain
etc.

Often differentiated by hardwired policy, e.g, HITS
completely ignores same-host links

Entity-relationship (ER) graphs are richer

E.g. A personal information management (PIM) system
has many node/entity types (person, organization, email,
paper, conference, phone number) and edge/relation
types (works-for, sent, received, authored, published-in)
Ranking needs to exploit the richer type system

Don't want to guess the relative importance of edge types
(may be dependent on queries)
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Relevance feedback

» Relevance feedback is well-explored in traditional IR
» User-assisted local modification of ranking function for
vector-space models

» How to extend these to richer data representations that
incorporate entities, relationship links, entity and relation
types?

» Surprisingly unexplored area
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Tutorial outline: Preliminaries

» Training and evaluation scenarios

» Measurements to evaluate quality of ranking

>

>

>

>

>

>

Label mismatch loss functions for ordinal regression
Preference pair violations

Area under (true positive, false positive) curve
Average precision

Rank-discounted reward for relevance

Rank correlations

» What's useful vs. what's easy to learn

Soumen Chakrabarti
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Tutorial outline: Ranking in vector spaces

Instance v is represented by a feature vector x, € R?
» Discriminative max-margin ranking (RankSVM)
» Linear-time max-margin approximation
» Probabilistic ranking in vector spaces (RankNet)
>

Sensitivity to absolute rank and cost of poor rankings
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Tutorial outline: Ranking in graphs

Instance v is a node in a graph G = (V, E)
» The graph-Laplacian approach

» Assign scores to nodes to induce ranking

» G imposes a smoothness constraint on node scores

» Large difference between neighboring node scores
penalized

» The Markov walk approach

» Random surfer, Pagerank and variants; by far most
popular way to use graphs for scoring nodes

» Walks constrained by preferences

» How to incorporate node, edge types and query words

» Surprising connections between the two approaches
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Tutorial outline: Stability and generalization

» Some notes on score- vs. rank-stability

» Stability and generalization of max-margin ranking in
vector spaces

» Stability and generalization of graph-Laplacian ranking

» Stability and generalization of Markov walk based ranking
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Preliminaries

» Motivation
» Training and evaluation setup
» Performance measures

Ranking in vector spaces

» Discriminative, max-margin algorithms

» Probabilistic models, gradient-descent algorithms
Ranking nodes in graphs

» Roughness penalty using graph Laplacian

» Constrained network flows
Stability and generalization

» Admissibility and stability
» Ranking loss and generalization bounds
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Forms of training input

Regression: For each entity x, an absolute real score y
(unrealistic to expect users to assign absolute
scores)

Ordinal regression: For each entity x, a score y from a
discrete, ordered domain, such as a r-point scale
(implemented in many sites like Amazon.COM)

Bipartite ranking: Ordinal regression with r = 2

Pairwise preferences: A (possibly inconsistent) partial order
between entities, expressed as a collection of
“u < v" meaning “u is less preferred than v”
(low cognitive load on users, can be captured
from click-logs and eye-tracking data)

Complete rank order: A total order on the entities but no
scores (highly impractical for large entity sets)

Prefix of rank order: A total order on the top-k entities,

meaning that all the other entities are worse (iffy)
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Evaluation of ranking algorithms |

Error on score vectors: In case of standard regression, if fis
the score assigned by the algorithm and f is the
“true score”, measure ||f — f||; or ||f — f|]».

Ordinal reversals: If y, >y, and #(u) < f(v) then v and v
have been reversed. Count the number of
reversed pairs.

Precision at k: For a specific query g, let T, and ?’f be the
top-k sets as per f and f scores. The precision at
k for query q is defined as | T7 N T7|/k € [0,1].
Average over gq.
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Evaluation of ranking algorithms |l
Relative aggregated goodness (RAG): For a specific query g,

Zve?'f f(V)

Gtk A =< )

€ [0,1]

Note that f is not used! Average over q.

Mean reciprocal rank (MRR): For each query there is one or
more correct responses. Suppose for specified
query g, the first rank at which a correct response
occurs is R(q). Then MRR is
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Evaluation of ranking algorithms Il

Normalized discounted cumulative gain (NDCG): For a
specific query q,

k 2rating(i) -1
T2 Tog(1 + i)

Here N, is a normalization factor so that a
perfect ordering gets NDCG score of 1 for each
query, k is the number of top responses
considered, and rating(/) is the evaluator rating
for the item returned at position /.

Pair preference violation: If u < v and #(u) > f(v) a pair has
been violated. Count the number of pair
violations.
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Evaluation of ranking algorithms IV

Rank correlation: Order entities by decreasing f(u) and
compute a rank correlation with the ground truth
ranking. Impractical if a full ground truth ranking
is expected.

Prefix rank correlation: Let exact and approximate scores be
denoted by SX(v) and S¥(v) respectively for
items v, where the scores are forced to zero if
ve Toand v & TZ. A node pair
v,we T]U 7A',f is concordant if
(Sa(v) — Sc’;(w))(gf;(v) — gg(w)) is strictly
positive, and discordant if it is strictly negative. It
is an exact-tie if S¥(v) = Sf(w), and is an
approximate tie if 5¥(v) = 5¥(w). If there are c,
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Evaluation of ranking algorithms V

d, e and a such pairs respectively, and m pairs
overall in T/ U T/, then Kendall's 7 is defined as

_ c—d
V(m—e)(m—2)

Average over q.

7(k, q) € [-1,1].

» Theoretically sound and scalable rank learning techniques
typically address simpler evaluation objectives

» Designing learning algorithms for the more complicated,
non-additive evaluation objectives is very challenging

» Sometimes, we are lucky enough to establish a connection
between the two classes of objectives
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Bipartite ranking and area under curve (AUC)

» In bipartite ranking labeled data is of the form (x, y)
where y € {—1,1}
» Algorithm orders instances by decreasing f(x)
» Fori=0,1,....n
» Assign label +1 to the first i instances

» Assign label —1 to the rest
» True positive rate at i

number of positive instances labeled positive

number of positive instances
» False positive rate at /

number of negative instances labeled positive

number of negative instances

» Plot x = TruePosRate, y = FalsePosRate

» Measure area under curve
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AUC and pair preference violations

» m positive and n negative examples
» Area under curve (AUC) using f for ranking can also be

written as
AF.T) - ,Z< )1+ 5170 = 101

where T is the training set
» The important part is the fraction of satisfied pair
preferences between positive and negative instances
» Optimizing AUC is different from optimizing 0/1 error
yi |-1 -1 -1 -1 41 +1 +1 +1
Ailx) | —2 -1 3 4 1 2 5 6
hix)| -2 -1 5 6 1 2 3 4
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Concordant and discordant instance pairs

» Suppose there are R relevant documents in response to a
query

» The search engine creates a ranking rengine Which lists
them at ranks p; < pp < --- < pr

» An ideal system creates a ranking rigea that lists all
relevant documents before any irrelevant document

» But keeps the relative ordering within the relevant and
irrelevant subsets the same

At 4= A+ AT A= A= AT A
rengine—dl7d27d37d47d57d67d77d8
I S L P ali LN Lot Lo L
/’ideal—dl>d3ad4ad7vd23d57d6ad8

> Let there be Q discordant pairs in rengine COMpared to figeal
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Relating ranks and discordant pairs

» Account for @ as follows: First consider the relevant
document at position p; in rengine. Because it has been
pushed out from position 1 to position p;, the number of
inversions introduced is p; — 1.

» For the document at position ps in rengine, the number of
inversions introduced is p, — 1 — 1, the last “—1" thanks
to having the first relevant document ahead of it.

» Summing up, we get
R
d.pi—1-(i-1)=Q, or
i=1

s iy R(R+1) R+1
;p; = Q+§/:Q+—2 _ Q+< . )
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Average precision

» The average precision of rengine Wrt figear is defined as

1 - i
AvgPrec(rengine, fideal) = 5 D:

» Like NDCG, average precision rewards the search engine if
all p; are as small as possible

> Intuitively, if Q is small, AvgPrec(rengine, rideal) should be
large.

» This can be formalized by framing an optimization

problem that gives a lower bound to AvgPrec(rengine; Fideal)
given a fixed Q (and R)
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Bounding average precision given @

» To lower bound average precision, optimize:

1<
min — — such that
P1,--sPR 1 Pi

R+1
pr+ -+ pr=Q+ 5

I1<p<p2<---<pr
pi,...,Pr are positive integers

» Relaxing the last two constraints can only decrease the
optimal objective, so we still get a lower bound

» The relaxed optimization is also convex because 1/p; is
convex in p;, as far as p; is concerned the numerator i is a
“constant”, and sum of convex functions is convex
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Solving the relaxed optimization

» Using the Lagrangian method, we get

R . R
1 i R+1
‘C(pla"wa;)\):ﬁg ;—F)\(g p,-—Q—( ) ))
i=1 ™ i=1

8£ i i
L + A0 toget —.
» Replace back in the Lagrangian, set the derivative wrt A

to zero, and again substitute in the Lagrangian to get the
optimal objective (in the relaxed optimization) as

2
AvgPrec( ) > <Zﬁl \ﬁ>
VEIFTeC( Fengine, fideal ) = R-1
R(Q+ (%)
» @ and the lower bound on average precision are inversely
related, which makes sense.

i
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Ordinal regression

» |tems assigned ratings on a discrete r-point scale, e.g.,
items for sale at Amazon.COM

» The task is to regress instance x € X to label y € )}
where ) is typically small

» Bipartite ranking is a special case with || = 2 so we can
write ) = {—1,+1}

Ordinal regression is different from plain classification because

» Unlike in classification, where labels in )V are
incomparable, here they have a total order imposed on
them. (In standard regression, ) = R.)

» The accuracy measures of practical interest here are
different from those (0/1 error, recall, precision, F;) used
in classification.
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Max-margin ordinal regression |

» Apart from 3, we will optimize over r — 1 thresholds
—00o=by <b <b << b o< by < b =+00

» Let j € {1,...,r} index score levels, and the ith instance
in the j level be denoted x/

» We wish to pick § such that, for any xJ,
bj,1 < ﬁTX,J < bj
» Using the max-margin principle, we will insist that

bj,1—|—1 < ﬁTXIJ < bj—].
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Max-margin ordinal regression |l

» To avoid infea_sibility, introduce lower slacks __9{ >0 and
upper slacks 5 > 0, and relax the above inequalities to

bii+1-sl < 3'x < bj—1+7%

y=1 1 £ =2 pys
o Oof o od ® e
| I i
O O O C? @ © 0 — | S ®@
0 Olslgio © 0| & o
O A @ @ @
O I gy B
@ : g
b:—7 b, b,1+1 b21.1 b, b;” f(X)=<W-¢TX)>
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Max-margin ordinal regression Il
» The objective to minimize is modified to
min 3576+ BY (s]+73)),
B,b,s>0,5>0 i
» Yet another quadratic program with linear inequalities

» Training time scales roughly as n?>'®2:33 where n is the
number of training instances

» More accurate than replacing ordinal regression with plain
regression
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Ranking to satisfy preference pairs

>

Suppose x € X are instances and ¢ : X — R a feature
vector generator

E.g., x may be a document and ¢ maps x to the “vector
space model” with one axis for each word

The score of instance x is 3" ¢(x) where 3 € R? is a
weight vector

For simplicity of notation assume x is already a feature
vector and drop ¢

We wish to learn (3 from training data <: “/ < " means
the score of x; should be less than the score of x;, i.e.,

Blx < 5TXJ
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Soft constraints

» In practice, there may be no feasible [ satisfying all
preferences <
» For constraint / < j, introduce slack variable s; > 0

ﬁTXi < ﬂTXj—i—s,-j
» Charge a penalty for using s; > 0

— bject t
sUrT>1|0nB|_<|ZsU subject to

B'x < B x+s; foralli<j
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A max-margin formulation

» Achieve “confident” separation of loser and winner:
T T
B xi+1< B X+ s

» Problem: Can achieve this by scaling (3 arbitrarily; must
be prevented by penalizing || 3|

1 B
min =4 5+— si; subject to
52082 |<|§ / )

BTx+1<8"x +s; foralli<j

» B is a magic parameter that balances violations against
model strength
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Solving the optimization
» BTx+1< 6TXJ- + s;; and s; > 0 together mean
si = max{0, 5" x; — 8" x; + 1} (“hinge loss")

» The optimization can be rewritten without using s;;

.1 B p p
mﬁ;n EﬁTﬁ + m Z max{0, BT x — ‘dej + 1}

i=<j

» max{0, t} can be approximated by a number of smooth
functions
» e! — growth at t > 0 too severe
» log(1l+ e') — much better, asymptotes to y = 0 as
t— —ocoandtoy=tast—
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Approximating with a smooth objective

» Simple unconstrained optimization, can be solved by
Newton method

T AT T

min — — log(1+exp(f'xi— [ 'x +1

» If 3Tx — B3Tx +1<0,ie, Tx < B'x;, then pay little
penalty

» If BTx — BTx+1>0, ie, 3"x > 3'x, then pay
large penalty

Soumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial)

34



Performance issues

» Common SVM implementations will take time almost
quadratic in the number of training pairs

» Consider a TREC-style relevance judgment: for each
query, we are given, say, 10 relevant and (implicitly)
1M — 10 irrelevant documents

» Don't really need to train RankSVM with 10M x; < Xx;
pairs

» Eg.,if BTx < B7x and BT xy < B x, then
BTx0 < AB8Tx + (1= N\)B"x for A € ]0,1]

» Cannot, in general, say ahead of time which preferences
will be redundant
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A linear-time RankSVM approximation

» The primal optimization can be reformulated as

ﬂmgwo —ﬁ B+ Bs such that (RankSVM2)
1
VEG{Oal}H ﬁTZ uv Xy — X Zmzcuv_s
u<v u<v

» Only one slack variable s, but i primal constraints and
corresponding 2 dual variables

» (But if most primal constraints are redundant, most dual
variables will be inactive, i.e., 0)

» Compare with

= RankSVM1
B{Suv>0nu—<v}2/6 ﬁ+’ ZSUV (RankS )

u<v

such that Vu < v : ﬁ x,+1< BTxv—l—suv
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Correctness

Any solution to (RankSVM2) corresponds to a solution to
(RankSVM1), and vice versa

» Fix a fp in (RankSVM1)
» For optimality, must pick s}, = max{0,1+ g x, — (3 X, }
» Fix the same (3, for (RankSVM2)

» For optimality, must pick

t = uv]-+ u v
s CE{OI}<{|_<|ZC ﬁoX ﬁoX)}

» Pick ¢ element-wise: ¢, = [1+ 34 xu — B3 x, < 0]
» Can verify that objectives of (RankSVM1) and
(RankSVM2) will be equal using (o, {s,},s*, {c},}
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Cutting plane method: General recipe

>

vV vV Vv VY

Primal: min, f(x) subject to g(x) < 0 (g is a
vector-valued function)
Dual:

max 2z
z,u

subject to  z < f(x) 4+ u' g(x) Vx
u>0

“Vx" is generally infinite

Let z, u, be a solution

Find min, f(x) + u/ g(x), let solution be x,

If zx < f(xk) + u) g(xx), terminate

Otherwise add kth constraint z < f(xx) + u'g(xx)
To approximate and terminate faster, continue only if
zi > f(Xk) + U;—g(Xk) + €
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Gradual dual variable inclusion

> Instead of all {0, 1}, start with W C {0, 1}, typically
W=g

» Solve (RankSVM2) with W instead of {0, 1} to get the
current (g, s*

» Look for a violator ¢* such that

Fﬂﬁch:xxv —x) < |—i|2 R

» If no such c¢* found, exit with an objective that is at most
the optimal objective plus €

» Otherwise add ¢* to W and repeat

» For fixed (constant) €, B and max ||x,||>, the number of
inclusions into W before no further c¢* is found is constant

» Each loop above can be implemented in O(nlog n) vector
operations in R where all x, € R
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Linear-time (RankSVM2) performance

SVM-Perf (Ord. Regr.)

Reuters CCAT —+—

Reuters C11 ----x---
Arxiv astro-ph - .
10000 F Covertype 1 =@ 9
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» Almost linear scaling in KDDO4 Physics -~
. n0.8) -
practice too 1000 £ ko
. . ©
» Dramatic improvement s
(o3 3
over (RankSVM1) ¢ 19
o
» (RankSVM1) scales T
roughly as n** (not
shown) I
P
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A probabilistic interpretation of “ranking loss”

» Apart from x; < x;, trainer gives target probability p;
with which trained system should rank / worse than j

» The score of x; is f(x;) € R; f(x;) induces a ranking on
{xi}

» The modeled posterior p; is assumed to have a familiar
log-linear form

L enlflx) — f(x)
T L+ exp(f(x) — f(x))

> If F(x) > f(x), pj — 1;if f(x;) < f(x:), pj — 0
» Goal is to design f to minimize divergence between
trainer-specified p and modeled p, e.g.,

U(pyj, pyy) = —pjlog pj — (1 — py) log(1 — pj)
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Consistency requirements on p;

» Trainer cannot assign p;; arbitrarily

> pjj must be consistent with some ideal node-scoring
function f such that
exp(F () — F(x))

T 1+ exp(F(x) — F(x1))

i

» Using above, can show that

PijPjk
1+ 2p;ipjk — Pij — Pjk

Pik =

» Consider pjy if p; = px; = p, in particular p =0, .5,1
» Perfect uncertainty and perfect certainty propagate
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Fitting f using gradient descent
» Model f(x;) = 3" x; for simplicity
» During training we are given (i < j with) a target p;
» We want to fit § so that

o exp(BTx = BTx)
Pi=17 exp(BTx; — BT x;)

» We can cast this as, say,

exp(BTx; — B x;) 2
w3 (- e )

1<J

and use gradient descent

» Or we can use more complex forms of f(x), like a neural
network
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RankBoost

» Given partial orders with preference strengths ¢(i,j) > 0:
if positive, i > j, otherwise impartial

» Input pair distribution D over X x X

» Weak learner indexed by t gets input pairs as per a
distribution D; and outputs a weak ranking h; : X — R

» Initialize D; =D

» Fort=1,..., T

Train tth weak learner using D;

Get weak ranking h; : X — R

Choose a; € R
Update

v

v

v

v

Dy y1(xi, Xj) o< Di(xi, X;) exp(at(ht(Xi) - ht(Xj)))

» Final scoring function H(x) = 3.1, a;he(x)
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Some properties of RankBoost
» The ranking loss Rp(H) is defined as

>~ Dl )[H(x) < Hl = Pr [H(x) < H(s)l
> Rp(H) < Hthl Z;
» By suitably choosing a;; we can ensure Z; <1
» Eg,if h: X — {0,1}, we can minimize Z, analytically:
» For b e {—1,0,+1}, define

Wo =Y D(xi, x)[h(xi) — h(x;)]

> Z; is minimized when oo = 3 In(W_1/W,4)
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» Performance measures

Ranking in vector spaces

» Discriminative, max-margin algorithms
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Undirected graph Laplacian

» Simple unweighted undirected graph G = (V/, E) with
|V| = n, |E| = m, no self-loops or parallel edges

» Node-node adjacency matrix A € {0,1}"*" with
A(u,v) =1if (u,v) € E and 0 otherwise

» Node-edge incidence matrix N € {—1,0,1}"*" with

-1 ife=(v,")
N(v,e)=4q1 ife=(,v)
0 if v is not either endpoint of e
» Consider the graph Laplacian matrix Lg = NNT € R"™"
» (NNT)(u,u) is the degree of node u
» (NNT)(u,v)is —1if (u,v) € E, 0 otherwise
» Let D be a diagonal matrix with D(u, u) = degree of u
» NNT =D - A is a symmetric positive semidefinite
matrix
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Extending to weighted undirected graphs

» A is not boolean; A(u, v) is the weight of edge (u, v) if
any, 0 otherwise
» Modify N to

—v/A(e) ife=(v,-)
N(v,e) = Ale) ife=(,v)
0 if v is not either endpoint of e

» Modify L¢ to

YoLAuw), u=v

0 otherwise
» Modify “degree” matrix D to D(u,u) =), A(u,v)
» Still have L = NNT =D — A
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Laplacian and node score smoothness

» For any vector x € R",

x'Lx = Z A(u, v)(xu—x\,)2

(u,v)EE

» x' Lx penalizes node scores that are very different across
“heavy” edges

» If u<v, wewant x, +1<x,

» Therefore define the ranking loss of score vector x as
max{0,1+ x, — x, }

» The complete optimization problem is to
minyx' Lx + B>, ., max{0,1+ x, — x, }

» B balances between roughness and data fit

» Because L is positive semidefinite, this is a convex
quadratic program with linear constraints
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Directed graph Laplacian

» Assume each row of A has at least one nonzero element

» Let D(u, u) be the sum of the uth row of A

» Define Markovian transition probability matrix
Q € [0, 1]™" with Q(u, v) = Pr(v|u) = A(u,v)/D(u, u)

» Assume the Markov random walk is irreducible and
aperiodic

» Let m € R” be the steady-state probability vector for the
random walk, and I = diag(~)

» The directed graph Laplacian is defined as

|—|1/2Q|—|71/2 + n71/2Q|—|1/2
- 2

L=1I

» Use in optimization in place of undirected graph Laplacian
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Smoothing properties

» We can show that

x'Lx = m(u)Q(u, v ACHI
2 e )<W(U) \/W(V)>

(u,v)EE

> In minyx"Lx+ B, ., max{0,1+ x, — x, }, suppose we
set B =0 (i.e., only smoothness matters)

» Clearly, x, o< \/7(u) will minimize x" Lx

» l.e., in the absence of training preferences, a directed
Laplacian smoother will lead to ordering nodes by
decreasing Pagerank
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Laplacian smoothing results
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Limitations of the graph Laplacian approach

>

The “link as hint of score smoothness” view is not
universally applicable: millions of obscure pages u link to
v =http://yahoo.com, with x, < x,

While 7(u) is a probability, x, € R is an arbitrary score
that need not satisfy Markov balance constraints (coming
soon) and may even be negative

Dual optimization involves computing the pseudoinverse
L" of the Laplacian matrix

Unlike L, L™ is usually not sparse, and most packages
need to hold it in RAM

The generalization power of the learner (defined later)
depends on k = max,cy L (u, u), a quantity hard to
interpret
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Pagerank as network circulation

» Can use @ and 7 to define a reference circulation
{qu : (u,v) € E} as follows:

qu = m(u)Q(u, v)

» |dea: directly search for a circulation {p,, : (u,v) € E}

» Pagerank of node v will fall out naturally as Z(UN)EE Puv
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What properties must {p,, } satisfy?

» py >0 forall (u,v) e E

> Z(u,v)EE Puv = 1
» Flow balance at each node v:

Zpuv = Z Pvw

ueV wev

What roughness penalty should we assess?

» May want to maximize the entropy of {p,, : (u,v) € E},
e, — >, Pulogpu

» May want to propose flow {q,, : (u,v) € E} as a
parsimonious belief and minimize

KL(pllq) = 3., Puv log 2~
» Can show that staying close to q is good for learning
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Unconstrained maximum entropy flows

» Associate dual variable 3, for every flow balance

constraint
Z Puv = Z Pvw
ueV weV
» By dualizing the optimization, we see that flows

have the form

Puv X quy eXp(ﬁv - ﬁu)

» Dual objective is ming Z where
Z = Z(U,V)GE Auv exp(ﬁv - ﬁu)
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Optimizing {p,, } with teleports

» The Markov walk specified by @ need not be irreducible
and aperiodic

As in Pagerank, we can make it so using teleports

Walk probability a € (0,1), teleport probability 1 — «
Implement teleport using transition from every v to
dummy node d and back

This leads to additional primal constraints

vV vy

v

Pvd _ Z(V,W)GE Pvw
11—« o

YveV

v

And dual variables 7,, leading to the solution

Pdv X G4y eXp(ﬁv - ﬁd)
Pvd X Qdv eXp(ﬁd - ﬁv + Och)
Puv X quy eXp(ﬁv - ﬁu - (]- - O‘)TU)
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Preference constraints

» Preference u < v leads to constraint

Z Pwu < Z P

(w,u)eE (w,v)eE

where E = EU{(v,d):ve V}U{(d,v):ve V}
Note, no margin (yet)
Corresponding dual variables {7, : u < v}

Define bias(v) = >, ., T — D, 2s s
Modified solution has form

vV v v v

Pav X Gav exp(B, — Ba + bias(v))
Pvd X Qdv eXp(ﬁd - ﬁv + OéTv)
Puv X Guy exp(B, — By — (1 — a)7, + bias(v))
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Performance of constrained circulation approach
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Incorporating an additive margin

» Preference constraints were expressed as
Z(W,u)el:: Pwu < Z(w,v)eé Pwv, Not
1+ Z(W#)eé Pwu < Suv + Z(W,V)EE Pwv
Suv > 0 is a primal slack variable
Because Zu’v pw = 1, 1 is “too aggressive” as a margin
... unless we scale up {p,, }
Let g be a probability distribution and p an unnormalized
distribution such that ) p(x) = F
» KL(pllg) >0if F>1
» For a fixed F > 1, argmin, KL(p||q) = Fq

vV vy VvYyy

v

New objective

min KL(p|lq) + CZSUV + GF?

{puv},{suv>0},F>1
u=<v

» New constraint ) p,, = F replaces > p, =1
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Comparing Laplace vs. circulation

‘ —&— NoMargin —— AddMargin —#&— Laplacian ‘
0.45

W )
0.4 ¢

0.35

&, 4
0.3

0.05 .\._.\././.\'\'
0.2 \ \ \

0.1 03 0.5 0.7
HiddenTeleport

» In Laplace score smoothing, node scores can induce all
possible permutations

» In case of network circulation, many node permutations
may not be achievable for a given graph

» Smaller hypothesis space, more bias, more stable

» Seems to actually help; even better with additive margin
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Typed edge conductance

>

In the constrained circulation formulation, training input
has very local effect owing to teleport

Beyond a distance of about 1/(1 — «), training
preferences cannot generalize

A different, very common setting associates a type
t(u,v) € {1,..., T} with each edge (u, v)

The weight of edge (u, v) is G(t(u, v))

Given < we want to estimate (y,..., 31
Assuming no dead-end nodes,
B(t(i ) ; ;
OSeeepeimy (7 di7d
i) = 1—aq, i#d,j=d
s i=dj#d
0, i=j=d

> Here r; is the teleport into node j, implemented using
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Constrained design of conductance

» Scaling all 3 by any positive factor keeps all C(-, )
unchanged

v

So we can arbitrarily scale 5, > 1
C is a function of 3, therefore sometimes written as C(/3)
Goal is to find 3 > 1 such that

» p=C(B)p
» pi<pjforalli<j

v

v

v

As before, we can change the constraint p; < p; into a
loss function loss(p; — p;)

v

Two problems to solve
» Break recursion p = C(8)p and express p directly in
terms of 3, so we can use a numerical optimizer
» If there are many solutions 3, which one should we
prefer?
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Choice of loss function

Standard hinge hinge(y) = max{0,1+ y}

As before, enforcing additive margin 1 is tricky

Scaling 3 has no effect on satisfying margin

In practice, no margin or very small arbitrary margin

makes no difference, both work well

» To make loss smooth and differentiable, could have
picked loss(y) = In(1 + €)

» But this does not work, experiments suggest that
loss(0) = 0 is essential

» Approximation of hinge with zero margin

(hinge(y) = max{0, y}) with Huber loss:

vV vyyYyywy

0, y<0
huber(y) = 4 ¥?/(2W), y € (0, W]
y—=Wj2, W<y
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Parsimonious choice of (3

» If 8 =1, we get unweighted Pagerank
» Therefore the model cost can be taken as Y .(4(t) — 1)?

» In fact, we get unweighted Pagerank if all 3(t) are equal,
not necessarily all equal to one

> Model cost 3~ ., (B(t) — 3(t'))? is another possibility

» Discourages large multiplicative factors ...
ModelCost(K3) = K*ModelCost(3)

> ... but not additive terms:
ModelCost(5 + K1) = ModelCost(3)

» In practice these work about equally well
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Breaking the p = C(/3)p recursion |
» Pagerank usually approximated using the Power Method
p ~ CHp® where
» pY is an initial distribution over nodes, usually uniform
» H is a suitably large horizon for convergence

» Overall optimization problem:

min 3 _(5(t) — 1)2 + B> huber((C"p%); — (C"'p°);)

p21 7 i<j

» Unfortunately, not a convex optimization; need some grid
plus local gradient search

» Next: computing gradient
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Breaking the

p = C(B)p recursion I

» Compute alongsize Pagerank (using Chain Rule):

ViVt :

ChO

a(Ch O)i

0p(t)

» Finally,

9C(i,J)
9p(7)

Soumen Chakrabarti

8 0,0y _
) \C P =0

ZC ,J Cth)

-y {8;6((/3)(@1 P+ Clij) o

0
0p(t)

5, BT BN 3 r=t(iaw]
w ,w 1,J T=t(i,w o ..
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Exact loss and the approximations
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» Theoretically, the
optimization surface has local
minima

» Wrt (3, the surface is very
benign in practice

» If one also wanted to search
for «, a little more care is
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(3 estimation and learning performance
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Some sample results

Soumen Chakrabarti

Pagerank is score-stable but not rank-stable

(HITS is not score-stable and not rank-stable)

More notions of stability, connections with generalization
Max-margin vector-space ranking is stable

Ranking based on Laplace smoothing is stable

Ranking based on constrained circulation is stable
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Pagerank is score-stable when G is perturbed

» V kept fixed

» Nodes in P C V get incident links changed in any way
(additions and deletions)

» Thus G perturbed to G

> Let the random surfer visit (random) node sequence
Xo, X1,...in G, and Yy, Yy,...in G

» Coupling argument: instead of two random walks, we will
design one joint walk on (X, Y;) such that the marginals

apply to G and G
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Coupled random walks on G and G

» Pick Xp = Yy ~ Multi(r)
» At any step t, with probability 1 — «, reset both chains to
a common node using teleport r: X; = Y; €, V

» With the remaining probability of «

» If x;—1 = yt—1 = u, say, and u remained unperturbed
from G to G, then pick one out-neighbor v of u
uniformly at random from all out-neighbors of u, and set
Xe =Y =v.

» Otherwise, i.e., if x;_1 # y+—1 or x;_1 was perturbed
from G to G, pick out-neighbors X; and Y;
independently for the two walks.
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Analysis of coupled walks |
Let 0, = Pr(X; # Y;); by design, dp = 0.

dep1 = Pr(reset at t + 1) Pr(X.y 1 # Yiyq|reset at t + 1)+
Pr(no reset at t + 1) Pr(X;11 # Yir1|no reset at t + 1)
= Pr(reset at t + 1) 0+ a Pr(Xi11 # Yis1|no reset at t + 1)
= a(Pr(Xes1 # Yerr, Xe # Yifno reset at t + 1)+
Pr(Xei1 # Yer1, Xe = Y¢|no reset at t + 1))
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Analysis of coupled walks Il

The event X;11 # Yii1, Xt = Y: can happen only if X; € P.
Therefore we can continue the above derivation as follows:

Serr = ...
< a(Pr(X; # Yi|no reset at t + 1)+
Pr(Xes1 # Yer1, Xe = Yi, Xe € P|no reset at t + 1))
= a(Pr(Xt # Y+
Pr(Xes1 # Yer1, Xe = Yi, Xe € P|no reset at t + 1))
< a(Pr(X; # Y:) + Pr(X; € P))
= (5t + D uep Pu) )

(using Pr(H, J|K) < Pr(H|K), and that events at time t are
independent of a potential reset at time t + 1)
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Analysis of coupled walks Il

Unrolling the recursion,
500 = Ilmt—»oo 5t < (ZUEP pu) /(1 - Oé)

» Standard result: If the probability of a state disagreement
between the two walks is bounded, then their Pagerank
vectors must also have small L; distance to each other. In
particular,

lp—pllx <

2Zu6PPU
l1—a

» Lower the value of «, the more the random surfer
teleports and more stable is the system

» Gives no direct guidance why « should not be set to
exactly zero!
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Pagerank is not rank-stable when G is perturbed

» Adversarial setting

» G formed by connecting y to x,, G by connecting y to x
» Q(n?) node pairs flip Pagerank order
» l.e., Ly score stability does not guarantee rank stability

» Can “natural” social networks lead often to such
tie-breaking?
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Generalization of bipartite ranking

» f: X — Ris a fixed ranking function
» The (“true”) ranking accuracy of f is

AF) = Bxen.,eo, (TFOX) > X1+ 31700 = 1000

» Recall that the empirical ranking accuracy of f over
training set T is denoted A(f, T)
» We are interested in upper-bounding

Pr(|A(f, T) — A(f)| > ¢)

> Recall that T = {(x;,y; € {—1,1})} in bipartite ranking;
projections on X and ) are called Ty and Ty,
» Let there be m positive and n negative instances, and y
the sequence of labels a
Pr (A(f, T) — A(f) > ¢) < 2¢2m</(mn)
Tx|Ty=y
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Generalization of circulation-based ranking

» Given graph G = (V, E)
» Rewrite regularized optimization objective in the form

R"Eg Z max {0 Z (w,u)eE Pwu — Z(w v)cE pWV}

Jl‘

rankmg loss
+ AKL(pllq)

» < is sampled randomly from V x V according to some
unknown fixed distribution

» Over random draws of < with |<| = m, with probability
at least 1 — 4,

4In2 8In2 In(1/9)
R <R, 1 A7)
= Femp Am +( A i ) 2m

» Here R is the true ranking loss and Ren,, is the empirical
ranking loss over training data
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