
Distributed Termination Detection for Dynamic

Systems

D.M. Dhamdhere Sridhar Iyer E.K.K.Reddy
Dept of Computer Science

IIT Bombay
Mumbai, INDIA

Abstract

A symmetric algorithm for detecting the termination of a distributed computa-
tion is presented. The algorithm does not require global information concerning the system and
does not assume any communication features barring finite delays in the delivery of messages.
It permits dynamic creation and destruction of processes participating in the computation. It
provides for destruction of a process by external processes, such as the OS kernel. It also pro-
vides for external processes spontaneously joining an ongoing computation. Proofs of safety and
liveness are provided.

Keywords Distributed algorithms, Distributed computation, Distributed termination,
Dynamic systems, Termination detection.

1 Introduction

Termination detection, i.e. determining whether a distributed computation being performed in a
system has terminated, is a fundamental problem in distributed programming. The distributed
computation being performed is known as the basic computation and the inter-process messages
used for implementing it are known as the basic messages. For termination detection, an additional
computation known as the control computation is superimposed on the basic computation. The
messages used to implement the control computation are known as the control messages.

A process belonging to the computation is either live or dead. A live process is in the
active state if it is currently engaged in the basic computation, or passive state if it is currently not
performing any computation. An active process can send or receive basic messages, create other
processes, become passive, or destroy processes (including itself). A passive process can receive
basic messages, in which case it re-enters the active state, or it may be killed by another process.
A killed process becomes dead and ceases to exist. Such a process can neither send or receive
messages of any kind, nor become live or create new processes. In our work, we assume that a
dead process vanishes without a trace – in particular, that it ceases to participate in the control
computation.

A distributed computation is said to have terminated when all its live processes are in
the passive state and no basic messages are in transit. This is called the distributed termination
condition (DTC). The control computation performed by the processes for detecting the termination
constitutes the termination detection algorithm. In this paper we develop a termination detection
algorithm for dynamic systems, i.e. for systems permitting creation and destruction of processes.
The algorithm is symmetric, and requires only the live processes of a computation to participate in
it. The algorithm does not require global information concerning the system, and does not assume

1



any communication features barring finite delays in the delivery of messages. It also provides for
the inclusion of external processes into an ongoing computation.

1.1 Other Work

The distributed termination problem has been extensively studied. One of the earliest works in
this area is an algorithm by Dijkstra and Scholten, based on the diffusing computation model [7].
This approach was later extended by Misra and Chandy [22] and Cohen and Lehmann [5]. The
algorithms in this area can be broadly classified as “symmetric” and “asymmetric” algorithms.
In the symmetric algorithms [9, 12, 14, 24, 26] all the processes execute identical code and any
process can detect the termination. The asymmetric algorithms [7, 8, 11, 17, 20, 22, 29] rely on
a pre-designated process for termination detection. Termination detection algorithms may also be
divided into three classes depending upon the topology employed for the control communication,
viz. Hamiltonian cycle [8, 24, 26], spanning tree [2, 5, 10, 11, 17, 19, 20, 29] and general networks
[7, 9, 12, 14, 15, 21, 22, 27].

In the algorithms of [5, 7, 22], the processing of messages used for termination detection
results in the slowing down of the actual computation. The algorithms of [12, 14, 17, 24] assume
the existence of local clocks. These algorithms incur the overheads of synchronizing the local clocks
using messages containing time-stamps [18]. The algorithms of [9, 24, 26] assume global information
in terms of either the diameter of the network or the number of processes. In [16, 17, 20], the
processes use the technique of message counting.

1.2 Dynamic Systems

Most of the algorithms mentioned above work only for static systems, i.e. for systems comprising of
a fixed set of processes. There is relatively less work on dynamic systems, where processes may be
created as well as destroyed while the computation is in progress. The task of termination detection
in dynamic systems is more difficult because the exact number of processes participating in the
computation is not known at any instant of time. Also, since processes may destroy themselves,
the algorithm has to ensure that (i) the computation does not get partitioned, and (ii) a process
capable of detecting termination always exists in the system. As a result, termination detection
algorithms for dynamic systems are more complex than those for static systems.

The algorithms of [5, 7, 22] are concerned with special cases of dynamic systems, viz.
systems with synchronous communication in which processes may be created but not destroyed.
Lai [17] gives an algorithm for dynamic systems where processes may be created and destroyed,
the communication may be synchronous or asynchronous and messages need not be delivered in
the FIFO order. However, the algorithm is asymmetric. It also requires a process to participate in
termination detection even after it has been destroyed.

1.3 Overview of the paper

We develop a symmetric termination detection algorithm for dynamic systems permitting unre-
stricted creation and destruction of processes. A distributed computation is assumed to be struc-
tured in the form of a set of concurrent processes {Pi}, with each process performing a specific
computational task. Processes can be created or destroyed during the course of the computation.
A process becomes passive on completing the computational task assigned to it, and awaits one of
the following events : (a) assignment of a new computational task (through the receipt of a basic
message from some other process), (b) receipt of a message killing it, or (c) declaration of global
termination. In case (a), the process becomes active again, in case (b), it informs other processes
of its destruction and dies, while in case (c), it simply terminates. The interprocess communication

2



is assumed to be asynchronous with arbitrary but finite delays and possible non-FIFO delivery of
messages.

Each process maintains a data structure called the neighbour set (NB) to store the
identities of its neighbours. Whenever two processes Pi and Pj communicate with one another,
their NB’s are updated with each other’s id’s. Similar actions are performed when process Pi

creates process Pj . When a process Pi kills process Pj , or Pj kills itself, Pj informs each Pk ∈ NBj

of its destruction. This leads to the deletion of Pj from NBk. Certain new processes may be added
to NBk to avoid network partitioning. This ensures that all existing processes participate in the
termination detection.

Termination detection is performed in a symmetric manner. The basic model is that
of a diffusing computation [7]. Every time a process becomes passive, it initiates termination
detection by sending a termination detection (TD) message to each process in its NB. To limit the
communication overheads, each TD message contains a broadcast set (BS) containing the id’s of
all processes to which the TD message has been (or is being) sent. A passive process receiving the
message propagates it to those of its neighbours which are not already in the BS. It replies with a
ready to terminate (RT) message only when each such neighbour replies with an RT, or when it has
no neighbours to whom it should send the termination detection message. The process initiating
the termination wave concludes that termination has occurred when it receives the RT messages
from all its neighbours.

Each process has an unique process identification number (PI) which is an ordered
pair (sequence number, process id). Sequence numbers are used analogous to synchronized logical
clocks. The sequence number of a process is initially zero, gets incremented by one every time the
process initiates termination detection and is updated whenever a control message with a higher
sequence number is received. A process ignores a TD message if it is active, or has a PI larger
than that of the initiator of the TD message. This ensures correctness of termination detection
and also minimizes the control message traffic. Termination is thus detected by the process with
the highest identification number.

We develop our algorithm in two stages. In the main algorithm, the receiver of a basic
message is required to send an acknowledgement to the sender. Each process Pi maintains a counter
(CTRi) to record the number of basic messages sent by it for which no acknowledgements have
been received. A process cannot become passive, or be killed, as long as its CTR is non-zero.
Proofs of the safety and liveness properties of the algorithm are provided.

In the second stage (section 6), we extend the algorithm to eliminate the need for
acknowledgements to the basic messages, leading to a more efficient algorithm. The proofs of the
main algorithm are shown to be applicable to the extended algorithm as well. Both, the main and
the extended algorithms, allow killing of a process by external processes that are not part of the
computation, viz. killing by the OS kernel. An extension permitting new processes to spontaneously
join ongoing computations is also reported. This has particular relevance to multi-file, multi-client
transactions in data base systems [28].

2 System Model

A distributed computation is a pair

(PMSET , CG), where

PMSET is the non-empty set of permanent processes with which the system begins its execution.
A permanent process exists during the entire lifetime of the computation, i.e. it cannot be
killed.

CG = (P, E ) is an undirected graph, wherein P is a finite set of processes {Pi | Pi is live}, and
E is a set of edges {(Pi,Pj) | Pi ∈ NBj , Pj ∈ NBi}.

3



At system initiation, CG = (PMSET, E0), where E0 = {(Pi, Pj) ∀ Pi, Pj ∈ PMSET},
i.e. all permanent processes are connected to each other. A new edge is added to CG when two
processes communicate for the first time. When a new process Pi is created, a vertex Pi and an
edge between Pi and its creator are added to CG. When a process is destroyed, the corresponding
vertex and all edges connected to it are removed from CG and some new edges are added to avoid
system partitioning. This is explained further in section 3.1.

2.1 Interprocess Communication

The physical network for interprocess communication is a connected single component graph with
bi-directional links. A message contains the identity of its sender and receiver, and may be of
variable length. Messages are delivered within an arbitrary but finite delay, and not necessarily in
the order in which they were sent.

If a basic message is sent to a non-existent process, the system sets a not delivered
(NOTDEL) flag and returns the message to the sender. It is assumed that a sender process would
take appropriate action in such a situation.

2.2 Features of the processes

Each process Pi maintains the following information :

CLRi : Colour, i.e. state, of process Pi. The possible values for colour are :

• White : The process is active.

• Black : The process is passive, has propagated a ‘termination detection’ (TD) message
and is waiting for replies.

• Red : The process is passive and has sent a ‘ready to terminate’ (RT) reply to a ‘termi-
nation detection’ (TD) message.

Seqi : Current sequence number of Pi.

Si : Id of some permanent process. Si is known as the static of Pi. Si of a permanent process is
its own id, i.e. i itself.

NBi : Set of id’s of the neighbours of Pi.

CTRi : Count of basic messages sent by Pi for which no acknowledgement has been received.

PARi : Id of the process from which the latest termination detection message was first received
by Pi.

Deadseti : Set of all processes which are known to be dead. (In the main algorithm, this infor-
mation is maintained only by the permanent processes.)

TDSETi : The set of processes who have yet to reply with an RT to the latest TD message
propagated by Pi.

LPIi : Identification number in the latest control message propagated by Pi. This is the ordered
pair (Seqj , idj) of the originator process Pj of the message, at the time when the message was
originated.

Two relations are defined over the process identification numbers in the system. These
are :

4



Greater than (‘·>’) defined as
(Seqi, i) ·> (Seqj , j) ⇐⇒ ((Seqi > Seqj)

or ((Seqi = Seqj) and (i > j)))

Same as (‘ .=’) defined as
(Seqi, i)

.= (Seqj , j) ⇐⇒ ((Seqi = Seqj) and (i = j))

The greater than relation defines a total order which is useful in restricting the communication
overheads. For simplicity, in the following we will use the symbols ‘>’ and ‘=’ for ·> and .=,
respectively.

2.3 Control messages

The termination detection algorithm uses the following control messages.

Acknowledgement (ACK) message : (sender, (ACK, Seqsender), receiver) is an acknowledge-
ment that sender received a basic message from receiver. Seqsender is the sequence number
of sender at the time of sending the acknowledgement.

Termination Detection (TD) message : (sender, (TD, PIi, BSsender), receiver) is used to
broadcast the passive condition of some process i. sender is the process sending the message
to receiver. BSsender is the set of processes to whom the TD message is being propagated or
has already been propagated.

Ready for Termination (RT) message : (sender, (RT , PIi), receiver) indicates that sender,
and each process to which it propagated the TD message with identification number PIi, is
ready to terminate.

Kill Process (KP) message : (sender, (KP, PIsender), receiver) indicates that sender wants
receiver to kill itself.

Killed Myself (KM) message : (sender, (KM, PIsender, Ssender, NBsender), receiver) indi-
cates that sender has killed itself.

Terminate (TER) message : (sender, (TER, BS), receiver) indicates that the processes en-
gaged in the computation may terminate.

3 The Main Algorithm

In the main algorithm, we assume that the receiver of a basic message sends an acknowledgement
to the sender. Further, each process Pi maintains a counter (CTRi) to record the number of basic
messages sent by it, that are yet to be acknowledged. Pi can become passive, or be killed, only
when CTRi is zero.

Depending on its state, the functioning of each process is determined by a set of rules.
Each rule is atomic, i.e., a process may not be interrupted while following a rule. Figure 1 gives
the state transition diagram of a process. Figures 2, 3 and 4 give the rules followed by white, black
and red processes respectively. Control messages have the formats described in section 2.3.

3.1 Important features of the algorithm

Note the following important features of the algorithm :

5



&%
'$

W &%
'$

B

&%
'$

R

&%
'$

T

receives basic msg
�

initiates TD msg

�
�

�
�

A
A
A
AU

A
A
A
A

sends
basic
msg

�
�
�
��

�
�

�
�

A
A

A
AK

propagates
later TD
msg

receives
basic
msg

@
@

@
@

@
@

@
@

@
@

@@I

sends
RT
msg

�
�

�
�

�
�

�
�

�
�

��	
propagates
later TD
msg

�
�

�
�

�
�

�
�

�
�

���A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AAU

sends
KM
msg

?

sends
KM
msg

receives
TER
msg

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

sends
KM/TER
msg

Process States

W

B

R

T

: White

: Black

: Red

: Terminated

Figure 1: Process State Transition Diagram

6



1. The algorithm makes no specific assumptions about the network actions when the destination
process of a control message is found to be dead. Appropriate processing of KM messages
can handle this situation. Consider a TD message sent by process Pi to process Pj , which is
killed in the meanwhile. Sometime in future, Pi (if it still exists) will receive the KM message
indicating that Pj has been killed. Now, Pi simply deletes Pj from its TDSET (Rules B5,
R5).

2. When a process sends an acknowledgement to a basic message, it includes its own sequence
number in the acknowledgement. This is useful in avoiding spurious declaration of termi-
nation. Consider a situation in which a process Pi sends a basic message to a red process
Pj which has replied to a TD message TD∗ with an RT. The sequence number of Pj now
equals the sequence number in TD∗ (rules B2, R2). On receiving the acknowledgement from
Pj , Pi updates its own sequence number if necessary (rule W2(e)). When Pi turns black , its
sequence number becomes greater than that in TD∗ (Rule W6). Now if Pi receives TD∗ some
time in the future, it will ignore the same.

3. When a process is killed,

(a) edges are added between its static process and each of its neighbours. This ensures
continued connectivity of the system graph. The fact that the static process is connected
to all other permanent processes in the system is useful when many processes are killed
within a short interval.

(b) all its neighbours and all permanent processes update their sequence numbers and if pas-
sive, initiate TD messages with the new sequence numbers. These actions are necessary
for the following reason : The killed process may have had the highest sequence number
(and hence the highest PI) in the system. Thus, it may have rejected TD messages
initiated by other processes in the system, and/or may itself have been in the process of
termination detection at the point of its killing. Following its removal from the system, a
process with a higher sequence number must initiate TD messages to ensure termination
detection.

4. When an external process kills a process of the computation, action corresponding to the
receipt of a KP message is taken.

4 An example

The example presented in this section illustrates the following features of the system’s functioning
:

(i) How activation of a red process (i.e. a process which has replied to a TD message with an
RT) does not lead to a false declaration of termination,

(ii) How the system graph is transformed to preserve connectivity when a process is killed, and

(iii) How distributed termination is concluded by the algorithm.

Figure 5 shows a system consisting of three processes. A is the only permanent process,
hence it is the static for C and D. Let processes A and D be white, process C be black and let no
basic or control messages be in transit. Let process A turn black and let SeqA = x such that x is
the largest sequence number in the system and PIA = (x, A) is the maximum of all PI’s in the
system. The TD message from A is received by C which replies with an RT message and turns red .
Hence PIC .Seq = PIA.Seq = x (Rule B2). Now, consider the following sequence of events :

7



����
��
��

A
@

@
@@

�
�

��

����
C

����
D

Figure 5: Initial configuration of the system

����
��
��

A
@

@
@@

�
�

��

����
C

����
D

����
F

Figure 6: System after creation of process F

1. C receives a basic message from D, sends ACK and becomes active.

2. C creates a new process F, and sets SeqF = SeqC (Rule W3). The system now looks as shown
in Figure 6.

3. D receives the ACK for the basic message sent to C and sets SeqD = SeqC = x (Rule W2(e)).

4. D becomes black and sends its own TD messages with PI = (x + 1, D) to C and A (Rule
W6).

5. D receives the TD initiated by A and ignores it because its own PI is higher. (See steps 3
and 4.) Hence A cannot conclude termination, thus illustrating feature (i) mentioned above.

6. C kills itself sending KM messages to A, D and F (Rule W5).

7. A receives the KM message from C, and adds F to NBA. It sets SeqA = x + 1, initiates new
TD messages and sends them to D and F (Rule B5).

8. D receives the KM message from C. C is now removed from TDSETD. No processes are
added to NBD, since SC = A is already in NBD.

9. A receives the TD sent by D (with PI = (x + 1, D)), and ignores it because its own PI is
higher (Rule B2).

10. F receives KM from C with PI = (x, C). It sets PIF .Seq = x + 1 and adds A to NBF (rule
W2(c)). The new configuration of the system is the connected graph shown in Fig. 7. This
illustrates feature (ii) mentioned above.

11. F becomes black and sends a TD message with PI = (x + 2, F) to A.

8



����
��
��

A
XXXXXXXXXXXX

�
�

������
D

����
F

Figure 7: System configuration after process C is killed

12. F receives A’s TD with PI = (x + 1, A) and ignores it because its own PI is higher (Rule
B2).

13. D receives A’s TD message and replies with an RT.

14. A receives F’s TD, and propagates it to D.

15. D receives F’s TD from A and replies with an RT.

16. Finally, A returns RT to F, and F concludes termination, thus illustrating feature (iii) men-
tioned at the start of this section.

5 Proofs of correctness

5.1 Preliminaries

To prove the correctness of a distributed termination detection algorithm, one must prove two dif-
ferent types of properties about it, viz. safety and liveness. Informally, a safety property stipulates
that some ‘bad thing’ does not happen when an algorithm is used. Examples of safety properties
include mutual exclusion, deadlock freedom, etc. A liveness property stipulates that a ‘good thing’
eventually happens during execution. Examples of liveness properties include starvation freedom,
termination, etc.

To define the liveness and safety properties, we assume a predicate Pi.TD which evalu-
ates to true when process Pi detects termination. The liveness and safety properties of the algorithm
are now stated as follows:

Safety ... Pi.TD ⇒ DTC

Liveness ... DTC ; Pj .TD for some process Pj

where ‘⇒’ and ‘;’ are the operators implies and leads to and DTC stands for the distributed
termination condition. We prove the correctness of the algorithm using superposed variables [4]
and temporal logic [23]. We use ‘3A’ to denote “predicate A eventually becomes TRUE”.

Superposed Variables

These variables are introduced exclusively for use in the proofs. The algorithm does
not use them.

• P → {Processes Pi | Pi is live}.

9



• CG → communication graph (P,E) where E = {(Pi, Pj) | Pi ∈ NBj
∨

Pj ∈ NBi}

• BSi → broadcast set in the TD message sent by Pi.

• TD path(Pi, Pj) is the path along which Pj received the TD sent by Pi for the first time.
Note that all processes Pk on this path are passive, PIi ≥ PIk, and PARk ∀ k and PARj lie
along this path.

• passive time(Pi, P Ii) → time at which process Pi with the process identification number PIi

became passive.

• quiescent time(PIi) → smallest instant of time ti at which no TD/RT messages with the id
PIi are in transit.

Predicates

• DTC → Distributed termination has occurred.

• DTCt → DTC has occurred at a time < t.

• Pi.TD → process Pi declares termination.

• active(Pi) → process Pi is active.

• passive(Pi) → process Pi is passive.

• sent(Pi,msg, Pj) → Pi has sent msg to Pj .

• received(Pi,msg, Pj) → Pj has received msg from Pi.

• quiescent(PIi) → No TD/RT messages with the id PIi are in transit.

5.2 Safety and Liveness

Lemma 1 ¬DTC ⇒ ∃Pi ∈ P such that active(Pi).

Proof ¬DTC ⇒ ∃Pi ∈ P such that active(Pi)
∨

basic message in transit.
Now, basic message in transit ⇒ ∃Pi such that CTRi 6= 0 . . . Rule W1.
Hence, basic message in transit ⇒ ∃Pi ∈ P such that active(Pi).
Hence, ¬DTC ⇒ ∃Pi ∈ P such that active(Pi).
2

Lemma 2 If (passive(Pj)
∧
¬DTCt) where t = quiescent time(PIj), then ∃Pi ∈ P − {Pj} such

that 3 received(−, (TD,PIj ,−), Pi)
∧
¬sent(Pi, (RT,PIj),−).

Proof Consider a path Pj . . . Pl−Pk−Pi such that ∃ TD path(Pj , Pl), PIj > PIl, Pl, Pk

are passive and Pi is active. Consider two cases concerning the set of processes {Pa | active(Pa)}
during the interval passive time(Pj , P Ij) to quiescent time(PIj).

1. {Pa} remains unchanged :

(a) Let PIk > PIj . Then ¬3 sent(Pk, (RT,PIj),−) . . . Rule B2.

(b) Pk is killed :
Hence, sent(Pk, (KM, PIk, Sk, NBk), Px) ∀Px ∈ {Pl, Sk, Pi} . . . Rule B4.

(i) Pl receives the KM message after sending the TD message with id PIj to Pk :
¬3 sent(Pl, (RT,PIj),−) . . . Rule B5.

10



(ii) Pl receives the KM message before receiving the TD message with id PIj :
3 sent(Pl, (TD,PIj ,−), Sk).
Now, either ¬3 sent(Sk, (RT,PIj),−) analogous to cases 1(a), 1(b)(i) above, or 3

received(Sk, (TD,PIj), Pi) which reduces to case (c) below.

(c) Otherwise : ∃ TD path(Pj , Pi). Now, ¬3 sent(Pi, (RT,PIj),−) since active(Pi).

2. {Pa} grows in size :
Let process Pk become active.

(a) Pk becomes active before receiving the TD message with id PIj :
¬3 sent(Pk, (RT,PIj),−) since active(Pk).

(b) Pk is activated after it propagates the TD to its neighbours :
PIk.Seq = PIj .Seq . . . Rules B2, R2.
Let Pg be the sender of the basic message that activated Pk. Now either,

(i) PIg.Seq > PIj .Seq, if Pg received the acknowledgement from Pk and subsequently
turned passive (Rules W2(e), W6), or

(ii) active(Pg).

Hence ¬sent(Pg, (RT,PIj),−).

From 1 and 2, ∃Pi such that ¬sent(Pi, (RT,PIj),−) along every path Pj . . . Pl −
Pk − Pa where Pa is an active process. Since ¬DTCt ⇒ {Pa} 6= φ, at time t, the lemma follows.
2

Theorem 1 (Safety) Pj .TD ⇒ DTC.

Proof

Let Pj .TD
∧
¬DTC.

⇒ passive(Pj)
∧
¬DTCt, where t = quiescent time(PIj).

⇒ 3 received(−, (TD,PIj ,−), Pi)
∧
¬sent(Pi, (RT,PIj),−) . . . lemma 2.

⇒ ¬Pj .TD . . . Rule B3.

This is a contradiction, hence Pj .TD ⇒ DTC.
2

Lemma 3 If (passive(Pj)
∧

DTCt) where t = passive time(Pj , P Ij), then either

(a) 3 received(−, (TD,PIj ,−), Pi), where PIi > PIj, or

(b) 3 Pj .TD.

Proof From arguments similar to those in lemma 1, for each path Pj − P1 − P2 − · · · − Pn,
either

3 received(−, (TD,PIj ,−), Pi), where PIi > PIj , or
3 received(−, (TD,PIj ,−), Pn), where ((PIn < PIj)

∧
({NBn −BS} = φ)).

Hence, either

(a) 3 received(−, (TD,PIj ,−), Pi), where PIi > PIj , or

(b) 3 received(−, (TD,PIj ,−), Pk) ∀Pk ∈ P − {Pj} . . . Rules B2, R2.
3 sent(Pk, (RT,PIj), PARk) ∀Pk ∈ P − {Pj} . . . Rules B2, R2 and B3, R3.
3 received(Pl, (RT,PIj), Pj) ∀Pl ∈ NBj .
3 Pj .TD.

11



2

Lemma 4 If (passive(Pj)
∧

DTCt) where t = passive time(Pj , P Ij), then ∃ Pi s.t. (quiescent time(PIi) >
passive time(Pj , P Ij))

∧
(PIi > PIl ∀Pl ∈ P − {Pi}).

Proof From lemma 3, either
3 Pj .TD, which proves the lemma, or
3 received(−, (TD,PIj ,−), Pi), where PIi > PIj .

Now received(−, (TD,PIj ,−), Pi) ⇒ ∃ TD path(Pj , Pi). Let this path be Pj− . . .−Pk−Pi. Hence
PIk < PIj < PIi before Pk receives TD message with id PIj . There are two cases :

(a) Pi has not propagated any other TD after initiating its own TD messages :
Let quiescent(PIi).
Since Pk ∈ NBi, 3 received(Pi, (TD,PIi,−), Pk).
Hence PIk.Seq = PIi.Seq . . . Rule B2.
However, this contradicts the condition PIk < PIj < PIi before Pk receives Pj ’s TD message.
Hence, ¬received(Pi, (TD,PIi,−), Pk). Hence ¬quiescent(PIi).

(b) Pi has propagated the TD sent to it by some process Pl :
Let quiescent(PIl). This gives rise to two cases :

(i) Pk ∈ NBl. Analogous to case (a), this leads to a contradiction. Hence ¬quiescent(PIl).

(ii) Pk 6∈ NBl. Now, Pk 6∈ BS of the TD message sent by Pl to Pi. Hence,
3 received(Pi, (TD,PIl,−), Pk).
Analogous to case (a), this implies ¬quiescent(PIl).

2

Theorem 2 (Liveness) DTC ; Px.TD, for some Px ∈ P .

Proof Follows directly from lemmas 4 and 3.
2

6 Elimination of acknowledgements to basic messages

Termination of a distributed computation implies that

(a) all processes participating in the computation are passive, and

(b) no basic messages are in transit.

In the main algorithm presented in section 3, basic messages have acknowledgements, and a process
can become passive (or be killed) only after receiving acknowledgements for all basic messages sent
by it. Thus, receipt of the RT messages by the initiator of a termination wave satisfies conditions
(a) and (b) simultaneously.

Communication efficiency can be increased if acknowledgements to basic messages are
removed (already control messages do not have acknowledgements). However, provision will have
to be made to satisfy condition (b), since a process could become passive (or be killed) even while
some basic message(s) sent by it are in transit. This can be achieved within the framework of the
current algorithm by implementing the following simple principle :

When a process Pi sends a TD message to a process Pj, Pj will act upon it (possibly
leading to an RT reply) only if

12



(i) no basic messages between Pi and Pj are in transit, and
(ii) no basic messages sent to Pj by a dead process are in transit.

To ensure safety of termination detection, it is now necessary that TD messages should
traverse all edges in the system graph. We achieve this by abandoning the notion of the broadcast
set. Thus, a node sends TD messages to all its neighbours. Receipt of the required number of RT
messages by the initiator of a TD wave now satisfies conditions (a) and (b) simultaneously.

6.1 Summary of the changes

The following changes are made in the main algorithm to incorporate the abolition of acknowledge-
ments to basic messages :

1. The concept of broadcast set is removed from the algorithm. Hence, when process Pi propa-
gates a TD received from Pj , it sends it to all neighbours excluding Pj .

2. For each process Pj ∈ NBi, Pi maintains the following information :

msgsenti,j : number of basic messages sent by Pi to Pj , and
msgreceivedi,j : number of basic messages received by Pi from Pj ,

where the subscript i is used merely for notational clarity. (Each process only needs single-
dimensioned arrays for the counters.)

3. msgsenti,j is made a part of all control messages sent from process Pi to Pj . msgreceivedi,j

is also made a part of the TD and RT messages sent to Pj . The new formats of the various
messages are as follows:

TD message : (sender, (TD,PIk,msgsentsender,receiver,msgreceivedsender,receiver), receiver)
where Pk is the process initiating the TD message.

RT message : (sender, (RT,PIk,msgsentsender,receiver,msgreceivedsender,receiver), receiver)
KP message : (sender, (KP,PIsender,msgsentsender,receiver), receiver)
KM message : (sender, (KM, PIsender, Ssender, NBsender,msgsentsender,receiver), receiver)
TER message : (sender, TER, receiver)

4. Deadsetj is maintained by each process Pj . For each process Pd ∈ Deadsetj , Pj maintains
the following information :

deadsentmsgj,d : number of basic messages sent to Pj by Pd.

This information is obtained from msgsentsender,receiver in the KM message from Pd.

5. On receiving a TD message, every black or red process Pi implements the principle described
at the beginning of this section using the msgsent and msgreceived fields of the TD message
and the counters msgsenti,sender, msgreceivedi,sender and deadsentmsgi,d from its own data
base. Thus, the normal processing of a TD message is performed only if no basic messages
are in transit between its sender and receiver, and between a dead process and receiver.

6. Before returning an RT message to PARk, a black process Pk ensures that no basic messages
sent to it by a dead neighbour are still in transit. This is for any neighbour processes that
may have been killed after the TD message was received by Pk.

7. If a TD message is not acted upon, its black or red recipient simply updates its sequence
number and ignores the TD message.

Table 1 summarises the modifications to the actions performed by the processes. All
other actions remain the same as in the main algorithm.

13



Table 1 : Actions of the processes in the extended algorithm
(Note : Ps is the message sender, Pr is the receiver.)

process message conditions actions
colour received
Any Basic Update msgreceivedr,s.

White KP Perform rule W2(d) without
waiting.

White KM Update Deadsetr and
deadsentmsgr,s.

Black KM (i) msgsents,r = msgreceivedr,s Update Deadsetr, deadsent-
msgr,s and perform rule B5.

(ii) Otherwise Update Seqr, NBr, Deadsetr
& deadsentmsgr,s.

Black TD (i) msgsents,r = msgreceivedr,s∧
msgsentr,s = msgreceiveds,r

∧
deadsentmsgr,d = msgreceivedr,d ∀
d ∈ Deadsetr

Perform rule B2.

(ii) Otherwise Update Seqr.
Black RT deadsentmsgr,d = msgreceivedr,d ∀

d ∈ Deadsetr

Perform rule B3.

Red KM Same as for a Black process. Similar to a Black process
(perform rule R5).

Red TD (i) Same as (i) for a black process. Perform rule R2.
(ii) Otherwise Update Seqr (if necessary).

Red RT As in the Main Algorithm. As in the Main Algorithm.

14



6.2 Proof of the extended algorithm

We use the following lemmas analogous to the lemmas of section 5 to prove the safety and liveness
properties of the extended algorithm.

Lemma 5 ¬DTC ⇒ ∃Pi ∈ P such that (active(Pi)
∨

(msgsenti,k 6= msgreceivedk,i ∀ Pk ∈
P

∨
msgsentk,i 6= msgreceivedi,k ∀Pk ∈ P ∪Deadseti)).

Proof Follows directly from definition of DTC.
2

Lemma 6 If (passive(Pj)
∧
¬DTCt) where t = quiescent time(PIj), then ∃Pi ∈ P − {Pj} such

that 3 received(−, (TD,PIj ,−), Pi)
∧
¬sent(Pi, (RT,PIj),−).

Proof The proof is analogous to lemma 2 except for the following :

2 (b) . . .
Let Pg be the sender of the basic message that activated Pk. Hence Pk ∈ NBg. Now, Either
(active(Pg)

∨
PIg > PIj) when Pg receives the TD message with id PIj , or Pg propagates

the TD message to Pk, and

(i) active(Pk), or

(ii) PIk.Seq > PIj .Seq, if passive(Pk) (Rule W6).

2

Lemma 7 If (passive(Pj)
∧

DTCt) where t = passive time(Pj , P Ij), then either

(a) 3 received(−, (TD,PIj ,−), Pi), where (PIi > PIj
∨

(msgsenti,k 6= msgreceivedk,i ∀Pk ∈
P

∨
msgsentk,i 6= msgreceivedi,k ∀Pk ∈ P ∪Deadseti)), or

(b) 3 Pj .TD.

Proof The proof is analogous to lemma 3.
2

Lemma 8 If (passive(Pj)
∧

DTCt) where t = passive time(Pj , P Ij), then ∃ Pi s.t. (quiescent time(PIi) >
passive time(Pj , P Ij))

∧
(PIi > PIl ∀Pl ∈ P − {Pi}).

Proof The proof is analogous to lemma 4, except for the following simplification :

(b) Pi has propagated the TD sent to it by some process Pl :
Let quiescent(PIl). Hence,
3 received(Pi, (TD,PIl,−), Pk).
Analogous to case (a), this implies ¬quiescent(PIl).

2

Proofs of the Safety and Liveness theorems are identical to those for the main algorithm.

15



6.3 Some safety issues

A subtle restriction exists in the use of the extended algorithm which is not shared by the main
algorithm. This arises from the fact that the neighbour relations in the system may not be sym-
metric at all times. Consider a process Pi wishing to send a message to some process Pj 6∈ NBi.
Pi adds Pj to NBi while sending the message, whereas Pj adds Pi to NBj only after receiving the
message. What if Pi is killed in the meanwhile ? The main algorithm specifies that a process may
be killed only after receiving acknowledgements for all basic messages sent by it. In the absence of
acknowledgements, a safety problem could arise if Pi is killed before Pj receives its message and Pj

replies to a TD message with an RT in the meanwhile. This problem does not arise if Pi ∈ NBj

when Pj receives a TD message.
Two alternatives exist for handling such situations. A special kind of basic message

may be introduced for communicating with a process which is not a neighbour. The recipient of
such a message would be required to send an acknowledgement. The sender process would continue
to maintain CTR for such messages, and a process can be killed only when its CTR = 0. Thus,
the communication overheads of an acknowledgement are incurred only for such messages.

Alternatively, a process may inherit a neighbour set from its creator, and may augment
it only in a manner guaranteed to preserve the symmetry of neighbour relations in the system (See
Rule W3 in figure 2). This is not hard to implement since a process needs to know the identity of
the receiving process in order to send a message to it. (The only exceptions are resource controllers
or other server processes which are typically accessed through name servers in a distributed system.
Such processes typically do not have to participate in termination detection !)

7 External processes joining an ongoing computation

In multi-file multi-client transactions new servers can spontaneously join an ongoing transaction
dynamically [28]. To implement this, we require a new process Pn wanting to join the computation
to send an entry request (ER) message to a process Pg belonging to the computation. Pg may be
in one of the following states.

White : This implies that the computation has not yet terminated, so Pn can be allowed to join
the computation straightaway.

Black : This implies that some process Pi has initiated termination detection and Pg, having
propagated the TD message, is waiting for RT messages. In this case Pn is allowed to join in
the computation and the TD message is sent to Pn also.

Red : This implies that Pg has sent an RT message and is waiting for a TER message. The
computation would have terminated if the TER message is received by Pg. If, on the other
hand, Pg receives a basic message or a TD message with higher PI, the computation has not
yet terminated and Pn can be allowed to join in. Hence the entry request is recorded and an
appropriate action is taken based on the next message received by Pg.

Dead : In this case Pn cannot join the computation.

The following assumptions have to be made regarding Pn in order to ensure the above.

1. Pn knows the id of at least one of the processes already in the computation.

2. Pn sends an entry request (ER) message to one of the processes, identifying itself as an external
process wanting to join the computation.

3. Pn does not join the computation until it receives an entry granted (EG) message permitting
it to do so.

16



4. Upon joining the computation, Pn follows the same termination detection algorithm.

The formats of the new messages are as follows :

Entry Request (ER) message : (Pn, (ER), Pg) where Pn is the new process wanting to join
the computation, and Pg is a process participating in the computation.

Entry Grant (EG) message : (Pg, (EG, Seqg, Sg, PMSET ), Pn) where Pg is a process of the
computation which grants entry to the new process Pn.

When granted entry, Pn sets its sequence number to Seqg and its static to Sg, the static
of the granting process. It also records the PMSET for its own use. Each red process Pi maintains
an additional data structure,

ERSETi : The set of id’s of the processes that have requested entry since Pi last became red,

so that it can issue the EG messages appropriately.
The converse situation of a process Pi involved in the computation requesting an ex-

ternal process Px to join in the computation is handled more easily. Pi can convey Si, Seqi and
PMSET to Px, and Px must agree to abide by the termination detection algorithm.

8 Concluding Remarks

The distributed termination detection algorithm developed in this paper has many advantages over
the earlier work in the field. The algorithm is symmetric, and the communication is asynchronous
with arbitrary but finite delays and possible non-FIFO delivery of messages. No acknowledgements
are required for the basic or control messages exchanged by the processes. Thus, the only com-
munication assumption is that a basic message sent to a non-existent process bounces back to its
sender, with the flag NOTDEL set to TRUE. In the following, we comment on how this assumption
is not particularly restrictive in practice.

The algorithm possesses many features aimed at reducing the overheads of control
message traffic. Unlike [17], only the existing processes of a computation need to participate in the
termination detection. The total order on processes defined by the process identification numbers
(PI) is used to restrict the propagation of TD messages. No acknowledgements are required for the
control messages. Further, during implementation we can either use the concept of the broadcast
set as in the main algorithm, or eliminate acknowledgements to the basic messages as discussed in
section 6. These possibilities offer further reduction in the communication overheads.

The algorithm permits free creation and destruction of processes during the computa-
tion. The latter is particularly important in a distributed data base environment where orphan
elimination becomes necessary [13]. While it is customary to assume that a process is killed by
another process of the same computation, this is not a restriction in the algorithm. Thus, the
algorithm permits killing of a process by an external process, viz. the OS kernel. So long as the
killed process follows the protocol of sending KM messages as in rules W2(c), B5, R5, the safety and
liveness properties of the algorithm would continue to hold. The extension of section 7 permits new
processes to join ongoing computations spontaneously. This has particular relevance to multi-file,
multi-client transactions in data base systems [28].

Finally, some points concerning the implementation of the algorithm. While PMSET
is a data structure accessible to all processes of the computation, it is free from the problems con-
nected with the use of global variables. This is because this is a read only variable for all processes.
A simple way to implement it would be to make it a process parameter specified at the time of
process creation. All permanent processes of a computation would be created with the value of
PMSET. When a new process is created, this value can be simply passed to it. The error flag

17



NOTDEL can also be implemented without requiring any special provisions. The flag is redundant
if processes only communicate with permanent processes or known neighbours, a condition readily
satisfied by nested transactions in a distributed data base environment. If a process Pj known to
be a neighbour of Pi is killed by the time a message from Pi reaches it, the KM message from Pj

would alert Pi to this fact (rules W2(c) and B5). Hence the NOTDEL flag can be dispensed with
in most situations, leading to a further simplification.

References

[1] K. R. Apt, Correctness proofs of distributed termination algorithms, ACM Transactions on
Programming Languages and Systems, vol. 8, no. 3, pp. 388-405, 1986.

[2] S. Chandrasekaran and S. Venkatesan, A message-optimal algorithm for distributed termi-
nation detection, Journal of Parallel and Distributed Computing, vol. 8, no. 3, pp. 245-252,
1990.

[3] K. M. Chandy and L. Lamport, Distributed snapshots : determining global states of distributed
systems, ACM Transactions on Computer Systems, vol. 3, pp. 63-75, 1985.

[4] K. M. Chandy and J. Misra, Parallel program design : a foundation, Addison Wesley, 1988.

[5] S. Cohen and D. Lehmann, Dynamic systems and their distributed termination, Proceedings of
the first Annual ACM Symp. on Principles of distributed computing, Ottawa, 1982, pp. 29-33.

[6] D. M. Dhamdhere, E. K. K. Reddy and S. R. Iyer, Distributed termination detection for
dynamic systems, TR-081-92, IIT Bombay, (1992).

[7] E. W. Dijkstra and C. S. Scholten, Termination detection for distributed computations, Infor-
mation Processing Letters, vol. 11, no. 1, pp. 1-4, 1980.

[8] E. W. Dijkstra, W. H. J. Feijen and A. J. M. van Gasteren, Derivation of a termination
algorithm for distributed computations, Information Processing Letters, vol. 16, pp. 217-219,
1983.

[9] O. Eriksen, A termination detection protocol and its formal verification, Journal of Parallel
and Distributed computing, vol. 5, pp. 82-91, 1988.

[10] N. Francez, Distributed termination, ACM Transactions on Programming Languages and Sys-
tems, vol. 2, no. 1, pp. 42-55, 1980.

[11] N. Francez and M. Rodeh, Achieving distributed termination without freezing, IEEE Trans.
on Software Engg., vol. 8, no. 3, pp. 287-292, 1982.

[12] S. Haldar and D. K. Subramanian, A fully distributed termination detection algorithm in an
arbitrary network, Technical Report, IISc CSA-89-14, Indian Institute of Science, Bangalore,
1989.

[13] M. P. Herlihy and M. S. McKendry, Time-Stamp based orphan elimination, IEEE Transactions
on Software Engineering, vol. 15, no. 7, pp. 825-831, 1989.

[14] S. T. Huang, A fully distributed termination detection scheme, Information Processing Letters,
vol. 29, no. 1, pp. 13-18, 1988.

18



[15] S. T. Huang, Termination detection by using distributed snapshots, Information Processing
Letters, vol. 32, pp. 113-119, 1989.

[16] D. Kumar, A class of termination detection algorithms for distributed computations, Mahesh-
wari, N. (ed), Lecture Notes in Computer Science, no. 206, Springer-Verlag, pp. 73-100.

[17] T. H. Lai, Termination detection for dynamic distributed systems with non-first-in-first-out
communication, Journal of Parallel and Distributed computing, vol. 3, pp. 577-599, 1986.

[18] L. Lamport, Time, clocks and the ordering of events in a distributed system, Communications
of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

[19] I. Lavellee and G. Roucairol, A fully distributed spanning tree algorithm, Information Pro-
cessing Letters, vol. 23, pp. 55-62, 1986.

[20] F. Mattern, Algorithms for distributed termination detection, Distributed Computing, vol. 2,
pp. 167-175, 1987.

[21] F. Mattern, An efficient distributed termination test, Information Processing Letters, vol. 31,
pp. 203-208, 1989.

[22] J. Misra and K. M. Chandy, Termination detection of diffusing computations in communicating
sequential processes, ACM Transactions on Programming Languages and Systems, vol. 4, no.
1, pp. 37-43, 1982.

[23] S. Owicki and L. Lamport, Proving liveness properties of concurrent programs, ACM Trans-
actions on Programming Languages and Systems, vol. 4, no. 3, pp. 455-495, 1982.

[24] S. P. Rana, A distributed solution to the distributed termination problem, Information Pro-
cessing Letters, vol. 17, no. 1, pp. 43-46, 1983.

[25] M. Raynal, Distributed algorithms and protocols, John Wiley and Sons, 1988.

[26] J. L. Richier, Distributed termination in CSP – symmetric solutions with minimal storage,
Mehlhorn, K.(ed), Lecture Notes in Computer Science, no. 182, pp. 267-278.

[27] S. Ronn and H. Saikkonen, Distributed termination detection with counters, Information Pro-
cessing Letters, vol. 34, pp. 223-227, 1990.

[28] L. Svobodova, File-servers for Network-based distributed systems, ACM Computing Surveys,
vol. 16, no. 4, pp. 353-396, 1984.

[29] R. W. Topor, Termination solution for distributed computing, Information Processing Letters,
vol. 18, no. 1, pp. 33-36, 1984.

[30] M. C. van Wezel and G. Tel, An assertional proof of Rana’s algorithm, Information Processing
Letters, vol. 49, pp. 227-233, 1994.

19


