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Motivation: Web search
I User query q, Web pages {v}
I (q, v) can be represented with a rich feature vector

I Text match score with title, anchor text, headings, bold
text, body text, . . . , of v as a hypertext document

I Pagerank, topic-specific Pageranks, personalized
Pageranks of v as a node in the Web graph

I Estimated location of user, commercial intent, . . .

I Must we guess the relative importance of these features?

I How to combine these into a single scoring function on
(q, v) so as to induce a ranking on {v}?
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Motivation: Ad and link placement
I Here, the “query” is the surfer’s contextual information

I More noisy than queries, which are noisy enough!

I Plus page and site contents

I A response is an ad to place, or a link to insert

I Must rank and select from a large pool of available ads or
links

I (In this tutorial we will ignore issues of bidding and
visibility pricing)
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Motivation: Desktop search
I The Web has only a few kinds of hyperlinks: same-host

subdirectory, same-host superdirectory, same-host
across-path, different-host same-domain, different-domain
etc.

I Often differentiated by hardwired policy, e.g, HITS
completely ignores same-host links

I Entity-relationship (ER) graphs are richer

I E.g. A personal information management (PIM) system
has many node/entity types (person, organization, email,
paper, conference, phone number) and edge/relation
types (works-for, sent, received, authored, published-in)

I Ranking needs to exploit the richer type system

I Don’t want to guess the relative importance of edge types
(may be dependent on queries)
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Desktop search example
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Relevance feedback
I Relevance feedback is well-explored in traditional IR

I User-assisted local modification of ranking function for
vector-space models

I How to extend these to richer data representations that
incorporate entities, relationship links, entity and relation
types?

I Surprisingly unexplored area
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Tutorial outline: Preliminaries
I Training and evaluation scenarios

I Measurements to evaluate quality of ranking
I Label mismatch loss functions for ordinal regression
I Preference pair violations
I Area under (true positive, false positive) curve
I Average precision
I Rank-discounted reward for relevance
I Rank correlations

I What’s useful vs. what’s easy to learn
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Tutorial outline: Ranking in vector spaces

Instance v is represented by a feature vector xv ∈ Rd

I Discriminative max-margin ranking (RankSVM)

I Linear-time max-margin approximation

I Probabilistic ranking in vector spaces (RankNet)

I Sensitivity to absolute rank and cost of poor rankings
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Tutorial outline: Ranking in graphs

Instance v is a node in a graph G = (V , E )

I The graph-Laplacian approach
I Assign scores to nodes to induce ranking
I G imposes a smoothness constraint on node scores
I Large difference between neighboring node scores

penalized

I The Markov walk approach
I Random surfer, Pagerank and variants; by far most

popular way to use graphs for scoring nodes
I Walks constrained by preferences
I How to incorporate node, edge types and query words

I Surprising connections between the two approaches
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Tutorial outline: Stability and generalization
I Some notes on score- vs. rank-stability

I Stability and generalization of max-margin ranking in
vector spaces

I Stability and generalization of graph-Laplacian ranking

I Stability and generalization of Markov walk based ranking
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Preliminaries

I Motivation
I Training and evaluation setup
I Performance measures

Ranking in vector spaces

I Discriminative, max-margin algorithms
I Probabilistic models, gradient-descent algorithms

Ranking nodes in graphs

I Roughness penalty using graph Laplacian
I Constrained network flows

Stability and generalization

I Admissibility and stability
I Ranking loss and generalization bounds
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Forms of training input

Regression: For each entity x , an absolute real score y
(unrealistic to expect users to assign absolute
scores)

Ordinal regression: For each entity x , a score y from a
discrete, ordered domain, such as a r -point scale
(implemented in many sites like Amazon.COM)

Bipartite ranking: Ordinal regression with r = 2
Pairwise preferences: A (possibly inconsistent) partial order

between entities, expressed as a collection of
“u ≺ v” meaning “u is less preferred than v”
(low cognitive load on users, can be captured
from click-logs and eye-tracking data)

Complete rank order: A total order on the entities but no
scores (highly impractical for large entity sets)

Prefix of rank order: A total order on the top-k entities,
meaning that all the other entities are worse (iffy)
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Evaluation of ranking algorithms I

Error on score vectors: In case of standard regression, if f̂ is
the score assigned by the algorithm and f is the
“true score”, measure ‖f̂ − f ‖1 or ‖f̂ − f ‖2.

Ordinal reversals: If yu > yv and f̂ (u) < f̂ (v) then u and v
have been reversed. Count the number of
reversed pairs.

Precision at k : For a specific query q, let T q
k and T̂ q

k be the

top-k sets as per f and f̂ scores. The precision at
k for query q is defined as |T q

k ∩ T̂ q
k |/k ∈ [0, 1].

Average over q.
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Evaluation of ranking algorithms II
Relative aggregated goodness (RAG): For a specific query q,

RAG(k , q) =

∑
v∈T̂ q

k
f (v)∑

v∈T q
k
f (v)

∈ [0, 1]

Note that f̂ is not used! Average over q.

Mean reciprocal rank (MRR): For each query there is one or
more correct responses. Suppose for specified
query q, the first rank at which a correct response
occurs is R(q). Then MRR is

1

|Q|
∑
q∈Q

1

R(q)
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Evaluation of ranking algorithms III
Normalized discounted cumulative gain (NDCG): For a

specific query q,

Nq

k∑
i=1

2rating(i) − 1

log(1 + i)

Here Nq is a normalization factor so that a
perfect ordering gets NDCG score of 1 for each
query, k is the number of top responses
considered, and rating(i) is the evaluator rating
for the item returned at position i .

Pair preference violation: If u ≺ v and f̂ (u) > f̂ (v) a pair has
been violated. Count the number of pair
violations.
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Evaluation of ranking algorithms IV
Rank correlation: Order entities by decreasing f (u) and

compute a rank correlation with the ground truth
ranking. Impractical if a full ground truth ranking
is expected.

Prefix rank correlation: Let exact and approximate scores be
denoted by Sk

q (v) and Ŝk
q (v) respectively for

items v , where the scores are forced to zero if
v 6∈ T q

k and v 6∈ T̂ q
k . A node pair

v , w ∈ T q
k ∪ T̂ q

k is concordant if

(Sk
q (v)− Sk

q (w))(Ŝk
q (v)− Ŝk

q (w)) is strictly
positive, and discordant if it is strictly negative. It
is an exact-tie if Sk

q (v) = Sk
q (w), and is an

approximate tie if Ŝk
q (v) = Ŝk

q (w). If there are c ,
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Evaluation of ranking algorithms V
d , e and a such pairs respectively, and m pairs
overall in T q

k ∪ T̂ q
k , then Kendall’s τ is defined as

τ(k , q) =
c − d√

(m − e)(m − a)
∈ [−1, 1].

Average over q.

I Theoretically sound and scalable rank learning techniques
typically address simpler evaluation objectives

I Designing learning algorithms for the more complicated,
non-additive evaluation objectives is very challenging

I Sometimes, we are lucky enough to establish a connection
between the two classes of objectives
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Bipartite ranking and area under curve (AUC)
I In bipartite ranking labeled data is of the form (x , y)

where y ∈ {−1, 1}
I Algorithm orders instances by decreasing f (x)
I For i = 0, 1, . . . , n

I Assign label +1 to the first i instances
I Assign label −1 to the rest
I True positive rate at i

number of positive instances labeled positive

number of positive instances

I False positive rate at i

number of negative instances labeled positive

number of negative instances

I Plot x = TruePosRate, y = FalsePosRate

I Measure area under curve
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AUC and pair preference violations
I m positive and n negative examples

I Area under curve (AUC) using f for ranking can also be
written as

Â(f , T ) =
1

mn

∑
i :yi=+1
j :yj=−1

(
[[f (i) > f (j)]] +

1

2
[[f (i) = f (j)]]

)

where T is the training set

I The important part is the fraction of satisfied pair
preferences between positive and negative instances

I Optimizing AUC is different from optimizing 0/1 error

yi −1 −1 −1 −1 +1 +1 +1 +1
f1(xi) −2 −1 3 4 1 2 5 6
f2(xi) −2 −1 5 6 1 2 3 4
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Concordant and discordant instance pairs
I Suppose there are R relevant documents in response to a

query

I The search engine creates a ranking rengine which lists
them at ranks p1 < p2 < · · · < pR

I An ideal system creates a ranking rideal that lists all
relevant documents before any irrelevant document

I But keeps the relative ordering within the relevant and
irrelevant subsets the same

rengine = d+
1 , d−2 , d+

3 , d+
4 , d−5 , d−6 , d+

7 , d−8
rideal = d+

1 , d+
3 , d+

4 , d+
7 ; d−2 , d−5 , d−6 , d−8

I Let there be Q discordant pairs in rengine compared to rideal
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Relating ranks and discordant pairs
I Account for Q as follows: First consider the relevant

document at position p1 in rengine. Because it has been
pushed out from position 1 to position p1, the number of
inversions introduced is p1 − 1.

I For the document at position p2 in rengine, the number of
inversions introduced is p2 − 1− 1, the last “−1” thanks
to having the first relevant document ahead of it.

I Summing up, we get

R∑
i=1

pi − 1− (i − 1) = Q, or

R∑
i=1

pi = Q +
R∑

i=1

i = Q +
R(R + 1)

2
= Q +

(
R + 1

2

)
.
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Average precision
I The average precision of rengine wrt rideal is defined as

AvgPrec(rengine, rideal) =
1

R

R∑
i=1

i

pi

I Like NDCG, average precision rewards the search engine if
all pi are as small as possible

I Intuitively, if Q is small, AvgPrec(rengine, rideal) should be
large.

I This can be formalized by framing an optimization
problem that gives a lower bound to AvgPrec(rengine, rideal)
given a fixed Q (and R)
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Bounding average precision given Q
I To lower bound average precision, optimize:

min
p1,...,pR

1

R

R∑
i=1

i

pi
such that

p1 + · · ·+ pR = Q +

(
R + 1

2

)
1 ≤ p1 < p2 < · · · < pR

p1, . . . , pR are positive integers

I Relaxing the last two constraints can only decrease the
optimal objective, so we still get a lower bound

I The relaxed optimization is also convex because 1/pi is
convex in pi , as far as pi is concerned the numerator i is a
“constant”, and sum of convex functions is convex
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Solving the relaxed optimization
I Using the Lagrangian method, we get

L(p1, . . . , pR ; λ) =
1

R

R∑
i=1

i

pi
+ λ

(
R∑

i=1

pi − Q −
(

R + 1

2

))

∴
∂L
∂pi

= − i

Rp2
i

+ λ
set
= 0 to get p∗i =

√
i

Rλ
.

I Replace back in the Lagrangian, set the derivative wrt λ
to zero, and again substitute in the Lagrangian to get the
optimal objective (in the relaxed optimization) as

AvgPrec(rengine, rideal) ≥

(∑R
i=1

√
i
)2

R
(
Q +

(
R+1

2

))
I Q and the lower bound on average precision are inversely

related, which makes sense.
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Ordinal regression
I Items assigned ratings on a discrete r -point scale, e.g.,

items for sale at Amazon.COM

I The task is to regress instance x ∈ X to label y ∈ Y
where Y is typically small

I Bipartite ranking is a special case with |Y| = 2 so we can
write Y = {−1, +1}

Ordinal regression is different from plain classification because

I Unlike in classification, where labels in Y are
incomparable, here they have a total order imposed on
them. (In standard regression, Y = R.)

I The accuracy measures of practical interest here are
different from those (0/1 error, recall, precision, F1) used
in classification.
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Max-margin ordinal regression I
I Apart from β, we will optimize over r − 1 thresholds

−∞ = b0 ≤ b1 ≤ b2 ≤ · · · ≤ br−2 ≤ br−1 ≤ br = +∞

I Let j ∈ {1, . . . , r} index score levels, and the ith instance
in the j level be denoted x j

i

I We wish to pick β such that, for any x j
i ,

bj−1 < β>x j
i < bj

I Using the max-margin principle, we will insist that

bj−1 + 1 < β>x j
i < bj − 1
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Max-margin ordinal regression II
I To avoid infeasibility, introduce lower slacks s j

i ≥ 0 and
upper slacks s j

i ≥ 0, and relax the above inequalities to

bj−1 + 1− s j
i ≤ β>x j

i ≤ bj − 1 + s j
iNew Approaches to Support Vector Ordinal Regression

the thresholds, exactly as Shashua and Levin (2003)
proposed, but we introduce explicit constraints in the
problem formulation that enforce the inequalities on
the thresholds. The second approach is entirely new;
it considers the training samples from all the ranks
to determine each threshold. Interestingly, we show
that, in this second approach, the ordinal inequality
constraints on the thresholds are automatically satis-
fied at the optimal solution though there are no ex-
plicit constraints on these thresholds. For both ap-
proaches the size of the optimization problems is linear
in the number of training samples. We show that the
popular SMO algorithm (Platt, 1999; Keerthi et al.,
2001) for SVMs can be easily adapted for the two ap-
proaches. The resulting algorithms scale efficiently;
empirical analysis shows that the cost is roughly a
quadratic function of the problem size. Using several
benchmark datasets we demonstrate that the gener-
alization capabilities of the two approaches are much
better than that of the naive approach of doing stan-
dard regression on the ordinal labels.

The paper is organized as follows. In section 2 we
present the first approach with explicit inequality con-
straints on the thresholds, derive the optimality con-
ditions for the dual problem, and adapt the SMO al-
gorithm for the solution. In section 3 we present the
second approach with implicit constraints. In section
4 we do an empirically study to show the scaling prop-
erties of the two algorithms and their generalization
performance. We conclude in section 5.

Notations Throughout this paper we will use x to de-

note the input vector of the ordinal regression problem and

φ(x) to denote the feature vector in a high dimensional re-

producing kernel Hilbert space (RKHS) related to x by

transformation. All computations will be done using the

reproducing kernel function only, which is defined as

K(x, x′) = 〈φ(x) · φ(x′)〉 (1)

where 〈·〉 denotes inner product in the RKHS. Without loss

of generality, we consider an ordinal regression problem

with r ordered categories and denote these categories as

consecutive integers Y = {1, 2, . . . , r} to keep the known

ordering information. In the j-th category, where j ∈ Y ,

the number of training samples is denoted as nj , and the

i-th training sample is denoted as x
j
i where x

j
i ∈ R

d. The

total number of training samples
∑r

j=1
nj is denoted as n.

bj , j = 1, . . . , r − 1 denote the (r − 1) thresholds.

2. Explicit Constraints on Thresholds

As a powerful computational tool for supervised learn-
ing, support vector machines (SVMs) map the in-
put vectors into feature vectors in a high dimensional

b
2

b
1

y=1 y=2 y=3

b
2
-1 b

2
+1b

1
-1 b

1
+1

ξ
i
∗1+1

ξ
i
2

ξ
i
∗2+1

ξ
i
1

f(x) =  w φ(x).

Figure 1. An illustration of the definition of slack variables
ξ and ξ∗ for the thresholds. The samples from different
ranks, represented as circles filled with different patterns,
are mapped by 〈w · φ(x)〉 onto the axis of function value.
Note that a sample from rank j +1 could be counted twice
for errors if it is sandwiched by bj+1 − 1 and bj + 1 where
bj+1 − 1 < bj + 1, and the samples from rank j + 2, j − 1
etc. never give contributions to the threshold bj .

RKHS (Vapnik, 1995; Schölkopf & Smola, 2002),
where a linear machine is constructed by minimizing
a regularized functional. For binary classification (a
special case of ordinal regression with r = 2), SVMs
find an optimal direction that maps the feature vec-
tors into function values on the real line, and a single
optimized threshold is used to divide the real line into
two regions for the two classes respectively. In the
setting of ordinal regression, the support vector for-
mulation could attempt to find an optimal mapping
direction w, and r − 1 thresholds, which define r − 1
parallel discriminant hyperplanes for the r ranks ac-
cordingly. For each threshold bj , Shashua and Levin
(2003) suggested considering the samples from the two
adjacent categories, j and j + 1, for empirical errors
(see Figure 1 for an illustration). More exactly, each
sample in the j-th category should have a function
value that is less than the lower margin bj − 1, oth-

erwise 〈w · φ(xj

i )〉 − (bj − 1) is the error (denoted as

ξ
j

i ); similarly, each sample from the (j+1)-th category
should have a function value that is greater than the
upper margin bj +1, otherwise (bj +1)−〈w ·φ(xj+1

i )〉

is the error (denoted as ξ
∗j+1

i ).1 Shashua and Levin
(2003) generalized the primal problem of SVMs to or-
dinal regression as follows:

min
w,b,ξ,ξ∗

1

2
〈w ·w〉+ C

r−1
∑

j=1

( nj

∑

i=1

ξ
j

i +

nj+1

∑

i=1

ξ
∗j+1

i

)

(2)

subject to

〈w · φ(xj

i )〉 − bj ≤ −1 + ξ
j

i ,

ξ
j

i ≥ 0, for i = 1, . . . , nj ;

〈w · φ(xj+1

i )〉 − bj ≥ +1− ξ
∗j+1

i ,

ξ
∗j+1

i ≥ 0, for i = 1, . . . , nj+1;

(3)

where j runs over 1, . . . , r − 1 and C > 0.

1The superscript ∗ in ξ
∗j+1

i denotes that the error is
associated with a sample in the adjacent upper category of
the j-th threshold.
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Max-margin ordinal regression III
I The objective to minimize is modified to

min
β,b,s≥~0,s≥~0

1
2
β>β + B

∑
j ,i

(s j
i + s j

i ),

I Yet another quadratic program with linear inequalities

I Training time scales roughly as n2.18–2.33 where n is the
number of training instances

I More accurate than replacing ordinal regression with plain
regression

Soumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial) 29



Ranking to satisfy preference pairs
I Suppose x ∈ X are instances and φ : X → Rd a feature

vector generator

I E.g., x may be a document and φ maps x to the “vector
space model” with one axis for each word

I The score of instance x is β>φ(x) where β ∈ Rd is a
weight vector

I For simplicity of notation assume x is already a feature
vector and drop φ

I We wish to learn β from training data ≺: “i ≺ j” means
the score of xi should be less than the score of xj , i.e.,

β>xi ≤ β>xj
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Soft constraints
I In practice, there may be no feasible β satisfying all

preferences ≺
I For constraint i ≺ j , introduce slack variable sij ≥ 0

β>xi ≤ β>xj+sij

I Charge a penalty for using sij > 0

min
sij≥0;β

1

|≺|
∑
i≺j

sij subject to

β>xi ≤ β>xj+sij for all i ≺ j
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A max-margin formulation
I Achieve “confident” separation of loser and winner:

β>xi+1 ≤ β>xj + sij

I Problem: Can achieve this by scaling β arbitrarily; must
be prevented by penalizing ‖β‖

min
sij≥0;β

1

2
β>β+

B

|≺|
∑
i≺j

sij subject to

β>xi+1 ≤ β>xj + sij for all i ≺ j

I B is a magic parameter that balances violations against
model strength
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Solving the optimization
I β>xi + 1 ≤ β>xj + sij and sij ≥ 0 together mean

sij = max{0, β>xi − β>xj + 1} (“hinge loss”)

I The optimization can be rewritten without using sij

min
β

1

2
β>β +

B

|≺|
∑
i≺j

max{0, β>xi − β>xj + 1}

I max{0, t} can be approximated by a number of smooth
functions

I et – growth at t > 0 too severe
I log(1 + et) – much better, asymptotes to y = 0 as

t → −∞ and to y = t as t →∞
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Approximating with a smooth objective
I Simple unconstrained optimization, can be solved by

Newton method

min
β∈Rd

1

2
β>β +

B

|≺|
∑
i≺j

log(1 + exp(β>xi − β>xj + 1))

I If β>xi − β>xj + 1 � 0, i.e., β>xi � β>xj , then pay little
penalty

I If β>xi − β>xj + 1 � 0, i.e., β>xi � β>xj , then pay
large penalty
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Performance issues
I Common SVM implementations will take time almost

quadratic in the number of training pairs

I Consider a TREC-style relevance judgment: for each
query, we are given, say, 10 relevant and (implicitly)
1M− 10 irrelevant documents

I Don’t really need to train RankSVM with 10M xi ≺ xj

pairs

I E.g., if β>x0 ≤ β>x1 and β>x0 ≤ β>x2, then
β>x0 ≤ λβ>x1 + (1− λ)β>x2 for λ ∈ [0, 1]

I Cannot, in general, say ahead of time which preferences
will be redundant

Soumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial) 35



A linear-time RankSVM approximation
I The primal optimization can be reformulated as

min
β,s≥0

1

2
β>β + Bs such that (RankSVM2)

∀~c ∈ {0, 1}|≺| : 1

|≺|
β>
∑
u≺v

cuv(xv − xu) ≥
1

|≺|
∑
u≺v

cuv − s

I Only one slack variable s, but 2|≺| primal constraints and
corresponding 2|≺| dual variables

I (But if most primal constraints are redundant, most dual
variables will be inactive, i.e., 0)

I Compare with

min
β,{suv≥0:u≺v}

1

2
β>β +

B

|≺|
∑
u≺v

suv (RankSVM1)

such that ∀u ≺ v : β>xu + 1 ≤ β>xv + suv
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Correctness

Any solution to (RankSVM2) corresponds to a solution to
(RankSVM1), and vice versa

I Fix a β0 in (RankSVM1)

I For optimality, must pick s∗uv = max{0, 1 + β>0 xu − β>0 xv}
I Fix the same β0 for (RankSVM2)

I For optimality, must pick

s∗ = min
~c∈{0,1}|≺|

{
1

|≺|
∑
u≺v

cuv

(
1 + β>0 xu − β>0 xv

)}

I Pick ~c element-wise: c∗uv = [[1 + β>0 xu − β>0 xv ≤ 0]]

I Can verify HW that objectives of (RankSVM1) and
(RankSVM2) will be equal using β0, {s∗uv}, s∗, {c∗uv}
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Cutting plane method: General recipe
I Primal: minx f (x) subject to g(x) ≤ ~0 (g is a

vector-valued function)
I Dual:

max
z,u

z

subject to z ≤ f (x) + u>g(x) ∀x
u ≥ 0

I “∀x” is generally infinite
I Let zk , uk be a solution
I Find minx f (x) + u>k g(x), let solution be xk

I If zk ≤ f (xk) + u>k g(xk), terminate
I Otherwise add kth constraint z ≤ f (xk) + u>g(xk)
I To approximate and terminate faster, continue only if

zk > f (xk) + u>k g(xk) + ε
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Gradual dual variable inclusion
I Instead of all {0, 1}|≺|, start with W ⊂ {0, 1}|≺|, typically
W = ∅

I Solve (RankSVM2) with W instead of {0, 1}|≺| to get the
current β0, s

∗

I Look for a violator c∗ such that

1

|≺|
β>0
∑
u≺v

c∗uv(xv − xu) <
1

|≺|
∑
u≺v

c∗uv − s∗ − ε

I If no such c∗ found, exit with an objective that is at most
the optimal objective plus ε

I Otherwise add c∗ to W and repeat
I For fixed (constant) ε, B and max ‖xv‖2, the number of

inclusions into W before no further c∗ is found is constant
I Each loop above can be implemented in O(n log n) vector

operations in Rd where all xv ∈ Rd
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Linear-time (RankSVM2) performance

I Almost linear scaling in
practice too

I Dramatic improvement
over (RankSVM1)

I (RankSVM1) scales
roughly as n3.4 (not
shown)

SVM-Perf (Classification) SVM-Light (Classification) SVM-Perf (Class. opt. C) SVM-Perf (Ord. Regr.)
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Figure 1: Training time of SVM-Perf (left) and SVM-Light (left-middle) for classification as a function of n

for the value of C that gives best test set performance for the maximum training set size. The middle-right
plot shows training time of SVM-Perf for the value of C with optimum test set performance for the respective
training set size. The right-most plot is the CPU-time of SVM-Perf for ordinal regression.

how L2-SVM-MFN scales. In the worst case, the authors
conclude that each iteration may scale O(sn min{n, N}), al-
though practical scaling is likely to be substantially better.
Finally, note that L2-SVM-MFN uses squared slack vari-
ables

�
ξ2

i to measure training loss instead of linear slacks�
ξi like in SVM-Light and SVM-Perf.
The Lagrangian SVM (LSVM) [18] is another method par-

ticularly suited for training linear SVMs. Like the L2-SVM-
MFN, the LSVM uses squared slack variables

�
ξ2

i to mea-
sure training loss. The LSVM can be very fast if the number
of features N is small, scaling roughly as O(nN2). We ap-
plied the implementation of Mangasarian and Musicant3 to
the Adult and the Web data using the values of C from above.
With 31.4 CPU-seconds, the training time of the LSVM is
still comparable on Adult. For the higher-dimensional Web
task, the LSVM runs into convergence problems. Apply-
ing the LSVM to tasks with thousands of features is not
tractable, since the algorithm requires storing and inverting
an N ×N matrix.

4.2 How does Training Time Scale with the
Number of Training Examples?

Figure 1 shows log-log plots of how CPU-time increases
with the size of the training set. The left-most plot shows the
scaling of SVM-Perf for classification, while the left-middle
plot shows the scaling of SVM-Light. Lines in a log-log
plot correspond to polynomial growth O(nd), where d cor-
responds to the slope of the line. The middle plot shows
that SVM-Light scales roughly O(n1.7), which is consistent
with previous observations [11]. SVM-Perf has much better
scaling, which is (to some surprise) better than linear with
roughly O(n0.8) over much of the range.

Figure 2 gives insight into the reason for this scaling be-
havior. The graph shows the number of iterations of SVM-
Perf (and therefore the maximum number of constraints in
the working set) in relation to the training set size n. It
turns out that the number of iterations is not only upper
bounded independent of n as shown in Lemma 2, but that

3http://www.cs.wisc.edu/dmi/lsvm/

 1

 10

 100

 1000

 1000  10000  100000  1e+06

It
e

ra
ti
o

n
s

Number of Training Examples

Reuters CCAT
Reuters C11

Arxiv astro-ph
Covertype 1

KDD04 Physics

Figure 2: Number of iterations of SVM-Perf for clas-
sification as a function of sample size n.

it does not grow with n even in the non-asymptotic region.
In fact, for some of the problems the number of iterations
decreases with n, which explains the sub-linear scaling in
CPU-time. Another explanation lies in the high “fixed cost”
that is independent of n, which is mostly the cost for solving
a quadratic program in each iteration.

Since Lemma 2 identifies that the number of iterations
depends on the value of C, scaling for the optimal value of
C might be different if the optimal C increases with training
set size. To analyze this, the middle-right plot of Figure 1
shows training time for the optimal value of C. While the
curves look more noisy, the scaling still seems to be roughly
linear.

Finally, the right-most plot in Figure 1 shows training
time of SVM-Perf for ordinal regression. The scaling is
slightly steeper than for classification as expected. The num-
ber of iterations is virtually identical to the case of classifi-
cation shown in Figure 2. Note that training time of SVM-
Light would scale roughly O(n3.4) on this problem.
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A probabilistic interpretation of “ranking loss”
I Apart from xi ≺ xj , trainer gives target probability p̄ij

with which trained system should rank i worse than j

I The score of xi is f (xi) ∈ R; f (xi) induces a ranking on
{xi}

I The modeled posterior pij is assumed to have a familiar
log-linear form

pij =
exp(f (xj)− f (xi))

1 + exp(f (xj)− f (xi))

I If f (xj) � f (xi), pij → 1; if f (xj) � f (xi), pij → 0

I Goal is to design f to minimize divergence between
trainer-specified p̄ and modeled p, e.g.,

`(p̄ij , pij) = −p̄ij log pij − (1− p̄ij) log(1− pij)
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Consistency requirements on p̄ij

I Trainer cannot assign p̄ij arbitrarily

I p̄ij must be consistent with some ideal node-scoring
function f̄ such that

p̄ij =
exp(f̄ (xj)− f̄ (xi))

1 + exp(f̄ (xj)− f̄ (xi))

I Using above, can show that

p̄ik =
p̄ij p̄jk

1 + 2p̄ij p̄jk − p̄ij − p̄jk

I Consider p̄ik if p̄ij = p̄kj = p, in particular p = 0, .5, 1

I Perfect uncertainty and perfect certainty propagate
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Fitting f using gradient descent
I Model f (xi) = β>xi for simplicity

I During training we are given (i ≺ j with) a target p̄ij

I We want to fit β so that

p̄ij =
exp(β>xi − β>xj)

1 + exp(β>xi − β>xj)

I We can cast this as, say,

min
β

∑
i≺j

(
p̄ij −

exp(β>xi − β>xj)

1 + exp(β>xi − β>xj)

)2

and use gradient descent

I Or we can use more complex forms of f (x), like a neural
network
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RankBoost
I Given partial orders with preference strengths φ(i , j) ≥ 0:

if positive, i � j , otherwise impartial

I Input pair distribution D over X × X
I Weak learner indexed by t gets input pairs as per a

distribution Dt and outputs a weak ranking ht : X → R
I Initialize D1 = D
I For t = 1, . . . , T

I Train tth weak learner using Dt

I Get weak ranking ht : X → R
I Choose αt ∈ R
I Update

Dt+1(xi , xj) ∝ Dt(xi , xj) exp
(
αt(ht(xi )− ht(xj))

)
I Final scoring function H(x) =

∑T
t=1 αtht(x)
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Some properties of RankBoost
I The ranking loss RD(H) is defined as∑

xi ,xj

D(xi , xj)[[H(xi) ≤ H(xj)]] = Pr
(xi ,xj )∼D

[[H(xi) ≤ H(xj)]]

I RD(H) ≤
∏T

t=1 Zt

I By suitably choosing αt we can ensure Zt ≤ 1

I E.g., if h : X → {0, 1}, we can minimize Zt analytically:
I For b ∈ {−1, 0,+1}, define

Wb =
∑
xi ,xj

D(xi , xj)[[h(xi )− h(xj)]]

I Zt is minimized when α = 1
2 ln(W−1/W+1) HW
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Preliminaries

I Motivation
I Training and evaluation setup
I Performance measures

Ranking in vector spaces

I Discriminative, max-margin algorithms
I Probabilistic models, gradient-descent algorithms

Ranking nodes in graphs

I Roughness penalty using graph Laplacian
I Constrained network flows

Stability and generalization

I Admissibility and stability
I Ranking loss and generalization bounds
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Undirected graph Laplacian

I Simple unweighted undirected graph G = (V , E ) with
|V | = n, |E | = m, no self-loops or parallel edges

I Node-node adjacency matrix A ∈ {0, 1}n×n with
A(u, v) = 1 if (u, v) ∈ E and 0 otherwise

I Node-edge incidence matrix N ∈ {−1, 0, 1}n×m with

N(v , e) =


−1 if e = (v , ·)
1 if e = (·, v)

0 if v is not either endpoint of e

I Consider the graph Laplacian matrix LG = NN> ∈ Rn×n

I (NN>)(u, u) is the degree of node u
I (NN>)(u, v) is −1 if (u, v) ∈ E , 0 otherwise
I Let D be a diagonal matrix with D(u, u) = degree of u
I NN> = D − A HW is a symmetric positive semidefinite

matrix
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Extending to weighted undirected graphs
I A is not boolean; A(u, v) is the weight of edge (u, v) if

any, 0 otherwise
I Modify N to

N(v , e) =


−
√

A(e) if e = (v , ·)√
A(e) if e = (·, v)

0 if v is not either endpoint of e

I Modify LG to

LG (u, v) =


∑

w A(u, w), u = v

−A(u, v), u 6= v , (u, v) ∈ E

0 otherwise

I Modify “degree” matrix D to D(u, u) =
∑

v A(u, v)
I Still have LG = NN> = D − A
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Laplacian and node score smoothness
I For any vector x ∈ Rn, HW

x>Lx =
∑

(u,v)∈E

A(u, v)
(
xu − xv

)2
I x>Lx penalizes node scores that are very different across

“heavy” edges

I If u ≺ v , we want xu + 1 ≤ xv

I Therefore define the ranking loss of score vector x as
max{0, 1 + xu − xv}

I The complete optimization problem is to
minx x>Lx + B

∑
u≺v max{0, 1 + xu − xv}

I B balances between roughness and data fit

I Because L is positive semidefinite, this is a convex
quadratic program with linear constraints HW
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Directed graph Laplacian
I Assume each row of A has at least one nonzero element

I Let D(u, u) be the sum of the uth row of A

I Define Markovian transition probability matrix
Q ∈ [0, 1]n×n with Q(u, v) = Pr(v |u) = A(u, v)/D(u, u)

I Assume the Markov random walk is irreducible and
aperiodic

I Let π ∈ Rn be the steady-state probability vector for the
random walk, and Π = diag(π)

I The directed graph Laplacian is defined as

L = I− Π1/2QΠ−1/2 + Π−1/2QΠ1/2

2

I Use in optimization in place of undirected graph Laplacian
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Smoothing properties
I We can show that

x>Lx =
∑

(u,v)∈E

π(u)Q(u, v)

(
xu√
π(u)

− xv√
π(v)

)2

I In minx x>Lx + B
∑

u≺v max{0, 1 + xu − xv}, suppose we
set B = 0 (i.e., only smoothness matters)

I Clearly, xu ∝
√

π(u) will minimize x>Lx

I I.e., in the absence of training preferences, a directed
Laplacian smoother will lead to ordering nodes by
decreasing Pagerank
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Laplacian smoothing resultsRanking on Graph Data

Figure 2. Performance of our algorithm on the 5-partite b.1.1.1 protein ranking task. Left: Ranking error (test set). Right: Spearman

rank-order correlation (test set). Each point is an average over 10 random splits; error bars show standard error. (See text for details.)

The SCOP/PSI-BLAST data set2 consists of (dis)similarity

scores between pairs of SCOP proteins, computed using the

popular PSI-BLAST sequence search and alignment tool

(Altschul et al., 1997). This data set has been used in an-

other kind of protein ranking task in (Weston et al., 2004)3.

In our experiments, we used a subset of the SCOP data con-

sisting of 3314 proteins from two classes (all alpha and all

beta). Following (Weston et al., 2004), we converted the

dissimilarity scores (E-values returned by PSI-BLAST) to

similarity scores by taking w(vi, vj) = exp(−Eij/100),
where Eij denotes the E-value assigned by PSI-BLAST to

protein vj given query vi. The similarity scores were then

used to define a weighted data graph over the 3314 proteins.

The scores are actually asymmetric; consequently, the data

graph G in this case was a directed graph.

We took the largest protein family data set (an all beta fam-

ily of V set domains (antibody variable like), denoted as

b.1.1.1 in the data set, consisting of 403 proteins) as our

target, and evaluated our algorithm on the ranking task as-

sociated with this family. The ranking task was defined as

described above, with τ(vi, vj) =
(

level(j) − level(i)
)

+
.

We used our Laplacian-based ranking algorithm from Sec-

tion 4; in constructing the graph Laplacian, we used a tele-

porting random walk with η = 0.01 (see Section 4).

The results are shown in Figure 2. Experiments were con-

ducted with varying numbers of labeled examples; the re-

sults for each number are averaged over 10 trials (random

train/test splits, subject to a fixed proportion of proteins

from the 5 rank levels). Error bars show standard error. For

each train/test split, the order graph consisted of the appro-

2Available at www.kyb.tuebingen.mpg.de/bs/people/weston/
rankprot/supplement.html

3Again, it is important to note that the ranking problem in
(Weston et al., 2004), as in (Zhou et al., 2004), is very differ-
ent from those considered in this paper; in particular, the ranking
tasks there are defined by a single protein as a query, and cannot
be formulated within our order graph setting.

priate τ values for edges within the training set; a similar

order graph over the test set was used to compute the rank-

ing error plotted in the first graph. We also computed in

each case the Spearman rank-order correlation between the

“true” ranking of the test proteins (ranks between 1 and 5)

and the learned ranking; this is plotted in the second graph.

The value of the parameter C in the algorithm was selected

from the set {0.01, 0.1, 1, 10, 100} using 5-fold cross vali-

dation in each trial; to compensate for the small training set

sizes, the cross-validation was done by dividing the training

edges into 5 groups, rather than the vertices.

The above protein ranking task is an example of a ranking

problem which, due to the graph-based input data repre-

sentation, could not be tackled using previous approaches.

In order to compare our approach to others, we used next

a data set in which the data could be represented both as

vector data and as graph data.

6.2. Document Ranking – 20 Newsgroups Data

The 20 newsgroups data set4 consists of documents com-

prised of newsgroup messages, classified according to

newsgroup. We used the “mini” version of the data set in

our experiments, which contains a total of 2000 messages,

100 each from 20 different newsgroups. These newsgroups

can be grouped together into categories based on subject

matter, allowing for a hierarchical classification. This again

leads to a natural ranking task associated with any target

newsgroup: messages from the given newsgroup are to be

ranked highest (level 1), followed by messages from other

newsgroups in the same category (level 2), followed fi-

nally by messages in other categories (level 3). This can

be viewed as a 3-partite ranking task.

We categorized the 20 newsgroups according to the

recommendation given by Jason Rennie on his webpage,

4Available at www.ics.uci.edu/ kdd/databases/20newsgroups/
20newsgroups.html
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Ranking on Graph Data

Figure 3. Comparison of our algorithm with RankBoost on the 3-partite alt.atheism newsgroup document ranking task. Left: Ranking

error (test set). Right: Spearman rank-order correlation (test set). Each point is an average over 10 random splits; error bars show

standard error. (See text for details.)

http://people.csail.mit.edu/jrennie/20Newsgroups/, and

chose the alt.atheism newsgroup as our target. There were

two other newsgroups in the same category as the target,

namely soc.religion.christian and talk.religion.misc.

Following (Belkin & Niyogi, 2004), we tokenized the doc-

uments using the Rainbow software package written by An-

drew McCallum, using a stop list of approximately 500

common words and removing message headers. The vector

representation of each message then consisted of the counts

of the most frequent 6000 words, normalized so as to sum

to 1. The graph representation of the data was derived from

the vector values; in particular, we constructed an undi-

rected graph over the 2000 documents using Gaussian sim-

ilarity weights given by w(vi, vj) = exp(−||xi − xj ||
2),

where xi denotes the vector representation of document vi.

We applied our Laplacian-based ranking algorithm from

Section 3, and compared this to the RankBoost algorithm

of (Freund et al., 2003), using threshold rankers with range

{0, 1} (similar to boosted stumps) as weak rankings.

The results are shown in Figure 3. The results for each

number are averaged over 10 trials (random train/test splits,

subject to equal numbers from all newsgroups). RankBoost

was run for 100 rounds in each trial (increasing the number

of rounds further did not yield any improvement in perfor-

mance). Similarly to the protein ranking experiments, the

value of the parameter C in each trial was selected from the

set {0.01, 0.1, 1, 10, 100} using 4-fold cross validation.

It should be noted that this is not truly a fair comparison,

since RankBoost operates in a strictly supervised setting,

i.e., it sees only the training points, while the Laplacian

algorithm operates in a transductive setting and sees the

complete data graph. What it shows, however, is that for

domains in which ranking labels are limited but similarity

information about data points can be obtained, one can gain

considerably by using an algorithm that can exploit this in-

formation.

7. Discussion

The goal of this paper has been to extend the growing

repertoire of ranking algorithms to data represented in the

form of a (similarity) graph. Building on recent develop-

ments in regularization theory for graphs and correspond-

ing Laplacian-based methods for classification, we have

developed an algorithmic framework for learning ranking

functions on both undirected and directed graphs.

Our algorithms have an SVM-like flavour in their formu-

lations; indeed, they can be viewed as minimizing a reg-

ularized ranking error within a reproducing kernel Hilbert

space (RKHS). From a theoretical standpoint, this means

that they benefit from theoretical results such as those es-

tablishing stability and generalization properties of algo-

rithms that perform regularization within an RKHS. From

a practical standpoint, it means that the implementation of

these algorithms can benefit from the large variety of tech-

niques that have been developed for scaling SVMs to large

data sets (e.g., (Joachims, 1999; Platt, 1999)).

The formulation of the graph ranking problem that we have

focused on in this paper falls under the setting of transduc-

tive learning. It should be possible to use out-of-sample

extension techniques, such as those of (Sindhwani et al.,

2005), to extend our framework to a semi-supervised learn-

ing setting.
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Limitations of the graph Laplacian approach
I The “link as hint of score smoothness” view is not

universally applicable: millions of obscure pages u link to
v =http://yahoo.com, with xu � xv

I While π(u) is a probability, xu ∈ R is an arbitrary score
that need not satisfy Markov balance constraints (coming
soon) and may even be negative

I Dual optimization involves computing the pseudoinverse
L+ of the Laplacian matrix

I Unlike L, L+ is usually not sparse, and most packages
need to hold it in RAM

I The generalization power of the learner (defined later)
depends on κ = maxu∈V L+(u, u), a quantity hard to
interpret
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Pagerank as network circulation
I Can use Q and π to define a reference circulation
{quv : (u, v) ∈ E} as follows:

quv = π(u)Q(u, v)

I Idea: directly search for a circulation {puv : (u, v) ∈ E}
I Pagerank of node v will fall out naturally as

∑
(u,v)∈E puv
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What properties must {puv} satisfy?

I puv ≥ 0 for all (u, v) ∈ E

I
∑

(u,v)∈E puv = 1

I Flow balance at each node v :∑
u∈V

puv =
∑
w∈V

pvw

What roughness penalty should we assess?

I May want to maximize the entropy of {puv : (u, v) ∈ E},
i.e., −

∑
u,v puv log puv

I May want to propose flow {quv : (u, v) ∈ E} as a
parsimonious belief and minimize
KL(p||q) =

∑
u,v puv log puv

quv

I Can show that staying close to q is good for learning
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Unconstrained maximum entropy flows
I Associate dual variable βv for every flow balance

constraint ∑
u∈V

puv =
∑
w∈V

pvw

I By dualizing the optimization, we see that HW flows
have the form

puv ∝ quv exp(βv − βu)

I Dual objective is minβ Z where
Z =

∑
(u,v)∈E quv exp(βv − βu)
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Optimizing {puv} with teleports
I The Markov walk specified by Q need not be irreducible

and aperiodic
I As in Pagerank, we can make it so using teleports
I Walk probability α ∈ (0, 1), teleport probability 1− α
I Implement teleport using transition from every v to

dummy node d and back
I This leads to additional primal constraints

pvd

1− α
=

∑
(v ,w)∈E pvw

α
∀v ∈ V

I And dual variables τv , leading to the solution

pdv ∝ qdv exp(βv − βd)

pvd ∝ qdv exp(βd − βv + ατv)

puv ∝ quv exp(βv − βu − (1− α)τu)
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Preference constraints
I Preference u ≺ v leads to constraint∑

(w ,u)∈Ê

pwu ≤
∑

(w ,v)∈Ê

pwv ,

where Ê = E ∪ {(v , d) : v ∈ V } ∪ {(d , v) : v ∈ V }
I Note, no margin (yet)

I Corresponding dual variables {πuv : u ≺ v}
I Define bias(v) =

∑
r≺v πrv −

∑
v≺s πvs

I Modified solution has form

pdv ∝ qdv exp(βv − βd + bias(v))

pvd ∝ qdv exp(βd − βv + ατv)

puv ∝ quv exp(βv − βu − (1− α)τu + bias(v))
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Performance of constrained circulation approach
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I Must check primal
constraints before
terminating dual

I Scales linearly with |V |,
|E | and |≺|
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Incorporating an additive margin
I Preference constraints were expressed as∑

(w ,u)∈Ê pwu ≤
∑

(w ,v)∈Ê pwv , not

1 +
∑

(w ,u)∈Ê pwu ≤ suv +
∑

(w ,v)∈Ê pwv

I suv ≥ 0 is a primal slack variable
I Because

∑
u,v puv = 1, 1 is “too aggressive” as a margin

I . . . unless we scale up {puv}
I Let q be a probability distribution and p an unnormalized

distribution such that
∑

x p(x) = F
I KL(p‖q) ≥ 0 if F ≥ 1
I For a fixed F ≥ 1, arg minp KL(p‖q) = Fq

I New objective

min
{puv},{suv≥0},F≥1

KL(p‖q) + C
∑
u≺v

suv + C1F
2

I New constraint
∑

u,v puv = F replaces
∑

u,v puv = 1
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Comparing Laplace vs. circulation
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I In Laplace score smoothing, node scores can induce all
possible permutations

I In case of network circulation, many node permutations
may not be achievable for a given graph

I Smaller hypothesis space, more bias, more stable
I Seems to actually help; even better with additive margin
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Typed edge conductance
I In the constrained circulation formulation, training input

has very local effect owing to teleport
I Beyond a distance of about 1/(1− α), training

preferences cannot generalize
I A different, very common setting associates a type

t(u, v) ∈ {1, . . . , T} with each edge (u, v)
I The weight of edge (u, v) is β(t(u, v))
I Given ≺ we want to estimate β1, . . . , βT

I Assuming no dead-end nodes,

C (j , i) =


α β(t(i ,j))P

(i,k)∈E β(t(i ,k))
, i 6= d , j 6= d

1− α, i 6= d , j = d

rj , i = d , j 6= d

0, i = j = d

I Here rj is the teleport into node j , implemented using
dummy node dSoumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial) 62



Constrained design of conductance
I Scaling all β by any positive factor keeps all C (·, ·)

unchanged

I So we can arbitrarily scale βt ≥ 1

I C is a function of β, therefore sometimes written as C (β)

I Goal is to find β ≥ ~1 such that
I p = C (β)p
I pi ≤ pj for all i ≺ j

I As before, we can change the constraint pi ≤ pj into a
loss function loss(pi − pj)

I Two problems to solve
I Break recursion p = C (β)p and express p directly in

terms of β, so we can use a numerical optimizer
I If there are many solutions β, which one should we

prefer?
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Choice of loss function
I Standard hinge hinge(y) = max{0, 1 + y}
I As before, enforcing additive margin 1 is tricky
I Scaling β has no effect on satisfying margin
I In practice, no margin or very small arbitrary margin

makes no difference, both work well
I To make loss smooth and differentiable, could have

picked loss(y) = ln(1 + ey)
I But this does not work, experiments suggest that

loss(0) = 0 is essential
I Approximation of hinge with zero margin

(hinge(y) = max{0, y}) with Huber loss:

huber(y) =


0, y ≤ 0

y 2/(2W ), y ∈ (0, W ]

y −W /2, W < y
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Parsimonious choice of β
I If β = ~1, we get unweighted Pagerank

I Therefore the model cost can be taken as
∑

t(β(t)− 1)2

I In fact, we get unweighted Pagerank if all β(t) are equal,
not necessarily all equal to one

I Model cost
∑

t,t′(β(t)− β(t ′))2 is another possibility

I Discourages large multiplicative factors . . .
ModelCost(Kβ) = K 2ModelCost(β)

I . . . but not additive terms:
ModelCost(β + K~1) = ModelCost(β)

I In practice these work about equally well
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Breaking the p = C (β)p recursion I
I Pagerank usually approximated using the Power Method

p ≈ CHp0 where
I p0 is an initial distribution over nodes, usually uniform
I H is a suitably large horizon for convergence

I Overall optimization problem:

min
β≥~1

∑
t

(β(t)− 1)2 + B
∑
i≺j

huber
(
(CHp0)i − (CHp0)j

)
I Unfortunately, not a convex optimization; need some grid

plus local gradient search

I Next: computing gradient
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Breaking the p = C (β)p recursion II
I Compute alongsize Pagerank (using Chain Rule):

∀i∀t :
∂

∂β(t)
(C 0p0)i = 0

(C hp0)i =
∑

j

C (i , j)(C h−1p0)j

∂(C hp0)i

∂β(t)
=
∑

j

[
∂C (i , j)

∂β(t)
(C h−1p0)j + C (i , j)

∂

∂β(t)
(C h−1p0)j

]
I Finally,

∂C (i , j)

∂β(τ)
=

{
−α

β(t(i ,j))
P

w [[τ=t(i ,w)]]

(
P

w β(t(i ,w)))2
τ 6= t(i , j)

α
P

w β(t(i ,w))−β(t(i ,j))
P

w [[τ=t(i ,w)]]

(
P

w β(t(i ,w)))2
, τ = t(i , j)

Soumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial) 67



Exact loss and the approximations
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I Theoretically, the
optimization surface has local
minima

I Wrt β, the surface is very
benign in practice

I If one also wanted to search
for α, a little more care is
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β estimation and learning performance
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I Fast training rate

I Robust to training noise

I Reconstructs β reasonably
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Some sample results
I Pagerank is score-stable but not rank-stable

I (HITS is not score-stable and not rank-stable)

I More notions of stability, connections with generalization

I Max-margin vector-space ranking is stable

I Ranking based on Laplace smoothing is stable

I Ranking based on constrained circulation is stable
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Pagerank is score-stable when G is perturbed
I V kept fixed

I Nodes in P ⊂ V get incident links changed in any way
(additions and deletions)

I Thus G perturbed to G̃

I Let the random surfer visit (random) node sequence
X0, X1, . . . in G , and Y0, Y1, . . . in G̃

I Coupling argument: instead of two random walks, we will
design one joint walk on (Xi , Yi) such that the marginals
apply to G and G̃
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Coupled random walks on G and G̃
I Pick X0 = Y0 ∼ Multi(r)

I At any step t, with probability 1− α, reset both chains to
a common node using teleport r : Xt = Yt ∈r V

I With the remaining probability of α

I If xt−1 = yt−1 = u, say, and u remained unperturbed
from G to G̃ , then pick one out-neighbor v of u
uniformly at random from all out-neighbors of u, and set
Xt = Yt = v .

I Otherwise, i.e., if xt−1 6= yt−1 or xt−1 was perturbed
from G to G̃ , pick out-neighbors Xt and Yt

independently for the two walks.
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Analysis of coupled walks I

Let δt = Pr(Xt 6= Yt); by design, δ0 = 0.

δt+1 = Pr(reset at t + 1) Pr(Xt+1 6= Yt+1|reset at t + 1)+

Pr(no reset at t + 1) Pr(Xt+1 6= Yt+1|no reset at t + 1)

= Pr(reset at t + 1) 0 + α Pr(Xt+1 6= Yt+1|no reset at t + 1)

= α
(
Pr(Xt+1 6= Yt+1, Xt 6= Yt |no reset at t + 1)+

Pr(Xt+1 6= Yt+1, Xt = Yt |no reset at t + 1)
)
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Analysis of coupled walks II
The event Xt+1 6= Yt+1, Xt = Yt can happen only if Xt ∈ P .
Therefore we can continue the above derivation as follows:

δt+1 = . . .

≤ α
(
Pr(Xt 6= Yt |no reset at t + 1)+

Pr(Xt+1 6= Yt+1, Xt = Yt , Xt ∈ P|no reset at t + 1)
)

= α
(
Pr(Xt 6= Yt)+

Pr(Xt+1 6= Yt+1, Xt = Yt , Xt ∈ P|no reset at t + 1)
)

≤ α
(
Pr(Xt 6= Yt) + Pr(Xt ∈ P)

)
= α

(
δt +

∑
u∈P pu

)
,

(using Pr(H , J |K ) ≤ Pr(H |K ), and that events at time t are
independent of a potential reset at time t + 1)
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Analysis of coupled walks III
Unrolling the recursion,
δ∞ = limt→∞ δt ≤

(∑
u∈P pu

)
/(1− α) HW

I Standard result: If the probability of a state disagreement
between the two walks is bounded, then their Pagerank
vectors must also have small L1 distance to each other. In
particular,

‖p − p̃‖1 ≤
2
∑

u∈P pu

1− α

I Lower the value of α, the more the random surfer
teleports and more stable is the system

I Gives no direct guidance why α should not be set to
exactly zero!
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Pagerank is not rank-stable when G is perturbed

xa y xb

ha hb

a1 ana2 b1 bnb2

d

… …

I Adversarial setting

I G formed by connecting y to xa, G̃ by connecting y to xb

I Ω(n2) node pairs flip Pagerank order HW

I I.e., L1 score stability does not guarantee rank stability

I Can “natural” social networks lead often to such
tie-breaking?

Soumen Chakrabarti Learning to Rank in Vector Spaces and Social Networks (WWW 2007 Tutorial) 77



Generalization of bipartite ranking
I f : X → R is a fixed ranking function
I The (“true”) ranking accuracy of f is

A(f ) = EX∈D+1,X ′∈D−1

(
[[f (X ) > f (X ′)]] +

1

2
[[f (X ) = f (X ′)]]

)
I Recall that the empirical ranking accuracy of f over

training set T is denoted Â(f , T )
I We are interested in upper-bounding

Pr(|Â(f , T )− A(f )| > ε)

I Recall that T = {(xi , yi ∈ {−1, 1})} in bipartite ranking;
projections on X and Y are called TX and TY

I Let there be m positive and n negative instances, and y
the sequence of labels

Pr
TX |TY=y

(Â(f , T )− A(f ) ≥ ε) ≤ 2e−2mnε2/(m+n)
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Generalization of circulation-based ranking
I Given graph G = (V , E )
I Rewrite regularized optimization objective in the form

Rreg(p) =
1

m

m∑
j=1

max
{

0,
∑

(w ,u)∈Ê pwu −
∑

(w ,v)∈Ê pwv

}
︸ ︷︷ ︸

ranking loss

+ λ KL(p‖q)

I ≺ is sampled randomly from V × V according to some
unknown fixed distribution

I Over random draws of ≺ with |≺| = m, with probability
at least 1− δ,

R ≤ Remp +
4 ln 2

λm
+

(
8 ln 2

λ
+ 1

)√
ln(1/δ)

2m

I Here R is the true ranking loss and Remp is the empirical
ranking loss over training data
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