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ABSTRACT
Entity relationship search at Web scale depends on adding
dozens of entity annotations to each of billions of crawled
pages and indexing the annotations at rates comparable to
regular text indexing. Even small entity search benchmarks
from TREC and INEX suggest that the entity catalog sup-
port thousands of entity types and tens to hundreds of mil-
lions of entities. The above targets raise many challenges,
major ones being the design of highly compressed data struc-
tures in RAM for spotting and disambiguating entity men-
tions, and highly compressed disk-based annotation indices.
These data structures cannot be readily built upon stan-
dard inverted indices. Here we present a Web scale entity
annotator and annotation index. Using a new workload-
sensitive compressed multilevel map, we fit statistical dis-
ambiguation models for millions of entities within 1.15GB
of RAM, and spend about 0.6 core-milliseconds per disam-
biguation. In contrast, DBPedia Spotlight spends 158 mil-
liseconds, Wikipedia Miner spends 21 milliseconds, and Ze-
manta spends 9.5 milliseconds. Our annotation indices use
ideas from vertical databases to reduce storage by 30%. On
40×8 cores with 40×3 disk spindles, we can annotate and
index, in about a day, a billion Web pages with two million
entities and 200,000 types from Wikipedia. Index decom-
pression and scan speed are comparable to MG4J.
Category: H.3.3 Information search and retrieval; search
process. General terms: Algorithms, experimentation,
performance. Keywords: entity, annotation, indexing, search.

1. INTRODUCTION
Web search today is greatly enriched by recognizing and

exploiting named entities, their attributes, and relations be-
tween them [6, 10, 19, 21]. Mentions of the entities are
embedded in unstructured, “organic” Web pages. In a typ-
ical system architecture [13, 24, 12, 26, 20], a spotter first
identifies short token segments or “spots” as potential men-
tions of entities from its catalog. For our purposes, a catalog
consists of a directed acyclic graph of type nodes, to which
entity nodes are attached. Many entities may qualify for a
given text segment, e.g., “Michael Jordan”or“Apple”. In the
second stage, a disambiguator chooses among the candidate
entities. Collectively, these two stages comprise an anno-
tator. An annotation record consists of a document ID, a
token span, and one or more entities e chosen by the disam-
biguator, usually accompanied by some score of confidence
that the token span mentions that specific e. To assist in
search, these annotations need to be indexed. Annotation
indices are generally different from standard text indices.
Used along with text indices, annotation indices help an-
swer powerful queries that relate types of entities, specific
entity literals, words and phrases [20]. E.g., we can collect
short windows that include the phrase “p played” within two
tokens of m, where p is a physicist and m is a musical in-
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strument. We can then subject these windows to further
statistical analysis to generate a ranked list of 〈p,m〉 tuples.

1.1 The scaling challenge
Text indexing systems have greatly scaled up since the

early days of information retrieval. Even public-domain in-
dexing systems like Lucene or MG4J [5] can tokenize and in-
dex hundreds of documents per second per CPU core. Such
speed is critical to process Web crawls with billions of pages,
but it is challenging to preserve it in the face of the substan-
tial extra work involved when indexing the annotated Web:
the act of annotation itself, and indexing not just tokens,
but also annotated entities and their types. It is critical for
the annotation process and the indexing of annotations to be
very fast, comparable to text indexing or even faster. While
the text in each document version is indexed just once, an-
notation indexing may be a continual process. As entity
catalogs are augmented and cleaned up, and as annotators
are actively trained, annotation indexing will usually be per-
formed repeatedly.

SemTag [13], among the earliest annotation systems, pro-
cessed about 264 million Web pages. However, it used the
TAP [15] entity catalog with only 72,000 entities and an-
notated only two mentions per page on average. In con-
trast, recent Web annotation systems [24, 12, 26, 20] often
use Wikipedia, DBPedia or YAGO [29] with over 200,000
types and two million entities. Our goal is to scale to Free-
base (25 million entities) and beyond. Although the corpus
is streamed from disk, as the entity catalog scales up, its
associated disambiguation model parameters quickly fill up
RAM, leaving little space for preparing index runs. Com-
pact data structures, usable by large classes of annotators,
are therefore of broad interest.

The Entity Engine [21] and the Dual Inverted (DI) index
[9] focus on fast query times by investing more index space.
They support only 10–20 types, and do not address com-
pressing data structures for the annotation step itself. We
justify supporting large catalogs in Section 2. Yet other re-
search systems [24, 12, 26, 20, 17] focus on quality and not
speed or scalability. We shall also see that most public do-
main offerings of annotation software or services [25, 23] are
much slower than the system we present here. We set up
terminology and review related work in Section 3.

1.2 Our contributions
In this paper we explore new challenges raised by anno-

tated Web search involving large entity and type catalogs.
In Section 2 we use experimental evidence from TREC and
INEX to justify the need for large, fine grained type catalogs.
This contrasts with earlier approaches [21, 9] that critically
relied on just 10–20 very broad types (person, place, phone
number, etc.). Toward this end, we introduce and investi-
gate two data structure problems:
• For a large class [24, 12, 26, 20] of statistical annota-

tors, we propose in Section 4 aggressively compressed
and yet high-performance, in-memory multilevel maps.
To our knowledge, no prior work on statistical disam-
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biguation, which is becoming increasingly popular [27,
20, 17], focuses on large-scale data structures suitable
for storing model parameters.
• In Section 5 we propose compressed indices for annota-

tions. To avoid disk seeks, we must inline information
from the entity mention sites (“snippets”) into specially
designed posting lists; hence they are called snippet-
interleaved-posting (SIP) indices.

Aggressively compressed data structures are critical for fast
annotation, because they help us save as much RAM as pos-
sible for sorting index runs, which reduces index merge time.

Our system is fully implemented using MG4J [5] compo-
nents and can process a billion-page corpus on 40 hosts in
under a day. In Section 6, we report on large-scale experi-
ments with YAGO’s 200,000 types, two million entities, and
a 500-million page Web corpus. Each key-value entry in our
model map has a uncompressed payload of 128 bits (three
integers mapping to a float); this is compressed down to
only 19.2 bits/entry. Nevertheless, we can disambiguate at
0.6 core-milliseconds per spot, orders of magnitude faster
than DBPedia Spotlight (158 ms/spot), Wikipedia Miner
(21 ms/spot), and Zemanta (9.5 ms/spot), three popular
annotators. Our annotation index is 20–30% smaller than
using Lucene’s payload hook. Index decompression rates are
competitive with MG4J’s posting scan.

2. THE NEED FOR LARGE CATALOGS
For the purpose of this paper, a catalog has a directed

acyclic graph of types under the subtype-of relationship,
with entities attached to type nodes with the instance-of re-
lationship. Although entity(-aware) search systems [6, 10, 3,
21, 9] are becoming common, no consensus is evident on the
number or granularity of types to be supported for the new
paradigm to be effective. Prototypes range from one type
(persons in expert search) to 10–20 broad types (person,
place, sports team, phone number, etc.) [21, 9] to Word-
Net [6]. Unfortunately, logs from commercial Web search
engines, even when available (e.g., Live Labs, AOL), pro-
vide only raw string queries, with no explicit indication of
the pertinent types.

In an initial attempt to remedy this problem, we had
five volunteers identify the YAGO-compliant answer types
for entity-seeking queries collected from TREC/INEX over
1999–2006. They succeeded for 889 queries, reporting 315
distinct types. The distribution of answer type frequency vs.
rank shows a characteristic heavy tail behavior (Figure 1):
collectively, rare types cannot be ignored. Given this is true
of modest-sized query sets from two competitions, we antic-
ipate the heavy tail behavior to be only more pronounced in
Web queries.

The Dual Inversion (DI) system [9] supports 21 types,
among the largest type catalog used in Web-scale entity
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Figure 1: Heavy-tailed type distribution in queries.

Count Description
889 Queries available with YAGO anwer types
271 Queries where YAGO type had no DI counterpart
190 Queries where NDCG decreased on mapping to DI

52% Queries with unmappable type or decreased NDCG
0.53 NDCG with YAGO answer types
0.43 NDCG with DI answer types

Figure 2: Adverse effect of mapping from YAGO
[29] to coarser [9] answer types.

search. To further study the effect of a limited type cat-
alog, we had volunteers try to map YAGO answer types
to DI answer types. As Figure 2 summarizes, they often
failed, and even otherwise, the broader type resulted in loss
of entity ranking accuracy using a competitive entity rank-
ing system [7]. These results strongly motivate supporting
a large number of types.

3. SYSTEM CHALLENGES AND
PREVIOUS APPROACHES

Entity annotation to automatically create linked data has
become increasingly popular in recent years, leading to sev-
eral popular annotation software and services, e.g., Alchemy
API, DBPedia Spotlight [23], Wikipedia Miner [25], Extrac-
tiv, OpenCalais and Zemanta. All of them share the purpose
of connecting spans in the text to entity catalogs, though
they differ in their algorithms and training data. Most an-
notators [13, 24, 26, 20, 16, 17], including the ones above,
work in two stages: spotting (Section 3.2) followed by dis-
ambiguation (Section 3.3). In our system, we add an anno-
tation indexer (Section 3.4) at the end. In this section we
describe the overall framework, the performance challenges,
and earlier work.

3.1 Overview
As Figure 3 shows, labeled mention contexts from a ref-

erence corpus (e.g., Wikipedia) are used to train the disam-
biguator. Mention contexts from the payload corpus (e.g., a
Web crawl) are also turned into feature vectors, from which
we sample a statistical workload that our central data struc-
ture, the leaf-feature-entity map (“LFEM”) has to process.
(The “`, f” notation is explained in Section 3.3.) Because
workload data is so sparse, we need to carefully smooth the
distribution using a test set, which is then submitted to
the LFEM compressor (Section 4). Afterward, we scan the
whole corpus with the annotator while probing the LFEM.
The resulting annotation is sent to an entity and type in-
dexer (Section 5).
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Figure 3: System and workflow overview.
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3.2 Spotting
As we scan a sequence of text tokens in a document, the

spotter flags short token sequences as potential mentions of
entities in the catalog. Each entity in the catalog is known by
one or more (New York, New York City, Big Apple) canonical
phrases (which may be single tokens). The relation between
entities and canonical phrases is many-to-many.

Mentions may match canonical phrases exactly or approx-
imately. Approximate matching [8] is expensive in terms of
computation and memory, so Web-scale spotters such as DB-
Pedia Spotlight and others [13, 2] widely use variations on
exact match using the Aho-Corasick algorithm or a prefix
tree (trie). Spotlight requires 8 GB to store its matching
data structure; this can get problematic trying to scale from
DBPedia to Freebase and beyond. Similarly, the Wikify [24]
spotter identifies exact phrases to be tagged based on how
often they are found in the anchor text of some link internal
to Wikipedia. An effective trick [2, Section 3] to ensure good
recall in the face of exact matches is to pre-populate the trie
with plausible synonyms or transformations [25] of canoni-
cal phrases. We will assume such an architecture; given this,
the time to spot is usually much smaller than the time to
disambiguate, which will be our focus.

Each node in the trie represents a partial (prefix) match of
a token segment with one or more canonical phrases. Some
nodes are designated as leaves indicating a completed exact
phrase match. Abusing1 the word“leaf”(because it is a short
name good for use in code), trie leaves can have children, in
case one dictionary phrase is a prefix of another. E.g., New
York Times and New York University are children of New
York, and they are all leaves. In general, any spotter will
have an analog to a leaf `: an artifact that
• expresses a suitable match between a potential mention

and a canonical phrase in the catalog, and
• lets us access a set of candidate entities E` that may

be mentioned by the canonical phrase corresponding
to `.

Therefore, our architecture and notion of a “leaf” are quite
generic, and not tied to the use of a trie.

3.3 Disambiguation
After spotting, disambiguation consists of choosing some

entity e ∈ E` as the most likely candidate. Sometimes, the
correct decision will be to reject the mention, i.e., not link
it to any entity in E` from the catalog (e.g., many John
Smiths mentioned in Web text that are not represented in
Wikipedia).

The mention is embedded in a context, which could range
from the neighboring tokens to the entire text on the docu-
ment, to the site or domain to which the document belongs.
For the purpose of disambiguation, the context is distilled
into a context feature vector x ∈ Rd for a suitable number
of features d. Summarizing the notation,
• x denotes the feature vector distilled from the potential

mention.
• ` denotes the trie leaf that has been activated by scan-

ning x.
• E` is the set of entities, including the reject option,

that are eligible for linking to the mention.
For each e ∈ E`, we train weights w`e ∈ Rd. The score of
entity e is the inner product w>`ex. The entity chosen among

1Or we may use “leafy nodes” instead of “leaf nodes”.

the candidates is arg maxe∈E` w>`ex. This form of inference
can model naive Bayes, logistic regression and multiclass
SVM classifiers, as well as the local (node potential) part
of collective disambiguation techniques [20]. Effectively, dis-
ambiguation amounts to a multiclass (with the reject option)
labeling problem at each leaf of the trie, and each context is
an instance. For simplicity and concreteness we will focus on
naive Bayes disambiguators. Preliminary experiments sug-
gest that generative models are not only faster to train but
also more accurate than SVMs, given the extreme sparsity
of training data.

3.3.1 Feature space
For each `, e, w`e is a map f → w from features to model

weights. We will explain in Section 4 that it is best to or-
ganize this map as 〈`, f〉 → {e → w}. We call this the
leaf-feature-entity map, or LFEM. In our implementation,
we use as features f :
• Words that appear in the immediate lexical neighbor-

hood of the mention, i.e., within some number of to-
kens to the left and right of the mention. Experiments
suggest that these are necessary, but not adequate, for
high-accuracy annotation.
• Salient words from the whole document where the men-

tion is embedded. Salient words are those that con-
tribute a large fraction to the norm of the document
in TFIDF vector space.

In this setting, the feature space is twice the size of the refer-
ence vocabulary, because a nearby word is coded differently
from the same word appearing far away in the same doc-
ument. Overall, we use several million features (although
each feature vector is very sparse). This is typical of mod-
ern information extraction techniques [27].

3.3.2 Weight map in RAM with fast random access
Critical to fast disambiguation is holding the LFE map in

RAM, as compactly as possible. This is challenging: even in
our modest testbed, there are over a million leaves `, over two
million entities e, and several million fs. There are about
480 million (`, f, e) keys. (Note that the 96-bit key does not
fit in any primitive type.) Using standard maps from JDK,
Gnu Trove, Colt, or MG4J [5] are all out of the question; just
the keys fill up ∼6GB of RAM unless we compress them ag-
gressively, and hash table overheads would easily double the
space needed. Surprisingly, current literature on entity dis-
ambiguation [24, 12, 26, 20] provides little or no information
about data structures and performance, which is the focus
of this paper.

While achieving good block compression, we also ensure
fast random access by inserting sync points for decompres-
sion, carefully chosen to minimize expected query time. Work-
load-sensitive linked binary search trees [18] and skip lists
[22] are known. However, their access costs are modeled as
the expected number of pointers traversed, not scanning and
decompression costs. Boldi and Vigna [4] use statistics from
inverted lists2 to insert inlined optimal skip lists in inverted
lists. Unlike earlier work, they do focus on compression, but
do not consider access workload distributions. Chierichetti
et al. [11] consider the specific access workload of sequen-
tially merging inverted lists and insert optimal skip pointers
for best expected query time. Our sync point allocation
problem is different from the above.

2Skip pointers in inverted lists are different from skip lists.
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As the catalog becomes arbitrarily large, it is possible that
the disambiguation model will overflow RAM. In that case
we need to partition the catalog and make multiple passes
through the corpus. Even then, it is critical to compress
the model aggressively, to minimize the number of passes.
Therefore our basic problem remains well-motivated regard-
less of the size of the catalog.

3.3.3 Other disambiguation systems
Most other systems [13, 24, 12, 26, 17, 23] depend on some

computation of similarity between a test context and entity-
labeled training contexts, and this can benefit from our work.
However, data structure details are sparse. DBPedia Spot-
light uses Lucene to index words in contexts of reference
mentions. The context of a test mention is used as a query
to fetch the most similar reference mentions, thus imple-
menting a form of k-nearest-neighbor classification. Unless
(or even if) the whole index is cached in RAM (explicitly via
Lucene options or implicitly via OS buffers), this approach is
unlikely to beat our highly customized disambiguation data
structures. We will confirm this in Section 6.1.6.

3.4 Indexing annotations
Each annotation record contains a document ID, a token

span, the leaf (ID) matched by the span, a subset of the
candidate entities associated with the leaf, and a confidence
score associated with each candidate. Standard inverted in-
dices map from keywords to posting lists that contain docu-
ment IDs and offsets within documents where the keywords
occur. Postings for entities are similar, except that 1. a men-
tion may span more than one token, so the left and right
boundaries need to be recorded, and 2. additional fields like
the leaf and confidence scores need to be encoded. We also
need posting lists keyed by types [6]: if e (e.g., Albert Ein-
stein) is mentioned at a given span in a given document,
any type T such that e ∈ T (e.g., theoretical Physicist) also
appears there. This may greatly enlarge the index, but tech-
niques are known to limit the size [6]. The above are all
conventional document-inverted indices where keys are to-
kens, entities or types, and postings are sorted primarily by
document ID for DAAT query processing.

For systems that support very small type catalogs [21, 9],
one can use clever collocation (also called entity-inverted)
indices that are keyed on 〈token, type〉 and record all win-
dows of limited width where the token and the type co-occur,
along with the specific entity ID. This trick can significantly
speed up some queries, but requires a great deal of extra in-
dex storage, and may not help for multi-predicate queries on
a cluster. As we shall see in Section 6.2, large type catalogs
lead to collocation indices that are 36× larger than a DAAT
index. (The proposal [9] is to limit the collocation index to
only some 〈token, type〉 pairs, but no specific algorithms are
suggested.) Another issue that is not addressed in earlier
work [6, 21, 9] is how all the ancillary fields in type indices
should be compressed.

4. DISAMBIGUATION DATA STRUCTURES
Recall from Section 3.3 that conceptually, the LFEM is

a map from `, f, e to a suitable model weight w, where `
is a leaf, e is an entity, and f a feature. In most recent
systems, all three would be represented as 32-bit integers,
unless compressed. The value, w, may differ with the kind
of machine learning algorithm used: in case of naive Bayes
classifiers it would be an integer (typically small) and in case

of logistic regression or SVMs it would be a floating point
number.

4.1 The three-level `, f, e→ w map
Most disambiguation algorithms will proceed as follows as

they scan document tokens:

foreach trie leaf ` encountered during token scan do
use context to build feature vector x = (xf )
initialize score accumulators for each e ∈ E`
foreach feature f do

probe LFEM with key (`, f); get {e→ w} map
foreach entity e do

update score accumulator of e using w, xf

Note that ` comes from a dense ID space, because leaves
of the trie can be assigned contiguous IDs, whereas, for
any given `, the sets of fs and es encountered are sparse.
Therefore, it makes sense to store the `, f, e → w map as
〈`, f〉 → {e→ w}, i.e., probe using `, f as key and get back
a sparse map from e to w.

We will now use ideas from standard inverted index com-
pression and dictionary coding from column-oriented (verti-
cal) databases [31, 1] to design a compressed version of the
〈`, f〉 → {e → w} map. Working outward from the most
detailed level:
• Sort the entity IDs in E` in some canonical order (say,

decreasing reference corpus frequency). In the context
of the current `, let the rank of e in E` be called e′, or
the short entity ID of e. Note that even if es themselves
range in the millions, e′s are small numbers, typically
under five for most leaves.
• For every (`, f) we will store a table of es and ws.
es will be sorted in short ID order and each e2 will
be encoded as γ(e′2 − e′1 − 1), the gamma code of the
gap between e2 and the previous entity e1’s short IDs,
minus one. This means that for consecutive entities we
will spend only one bit in recording e2.
• For a Bayesian disambiguator, w is an integer and will

be gamma encoded. For others, compact discretiza-
tions are known [28].
• The {e′ → w} table varies in size for various (`, f)

keys. For a fixed `, we will sort fs in increasing order
and write down γ(f2 − f1 − 1) (but no short IDs this
time). After this we will record the number of bits in
f2’s entity-weight table.
• Each block corresponding to a leaf is also of irregular

size. Because `s are from a compact, dense ID space,
we can keep an in-memory array from ` to the bit offset
where `’s block ends.

Throughout, we will be referring to offsets as bit offsets. This
is efficiently supported by InputBitStream and OutputBit-

Stream in MG4J [5]. Here, and in Section 5, we will use
gap/gamma codes as a first prototype implementation. Pre-
liminary experiments suggest that about 10% further savings
are possible using a tuned Golomb code; details are deferred
to a full version of this paper.

4.2 Optimal sync tables for random access
While the above scheme achieves good compression, de-

compression involved in responding to an (`, f) probe can
be very slow, because we have to
• Locate the beginning of the leaf block for `.
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• Scan forward in `’s block until we find the sub-block
for f .
• Load and return the {e→ w} map block.

Although many `s will have short blocks, we expect plenty
of large leaves (meaning, leaves with large blocks) as well.
Worse, assuming there is some coherence between the refer-
ence and payload corpora, we expect the frequently encoun-
tered leaves to be large.

A standard remedy [30] is to prepare, for a small, carefully-
chosen subset of features, a sync table with fixed-size inte-
gers, telling us where the {e→ w} table for feature f begins.
Given a feature f , we binary search the sync table to identify
a (hopefully) short segment of the leaf block to scan, rather
than the whole leaf block. The key issue is:

Given an upper limit to the size of the sync table, divide
it among the leaves, and then, for each leaf, choose the
features to be included in the sync table, so as to minimize
the expected or total query time during annotation.

In principle, we can solve a single global optimization that
allocates a global sync budget over all leaves simultaneously,
but with millions of leaves and typically hundreds of features
per leaf, this would be computationally impractical. There-
fore we structure our allocation as an “outer” distribution
of the global budget to leaves (Section 4.6), followed by an
“inner” sync allocation within each leaf (Section 4.4). While
the trade-off between sync budget and random access cost is
standard [30, page 177], we are not aware of a prior two-level
formulation of a workload-driven sync optimizer like ours.

4.3 Workload model
The sync allocator (part of the “Compressor” block in Fig-

ure 3) must be informed by two kinds of input:
• The number of bits in each {e → w} map, and the

total number of bits in the bit block associated with `.
• The relative rate or probability with which each spe-

cific (`, f) is probed in the LFEM. We can normalize
the probe counts into p`, the marginal probability of
hitting `, and pf |`, the (conditional) probability of hit-
ting f inside the leaf block for `.

4.3.1 Feature snapping
The LFE map is prepared from a reference corpus where

mentions are manually tagged to entities. The contexts of
these mentions supply the features that appear in the LFE
map. Inevitably, training data is small and sparse. When
the payload corpus is scanned, many features are encoun-
tered that were never registered in the LFE map. In NLP,
these would be called “out of vocabulary” (OOV) features.
From the way we access the LFE map, it is clear that an
OOV feature f probe results in scanning past to the next
larger feature, realizing that f is not there in the map.
Therefore, in characterizing workload distributions, we will
“snap” OOV features in the payload to the next larger fea-
ture in the LFE map built from the reference corpus.

4.3.2 Feature distribution smoothing
We must tune the annotator’s performance by sampling

a small fraction of the corpus. Therefore, missing leaves,
or leaves with poorly characterized feature distributions, are
normal and expected. Figure 4 shows the fraction of 1,162,488
leaves hit at least once by an increasing number of sample
documents from our 500 million document corpus. At 20
million documents, ∼75 percent of leaves are hit. The sit-
uation with feature hit distributions within leaves is simi-
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Figure 5: Scatter plots of scan+read and read cost
per bit in the e→ w maps (“us”=µsec).

lar, generally even more extreme. To cope, we use a train-
test sampler (Figure 3) with Lidstone (also called Dirichlet)
smoothing. Fix a leaf with F features, and let nf (n̂f ) be the
number of hits on feature f in the training (test) set. Then

we model Pr(f) =
λ+nf

Fλ+
∑
φ nφ

, for a parameter λ, tuned em-

pirically as

arg max
λ>0

∑
f

n̂f log
λ+ nf

Fλ+
∑
φ nφ

. (1)

The idea is that if nf s are very sparse, λ needs to be large
so that OOV features in {n̂f} get adequate probability. We
observed diverse λ to be suitable for different leaves.

4.4 The inner sync allocation problem
Given a sync budget for each leaf, the inner policy dis-

tributes the budget of a leaf among the features in the leaf
block. We first need a performance model that predicts the
expected cost of a given choice of syncs. To develop this
model, we introduce the following notation.
p(f): The probability of querying for feature f .
b(f): The number of bits in the e-to-w map for f .
s0: The fixed time taken to initiate a scan operation.
s1: The incremental time taken to scan a bit. To scan β

bits, s0 + s1β time is needed.
r0: The fixed time to initiate reading an e-to-w map.
r1: The incremental time taken per bit to read an e-to-

w map. The time taken to read the map for f will
therefore be r0 + r1b(f).

The linear cost assumptions are reasonably justified by mea-
surements on our system, shown in Figure 5.

4.4.1 Extreme inner policies
Equispaced syncs (Equi). Suppose the training data has
zero feature hits for a given leaf, i.e., all nf = 0. As is visi-
ble from Figure 4, there will always be many such leaves. In
such a situation, a reasonable default approach is to place
syncs approximately at a regular gap (measured in bits).
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Equispaced syncs ensure that no feature is too far from a
sync feature, but it does not pay attention to the rate of hit-
ting different leaves and features when scanning the payload
corpus. We call this the Equi inner policy.

High-frequency syncs (Freq). At the other extreme, if we
have so much nf data at a leaf that we suspect n̂f will be
very similar, we can allocate the leaf’s budget entirely to the
features having the largest nf s. We call this the Freq inner
policy. Our initial intuition was that leaves with enough hit
samples are also likely to dominate `, f query times, and
so overall Freq should win over Equi. Section 6.1 describes
some interesting surprises and retrospective insight.

Simple hybrid policies. We need not fix a single policy for
all leaves. We can simply choose the best of Freq and Equi
at each leaf. We call this the FreqOrEqui inner policy; this
gave a very modest gain. Another simple option is to hedge
our bets and allocate half (or some tuned fraction of) the
budget to frequent features and the other half to equispaced
features. We call this policy EquiAndFreq.

While the above policies can be implemented very effi-
ciently, they are unsatisfactory in the sense that they are
not guided by a precise cost model. We take this up next.

4.4.2 Cost-based optimization
For a fixed leaf, we will fill up a cost table B[u, k] and a

backtrace table L[u, k]. Here u is (an index to) a feature and
k is a budget value. Say u ranges between 0 and F − 1 and
k ranges between 0 and K`, the budget for this leaf. (Here
we drop ` because it is fixed.) B[u, k] is the best cost for
probes up to and including feature u, using exactly k syncs.
We finally want B[F − 1,K].

We start by filling in the first column B[·, 0] corresponding
to k = 0 (no sync allocated). To retrieve the map for feature
i, we
• Scan

∑i−1
j=0 b(j) bits in time s0 + s1

∑i−1
j=0 b(j).

• Then read the map in time r0 + r1b(i).
Given zero sync budget, we just have to prefix-sum the above

B[u, 0] =
∑u
i=0 pi

(
r0 + r1b(i) + s0 + s1

∑i−1
j=0 b(j)

)
By convention, B[u, ·] = 0 for u < 0. Also, in filling B[u, k],
budget k must be used up, so we will set B[u, k] = ∞ if
u < k − 1. To fill B[u, k] for u ≥ k − 1, we can place the
rightmost (kth) sync at position `, where k − 1 ≤ ` ≤ u.
Then
• The cost of accesses left of the sync at ` is B[`−1, k−1].
• Accessing the record at ` involved no scans3 and only

the read cost of r0 + r1b(`).
• For any feature i = ` + 1, . . . , u, the scan cost will be
s0 + s1

(
b(`) + · · ·+ b(i− 1)

)
, followed by a read cost of

r0 + r1b(i).
Multiplying with probabilities and summing up, we get

B[`− 1, k − 1] + r0
∑u
i=` p(i) + r1

∑u
i=` p(i)b(i)

+ s0
∑u
i=`+1 p(i) + s1

∑u
i=`+1 p(i)

(
b(`) + · · ·+ b(i− 1)

)
All but the last sum is trivial to evaluate in O(1) time per
cell of B, by computing some prefix sums ahead of time. For
convenience we write P ji = p(i) + p(i + 1) + · · · + p(j). (If

i > j, then P ji = 0.) The last term underlined above is 0 for

3Strictly speaking, we have to binary search the sync table, but
this cost is negligible compared to decompressing maps.

Allocate syncs:
prepare prefix sum of p(i) and p(i)b(i)
initialize B[·, 0]
for k = 1, 2, . . . ,K do

for u = 0, 1, . . . , F − 1 do
let B∗ ←∞ and L∗ ← ⊥
if u ≥ k − 1 then

let B? = B[u− 1, k− 1] + r0p(u) + r1p(u)b(u)
if B∗ > B? then

B∗ ← B? and L∗ ← `

initialize g ← 0
for ` = u− 1, . . . , k − 1 do

g ← g + Pu`+1b(`)

B? ← B[`− 1, k− 1] + s1g+ (r0, r1, s0 terms)
if B∗ > B? then

B∗ ← B? and L∗ ← `

B[u, k]← B∗ and L[u, k]← L∗

Backtrace syncs:
k ← K
for ` = F − 1, F − 2, . . . , 0 do

if k < 0 then
break

`′ ← L(`, k)
if `′ ≥ 0 then

record `′ as the kth sync

`← `′ − 1, k ← k − 1

Figure 6: DynProg inner sync allocation.

` = u. Writing out the last term in detail for k− 1 ≤ ` < u:

p(`+ 1)b(`) +
p(`+ 2)b(`) + p(`+ 2)b(`+ 1) +

... +
... +

. . .

p(u)b(`) + p(u)b(`+ 1) + · · · +p(u)b(u− 1)

= Pu`+1b(`) + Pu`+2b(`+ 1) + · · ·+ Puu b(u− 1),

it is now seen possible to evaluate it using prefix sums. The
pseudocode for filling table B and tracing back the syncs is
given in Figure 6; it takes O(F 2K) time, down from O(F 3K)
if the above trick were not used. In addition, if we limited
candidate syncs to C � F positions, we can improve to
O(CFK) time (details omitted).

4.5 Feature ID reordering
When contexts are turned into sparse feature vectors, com-

mon practice is to clock up an ID generator to allocate fea-
ture IDs to new features, as they are encountered. This
policy tends to assign small IDs to frequent features because
they are encountered sooner. Since IDs are arbitrary, we can
help along further by assigning IDs more deliberately. This
is reminiscent of (but different from) optimal document ID
assignment for maximally compressed inverted lists [14].

Suppose, within a given leaf, we reordered feature IDs by
decreasing order of their occurrence frequency or probability
p(f) while annotating the payload corpus. Because the most
frequent IDs are close to each other, just a few syncs may
suffice to drastically reduce the average amount of scanning
and decompression required.

However, recall that the e → w maps for different fea-
ture occupy different number of bits b(f). The features with
largest p(f) may also have large b(f), pushing out later fea-
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tures by many bits, increasing scan costs. This suggests
sorting features by something like p(f)/b(f).

The main problem with the above proposals is that we
cannot afford one feature permutation per leaf, because we
expect to handle tens to hundreds of millions of leaves. Here
we settle for one global feature permutation. In Section 6.1.4
we will present some surprising effects of reordering features.

4.6 The outer sync budgeting problem
Suppose K is the global budget over all leaves, in terms

of the number of syncs we can afford. The budget is divided
among leaves, say leaf ` gets K` syncs. Dividing K into {K`}
is the job of the outer policy and the topic of this section.
Once K` syncs are allocated to `, deciding which features
get sync records is the job of the inner policy, which was
discussed in Section 4.4.

Let b` be the number of bits in the block for `. Intuitively,
we should allocate more syncs to ` if either p` is large or b`
is large, although a large b` by itself may not motivate many
syncs. This suggests the following baseline heuristics:
Hit: K` ∝ p`
HitBit: K` ∝ p`b`
Following Witten et al. [30, page 177], next we give a more
careful outer policy based on these simplifying assumptions:
• pf |` is uniform over all f for any `.
• The inner policy inserts syncs at uniform gaps.

Under the above conditions, on an average, a feature probe
will involve a scan over b`/2K` bits, starting at a sync. It
is reasonable to model the cost of scanning from a sync to
the desired feature as proportional to the number of bits
scanned. Therefore the overall cost is proportional to

∑
` p`

b`
K`

,

and we wish to find

arg min
{K`}

∑
`

p`b`
K`

s.t.
∑
`

K` = K. (2)

Using standard Lagrangian optimization, at optimality,

p`b`
K2
`

= constant or K` ∝
√
p`b` (3)

which we call the SqrtHitBit policy. Curiously, even though
the assumptions made here are not valid, SqrtHitBit per-
formed significantly better than other outer policies. We
experimented with other forms of diminishing return curves
but these did not result in convincing improvements.

5. COMPRESSED ANNOTATION INDEX
Continuing from Section 3.4, here we describe compact

document-inverted indices for annotations. The annotation
index has two parts: the entity index and type index. We will
directly proceed to describe type indices because they are a
generalization of entity indices. The key is a type from the
catalog. The posting list contains a block for every document
where an entity of the key type is potentially mentioned.
Each document block has to record the token spans of the
potential mentions. In a standard term or entity index, the
key itself tells us what term or entity occurred at an offset.
But for a type index, we need to retrieve the specific entity
that was mentioned in a span. It is impractical, except in
the smallest of corpora [6], to seek and fetch the document,
so we need to inline the entity ID within the posting. We call
this general style snippet interleaved postings (SIP) coding.
Here we discuss only the SIP coding for the entity ID; other
fields (e.g. annotation confidence) will be discussed in a full
version of the paper.

As in Section 4.1, we will be using gap/gamma codes as a
first prototype. We are investigating gap distributions and
other codes in ongoing work.

5.1 Separate postings by entity (EntSIP)
Suppose three entities Einstein, Feynman and Hawking

of type scientist are mentioned in a document at various
offsets/spans. Note that the IDs assigned to these entities
in the catalog are usually arbitrary. E.g., Wikipedia and
derivative catalogs have a few million entities, each usually
assigned a 32 bit ID (although about 23 bits may suffice).
One way to organize the block for this document in the post-
ing list keyed by scientist is to write down
• the document ID, gap-gamma coded wrt the previous

document
• the number of distinct scientists mentioned in the doc-

ument in gamma code (because it tends to be a small
number)
• write a sub-block for each distinct entity, which con-

tains
– the entity ID in standard binary code, which we

will call the “long” entity ID hereafter
– the posting list of spans, each expressed as `, r

where `, the left endpoint of the span, is gap-
gamma coded wrt the previous span’s left end-
point, and r is gap-gamma coded wrt `.

Note that delimiting sub-blocks will consume some bits.
The advantage of the above code is that each long entity ID
is written down exactly once. However, a potential short-
coming is that, by partitioning the posting list of Scientist
into one list per entity, the gaps in each list become larger.

5.2 Merged postings over all entities (DictSIP)
On the other hand, if we wish to compress the gaps better

by writing down a single merged posting list, we need to em-
bed the entity ID better than its “long” version. Inspired by
ideas from vertical (column-oriented) databases [31, 1], we
employ a per-document dictionary mapping between “long”
and “short” entity IDs. In our running example, if Einstein,
Feynman and Hawking appear in the document in order of
decreasing frequency, we assign them “short” entity IDs of
0, 1, 2 (for the current posting list only; for other lists they
may take on different short IDs). Now a document block
looks like this:
• The dictionary is simply its size 3 (gamma coded) fol-

lowed by three long entity IDs.
• The number of posts in this document’s posting list.
• For each post `, r, e

– ` coded gap-gamma wrt the previous `
– r gap-gamma-coded wrt `
– The short entity ID of e, which is just the position

of e in the dictionary. The short ID is gamma
coded.

6. EXPERIMENTS
Our corpus is very similar to ClueWeb09, with about 500

million mostly-English pages. Our annotation and indexing
code uses MG4J [5] extensively and runs on 40 HP DL160G5
computers, each with 8 2.2GHz Xeon cores, 8GB DDR2
RAM, and four 750GB 7200rpm SATA drives. Most of our
code is written to use all cores efficiently. From the 500M
corpus, we drew disjoint train+test samples of size 2+2M,
4+4M, 6+6M, 8+8M and 10+10M for cost modeling, but
the resulting annotator was deployed on the whole corpus.
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6.1 LFEM performance
We begin with a summary of LFEM’s RAM requirement

with YAGO as catalog. If the map was stored with keys
`, f, e and values w, there would be 478,163,567 entries. If
`, f, e, w were each assigned 32 bits (int or float), 7.64× 109

bytes would be needed at 128 bits/entry. Based on sepa-
rate marginal distributions over each of `, f, e, w, the self-
information is 33.6 bits/entry. Hash maps from JDK, Gnu
Trove or COLT would more than double the RAM needed.
(16 GB may not sound large for modern servers, but scaling
up from 2 to 25 million entities would then become quite
impossible.) In contrast, our LFEM takes only 1.15× 109

bytes, or an average of only 19.2 bits/entry. In other words,
each 32-bit number (int or float) was compressed down to
4.8 bits on average.

6.1.1 Inner policies compared
Figure 7 compares various inner policies keeping other

choices (such as outer policy) at their best settings. The
policies compared are Freq, Equi, EquiAndFreq (which is a
half-half4 blend of frequent and equispaced features), and
DynProg (which bails out to Equi if the leaf problem is too
large to solve in about a minute, which was the case for
about 3–4% of the leaves).
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Figure 7: Inner policies compared (“us”=µsec).

The first surprise to us was that Equi was uniformly better
than Freq, when not only the sync budget but also all other
policies and parameters were varied. We expected total cost
to be dominated by large leaves with plenty of training data,
where Freq would do well. However, this was not the case.
A closer study revealed that, out of 1,162,488 leaves,
• Freq and Equi were tied on 175,001 leaves.
• Freq was cheaper than Equi for 221,341 leaves. In these

leaves, the average number of features was 256, and the
difference of cost (Equi minus Freq) was 1.93× 108.
• Equi was cheaper than Freq for 143,564 leaves. In these

leaves, the average number of features was 2231, and
the difference of cost (Freq minus Equi) was 8.22×109.

(The remaining leaves did not occur in the diagnostic sam-
ple.) Thus, Freq does better in more leaves, but the gain
is minuscule compared to its losses in other leaves, because
leaves where Freq wins tend to have many fewer features and
lower cost. For large leaves with many features, the heavy
tail effect makes Equi’s conservative approach win to Freq’s
“rote learning”.

The above analysis suggested that blending Freq and Equi
might give a solution better than both of them, but this is
also clearly not the case: blending gives costs strictly be-
tween Equi and Freq. The optimal dynamic programming
allocator beats Equi by a modest margin. It is encouraging

4We also tried other proportions.

to verify that Equi is close to the optimal, because Equi al-
location is algorithmically trivial and very fast (millions of
leaves per minute).
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Figure 8: Effect of sample size (“us”=µsec).

6.1.2 Effect of sample size
We were concerned that Figure 7 tells an incomplete story;

as the sample size is increased, Freq would eventually win
out simply by “rote learning”, i.e., placing syncs at frequent
training features would also capture most of the test probes.
As Figure 8 shows, this is not the case. This is because of the
typical heavy-tail behavior of feature hits: as we increase the
sample size, we continue to get feature hits in the test fold
that were never seen in the train fold, at a rate significant
enough to favor Equi and DynProg over Freq. (EquiAnd-
Freq runs were discontinued because they were uninterest-
ing: performance was interpolated between Freq and Equi
throughout.)

6.1.3 Outer policies compared
Keeping other options at their best values, Figure 9 com-

pares outer policies. As can be seen, Bit is worse than
SqrtHitBit, which shows that our bulk model at the outer
level does capture some essence of the problem. HitBit is
even worse than bit, most likely because feature hits are
correlated with leaf bits, and HitBit “double-counts” this ef-
fect. Overall, the best outer+inner policy combination can
be six times faster than the worst, so it is important to
choose well.

6.1.4 Feature renumbering
Figure 10 shows the effect of one global permutation of

feature IDs over all leaves on the size of the RAM LFEM
buffer. As commented in Section 4.5, the default feature ID
order is far from random. As a baseline, we purposely as-
signed random IDs—this resulted in a considerable increase
in the LFEM buffer size, as expected. We also tried the
other policies proposed in Section 4.5. FeatHits reordering
reduces LFEM buffer size by over 430 MB. In contrast, the
permutation itself costs only 30 MB.
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Figure 9: Outer policies compared (“us”=µsec).
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Feature ID order LFEM bytes
Random 1,629,356,922
Default (first encounter) 1,553,006,658
FeatHits: decr. global feature hits 1,123,348,583
Global feature hits

number of bits
, decreasing 1,408,519,022
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Figure 10: Effect of feature renumbering.

Figure 10 also shows the effect on annotation cost (time).
While DynProg and Equi benefit from FeatHit permutation
(between 13 and 35%), Freq suffers greatly (almost 10× slow-
down). Closer scrutiny of this curious effect showed that the
global FeatHits ordering has excellent agreement with fea-
ture frequencies within some of the costliest leaves. There-
fore, after reordering, Freq pushes all syncs to the very left
end of the feature range. Though this results in decreased
scan cost for some features, the collective adverse effect of
scans to heavy tail features all over the range predominates.
By design, Equi and DynProg are immune to this problem.

6.1.5 Accuracy of estimated cost
Measured CPU time (y) and modeled cost (x) are in ex-

cellent agreement with the regression y = 1.0645x having an
R2 coefficient of 0.9895 (1 means perfect linear fit). Points
were chosen from a wide variety of inner and outer policies
and sync budgets.

6.1.6 Speed comparison against other systems
Other than SemTag, no other system [24, 12, 26, 20,

17, 16] reported on running time or memory requirements.
SemTag [13] spotted 156 documents per second and disam-
biguated 1,200–3,000 windows per second on one core, but
these numbers are on an incomparable platform.

At the time of writing, three well-known systems were
readily available to compare against ours: DBPedia Spot-
light, Wikipedia Miner [25], and Zemanta. All the systems
have competitive accuracy; here we focus on scalability.

We annotated 1000 documents d, sampled from Wikipedia,
of diverse sizes (number of tokens td) and measured the
number of annotated spots sd and the time yd taken. (For
Wikipedia Miner, we disabled the initial caching as it oth-
erwise took 2–3 hours to start up. The comparison with Ze-
manta may not be entirely fair because its catalog extends
beyond Wikipedia.)

We fitted a constrained linear regression yd = τ0 + τ1td +
τ2sd where all τi ≥ 0 and τ1 ≤ τ2 (tokens not in a spot should
cost less). τ0 captures a per-document overhead (including
network latency for online services like Zemanta). Although
not all systems gave great fit using linear regression, τ2 gave
a very good idea of each annotator’s throughput.

Figure 11 shows a scatter plot of annotation time against
the number of annotations produced, and also tabulates τ2
estimates. LFEM is 16–263 times faster than other pop-
ular systems; thanks entirely to syncs (see last row).
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System τ2 (ms/spot) Avg spots/page
DBPedia Spotlight 158 216
Wikipedia Miner 21 48
Zemanta 9.5 16
LFEM 0.6 111
LFEM, no sync 42 -

Figure 11: Throughput of our and other systems.

6.2 SIP index performance
When we proposed EntSIP and DictSIP (Section 5), we

had no way to predict which would be better. Figure 12
shows that DictSIP is more compact despite spending space
on per-document entity dictionaries. The reason is clear
from the cost break-up: a unified posting list reduces gap-
gamma bits.

Description EntSIP DictSip
Document blocks 117362457 117362457
Total # postings 477450617 477450617
Long+short entity ID bits 12461668521 14800482316
Sub-block delimiter bits 1170992844 0
Gap and span width bits 8638890811 5877067785
Total of above bits 22271552176 20677550101
Average gap 628.8 153.9
Figure 12: EntSIP vs. DictSIP — DictSIP wins.

Figure 13 compares DictSIP against using long (32-bit)
entity IDs, and using Lucene’s payload hook to pack the
short entity ID. Long entity IDs take 43% more bits. As
indices steadily move to RAM, this represents significant
savings. Lucene payloads are multiples of a byte, which
makes it 27% more expensive than DictSIP. We also tried
[7] to use Indri but its inlined annotations can support at
most 4000 or so entities plus types, because of an internal
BTree restriction.

Figure 14 compares DictSIP with collocation indices. This
experiment used a much smaller catalog to keep collocation
index sizes in control. We also used a recall-precision knob to
control the annotation density per page. Clearly, collocation
indices are impractical for large catalogs that we critically
need (Section 2)—they are 45–60 times the size of our
DictSIP index, which would overflow our system.

Finally, Figure 15 compares index decompression and scan
performance against a plain MG4J [5] text index. Numbers
of postings are comparable. DictSIP needs 23% more space

Entity coding option Space (bits)
DictSIP 177251981035
DictSIP using Lucene payload 224801570189
Inlining long entity IDs 252246867520

Figure 13: Benefits of DictSIP’s compact dictionary.
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Annotation Density 0.068 0.150 0.299 0.438
Collocation 18.110 18.077 29.000 42.450
DictSIP type 0.290 0.285 0.658 0.828

Figure 14: DictSIP compared with collocation in-
dex. About 2M entities and only 617 types were
indexed.

Description MG4J DictSIP
Postings 8,356,750,159 8,486,091,421
Index shard size 48 GB 59 GB
Doc blocks scanned/sec 0.94 M 1.7 M
Posts scanned/sec 2.2 M 4.97 M
Disk read rate 10–14 MB/s 45 MB/s
Disk read rate (dd bs=1M) 105 MB/s 105 MB/s
CPU core utilization 100% 75–85%

Figure 15: Index scan+decompression performance.

per posting to store additional fields, but it can decompress
and scan more postings and document blocks per second.
With about 50M documents per shard, for typical TREC
entity queries (ilps.science.uva.nl/trec-entity), we can
retrieve all snippets containing entities of a given type to-
gether with keywords in 1–5 seconds.

7. CONCLUSION
We presented a fast, Web-scale annotator and annotation

indexing system. The two key contributions are 1. a generic
compression scheme for fast, compact, in-memory disam-
biguation data structures and 2. a compact posting list de-
sign for entity and type indices. Investigating Golomb, delta
and other codes may give additional gains. Recent tech-
niques [20, 17, 16] go beyond local signals, and it would be
of interest to support such collective algorithms by extending
our data structures. Supplementary material on our project
is available at soumen.cse.iitb.ac.in/doc/CSAW.
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