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ABSTRACT
Discovering users’ specific and implicit geographic intention
in web search can greatly help satisfy users’ information
needs. We build a geo intent analysis system that uses
minimal supervision to learn a model from large amounts
of web-search logs for this discovery. We build a city lan-
guage model, which is a probabilistic representation of the
language surrounding the mention of a city in web queries.
We use several features derived from these language models
to: (1) identify users’ implicit geo intent and pinpoint the
city corresponding to this intent, (2) determine whether the
geo-intent is localized around the users’ current geographic
location, (3) predict cities for queries that have a mention
of an entity that is located in a specific place. Experimental
results demonstrate the effectiveness of using features de-
rived from the city language model. We find that (1) the
system has over 90% precision and more than 74% accuracy
for the task of detecting users’ implicit city level geo intent
(2) the system achieves more than 96% accuracy in deter-
mining whether implicit geo queries are local geo queries,
neighbor region geo queries or none-of these (3) the city
language model can effectively retrieve cities in location-
specific queries with high precision (88%) and recall (74%);
human evaluation shows that the language model predicts
city labels for location-specific queries with high accuracy
(84.5%).

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Search process, Query for-
mulation

General Terms: Algorithms, Experimentation

Keywords: geographic search intent, geo intent, city lan-
guage model, implicit search intent, local search intent

1. INTRODUCTION
Many times a user’s information need has some kind of

geographic boundary associated with it. For example, when
the user issues the query “manhattan coffee”, he probably
wants information only about coffee shops in the Manhat-
tan region of New York. Previous research has shown that a
significant portion (more than 13%) of web queries contain
geographic (henceforth referred to as geo) information [9,
16, 19]. There are many uses of identifying geo information
in user queries for various retrieval tasks: we can person-
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alize retrieval results based on the geo information in the
query and improve a user’s search experience; we can also
provide better advertisement matching and deliver more in-
formation about local goods and services that users may be
interested in. Many researchers have demonstrated how to
improve retrieval performance for a query by incorporating
related geo information [2, 20] when this information explic-
itly appears in the query or is known beforehand. However,
recent research has found that only about 50% of queries
with geo intent, i.e., queries where the users expected the
results to be contained within some geographic radius, had
explicit location names [19]. For example, many users search
for “pizza” expecting the search engine to detect their loca-
tion and correspondingly present results in their neighbor-
hood automatically. Therefore, identifying implicit geo in-
tent and accurately discovering missing location information
is important and necessary for using any retrieval model that
leverages geo information. We expect that in handheld de-
vices like cell-phones, the percentage of queries with implicit
geo intent will be much higher.

In our work, we develop techniques to discover geo in-
tention even when explicit geo information is missing, and
further explore differences between geo intent queries. To-
wards this goal, we first address the challenging task of dis-
covering a user’s implicit geo intention at a fine grained, i.e.,
city/location level. Previous research has shown that a large
portion (83.77%) of explicit geo queries contain city level in-
formation[9], which implies that users often have a city level
granularity in mind when issuing geo queries. We therefore
believe that finding implicit city/location level information
can greatly help satisfy users’ specific geo information needs,
e.g. a user who searches for ‘macy’s parade hotel rooms’ can
receive a variety of information about hotels in New York
City.

We then investigate different localization capabilities be-
tween geo intent queries. For example, some queries may
imply users’ local geo information need, e.g. the queries
‘pizza’ or ‘dentist’ typically imply that the user is looking
for information in some limited radius around their current
location, while other queries like ‘map’ or ‘hotel’ [9] may
imply that the user is looking for information in a far off
location from their current one, often say while planning a
trip. If we can automatically detect a geo query where the
location associated with the user intent is near that of the
physical location of the user, the IP location (or GPS in-
formation if the user is using a mobile phone) of the user
issuing this query can be used for searching and filtering
so that more locally relevant information is delivered. In
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our terminology, the queries “pizza” and “dentist” have high
localization capability. By the same measure, the queries
“map” and “hotel”, have geo intent, but no localization ca-
pability. We also examine the fact that some queries that
have localization capabilities may have a geographic region
of relevance that is of smaller radius than others. For ex-
ample, users may be willing to drive up to only 10 miles for
“pizza” but be willing to drive say up to 30 miles for a good
“dentist” and up to 100 miles for a bargain on a “2008 honda
civic”.

For the convenience of description, we consider that an
explicit geo intent query consists of (a) a location part : that
explicitly helps identify the location and (b) a non-location

part, e.g., in the query “pizza in 95054”, the term “95054” is
the location part and the remaining terms, the non-location
part. Welch and Cho [19] have recently found that features
derived from non-location parts of explicit geo queries in web
search logs can help identify queries that have implicit geo
intent. Nevertheless, their work only considers differentiat-
ing geo queries (explicit and implicit) from non-geo intent
queries and does not further investigate different levels of
geo information and different localization capabilities.

Our techniques stem from ideas in language modeling [6,
11] which have been widely utilized for natural language pro-
cessing, speech recognition and information retrieval (IR).
Basically, we build geo language models at a fine grained
i.e., city level and extract n-gram language model features
for discovering users’ specific implicit geo intent. We also
combine many other appropriate language and non-language
geo features from fined grained geo queries with n-gram fea-
tures for better geo-intent discovery. In order to be able to
accurately train different language models for thousands of
different cities and robustly extract geo features at fine levels
of granularity, we utilize a sample from a months worth of
web search logs from a major search engine (Yahoo!) which
contains more than 2.8 billion search instances. We find
that our city language models are good at predicting the
city pertinent to the query with very high accuracy.

Our chief contributions are (1) a method for identifying
users’ implicit city-level geo intent (2) a method for dis-
criminating different localization capabilities of geo queries.
(3) a method for predicting the city corresponding to the
geo-intent in a location-specific query. (4) Our models are
learned from large amounts of click-through data and involve
little supervision. This allows us to quickly retrain models
on fresh data, and adapt to seasonal and other variations,
since the query logs are constantly evolving. For example,
we can quickly re-learn the location for the “next red sox
game”. Studying geo intent queries with the aim of finding
localization capabilities (city/location or a larger regional
level) can help better understand users’ underlying geo in-
tent, thus allowing us to better customize search results for
different users. We begin by reviewing related work in §2,
and then describe our geo intention analysis system in de-
tail in §3 and §4. We describe the experimental setup and
the results of evaluating different components of our system
in §5 and conclude in §6.

2. RELATED WORK
Although considerable work has been done on how to uti-

lize geographic information in meta data for IR [1, 12], re-
search on automatically detecting and understanding users’
different geo intents in web search has just started. In 2007,

the GeoCLEF community began a geo query parsing and
classification track [1], which required participants to not
only extract location and non-location topic information of
explicit geo queries but also required them to classify the
topics into three predefined sub-categories: informational
(e.g. news, blogs), yellow pages (e.g. restaurants, hospi-
tals) and maps (e.g. rivers, mountains). Different from this
track, our work aims at detecting users’ implicit geo intent
and classifying geo intent queries on the basis of different
localization capabilities. Welch and Cho’s pilot study [19]
shows that features extracted from non-location parts of ex-
plicit geo queries can help discriminate queries that have
geo intent from those that don’t. Different from their work,
we utilize more complex language modeling features for not
only detecting users’ implicit geo intent but also discovering
the exact missing location information and understanding
the localization capability of the geo information need.

Jones et al. [9] studied the relationship between the non-
location part of an explicit geo query and the distance of the
query’s location part from the issuer’s IP location and found
that geo queries have varied distance distribution and there-
fore different localization capabilities. We further use this
distance between the IP and the city of intent in a geo-query
to label geo queries into several sub-categories and study the
utility of language modeling features for discriminating be-
tween these categories. Other research [22] considers using
statistics from the IP locations of users who clicked a given
query to study the query’s localization capability.

Raghavan et al. [14] built language models from the con-
textual language around different name entities (e.g. person,
location, organization, etc) in a TREC corpus, and utilized
these entity language models for linking, clustering and clas-
sifying different entities. Pasca [10] utilized different contex-
tual language patterns in the search logs to extract different
types of name entities. These works demonstrated the effec-
tiveness of using contextual features for categorizing entities.
In our work, we build language models for geo location enti-
ties from large scale web search logs, and investigate whether
more complex contextual features can help discover users’
specific geo intent.

Besides using web search logs, some research [13] consid-
ers mining the returned web snippets from a commercial
search engine to discover missing local information. Other
research [18] considers mining both top web search results
and web search logs to disambiguate whether a query that
contains a geo location name implies geo intent, e.g. deter-
mining whether the query “New York Style cheesecake” is a
geo query, and discovering locations related to implicit geo
queries, e.g. finding “Seattle, WA” is related to the query
“space needle”. These works complement our approach to
better understand users’ implicit specific geo intent.

3. SYSTEM OVERVIEW
In this paper we focus on building models using city level

geo information for detecting and discovering users’ specific
geo intent. The architecture of our geo intent analysis sys-
tem is depicted in Figure 1. Given a query Q = w1 · · ·wn,
the system first determines whether explicit geo informa-
tion exists: if yes, the system goes to the fourth step, which
divides the query into city and non-city parts Q = (Qc, Qnc)
and sends the non-city part Qnc back to the third component
of the system for analyzing users’ specific geo intent; other-
wise, the system goes to the second step to detect whether
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Figure 1: System Architecture for Discovering the User’s Specific Geo Intent

the query has implicit city level geo intent by using the
first level classifier. If detected, the implicit city level geo
intent is further analyzed in the third step.

The third component discriminates users’ specific geo in-
tents within implicit geo queries. Here we intuitively define
three geo sub categories according to their different local-
ization capabilities: (1) local geo queries, which consist
of geo queries that imply a user’s intention to find locally
relevant information, e.g. ‘pizza’ or ‘dentist’; (2) neighbor
region geo queries, which consist of geo queries that im-
ply a user’s intention to find related information from nearby
regions, e.g. ‘car dealer’ or ‘real estate’; and (3) remaining
geo queries that do not fall into the above three categories
and are not easily localized, e.g. ‘state maps’ or ‘hotels’.
By classifying geo queries into these sub categories, users’
specific geo information needs can be better satisfied: e.g.,
if the query is labeled as a ‘local geo query’, related local
information from or close to the user’s IP location can be
delivered.

We further use our city language models to predict cities
in location-specific queries. These queries usually con-
tain an entity (university, school, local media channel, doc-
tor name etc) through which one can pinpoint a location
(city/town level) corresponding to the geo-intent. We find
that if the query contains such an entity, the city language
model is able to detect the city with very high accuracy. If
the query is labeled as a ‘location-specific query’, informa-
tion from the city where the entity occurs can be retrieved.

The results from the third component are combined with
other available information, e.g. the user’s IP location or an
explicit city name in the query, to customize results for dif-
ferent users and improve information retrieval performance.

The geo location analysis tool used in the second step
as a black-box for automatically identifying different lev-
els of explicit geo information in queries has been used in
several past papers [9, 15]. This tool utilizes both context-
dependent (e.g. ‘in’,‘at’) and context-independent features
to find possible location parts in a query, and maps these
location parts to a large global location databases contain-
ing zip-codes, cities, counties, states, countries etc. This
tool calculates a confidence score in the range (0,1) for each
location candidate identified in the query based on the confi-
dence of whether the candidate is indeed a geo location, and
outputs all the possible locations and confidence scores. We
only consider location candidates whose confidence scores
exceed 0.5. In addition, so as to limit our scope, we only con-
sider city location candidates that are in the United States.

Our major contribution is to design and evaluate the two
components that analyze users’ specific geo intent, (enclosed
in dashed lines in Figure 1). In the next section, we describe
how in each of these components language modeling tech-

niques are employed to build city-level geo language models,
and how rich geo language features at the city level are ex-
tracted for training the two classifiers. We emphasize that
studying fine grained and complex geo language model fea-
tures is necessary for this task that is more challenging than
the task of identifying broad sense geo intent queries [19].

4. FEATURES FOR THE CLASSIFIERS
In this section we describe the set of features that were

extracted from the search logs. These features were used in
the construction of the two classifiers in Figure 1 and are
described in greater detail in §5.2 and §5.3. First, for each
query Q in the web search log, we correct possible spelling
errors, remove any stopwords present in the INQUERY [4]
stopword list1, and then utilize the geo location analysis tool
[15] to identify every possible explicit city level geo query.
That is, we decompose Qcg as (Qc, Qnc), where Qc and Qnc

denote the location/city and non-location part respectively.
This preprocessing step is similar to that employed by Welch
and Cho [19] except for two main differences: one is that we
utilize the geo location analysis tool instead of a dictionary
to identify the location part (Qc) in a query. Since the tool
uses contextual clues, it helps disambiguate whether a word
like “reading” refers to the location or to the verb sense of
“read”. This tool also covers zip-codes and many colloquial
geo location names, e.g. “nyc”for“New York City”, that may
appear in web queries. Therefore using this tool has some
advantages compared to the dictionary based approach of
Welch and Cho [19]. The other main difference is that in-
stead of generating a group of base queries from each query
by removing different levels of possible location names, we
only generate one base query (from Qnc) by removing the
location part (Qc) for further feature extraction. We also do
not apply stemming because research show removing stop-
words has significant positive impact for geo intent analysis
while stemming has little additional impact [19].

We then consider two different ways of extracting city
level geo features for our modeling: the first is by building
city language models by using all the identified non-location
portions (Qcg) in the training data; the second is by view-
ing each unigram, bigram and trigram in the non-city part
(Qnc) as a Geo Information Unit (GIU) that can help
discover users’ specific geo intent. We also collect various
statistics of these GIUs. We describe these two methods in
the following two subsections.

4.1 City Language Models
City names often have strong co-occurrence statistics with

terms or phrases like ‘map’, ‘hotel’, ‘hospital’ and so on in

1We remove ‘ff’, ‘first’ and ‘stave’ and ‘staves’ from the original
version and use the remaining 414 stopwords.
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the query logs. Therefore, analyzing the language used in
the non-city parts (Qnc) that co-occur with a certain city
name in the location part (Qc) can possibly help discover
missing city information in an implicit geo intent query.

To build language models for each city, we go beyond the
“bag of words”approach used in entity language models built
by Raghavan et al [14] and instead follow a bigram language
model approach. The reason is that bigram information can
be very important to infer implicit geo intent from phrases,
for e.g., the words ‘time’ and ‘square’ individually may not
imply geo intent, but the phrase ‘time square’ has a high pos-
sibility of being related to New York City. We do not build
trigram language models because trigrams in web queries
are much sparser than bigrams, making trigram language
models not as robust as bigram language models. In the
typical bigram language modeling approach, the probability
of a string is expressed as the product of the probabilities
of the words that compose the string, where the probability
of each word is conditioned on the identity of the previous
word [6]; therefore, given a query Q = w1 · · ·wn, we have:

P (Q) =
n

Y

i=1

P (wi|w
i−1
1 ) ≈

n
Y

i=1

P (wi|wi−1), (1)

where wj
i denotes the string wi · · ·wj . Then, for each city

Ck, we build bigram language models from the non-location
portions (Qnc) of all the explicit geo intent queries (Qcg)
that have the location portion (Qc) identified as the city
Ck. In this way, we can calculate the probability P (Q|Ck)
of a query Q generated from a city Ck’s language model by:

P (Q|Ck) =
n

Y

i=1

P (wi|w
i−1
1 , Ck) ≈

n
Y

i=1

P (wi|wi−1, Ck). (2)

Researchers have proposed a broad range of smoothing
techniques that adjust the maximum likelihood estimation
(MLE) of parameters to solve the zero frequency problem
in language modeling, and thereby produce more accurate
estimations and predictions. Many good comparison stud-
ies of different smoothing techniques can be found in the
literature [6, 21]. Different smoothing techniques can have
significantly different results. In this study, for the esti-
mation of bigram probability, we employ a state-of-the-art
smoothing technique (method B in Chen and Goodman[6]),
which combines two intuitions from the Dirichlet smoothing
and Good-Turing smoothing:

P (wi|wi−1, Ck) =
#(wi

i−1, Ck) + αP (wi|Ck)

#(wi−1, Ck) + α
, α = β × |VCk

|,

(3)

where #(wj
i , Ck) denotes the frequency counts of the string

wj
i in the non-city parts (Qnc) related to the city Ck, |VCk

|
denotes the vocabulary size of the words that appear in the
city Ck’s language model, α acts as the effect of Dirichlet
smoothing, β is a constant to control the degree of smoothing
for different cities that have different vocabulary sizes. For
the unigram probability P (wi|Ck) in equation 3, we employ
the standard Dirichlet smoothing:

P (wi|Ck) = #(wi,Ck)+γP (wi|C•)
#(w•,Ck)+γ

= #(wi,Ck)+γ#(wi,C•)/#(w•,C•)
#(w•,Ck)+γ

,
(4)

where w• denotes all the words and C• denotes all the cities,
e.g. #(w•, Ck) denotes the counts of all the words appearing

q =“Disney world ticket” q =“Harvard University”
City Name P (Ci|Q) City Name P (Ci|Q)
Orlando 0.98011 Cambridge 0.63545

Kissimmee 0.01386 Princeton 0.05360
Anaheim 0.00240 Longwood 0.05334

New Castle 0.00135 Boston 0.01979
San Antonio 0.00044 Tuskegee 0.01719

Table 1: Top-5 cities and the city generation poste-
riors for two sample queries.

in the non-location parts of geo-intent queries (Qnc) related
to the city Ck and #(w•, C•) denotes the counts of all the
words co-occurring with all the cities. γ is the Dirichlet
smoothing parameter.

For the task of detecting the cities relevant to a location
specific query, we calculate the posterior probability of each
query Q generated from a city Ci by:

P (Ci|Q) ∝ P (Ci)P (Q|Ci), (5)

where we set the prior P (Ci) to be a uniform distribution,
i.e. the posterior calculation will be only affected by the
city generation probability P (Q|Ci), and not be biased to-
wards those cities that appear most frequently in the query
logs. After calculating all the posteriors, we can sort them
to discover the most probable cities that each implicit geo
query Q may be generated from. Table 1 shows the top-
5 cities and the corresponding posteriors calculated by our
city level language models, trained in experiments, for two
sample queries: “Disney world ticket” and “Harvard Univer-
sity”. ‘New Castle’ appears in the top cities related to the
first query because of its ambiguous meaning – the geo anal-
ysis tool we used fails to determine whether it means a new
palace in Disney or the city named ‘New Castle’. We eval-
uate city language models for this task later in the paper
(refer §5.4).

These posteriors are useful as features to detect implicit
city level geo intent; therefore, we use them as geo language
model features for classification as well as for discovering the
missing locations in the third component of Figure 1.

4.2 Geo Information Unit Features
Intuitively, the unigrams, bigrams and trigrams in the

non-city parts (Qnc) of explicit geo queries (Qcg) can help
detect users’ implicit geo intent, e.g. the queries “golden
gate bridge” or “fishermen’s wharf” may imply that users
are interested in information about San Francisco. Thus, we
view each unigram, bigram and trigram in the non-location
portions (Qnc) of all the geo-intent queries (Qcg) as a Geo

Information Unit (GIU) that can help discover users’ spe-
cific geo intent, and extract statistics in the training data
for each information unit. Then given any new input query
Q, we find all the geo information units in this query and
utilize them to generate a wide range of features for various
classification tasks.

For each n-gram GIU wi+n−1
i = wi · · ·wi+n−1 appear-

ing in the non-location part (Qnc)s of all geo-intent queries
(Qcg), we calculate the following GIU features:

• The frequency count of wi+n−1
i in the set of queries, Qnc,

from all cities C•, denoted as #(wi+n−1
i , C•), and the

MLE probability (Pg(w
i+n−1
i )) of wi+n−1

i appearing in
the n-grams of all the queries, Qnc : Pg(w

i+n−1
i ) =

#(wi+n−1
i , C•)/#g(ngrams), where #g(ngrams) denotes

the number of n-grams in the set of all Qnc.
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• The frequency of wi+n−1
i in all queries (including both

geo and non-geo intent), denoted as #(wi+n−1
i ), and the

MLE probability of wi+n−1
i appearing in the n-grams of

all the queries: P (wi+n−1
i ) = #(wi+n−1

i )/#(ngrams),
where #(ngrams) denotes the number of n-grams in all
the queries.

• The pair-wise mutual information (PMI) score [7] between
wi+n−1

i and all city locations C•:

PMI(wi+n−1
i , C•) =

P (wi+n−1

i
,C•)

P (wi+n−1

i
)P (C•)

=
Pg(wi+n−1

i
)

P (wi+n−1

i
)

• The number of cities that co-occur with wi+n−1
i .

• The MLE probability P (wi+n−1
i |Ck) of wi+n−1

i appearing
in the n-grams of Qncs that co-occur with city Ck, calcu-
lated by:

P (wi+n−1
i |Ck) =

#(w
i+n−1

i
,Ck)

#Ck
(ngrams)

, where #Ck
(ngrams) de-

notes the number of n-grams in the Qncs that co-occur
with city Ck.

• Given the MLE probability P (wi+n−1
i |Ck) we calculate

the posterior: P (Ck|w
i+n−1
i ) ∝ P (Ck)P (wi+n−1

i |Ck), where
we assume P (Ck) is a uniform distribution. Then we find
the city Cm that has the maximum posterior to generate
wi+n−1

i , and use P (Cm|wi+n−1
i ) and the frequency counts

#(wi+n−1
i , Cm) as two more GIU features.

• To measure the skewness of the posteriors {P (Ck|w
i+n−1
i ),

k = 1, · · · , N(wi+n−1
i )}, where N(wi+n−1

i ) denotes the
number of cities that co-occur with the GIU, wi+n−1

i , we
calculate the K-L divergence between the posteriors and
a uniform distribution U(wi+n−1

i ) = 1/N(wi+n−1
i ) and is

computed by the following formula:
N(wi+n−1

i
)

P

k=1

P (Ck|w
i+n−1
i ) log

P (Ck|wi+n−1

i
)

1/N(wi+n−1

i
)

After calculating the above features for each GIU, given a
new query Q, we can extract all the GIUs in it, and then
either directly utilize the features of these GIUs to form a
high dimensional sparse feature vector for represent-
ing this query, or aggregate some features to form a low
dimensional feature vector in order to reduce the train-
ing cost. For the high dimensional representation, each GIU
feature from each textually different GIU occupies a differ-
ent dimension in the feature vector. For the low dimensional
representation, we first aggregate features from the unigram
GIUs, that is, for each of the GIU features we calculate the
typical statistics like minimum, maximum, and average of
the feature values from all the unigram GIUs and then keep
each statistic in a different dimension in the feature vec-
tor. We aggregate bigram and trigram GIUs in the same
way and also keep calculated statistics in different feature
dimensions. We test both approaches in experiments.

5. EXPERIMENTS
We designed three experiments to evaluate the major parts

of our system (enclosed in the dashed line in Figure 1) for
discovering users’ implicit specific geo intent: (1) The first
experiment is to evaluate how the first level classifier – Clas-
sifier I, in the second component in Figure 1, performs to
detect users’ implicit city level geo intent when no explicit
city information is found in the query. (2) The second ex-
periment is to test how the well the second level classifier
– Classifier II, in the third component in Figure 1, cate-
gorizes implicit geo queries into different localization capa-
bilities. (3) The third experiment is to investigate how well

City Name Frequency in Frequency in
geo sub training set geo sub testing set

New York 3794960 3865216
Los Angeles 3207062 3228888

Chicago 2275231 2397036
Houston 1929131 1926341

Las Vegas 1755695 1794026

Table 2: Statistics of top-5 most frequent cities in
two geo query subsets.

our city language models detect location-specific queries and
discover missing city information.

In the next section we describe our data-set creation and
feature extraction methodology before we move on to de-
scribe the evaluation of the different classifiers.

5.1 Data
We utilize a large industrial-scale real-world web search

log from Yahoo! for this study. The training set is a
subset of the Yahoo! web search log during May, 2008. It
contains about 2.13 billion rows of search instance records
covering about 1.44 billion queries and related information,
e.g. users’ IP and the clicked URLs. The testing set is ran-
domly sampled from the Yahoo! web search log during June,
2008 and contains about 2.10 billion rows of search instance
records covering about 1.42 billion queries and related in-
formation. We applied the explicit geo information analysis
tool described in §3 on both the training and the testing sets
to identify each explicit geo query that contains a U.S. city
location candidate with the confidence score larger than 0.5.
In this way, about 96.2M U.S. city level geo queries are iden-
tified in the training set and extracted to form a geo sub
training set, and about 96.7M U.S. city level geo queries
are identified in the testing set and extracted to form a geo
sub testing set. We find 1614 distinct cities in the two geo
query subsets. Table 2 shows 5 most frequent cities in the
geo sub training/testing set respectively.

We build city language models for each city as described
in §4.1 by using all the explicit geo queries Qcg = (Qc, Qnc)
in the geo sub training set. Then given any implicit geo
query Q, we can calculate a set of city generation posteriors
P (Ci|Q) from the trained city language models, and use the
posteriors as the geo language model features for classifica-
tion. In experiments we use the 10 largest posteriors of each
query as features for simplicity and noise reduction.

We then utilize all of the original training set and the geo
sub training set to extract GIU features for all the unigram,
bigram and trigram GIUs that appear in the queries (Qnc) in
the geo sub training set as described in §4.2. In experiments,
to reduce noise, we filter any n-gram GIU (wi+n−1

i ) that sat-
isfies the condition – min(Pg(w

i+n−1
i ), P (wi+n−1

i )) ≤ 1 ×
10−7 – and obtain 85078 unigram GIUs, 317628 bigram
GIUs and 191802 trigram GIUs. These GIUs are used for
calculating both a low and a high dimensional representation
for each query in later classification tasks.

Next, we describe each experiment in detail, including how
we generate positive and negative samples for each task, the
classifiers used, and the evaluation results.

5.2 Evaluating Classifier I
In this section we describe the details of how we build

models and evaluate the classifier for city level geo-intent
detection (refer Figure 1).
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DN+ DN−

www.local.com search-desc.ebay.com
travel.yahoo.com www.youtube.com

www.tripadvisor.com www.amazon.com
www.yellowbook.com www.myspace.com
www.city-data.com www.nextag.com

Table 3: Some DNs in DN+ or DN−

5.2.1 Label Generation
Our automatic labeling method for this task utilizes URLs

that have been frequently clicked for a query to automati-
cally generate geo/non-geo intent labels for queries, instead
of hiring human editors to make judgments. For example,
if many users repeatedly clicked the URL local.yahoo.com

for a query, it has a high probability of having geo intent.
To find URLs that reliably imply users’ geo intents, we

consider only the domain name (DN) of the URL. We collect
100 DNs that are most frequently clicked for queries in the
geo sub training set to form the set DN1. We also collect 100
DNs that are most frequently clicked from the other queries
that are not in the geo sub training set but in the whole
training set, into another set DN2. Then we obtain the DN
sets DN+ and DN− for labeling queries that may/may not
have geo intent by:

DN+ = DN1\DN2, DN− = DN2\DN1.

Some DNs that are intuitively useful for labeling users’ geo
intent and appear in both DN1 and DN2 end up being ex-
cluded from both DN+ and DN−. On analysis we found
a few possible reasons for this. For example, in the above
process, the clicked URLs of possible implicit geo queries or
larger regional level (state/country) geo queries are counted
in DN2. Similarly, the clicked URLs of some ambiguous
queries where the black-box tool [15] falsely identifies city
names are counted in DN1. Therefore we introduce weak su-
pervision into this domain name selection process by putting
three useful DNs back to DN+ and two back to DN−:

DN+ = DN+ ∪ {www.citysearch.com,
www.yellowpages.com, local.yahoo.com}
DN− = DN− ∪ {en.wikipedia.org, answers.yahoo.com}

In this way, we obtain 67 DNs in DN+ and 64 DNs in DN−

respectively. Some example DNs from the two sets are shown
in Table 3.

For any query in the geo sub training set, if it has a clicked
DN in DN+, we label the query as a positive sample. For any
query that is in the training set but not the geo sub training
set, if it has a clicked DN in DN−, we label the query as a
negative sample or non-geo intent query. We remove dupli-
cates that have the same query terms and domain names.
After that, we obtain 7.5M positive and 57.8M negative sam-
ples. We then use the location portion (Qc) of the positive
samples as the labels and the non-location portion (Qnc) as
the implicit geo intent queries. Next, we randomly sample
20,000 implicit geo queries and 20,000 non-geo queries to
obtain 40,000 queries in the training subset I.

For evaluation, we generate two testing subsets: test-
ing subset I-1 and testing subset I-2 from the original
testing set in two ways. The first method is to follow the
same above procedure: labeling positive samples only from
queries in the geo sub testing set that have clicked DNs in
DN+ and extracting Qncs as the implicit geo intent queries;
labeling negative samples only from queries not in the geo

sub testing that have clicked DNs in DN−. In this way, we
obtain 8.0M implicit geo queries and 58.1M non-geo queries.
Then we randomly sample 80,000 queries ( half positive, half
negative) as the testing subset I-1.

The second method differs from the first in how it finds
the positive samples and creates the implicit geo queries. In
the second method, we directly label both positive and neg-
ative samples from the original testing set by only checking
whether they have clicked DNs in DN+ or DN−. We use
the black-box tool [15] to find and remove all the possible
location portions (place names, zip-codes etc) in the posi-
tive and negative samples. Then we remove the duplicates.
In this way, we obtain 31.3M positive samples and 53.2M
negative samples. Then we randomly sample 80,000 queries
( half positive, half negative) as the testing subset I-2. Note
that classifying testing subset I-2 is more representative of
the true query log, and possibly harder, because positive
samples are directly obtained from the original testing set
instead of only from the geo sub testing set. Testing sub-
set I-2 may contain some real implicit geo queries instead of
only the queries (Qnc) from explicit geo queries as in testing
subset I-1.

5.2.2 Classifiers and Evaluation Results
We evaluate three state-of-the-art classification techniques:

Support Vector Machines (SVM) [5], gradient boosted de-
cision tree [8] and multinomial logistic regression (MLGR)
[3] for building the first level classifier. For the SVM, we
employed linear kernel (SVM-Linear) as well as non-linear
RBF gaussian kernel (SVM-RBF). Training SVM-linear typ-
ically costs much less time than training SVM-RBF, while
SVM-RBF usually performs better when the original input
feature space is low dimensional. Decision trees have the
advantage that they can learn conjunctions of features. For
the gradient boosted decision trees, we used the TreeNet
tool by Salford Systems2. For the MLGR, we utilized the
open source R Project and its nnet library3.

For each labeled query sample, we calculate the geo lan-
guage model features – top-10 city generation posteriors,
and the GIU features (low/high dimensional feature vec-
tors), then combine them for classification in two ways: 1)
a low training cost way, which only uses the posteriors and
the low dimensional GIU features, and 2) a high training
cost way, which uses all the features that include the high
dimensional GIU features in addition. Then we separately
scale each feature dimension to be in the range [0,1] for all
the samples, and train the classifier based on different mod-
els with the data in the training subset I. We employ 5-fold
cross validation to select the model parameters that achieve
the highest average accuracy. Then we test the optimized
classifier on both the testing subset I-1 and I-2.

Performance is evaluated by using the typical precision,
recall and accuracy metrics: precision measures the per-
centage of true positive samples (true geo intent queries)
in the queries labeled by the classifier to be positive (have
geo intent); recall measures the fraction of the true positive
samples detected by the classifier in all the true positive sam-
ples; accuracy measures the percentage of the correct labels,
including both positive and negative ones, in the test set.
In this task, low precision will hurt users’ search experience
more than low recall or low accuracy. Thus a classifier for

2http://salford-systems.com/
3http://www.r-project.org/
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Testing subset I-1 Testing subset I-2
low dimensional features all features low dimensional features all features

P R Acc P R Acc P R Acc P R Acc
SVM-linear 91.7% 82.6% 87.6% 99.9% 66.0% 83.0% 80.9% 35.7% 63.7% 99.9% 48.8% 74.4%
SVM-RBF 91.4% 86.0% 89.0% 98.5% 62.8% 80.9% 80.4% 36.2% 63.7% 97.8% 48.0% 73.5%
Treenet 89.4% 87.4% 88.5% \ \ \ 78.1% 40.9% 64.7% \ \ \
MLGR 91.3% 83.5% 87.8% \ \ \ 80.2% 36.4% 63.7% \ \ \

Table 4: Performances of discovering users’ implicit city level geo intent on the testing subset I-1 and I-2 by
using different classification techniques and two sets of features. Precision, Recall and Accuracy are denoted
by P, R and Acc, respectively.

this task in a practical system should have high precision
and reasonably good accuracy and recall.

The evaluation results are shown in Table 4. We did not
test the performances of training MLGR and Treenet with
all features due to the high training cost. Results on the test-
ing subset I-1 show that : (1) all the classifiers perform well
by only using the low dimensional features (posteriors + low
dimensional GIU features) with precision, recall and accu-
racy values above 89%, 82% and 87% respectively. (2) using
all features can further improve precision while recall drops
about 14% and accuracy drops about 5%. (3) SVM-linear
achieves the highest precision on both feature sets; Treenet
achieves the highest recall by only using low dimensional
features; SVM-RBF achieves the highest accuracy by only
using low dimensional features. This result is expected since
linear classifiers do better with an increase in the number of
features in the presence of sufficient training data. Results
on the testing subset I-2, the harder task, show that : (1)
all the classifiers still perform reasonably well and achieve
precision values higher than 80% when only using low di-
mensional features except Treenet which has a precision of
78%. (2) using all features can improve all the metrics and
achieve high precision and reasonably good accuracy.

On both testing subsets, we achieve both high precision,
which is important for users’ satisfaction and good accuracy
although recall drops for the hard task. Thus, the geo city
language model features and GIU features can be used for
effectively discovering users’ implicit city level geo intent.

As we know, the same web query can be issued by differ-
ent users at different time. Thus the web log samples from
two different months may have considerable amount of the
identical queries. We do an overlap analysis in order to bet-
ter understand our evaluation results. We find that in the
96.7M geo sub testing set (from the June’s sample), about
67% of the queries have appeared in the geo sub training set
(from the May’s sample). There are 28.9M and 29.2M dis-
tinct queries (Qnc) in the geo sub training and testing sets,
respectively. We find about 48.06% of these distinct queries
(Qnc) of the geo sub testing set have appeared in the geo
sub training set. The overlap also reveals that many geo lan-
guage patterns found in old web query logs can be reused
because many geo queries appear repeatedly. This process
of splitting the training and test sets by time is a common
procedure in domains where the data occurs as a time series
4. In addition, there are plenty of new geo-queries, revealing
that our models can generalize well for new queries as well.

5.3 Evaluating Classifier II
As shown in Figure 1, when Classifier I has detected an

implicit city level geo intent query, the query will be passed

4http://projects.ldc.upenn.edu/TDT/

to the second level classifier – Classifier II for analyzing the
query’s capability of being localized to the issuer’s IP loca-
tion. In this section, we describe the details of how we build
and evaluate Classifier II.

5.3.1 Label Generation
We consider three predefined categories: Local Geo quer-

ies or LG, Neighbor Region geo queries or NRG, and
remaining geo queries or RG, in §3 for this analysis. Our
low cost training set generation technique again utilizes the
geo sub training/testing sets where the non-city part
(Qnc) in the original data is used to create an implicit geo
intent query and the location part (Qc) is the city level label
corresponding to the geo intent. We then use the informa-
tion of distance L between the city level label (Qc) and the
issuer’s IP location to generate one of the above three sub-
category labels for each query.

To better understand the distribution of the distance L in
the geo queries, we divide L into 12 intervals and calculate
the number of the geo queries in the geo sub training set
(before and after we remove the duplicates) with distance
values in each interval. The results are shown in Figure 2.
It can be seen that a significant portion of geo queries can
be localized to less than 50 miles from their issuers’ IP loca-
tions. A relatively small portion of geo queries can be local-
ized to a 50-100 miles radius from the issuers’ IP locations.
Many geo queries can hardly be localized. For representing
this difference, we generate a geo sub category label for each
query Q by first collecting the distances, L = {L1...Ln},
(note that the same query may be issued by users with dif-
ferent IPs) and then calculate the median of these distances
(Lm = median(L)) and assigning Q to LG, NRG or RG
if Lm < 50, 50 ≤ Lm < 100, or Lm ≥ 100 (unit:miles),
respectively.

We generate a geo sub category label for each implicit geo
query (Qnc) in the geo sub training set, remove duplicates
and then randomly sample 15K implicit geo queries from
each of the three geo sub categories to form training subset
II. We then process the geo sub testing set in the same way
to obtain the testing subset II. To investigate the utility
of our geo features for discriminating between different geo
sub categories, we design four classification tasks : task A
– to discriminate between queries in LG and RG; task B –
to discriminate between queries in LG and NRG; task C –
to discriminate between queries in NRG and RG; task D –
to simultaneously discriminate between queries in all three
categories.

In this experiment, we again use SVM [5], Treenet and
MLGR [3], described in §5.2.2, for building Classifier II.
The classifier uses the same geo features, including the top-
10 city generation posteriors from the city language model
and the GIU features, for the four classification tasks. We
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Figure 2: Distributions of the distance L between the city Qc in the query and the issuer’ IP location. X
axis denotes the distance intervals used (less than 5 miles, 5-10 miles, etc), Y axis denotes the number of geo
queries (unit: million) in each interval. Left/Right graph shows L’s distribution in the geo sub training set
before/after we remove the duplicates respectively.

Task A Task B Task C Task D
LG/RG LG/NRG NRG/RG All-3

low dimensional features
SVM-linear 61.3% 53.5% 61.0% 42.6%
SVM-RBF 62.0% 53.9% 61.8% 43.2%

Treenet 62.8% 54.2% 60.8% 44.1%
MLGR 61.2% 53.4% 61.0% 42.6%

all features
SVM-linear 99.6% 97.2% 96.9% 87.0%
SVM-RBF 99.6% 98.0% 98.0% 96.6%

Table 5: Accuracies of discriminating implicit geo
queries’ different localization capabilities to issuers’
IP locations by using different classification tech-
niques and two sets of features for each of four clas-
sification tasks on the testing subset II.
also test the low and high training cost methods of using
geo features as described in §5.2.2. We separately scale
each feature dimension to be in the range [0,1] for all the
samples, and train the classifier based on different models
using data in training subset II for each of the four
tasks. We employ 5-fold cross validation to select model
parameters that achieve the highest average accuracy for
each task and test the optimized classifier on the testing
subset II. Performance is evaluated by using accuracy as a
metric. Note that tasks A, B and C are binary classification
tasks involving two labels while task D is a three-category
classification task with three labels. The results are shown
in Table 5. Again when using all features, we only test the
performances of training SVM-linear and SVM-RBF.

We make the following observations: (1) Using low di-
mensional features (top-10 city generation posteriors + ag-
gregate GIU features), the model cannot easily discriminate
the subtle differences between LG (local geo queries) and
NRG (neighbor region geo queries), but can differentiate be-
tween LG and RG (not local or neighbor region geo queries),
and between NRG and RG, with reasonable accuracy (62.8%
by Treenet and 61.8% by SVM-RBF) (2) Using high dimen-
sional features greatly improves the accuracy to more than
96% using SVM-RBF even for the task of classifying all three
categories simultaneously (task D). This means that differ-
ent geo sub categories indeed have different GIUs and GIU
features. (3) Using all features in a non-linear model like
SVM-RBF performs better than a linear model, especially
for the three-category classification task (task D). There-
fore, by using SVM-RBF and all geo features, Classifier II

Location-specific query location

airport check metro airport Detroit
woodfield mall jobs schaumburg
utah herald journal classified ads Logan
wkrn news 2 Nashville
motel near knotts berry farm california Buena Park

Table 6: Example of correct predictions of the city
name for a location specific query

can effectively discriminate different localization capabilities
of implicit geo queries’ to issuers’ IP locations. In this way
we can determine users’ specific geo intents. Note that al-
though training SVM-RBF with high dimensional data is
computationally expensive, the prediction cost is very low.
In addition, SVM-linear which has low training cost but rea-
sonably high accuracy (87%) is a good choice when off-line
training cost is a big issue.

5.4 Location-Specific Query Discovery
In this task we aim to find queries with mentions of an en-

tity that is in some way specific to a particular geographic
location (in our case cities). Such“localized entities”may be
hotels, local tv and radio channels, local newspapers, uni-
versities, schools, people names like doctors, sports teams
and so on. Basically if a location (city/town level) can be
pinpointed to some item mentioned in the query, then the
query is a location-specific query, by our definition. Exam-
ples of a location specific query and corresponding locations
are shown in Table 6.

5.4.1 Label Generation
We evaluate our city language models for retrieving cities

in location-specific queries in this experiment. One impor-
tant property of location-specific queries is that although
explicit geo information is missing one may still accurately
discover the exact location (city/town level) in the user’s
mind, e.g. “Liberty Statue” or “Disney fl” can be viewed as
location-specific queries, which are highly likely to be related
to New York or Orlando respectively. Our low-cost training
method again utilizes the non-city part (Qnc) of explicit geo
queries as implicit geo intent queries, and tries to discover
possible location-specific queries from them. This approach
has another advantage that the city part (Qc) can be used as
the ground truth city label for automatic evaluation. Since
it is extremely expensive to hire human editors to examine
over hundred million implicit geo-queries (Qnc) with their
city labels (Qc) and identify all the possible location-specific

WWW 2009 MADRID! Track: Search / Session: Query Categorization

488



queries to create training and testing data, we first utilize
the following weakly supervised approach combined with the
city language models for this discovery task, and then sam-
ple outputs of the city language models on the testing data
for human evaluation.

Our weakly supervised approach finvolves designing a few
ad hoc rules to find the GIUs that may come from location-
specific queries. For example, we require that the maximum
city generation posterior –P (Cm|wi+n−1

i ) – be larger than
a threshold, t1, and the corresponding maximum frequency
count, #(wi+n−1

i , Cm), be larger than a threshold t2; as an-
other example of our rules, we either require that wi+n−1

i

appear in less than a threshold, t3, number of cities or its
overall counts in the geo queries divided by the number of
city: #(wi+n−1

i , C•)/#(|C•|) is larger than a threshold t4.
These rules are constructed by considering the characteris-
tics of the GIU features that location-specific queries may
have, and the thresholds are set by looking through the
GIUs (wi+n−1

i ) and their GIU feature values in the train-
ing data. We leave the question of how to automatically
generate these rules for future work. In this way, from the
geo sub training set we obtain 1022 unigram GIUs, 4374
bigram GIUs and 3765 trigram GIUs that may come from
location-specific queries. We then select queries, which con-
tain any of these GIUs, in the geo sub training/testing sets.
In this way we form training subset III/testing subset
III, each of which contains about 1.06M and 1.05M possible
distinct location-specific queries (distinct Qncs) respectively.
We use these automatically generated training and testing
subsets to automatically tune parameters for our task. We
now describe how to utilize city language models to further
discover cities for location-specific queries from these two
subsets.

5.4.2 City Language Models for Retrieving Candi-
date locations

Discovering missing related cities for location-specific queries
can be viewed as a challenging multi-category classification
task, in which there are 1614 different categories (city la-
bels). Given a query (Q) which has implicit geo-intent and
is location-specific, we calculate the city generation poste-
rior P (Ck|Q) of each city Ck by using city language models
(CLM) and equation 5. Then we sort these posteriors and
get the corresponding ranked list of cities. We check whether
the maximum posterior P (Cm|Q) is larger than a threshold
ta: if yes, Cm is suggested as a candidate location for the
location specific query Q. Next, we discuss how to tune ta

with the training subset III.
We utilize the city part (Qc) as the ground truth city label

for each query (remember that the implicit geo-query, Q, is
the non-city part, Qnc, of a query in the logs), and calculate
precision and recall metrics to roughly evaluate the CLM’s
performance and tune ta. Specifically, given a query Q, we
retrieve a set of cities {Ck|P (Ck|Q) > ta}. When the ground
truth city label (Qcm) is the same as the city (Cm) that has
the largest value of P (Cm|Q) > ta, we count that as a right
decision made by the CLM in the counter N1; but if Cm

is different from its ground truth city label Qcm , we count
that as a wrong decision by the CLM, using the counter
N2. We then calculate the precision P , and recall R by
P = N1

N1+N2
and R = N1+N2

N
, where N denotes the number

of queries in the training subset III. Intuitively, P measures
the percentage of exactly right location suggestions for the
suggested good location-specific queries, and R measures the
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Figure 3: Precision/Recall curve on training subset
III for location-specific query discovery.

percentage of suggested good location-specific queries in all
the possible location-specific queries.

Figure 3 shows the precision/recall curve with different ta

values on the training subset III. It can be observed that by
choosing ta = 0.7 we can maintain reasonably high precision
(P = 92%) while the recall (R = 84.4%) does not drop too
much. We follow the same procedure to apply CLM on
testing subset III where it achieves precision of 88%, and
recall of 74% at the threshold of ta = 0.7.

To further evaluate the quality of the ranked list of cities
sorted by P (Cm|Q) , for each query (Qnc) that is a location-
specific query, we also compute an IR style measure called
Mean Reciprocal Rank (MRR), which is the average of the
reciprocal of the ranks of the correct answers to the queries
in the testing data: MRR =

P

Q

1
r(Q)

, where r(Q) denotes

the rank position of the ground truth city label (Qc) of the
location specific query, Q. The higher the MRR, the closer
the correct answer’s rank position is to the top. When the
correct label (Qc) is at rank 1 for all location specific queries
(Q), the MRR = 1. By setting ta = 0.7, we have an MRR
of 0.951 on training subset III and MRR of 0.929 on testing
subset III. These high MRRs imply that for location-specific
queries, the true city labels appear nearly at the top of the
suggested city rank list. In this way we use the training and
testing subsets to tune the threshold ta.

The above promising results, especially the high preci-
sion and MRR, show that city language models can ef-
fectively suggest good location-specific queries and discover
missing city labels. Nevertheless, our rules to discover possi-
ble location-specific queries may be noisy and the automatic
evaluation using (Qc) as the ground truth city label is still
rough. Therefore, we design human evaluation experiments
to investigate the CLM’s performance by asking human edi-
tors to examine the quality of some sampled location-specific
queries and their city labels.

5.4.3 Human Evaluation
We sampled a random set of queries from testing subset

III, such that for each of these queries there existed at least
one city, C, that was predicted such that P (C|Q) > ta,
to obtain a set of 669 queries and 679 city predictions (10
queries have 2 predictions, the remaining have one). Af-
ter giving a detailed explanation of the task, we asked our
annotators two questions: (1) if the selected query was a
location specific query and (2) if the predicted location was
correct. Judges were asked to mark “Yes” or “No” in re-
sponse to these questions. Eleven judges judged at least 80
predictions each and 240 predictions were judged by 2 an-
notators. Annotators were allowed to mark a ‘?’ for either
of the two questions. They were also allowed to use a search
engine of their choice to better understand the meaning of
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their query. All but two of the annotators worked in the
area of information retrieval. The annotators were a mix of
native and non-native speakers of English.

The inter-annotator agreement on our task was very high
(84.5 % on question (1) and 73% on question (2)). The dis-
agreement on question (2) was often for ambiguous queries
like “insider tv show cbs”, where one annotator considered
our prediction of “hollywood” as a location to be correct,
since that is the location of the CBS studios. Similarly the
query“city of angels tv.com”was a source of confusion, since
the location in the show is Los Angeles, but the show itself
is a national television show.

Of the queries that were marked location specific the accu-
racy of predicting a location was 84.5% 5, providing further
confidence to support the rough evaluation of the previous
section. However, only half of the queries of the sampled
679 were marked as location specific. Some of the error may
be attributed to the explicit geo queries, obtained by using
the black-box tool [15], but the remaining was due to the
ad-hoc rules used for generating the data-sets used for pa-
rameter tuning. A cleaner data-set or better rules may help
improve the accuracy of prediction significantly. Neverthe-
less even this noisy data set can be used to train parameters
with pretty high accuracy as we have seen.

6. CONCLUSION AND FUTURE WORK
We addressed the challenging task of automatically dis-

covering user’s specific geo intent in the web search at the
fine-grained geo level – city/location level, even when the
explicit geo information is missing. We employ geo features
at fine levels of granularity extracted from large scale web
search logs for this task. We propose two different ways for
extracting geo features: one is through building city level geo
language models and calculating a query’s city generation
posteriors, the other one is through analyzing geo informa-
tion units and extracting rich GIU features at the city level.
These geo features are used for the construction of classifiers
in our geo intent analysis system, which detect and discover
users’ implicit geo intent at the city level, differentiate be-
tween different localization capabilities of geo-intent queries,
and predict cities in location-specific queries.

For each individual step, we design a learning task for
evaluating the performance; and in each task, we use min-
imum human labeling effort to supervise the data and la-
bel generation to automatically obtain large-scale learning
samples for training and testing. We leverage click-through
data as a surrogate for human labels. Experimental results
demonstrated the effectiveness of using city language model
features and GIU features for all three learning tasks.

We can explore active learning approaches [17] to select a
relatively small number of samples for human judgment and
automatically learn better rules to get clean location-specific
query candidates, to generate more accurate CLMs. We can
also exploit other information in web search logs that may
help for this task, e.g. user clicks on the local modules of
the returned web pages given a query. We can also try to
build our models at a zip-code level to disambiguate between
locations that have the same name in the future. We can
also consider locations beyond the US for future work.

We can incorporate our city language models into retrieval
models. We are also interested in using the geo intent anal-
ysis results for helping to provide better query suggestions.
5When we had two judgments for a query we arbitrarily used one.
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