
ECLAIR: AN EFFICIENT CROSS LAYER ARCHITECTURE FOR
WIRELESS PROTOCOL STACKS

Vijay T. Raisinghani
�

Tata Infotech Ltd.(ATG) and
KR School of IT

IIT Bombay
rvijay@it.iitb.ac.in

Sridhar Iyer
KR School of IT

IIT Bombay
sri@it.iitb.ac.in

Abstract

Seamless mobility across heterogeneous mobile wireless
technologies is now essential as mobile subscribers demand
full and cost-effective wireless network coverage. Under
such mobility conditions the layered protocol stack is in-
efficient. Significant research has been done for cross layer
optimizations of the protocol stack. To enable rapid deploy-
ment of existing and new cross layer optimizations an archi-
tecture for cross layer optimizations is essential.

In this paper, we present our architecture ECLAIR which
can serve as a blueprint for development of cross layer feed-
back systems. ECLAIR consists of two main components –
optimization subsystem and tuning layers.The optimization
subsystem contains protocol optimizers that effectuate cross
layer optimizations. The protocol optimizers interact with
the existing stack through the tuning layers.

In ECLAIR we exploit the fact that stack behavior is de-
termined by the values stored in various protocol data struc-
tures. Our architecture facilitates easy manipulation of these
values stored in the protocol data structures. To the best of
our knowledge, ECLAIR is the first generic architecture for
cross layer feedback.

1 Introduction

The new wireless networks – 3G and beyond [5, 12] – are
expected to be all-IP and using standard protocol stacks, e.g.
TCP/IP[11] (Transmission Control Protocol/Internet Proto-
col), to ensure interoperability.

The standard protocol stacks are architected[4] and im-
plemented in a layered manner for the purpose of modular-
ity. However, such layered stacks function inefficiently in
mobile wireless environments[14]. This is due to the highly

�

Author is Ph.D student at IIT Bombay, sponsored by Tata Infotech Ltd.

variable nature of wireless links and the resource-poor na-
ture of mobile devices. To enhance the performance of these
protocol stacks, significant research has been done for cross
layer optimizations [2, 15, 6, 1, 9, 8]. See [7] for a survey
on cross layer optimizations. Some examples of cross layer
feedback are: (1) TCP packet loss information communi-
cated to the application layer to enable application adapta-
tion, (2) link/MAC layer tuning the transmit power of the
physical layer based on the bit-error rate information from
the physical layer.

As new wireless networks are deployed, to enhance the
performance of the protocol stacks and to enable seamless
mobility multiple cross layer feedback algorithms would be
required. These algorithms would need to be easily inte-
grated with the existing stack. An architecture for cross
layer feedback would help standardize and ease the devel-
opment, deployment and maintenance of these cross layer
optimizations. An architecture for cross layer feedback is
still an open research question.

We propose an architecture ECLAIR which provides a
blueprint for designing and implementing cross layer feed-
back in an easy and efficient manner. Figure 1 shows a top-
level view of our architecture. The main components are the
Optimizing SubSystem (OSS) and the Tuning Layers (TL).
OSS is the cross layer engine. It contains many Protocol
Optimizers or POs. POs are the intelligent components of
ECLAIR. The TLs provide the necessary APIs to the POs
for interacting with various layers and manipulating the pro-
tocol data structures.

The POs take input from various layers and other device
entities like the battery and decide the optimizing action to
be taken. The optimizing action could be to reduce power
consumption or reduce packet losses, etc. The optimizing
actions are achieved by modifying existing protocol stack
behavior. The POs manipulate the values stored in the pro-
tocol data structures so as to modify the protocol stack be-
haviors.



This paper is organized as follows: the design goals for
a cross layer architecture, an overview of ECLAIR and its
salient features are presented in section 2; details about
ECLAIR are presented in section 3; in section 4 we discuss
some example POs in detail; in section 5 we summarize our
contributions.

(e.g.
IP)

(e.g.
TCP)

(e.g.
802.11)

(e.g.
802.11)

User

Application

Network

MAC

PHY

ATL

TTL

MTL

PTL

TL = Tuning Layer
O

pt
im

iz
in

g 
S

ub
sy

st
em

UTL

NTL

Transport

Figure 1: ECLAIR architecture

2 ECLAIR Overview

2.1 Design Goals

From the software engineering perspective cross layer feed-
back is essentially a modification of the existing protocol
stack. However, this would not be a one-time or ad hoc
modification. As new wireless technologies are deployed,
newer cross layer feedback ideas would be required. Multi-
ple cross layer feedback algorithms would need to be easily
integrated with the existing stack. In light of this, the fol-
lowing are the design goals for a cross layer architecture:

� Rapid prototyping: Enable easy development and de-
ployment of new cross layer feedback algorithms, in-
dependent of existing stack.

� Minimum intrusion: Enable interfacing with existing
stack without any significant changes in the existing
stack.

� Portability: Enable easy porting to multiple systems.

� Efficiency: Enable efficient implementation of cross
layer feedback.

In the next section we present an overview of ECLAIR
and discuss how it achieves the stated design goals.

Protocol
Optimizer−1

Protocol
Optimizer−2

Protocol
Optimizer−3

Protocol
Optimizer−n

register notifyoptimizing action

Implementation

Im
p1

Im
p3

Li
nu

x

U
ni

x

N
et

B
S

D

specific Generic

Im
p2

IPTL

leIPTL

App1 TL

App2 TL

TCPTL

UDPTL

Mobi−

802.11

802.11

MAC TL

GPRS
PHY TL

GPRS
MAC TL

PHY TL

SubSystem
Optimizing

Application TL

Transport TL

Support TL
Mobility

Network TL

P
hy

 T
L

M
A

C
 T

L

Figure 2: ECLAIR architecture details

2.2 System Overview

The design goals discussed above indicate the need for sep-
arating the functionality of cross layer feedback into a sepa-
rate system which would interact with the existing stack.

For enabling rapid prototyping of new cross layer feed-
back algorithms, ECLAIR splits the cross layer system into
two subsystems – Tuning Layers and Optimizing SubSys-
tem. Figure 1 shows the overview and 2 shows the details of
ECLAIR.

� Tuning Layers (TLs): The purpose of a tuning layer
is to provide an interface to the internals of a protocol.
E.g.: TCP tuning layer (TCPTL) is provided for TCP.
Since the functionality for manipulating protocol data
structures is built in to the TLs, no modification is re-
quired to the existing protocol stack. This facilitates
incorporation of new cross layer feedback algorithms
with minimum intrusion. Further, for the purpose of
portability each TL is subdivided in to a generic and an
implementation specific sublayer. For ease of reference
we group the tuning layers according to their function.
E.g.: Transport protocol tuning layers such as TCPTL
for TCP, UDPTL for UDP, etc. are collectively referred
to as Transport Tuning Layer.

� Optimizing SubSystem (OSS): The optimizing sub-



system contains the algorithms and data structures for
cross layer optimizations. It is the cross layer engine.
The OSS contains many Protocol Optimizers (POs). A
PO contains the algorithm for a given cross layer op-
timization. The OSS executes concurrently with the
existing protocol stack and does not increase the stack
processing overhead.

Besides meeting the design goals, ECLAIR provides ad-
ditional benefits. In the next section we highlight the salient
features of ECLAIR.

2.3 Salient Features

The design of ECLAIR enables easy deployment and con-
trol of cross layer feedback optimizations, enables inter-
action among multiple protocol stacks and facilitates user
feedback. We present below the salient features of ECLAIR.

� Event Notification: The TLs provide the facility for
POs to register for interesting events at a layer.

� Switch on/off : Since the cross layer system is separate,
it can be easily/dynamically switched on or off. Also,
individual POs may be switched on/off.

� Seamless mobility: ECLAIR can be used to enable
seamless mobility on the mobile devices through POs
that can monitor and control multiple protocol stacks.

� User Tuning Layer: Besides the layer specific TLs,
ECLAIR also has a User Tuning Layer (UTL). UTL
allows a device user or an external entity e.g.: a dis-
tributed algorithm or a base station, to tune the device
behavior.

In the next section we present the details of ECLAIR.

3 ECLAIR Details

In the previous section we provided an overview of
ECLAIR. In this section we discuss the internals of ECLAIR
components.

3.1 Tuning Layers (TLs)

ECLAIR provides one TL for each protocol. For the ease
of reference the tuning layers having similar function are
grouped together. E.g.: TCP tuning layer, UDP tuning layer,
etc. are collectively referred to as Transport Tuning Layer.
For the purpose of portability, a TL is subdivided into a
generic tuning sublayer and an implementation dependent
access sublayer. The generic tuning sublayer provides an

implementation independent interface to a specific proto-
col. The implementation dependent sublayer provides im-
plementation specific interfaces for a protocol. E.g.: Since
the TCP implementations in Unix, NetBSD and Linux are
different, there are separate components for each of the TCP
implementations. The implementation specific layer has
knowledge about the protocol implementation in a partic-
ular operating system and is used to manipulate or monitor
the values in that protocol’s data structures.

The TLs provide an interface to the POs for registering for
events. For e.g. a PO can register for handoff events with the
MobileIP TL. Multiple POs can register for the same event
with a TL. The TL monitors the protocol for the events for
which the POs have registered. When an event occurs, the
TL notifies the registered POs.

For effecting a protocol optimization a PO would invoke
the API provided by the generic sublayer of a protocol tun-
ing layer (e.g. TCPTL). The generic sublayer would in-turn
invoke the API of the implementation specific access sub-
layer (e.g. TCP on Linux). We present some detailed exam-
ples of POs in section 4.

So far we have explained the internal details about the TL.
Next, we present some APIs of two TLs.

get_tcp_state() set_tcp_state()

get_retx_timer()

get_recv_win()

set_retx_timer()

set_recv_win()

get_rtt() set_rtt()

register()get_process_block_head()

get_delay_requirement()
get_bandwidth_requirement()

register()

register()

register()get_contention_window()
set_contention_window()
get_rts_cts_threshold()
set_rts_cts_threshold()
get_fragmentation_threshold()
set_fragmentation_threshold()

register()get_transmit_rate()
set_transmit_rate()
get_transmit_power()
set_transmit_power()

get_active_interface()
set_active_interface()

register()

register()
set_application_priority()

80
2.

11
M

ob
−

ile
IP

IP
A

pp
l−

ic
at

io
n

U
se

r
T

C
P

80
2.

11
P

hy
M

A
C

Figure 3: Tuning layer APIs: Examples

3.1.1 Tuning Layer APIs

MAC Tuning Layer: The MAC tuning layer or MTL pro-
vides interfaces for the various MACs. For e.g.: it provides
an interface for 802.11, GPRS or CDMA MAC.



Due to paucity of space we only present some example
generic APIs for 802.11 [3] MAC (see figure 3). register
API is used for registering for an event at the 802.11 MAC.
Other APIs are provided for reading and changing the
contention window, RTS/CTS threshold and fragmentation
threshold.

Transport Tuning Layer: The Transport tuning layer
OR TTL provides interfaces for various transport protocols.
We discuss TCPTL as an example. In a typical operating
system, on system startup, TCP creates the head of its
protocol data structure. See [13] for details on TCP/IP
implementation in NetBSD. This information is accessed by
TCPTL for subsequent manipulation of the data structure
values. The API get protocol block head() (see
figure 3) is used to get the head of the TCP data structure.
Other APIs are used for manipulating the receiver window,
retransmission timer, etc.

Figure 3 shows some more sample generic APIs for some
of the TLs.

3.2 Optimizing SubSystem (OSS)

The protocol optimizers (POs) in the OSS contain the cross
layer feedback algorithms. The PO decides the optimizing
action to be taken based on the events occurring at the vari-
ous layers and the current state of the protocol layer which
is to be modified (e.g.: TCP may be in congestion avoid-
ance or slow start phase). The optimizing action modifies
the target protocol’s behavior.

As can be seen the POs interact with various layers for
events, state information and optimizing actions. This in-
teraction is done through the tuning layers (TLs). The POs
register with the respective layer’s TL for getting informa-
tion about events at that layer.

Example PO: We present an example PO to illustrate the
working of a PO. We describe a Receiver Window Control
PO that apportions download link bandwidth among appli-
cations based on their priority numbers. The PO registers
with the User TL for the event of user changing the ap-
plication priorities. Whenever this event occurs, the PO is
notified. The PO’s algorithm maps the new priority value
to a new receiver window value for the application’s TCP
connection. This in turn changes the application’s band-
width share on the download link. The PO invokes the
following TCPTL APIs (see figure 3) get recv win() and
set recv win(). This example and two others, about network
layer feedback to TCP and seamless mobility, are discussed
in detail the next section.

inpcb{}

tcpcb{}

TCP data structures

User (device user)

TCP

5b

4b 4a

5a

2b
3

1

On event 3

{

}

Existing stack
modules

Cross layer feedback
modules

UTL

User Tuning Layer

(OSS)

Optimizing
Subsystem

TCPTL

2a

ECLAIR

RWC PO

Figure 4: ECLAIR architecture: User feedback

4 Optimizing SubSystem Operation

In this section we show three examples which use ECLAIR.
The first two examples are about cross layer feedback to
TCP from the user and network layer (MobileIP). The last
example describes how ECLAIR supports seamless mobil-
ity.

4.1 User feedback

Users can provide useful feedback to improve the perfor-
mance of the stack or the user experience[9, 8]. One ex-
ample is when a user may want to control the throughput
of the running applications. E.g.: a user may want one file
download to get more bandwidth than another.

Algorithm: One method of controlling the application’s
bandwidth share is through manipulation of the receiver
window of its TCP connection [9]. The user assigns some
priority number to each application. The sum of the receiver
windows of all applications

�
is assumed to be set according

to the available bandwidth. An application’s priority number� is used to calculate its receiver window, ��� ��� ���
	��
[9].

Implementation: The use of ECLAIR for the above PO
(Receiver Window Control PO or RWC PO) is shown in fig-
ure 4.

The explanation of the sequence shown in figure 4 is as
follows: (1) TCPTL gets protocol block head information
at system start. (2a),(2b)PO registers for user events. User
changes priorities for running applications. (3) Application
and respective priority information is passed to the RWC
PO. (4a),(4b) Current receiver window/buffer information is
collected via TCPTL. This information is used to recalculate



the new receiver window values for the various applications.
It is assumed that the application can be identified by the
sockets. (5a),(5b) The receiver window values are set for
each application.

Network info

1a

inpcb{}

tcpcb{}

5b

4b

1b
3

5a

4a

modules
Existing stack

MobileIP

TCP

TCP Tuning Layer

MITL

MobileIP Tuning Layer

Optimizing
Subsystem
(OSS)

TCP data structures

IP data structures

On event 3

{

}

TCPTL

Cross layer feedback modules

2a
2b

ECLAIR

ATCP PO

Figure 5: ECLAIR architecture: Adapted TCP

4.2 Adapted TCP

TCP is known to perform poorly when there are disconnec-
tions since it misinterprets disconnections as network con-
gestion and decreases its sending rate [14]. TCP perfor-
mance can be improved through feedback from other layers.

Algorithm: Feedback from the network layer about dis-
connections can be used to adapt TCP behavior. A number
of such improvements are proposed in [10]. One of the im-
provements suggested is: if disconnection occurs and if the
congestion window(cwnd) is open, then cancel TCP retrans-
mission timer and do not reduce the cwnd. On reconnection,
use the earlier cwnd and set a new retransmission timer. This
action results in improved TCP throughput since unneces-
sary reduction in cwnd is avoided.

Implementation: The use of ECLAIR for the above PO
(Adapted TCP PO or ATCP PO) is shown in figure 5.

The explanation of the sequence shown in figure
5 is as follows: (1a),(1b) The data structure loca-
tion information is given to the respective TLs at
system startup. (2a),(2b)PO registers for disconnec-
tion(reconnection) event. MITL monitors the network
status for disconnection(reconnection). (3) Disconnec-
tion(reconnection) occurs and ATCP PO is notified.
(4a),(4b) Current state of TCP is queried via TCPTL and
the action is determined (e.g. changing the value of the

TCP retransmission timer). (5a),(5b) The TCP retransmis-
sion timer is set to the new value determined in step 4.

4.3 Seamless Mobility PO

Seamless mobility means the continuation of a session on a
mobile device even as it roams across networks provided by
heterogeneous wireless technologies. The key requirement
is that the session should continue uninterrupted. We discuss
an example PO for seamless mobility between GPRS and
WLAN networks.

Algorithm: For achieving seamless mobility the MACs
of the GPRS and 802.11 interfaces are monitored for verti-
cal handoffs. When the network changes the corresponding
wireless interface is made active in the IP layer.

Implementation: We call this the Seamless PO or SPO.
The PO may register with the MAC TLs of GPRS and
802.11. The SPO thus gets information about vertical hand-
offs. When a handoff occurs , the SPO changes the active
interface at the IP layer (e.g.: if the mobile moves from a
802.11 WLAN to a GPRS network, the GPRS interface will
be made active). For this the SPO accesses the data struc-
tures in IP using the IP tuning layer. A PO of this type is
shown in figure 2.

Other SPOs for handoff across other types of networks
can be along the above lines. Details are beyond the scope
of this paper.

5 Summary

In this paper, we presented ECLAIR an architecture for
cross layer feedback. ECLAIR separates the cross layer
system from the existing protocol stack. ECLAIR further
subdivides the cross layer system into components. The op-
timization algorithms form the optimizing subsystem. The
functionality for manipulating and accessing the existing
protocol stack is built into the tuning layers. The tuning
layers are further subdivided into a generic and implementa-
tion specific part to support portability. Their is no process-
ing overhead on the existing stack since the optimizing sub-
system executes in parallel to the protocol stack. ECLAIR
provides a structured approach to cross layer feedback and
enables rapid deployment of new cross layer feedback al-
gorithms. Eventually, as these cross layer algorithms are
widely accepted they can be incorporated into the next ver-
sion of the stack.

Our future research shall focus on validating and further
refining ECLAIR.



References

[1] R. Cáceres and L. Iftode. Improving the Performance of
Reliable Transport Protocols in Mobile Computing Environ-
ments. IEEE JSAC, 13(5):850–857, June 1995.

[2] J.-P. Ebert and A. Wolisz. Combined Tuning of RF power
and Medium Access Control for WLANs. Mobile Networks
and Applications, 6(5):417–426, 2001.

[3] IEEE Std 802.11-1997. Wireless LAN Medium Access Con-
trol (MAC) And Physical Layer (PHY) Specifications, 18
Nov. 1997.

[4] ITU. Information technology - OSI - Basic Reference Model,
July 1994. X.200.

[5] A. Jamalipour and S. Tekinay, editors. Fourth Generation
Wireless Networks and Interconnecting Standards, volume 8
of IEEE Personal Communications. Oct. 2001.

[6] M. Methfessel, K. F. Dombrowski, P. Langendörfer,
H. Frankenfeldt, I. Babanskaja, I. Matthaei, and R. Krae-
mer. Vertical Optimization of Data Transmission for Mo-
bile Wireless Terminals. IEEE Wireless Communications,
9(6):36–43, 2002.

[7] V. T. Raisinghani and S. Iyer. Cross-layer Design Optimiza-
tions in Wireless Protocol Stacks. Computer Communica-
tions (Elsevier), 2003.

[8] V. T. Raisinghani and S. Iyer. User Managed Wireless Pro-
tocol Stacks. �����

�
ICDCS, Providence, RI, USA, May 2003.

Poster.
[9] V. T. Raisinghani, A. K. Singh, and S. Iyer. Improving

TCP Performance over Mobile Wireless Environments using
Cross Layer Feedback. In IEEE ICPWC, New Delhi, India,
Dec. 2002.

[10] A. K. Singh and S. Iyer. ATCP: Improving TCP Per-
formance over Mobile Wireless Environments. In IEEE
MWCN, Stockholm, Sweden, Sept. 2002.

[11] W. R. Stevens. TCP/IP Illustrated, Volume I, The Protocols.
AWL, 1994.

[12] UMTS Forum. Glossary. http://www.umts-
forum.org/glossary.asp, 2003.

[13] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume
II, The Imlpementation. AWL, 1995.

[14] G. Xylomenos and G. C. Polyzos. Internet Protocol Perfor-
mance over Networks with Wireless Links. IEEE Network,
13(4):55 – 63, July/Aug. 1999.

[15] G. Xylomenos and G. C. Polyzos. Quality of Service Sup-
port over Multi-Service Wireless Internet Links. Computer
Networks, 37(5):601–615, 2001.


