1

Querying relational databases using schema-cognizagtdayes like SQL and querying document collections
by typing arbitrary keywords are the extreme ends of theicoanim between structured and unstructured data
access. SQL queries have precisely defined semantics, imandethat the data is organized along a strict
schema which the user understands. Keyword searches dequite the data to follow a schema, except for the
notion of a collection of documents, each being a sequendelimhited tokens. On the other hand, responses to

Keyword Search in Databases

Arvind Hulgerf* Gaurav Bhalotia Charuta Nakhe Soumen Chakrabarti
S. Sudarshan
Dept. of Computer Science and Engg., Indian Institute ohfietogy, Bombay
{aru,bhalotia,soumen,sudart@cse.iitb.ac.in, charuta@pspl.co.in

Abstract

Querying using keywords is easily the most widely used féquerying today. While keyword searching
is widely used to search documents on the Web, querying albalses currently relies on complex query
languages that are inappropriate for casual end-users;esithey are complex and hard to learn. Given
the popularity of keyword search, and the increasing useatidlthses as the back end for data published
on the Web, the need for querying databases using keywdoesng increasingly felt. One key problem
in applying document or web keyword search techniques tabdaes is that information related to a
single answer to a keyword query may be split across multigdkes in different relations.

In this paper, we first present a survey of work on keyword yogrin databases. We then report
on the BANKS system which we have developed. BANKS in®edterord querying and interactive
browsing of databases. By their very nature, keyword qgegie imprecise, and we need a model for
answering keyword queries. BANKS, like an earlier systelled®ataSpot, models a database as a
graph. In the BANKS model, tuples correspond to nodes, aeajfokey and other links between tuples
correspond to edges. Answers to a query are modeled as ro@tesl connecting tuples that match
individual keywords in the query. Answers are ranked usingtgon of proximity coupled with a notion
of prestige of nodes based on inlinks, the latter being nesipby technigues developed for Web search.
We illustrate the power of the model and our prototype throegamples.

Introduction

keyword searches are often imprecise.

Copyright 2001 IEEE. Personal use of this material is peredit However, permission to reprint/republish this matefor ad-

vertising or promotional purposes or for creating new cotlee works for resale or redistribution to servers or lists to reuse any
copyrighted component of this work in other works must beinbd from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Supported by an Infosys Fellowship
fCurrent affiliation: Persistent Systems Pvt. Ltd., Pundidn

Foreign Key ——— Primary Key
Author

Authorld
AuthorName|

Writes

Authorld
Paperld

Paperld
PaperName

(A) The Schema

Paperld PaperName

ChakrabartiSD9 Mining Surpnsmg I?atterns Using .
Temporal Description Length

Paper Tuple
Authorld Paperld
[SoumenC‘ChakrabartiSD% [SunitaS ChakrabaniSDQ} [Byronl% ChakrabartiSDQ}i
Writes Tuple Writes Tuple Writes Tuple

Authorld y AuthorName 4
[Soumen(# Soumen Chakraba}ti- . -] [Sunitas Sunita Sarawax#i- .] [ByronD -]
Author Tuple Author Tuple Author Tuple

Byron Dom| = =

(B) A Fragment of the Database

Figure 1: The DBLP Bibliography Databases

Two forces are bridging the gap between these extremedt, Filational databases are increasingly Web
enabled: they need to be accessed and manipulated by nertsewyino do not know enough about the schema.
Second, Web documents are evolving from flat text files thimad@iML and SGML to XML, adding markups
and embedded schema information (albeit irregular) whegrsiwould like to exploit to make responses some-
what more precise than with plain keyword matching. Unfoztiely, as query languages for relational data
evolve to encompass semi-structured data, they are begamine complex. On the other hand, many naive
users need a simple way of extracting information, such ga&del queries.

In relational databases, information needed to answenadwmlyquery is often split across the tables/tuples,
due to normalization. As an example consider a bibliogmputatabase shown in Figure 1. This database
contains paper titles, their authors and citations ex¢chéitorn the DBLP repository. The schema is shown in
Figure 1(A). Figure 1(B) shows a fragment of the DBLP datab#depicts partial information—paper title and
authors—regarding a paper as stored in the bibliographabdae defined above. As we can see the information
is distributed across seven tuples linked through foreigyrfrimary key links. A user looking for this paper
may use queries like "Sunita Temporal” or "Soumen Sunitai.kéyword based search, we need to identify
tuples containing the keywords and ascertain their prayithrough links.

Inverted indexing techniques used for document searchdialp in finding proximity amongst the words in
a tuple or a column thereof but will not help in finding proxiyibetween two tuples. This makes inverted index-
based keyword search unsuitable for RDBMS. Similar obsiemnva hold for text search in XML documents: the
markup induces a graph whose nodes contain blocks of tefferéit query words may match different blocks
or nodes, and the best ‘answer’ may be none of the directighedtnodes.

Web search engines and topic directories have also popedatihe browsing paradigm for accessing infor-
mation, which is virtually non-existent in the relationaidasemi-structured data domains. Like HTML pages
connected via hyperlinks, semi-structured data compdaés entities which are nodes in a graph with labeled
edges. The link-based navigation paradigm should therdferof great use for exploring such databases.

Responses to relational queries amtsof tuples, which may be explicitly ordered by a specified bt
attributes. Thus the “information unit” is a tuple. For dotent search, the information unit is a document
and the rank of the document in the response list is basedeonuimber of keywords found in the document

and their proximity within the document. A suitable infortiea unit is much harder to define when a general
graph model is used to represent data entities and relati@tause information matching the query may be
split across several tables and tuples due to normalization

Over the last few years, a uniform model has emerged for septing relational databases as a graph
with the tuples in the database mapping to nodes and croseneks (such as foreign key and other forms
of references) between tuples mapping to edges connetisg hodes. Semistructured data maps even more
naturally to a graph model, as do HTML pages connected byrligke. The graph model may be used in
keyword search as follows. Keywords in a given quactivatesome nodes. The answer to the query is defined
to be a subgraph which connects the activated nodes.

In this paper, we present a survey of earlier work on keywarergjing of databases, with emphasis on the
development of the above model. We then present the mod&kfavord search used in the BANKS system
(BANKS is an acronym for Browsing ANd Keyword Search). BANK&ks answer subgraphs using a notion
of proximity coupled with a notion of prestige of nodes basednlinks, similar to techniques developed for
Web search engines like Google. BANKS proposes meaningtefpretations for matching query tokens not
only to text attributes, but also to relation and attribuéenes. Here we are chiefly concerned with meaningful
definitions of responses and their ranking. Efficient quescation strategies for the BANKS model will be
described in a separate paper.

BANKS has been developed in Java using servlets and JDB&algeneric system and can be used against
any relational database supporting JDBC, without any amogning. (An XML source adapter is planned.) A
demo of BANKS is accessible At t p: / / ww. cse. iitb. ac.i n/ banks/.

Organization: We survey earlier work on keyword querying in Section 2. BecB outlines the BANKS
graph model for representing connectivity informatiomfrthe database and the model for answering queries
and briefly outlines how the BANKS querying model differsrfreearlier work. Section 4 briefly describes
how the query model is implemented. We present an overvidhedbrowsing features of BANKS in Section 5.
Section 6 outlines a preliminary evaluation of our systetefms of reasonableness of its answers and feasibility.
Section 7 outlines directions for future work. Section 8aades the paper.

2 Previous Work

There are a number of commercial and research prototypermsgshat support keyword search and browsing in
relational and semi-structured databases. In this seatiersurvey several of these systems.

Traditional database query languages and tools are nabteifior applications that require keyword search-
ing. Even languages, such as QBE, that have been targeteldtataly inexperienced users require the user to
be aware of the database schema, which is not appropriatagonl users of an information system.

2.1 DataSpot and Mercado Intuifind

The DataSpot system [3] was developed to support databasgitg using free-form (keyword) queries and
navigation for non-technical users seeking informatiocomplex databases such as electronic catalogs. The
basis for the DataSpot system is a schema-less representéditilata which they call a “Hyperbase”. Nodes in
the hyperbase view represent data objects, while edgesseqrassociations. There are two types of edges,
simpleandidentificationedges. Simple edges represent inclusion, such as atiitalges’ inclusion in tuples.
Identification edges correspond to references betweeitsbje

The semantics of keyword queries is described in [12], amdare detail in [13]. Given a keyword query,
an answer is a connected sub-hyperbase that contains twerkisyin the query. Each answer has an associated
“location”, which intuitively represents the main objedttbe answer. Answers have a score, which can be

computed in one of several ways, but intuitively measur@sesdistance metric on the sub-hyperbase. Several
alternatives are suggested, one of which is an edge couttecsub-hyperbase, possibly with weighted edges,
with weights being determined by node and edge types. Anatternative is to use a node count. The distance
metric used in their preferred approach is based on addiregigp weights, with weights being determined by
the types of the edge, the types of the nodes it connects handirection of traversal (from parent to child or
vice versa,; see below).

The system administrator can define a set of nodes as “faesiod which case answers (location nodes)
can only come from the set of fact nodes. Refinement querikighwefine answers from earlier queries, can
also start with an initial set of locations, in addition to/kerds.

To find answers, the system performs weighted best-firstlsdaom all source nodes (i.e., keyword nodes,
and for refinement queries, location nodes) and each timéyainnected fact node (i.e., a fact node connected
to all source nodes) is found, it is output as an answer, algtiygthe minimal-distance paths from that node
to all the source nodes. Traversal goes away from sourcespbdeedges can be followed regardless of their
direction (that is, edges can be traversed forwards or baalsy. Edge weights are determined by direction of
traversal, as mentioned earlier. When adding edge weighgaths, the edge weight is divided by the number
of sources to which the edge is connected, so that when addipgth distances, edge weights of edges leading
to multiple sources are not over-counted. Multiple answealy be output, ranked by their score.

Mercado Software, Incww. mer cado. con) markets an e-catalog search technology called Intuifind
which (as far as we can understand) uses the DataSpot teehfioigkeyword search, but also allows “parametric
search” on the search results. Intuifind parametric seaffelnscOLAP drill-down type operations based on
parameters such as price, manufacturer and categoryptothié user a more structured way of browsing search
results.

2.2 EasyAsk

EasyAsk is commercial system that provides natural langsagarch (including keyword search) on data stored
in relational databases as well as in text repositories. description of EasyAsk is based on white papers on
the EasyAsk system, and on its features, available at theASkaveb sitemww. easyask. com

Consider catalog searching, which is a motivating appboator EasyAsk (the system can be used with
other application domains also). Information about itemsdtalogs can be split across multiple locations, such
as a text description, and at different levels of a produstanchy in which the item is classified, such as “men’s”
or “formal”. A keyword search on the catalog may contain keyas present in the product description, as well
as keywords present in the catalog hierarchy.

To answer queries, the system crawls the data store aheadeofihd constructs a contextual dictionary.
Based on the dictionary, the system decides that certaind@lg correspond to values in catalog attributes, and
others correspond to values in text descriptions of prajw@etd generates an appropriate SQL query to answer
a given keyword query.

The EasyAsk system supports a wide variety of features ssi@pproximate word matching, word stem-
ming (allowing it to match, for example, hiker with hikinggynonyms (for example, pants, trousers and slacks),
and other word associations (for example “hunting” with teraroof” and “outdoors” in the context of clothes).

It also recognizes phrases, and supports comparisons sugneater than 3 feet” which it translates into ap-
propriate SQL conditions. EasyAsk also mentions that ithesdata decoding, whereby users can use normal
words, such as “blue”, even if the word has been coded in ardift way, such as “bl”, in the database.

Further details of how EasyAsk handles keyword queries atdral language queries are not publicly
available. Ranking is supported by EasyAsk, but as far asamengake out, only on administrator-specified
criteria such as price, and not on the quality of match witpwards.

2.3 Proximity Search

Several research prototypes focus on the notion of proyiamit efficient ranking or clustering of graph nodes
by proximity.

Goldman et al. [7] were early proponents of using a graplradc#-based measure in answering proxim-
ity queries. They generalized the notion ridar queries in Information Retrieval (where the goal is to find
documents where query tokens occur lexically close to etodr)oto a graph data model that can model both
relational and semi-structured data.

They support queries of the forfind find-set near near-sesuch a query retrieves objects of the specified
“find set” (e.g. a specified relation) that have short pathmecting them to objects in the near-set (those that
match the specified keywords). The shortest path from abjacthe “find set” to each of the objects in the
“near-set” is computed using a distance function that agdsdge weights. The inverse of the distance, scaled
by the weights of the end point nodes, gives the proximityhefdbjects. The score of an object in the find set
is computed using its proximity to the near objects by eitding up the proximities, or by other means such
asl — II(1 — p;), where thep;s are the proximities (which range from 0 to 1).

Note that the scores differ from that of DataSpot in that tivelises of distances to the near set objects are
added up, instead of the distances themselves. Also, theme significance to the actual paths, and only the
objects in the find set are returned.

Web search provides another natural application whereghlerbsponse may comprise a graph of connected
pages rather than a single page. Li et al. [9] couch this probih terms of Steiner trees connecting pages that
match individual keywords. In their formulation, the grapre not directed, and unlike DataSpot, pages and
edges are not typed.

Proximity search is closely related to clustering. The @mtions between densely connected clusters in
graphs and spectral properties of their adjacency matrcesell-established [8]. Clustering techniques for
graphs and hypergraphs can be used to derive notions ohdéstebetween categorical data, and thereby to
support proximity search between objects with categoatabutes [6].

Many Information Retrieval systems use thesauri and Iéxieavorks to bridge the gap between imprecise
user queries and the database by padding the query withayisoand usings-a hierarchies (e.g., horse is a
mammal). Such support needs to be hand-crafted into IRmagstén a graph framework, such as that used in
DataSpot or BANKS, a network of metadata or linguistic lielas can be regarded as simply augmenting the
graph being queried with a richer set of connections.

2.4 Other Approaches

Sarda and Jain [14] describe a system called Mragyati t@perkeyword search and browsing on databases.
They generate SQL queries to retrieve results matchingities ggeywords. Queries can involve more than one

relation, and are generated based on the database fomygstrkicture and on the relations/attributes that are
matched by the given keywords. Results can be ranked baseskoispecified criteria, or based on the number
of foreign key references to the primary key (if any) of thewwar tuples. The system provides mechanisms
for handling synonyms and coding mechanisms used to sttwesvan the database. Although supported in the

model, the current implementation does not handle querittsspaths of length greater than two, presumably

because of the extra effort needed to analyze keywords @ablatse connections to generate required queries.
The system also generates hyperlinks in the results, tdesbadwsing.

Maserman and Vossen [10] describe an approach to keywordhseg on databases, but their approach
is restricted to finding all keywords in a single tuple, with notion of links and proximity. They generate
statements in an SQL extension called Reflective SQL, wisithan translated to SQL.

Florescu et al. [5] propose an extension of the XML-QL quanguage to include keyword search, but their
approach requires the use of a complex query language sutilag)L.

2.5 Browsing

There has been a substantial body of work on browsing ofioekt databases and object oriented database.
Although browsing is not part of keyword searching per se,risults of a keyword search can often be inter-
preted only as starting points from which the user finds meguinformation by browsing. Work on browsing
of databases include Dar et al. [4], Carey et al. [2], and mecently work by Shafer and Agrawal [16], which
describes a system for integrated querying and browsinglafional data. Querying is carried out by interac-
tion with form controls, rather than by keyword search. Mumand Papakonstantinou [11] describe BBQ, an
interface for browsing and QBE style querying of XML data.

3 Database and Query Model

In this section we describe how a relational database is lddes a graph in the BANKS system. First we
evaluate various options available and describe the modeldept informally and then formalize it.

3.1 Informal Model Description

We model each tuple in the database as a node in the direetpd gnd each foreign key-primary key link as an
edge between the corresponding tuples. This can be easdgded to other type of connections; for example,
we can extend the model to include edges corresponding besino dependencies, where the values in the
referencing column of the referencing table are containeithé referred column of the referred table but the
referred column need not be a key of the referred table.

In general, the importance of a link depends upon the typbeofitk i.e. what relations it connects and on
its semantics; for example, in the bibliographic datab#se)ink between th@apertable and théVritestable
is seen as a stronger link than the link betweenRhpertable and theCitestable. Conceptually this model is
similar the one described in [13] although there are sonferdifices in the details.

To find answers, we need to traverse links backwards and we ik explicit by creating a backward
link for each initial link. We model the weight of a backwaidl generated from a forward link as directly
proportional to the indegree of the source node of the baakumak (i.e. the referenced node). Since the
proximity between the nodes connected by a link is inverpedportional to the link weight, the proximity for
a referenced node to its referencing nodes is inverselyoptiopal to the indegree of the referenced node. This
notion is formalized in Section 3.2 These definitions areivatdd by the intuition that “fans know celebrities
better than celebrities know their fans.” As another examipl a students’ course registration database, if there
are many students registered for a particular course, thémity of two students due to the course is less than
if there were fewer students registered. A forward edge feostudent to a course and a back edge from the
course to a student would form a path between each pair ofistiilthe course, and assigning a higher weight
to back edges in the case where more students take the costgethat the paths are longer.

Informally, an answer to a query is a subgraph containingeaadatching the keywords and just by looking
at the subgraph it is not apparent as to what informationnvegs. We need to identify a node in the graph as
a connecting node which connects all the keyword nodes. \Weider an answer to be a rooted directed tree
containing a directed path from the root to each keyword n@decall the root node aimnformation node The
weight of the tree is proportional to the total of its edge gids$. We may restrict the information node to be
from a selected set of nodes of the graph; for example, we xeyde the nodes corresponding to the tuples
from a specified set of relations, in a manner similar to [13].

We incorporate another interesting feature, namely nodghts inspired by prestige rankings such as
PageRank in Google [1]. With this feature, nodes that havépteipointers to them get a higher prestige. In our
current implementation we set the node prestige to the negegf the node. Higher node weight corresponds to
higher prestige. E.g., in a bibliography database contginitation information, if the user gives a quépyery
Optimizationour technique would give higher prestige to the papers withengitations.

6

3.2 Formal Database Model

In this section we define the formal graph model for représgrhe database. It consists of:

Vertices: For each tuplg in the database, the graph has a corresponding mpd@Ve will speak interchange-
ably of a tuple and the corresponding node in the graph.

Edges: For each pair of tuple$; and7; such that there is a foreign key frofa to 73, the graph contains an
edge fromuy; to uy, and a back edge fromy, to uy; (this can be extended to handle other types of
connections).

Edge weights: In our model, the weight of a forward link along a foreign kejationship reflects the strength
of the proximity relationship between two tuples and is set by default. It can be set to any desired
value to reflect the importance of the link (low weights cepend to greater proximity).

Let s(Rq, R2) be similarity from relationR; to relation R, where R; is the referencing relation and
R, is the referenced relation. The similari¢gyR,, R2) depends upon the type of the link from relation
R, to relation Ry and this is different than the actual edge weights. It is géhfinity if relation R
doesn't refer relatior?,. Consider two nodes andw in the database. Le®(u) and R(v) be the resp.
relations they belong to. Further, &V, (u) be the indegree of contributed by the tuples belonging
to relation R(v). Note that from node: to nodev we may, conceptually, have two edges, one forward
edge which depends upon the similarityR(u), R(v)) and a backward edge which depends upon the
similarity s(R(v), R(u)) andIN,(u). In the current implementation the forward edge weight istee
s(R(u), R(v)) and the reverse edge weight is sefsd?(v), R(u)) * I N, (u)] and the actual edge weight
is the minimum of the two as defined below:

b(u,v) = min(s(R(u), R(v)), s(R(v), R(u)) * IN,(u))

The weight of a backward link generated from a foreign kegtiehship is directly proportional to the in-
degree of the source node (i.e. the referenced node). Siagedximity between the nodes connected by
a link is inversely proportional to the link weight, the phamity from a referenced node to its referencing
nodes is inversely proportional to the indegree of the esfeed node.

Node weights: Each node: in the graph is assigned a weight(«) which depends upon the prestige of the
node. In our current implementation we set the node prestigiee indegree of the node.

3.3 Querying Model

We now present our model for answering keyword queries.Heeqiiery consist ot search terms,, to, ... , t,,.
The query is (conceptually) answered as follows:

e For each search tertin the query we find the set of nodes that are relevant to thetséarm. Let us call
the setS;. And letS = {51, 52, Ss,...,S,}. Anode is relevant to a search term if it contains the search
term as part of an attribute value. Nodes may also be rel¢hemigh metadata (such as column, table or
view names). E.qg., all tuples belonging to a relation naddgdHOR would be regarded as relevant to the
keyword ‘author’.

e An answer to a query is a rooted directed tree containingaat lene node from eac$y. Note that the
tree may also contain nodes not in any of the and is therefore a Steiner tree. The relevance score of an
answer tree is computed from the relevance scores of itssram its edge weights. (The condition that
one node from each; must be present can be relaxed to allow answers containiggome of the given
keywords.)

e Given an answer with keyword matching nodes:, s; 2, ..., si) the relevance of the answer is com-
puted using the edge and node weights as follows:
2 N Z’])] + wy, {—}

Answer Relevance(s;) = wy, [7

N

where theFE;’s are the weights of the edges in the answer tf€es the maximum node weight sum
across all elements ¢f, andw,, andw, are weights used to control the relative importance givarotie
weights and proximity. These combining weights are ad-bat.appear to be inescapable in all related
systems that we have reviewed [7, 17]. Reasonable choiodsecanade if sample queries with relevance
judgments are provided to ‘train’ the system [15].

The minimum Steiner tree problem is a special case of thelgmobf finding answers of maximum rele-
vance, so the problem of finding the best answers is also NRpl&te. We therefore settle for heuristics
to construct answer trees of high relevance. These aresdisdun Section 4.

3.4 Relation of BANKS to Earlier Work

BANKS is closely related to DataSpot [3, 12, 13]. In partanulthe model of query answers as rooted trees
corresponds to the DataSpot model, where the roots aredalite nodes. The details of the underlying graph
formalism, however, differ. BANKS currently works on a mbedere only references, which correspond to
equivalence edges in DataSpot, are explicitly represer@ette edges in our model can have attributes such as
type and weight, we can model containment (as in DataSpoinamested XML) simply as edges of a new type.
(We are currently working on adding XML support to BANKS.)&@ BANKS technique of assigning weights
to back edges, based on indegrees, has no counterpart iBi2étas also the node weight mechanism used
in BANKS. The use of node weights based on prestige has prostcal in Web search, and our anecdotal
evidence shows their importance in the context of databasecls as well. BANKS also takes the effect of
metadata queries into account, which is not made expliddtaSpot.

Unlike [9], BANKS (like DataSpot) can exploit the semantigaicher set of links available from foreign
keys and other constraints in the structured (relationatemistructured (XML/OEM) setting, which is largely
missing in graphs formed by HTML documents.

4 Implementation Approach

Our heuristic solution is based on Dijkstra’s single sowshkertest path algorithm. We assume that the graph
fits in memory. This is not unreasonable, even for moderdéetye databases, because the in-memory node
representation need not store any attribute of the cornelipg tuple other than the RID. As a result the graphs
of even large databases with millions of nodes and edges ttanrfiodest amounts of memory. We will be
looking into external memory based applications as a pastiofuture work.

Given a set of keywords, first we find, for each keyword ternthe set of nodess;, that are relevant to the
keyword. In the current implementation, we search only k@t matches, and to facilitate this we build a single
index on values from selected string-valued attributemfdifferent tables. The index maps from keywords to
(table-name, tuple-id) pairs.

Let relevantNodes = Sy U Sy U ... U S, be the relevant nodes for the query. We concurrently run
|relevantNodes| copies of the single source shortest path algorithm, onedoh node imelevant Nodes as
source. We run them concurrently by creating an iterat@riate to the shortest path algorithm, and creating
multiple instances of the iterator.

The important distinction of this approach is that the srgglurce shortest path algorithm traverses the graph
edges in reverse direction. The idea is to find a common vémex which a forward path exists to at least one

node in each se$;. Such paths will define a rooted directed tree with the comrestex as the root and the
corresponding keyword nodes as the leaves. The tree thuedbis a connection tree and root of the tree is the
information node.

We create a single source shortest path iterator for eachidtdynode. At each iteration of the algorithm,
we need to pick one of the iterators for further expansion.pik an iterator whose next vertex to be output is
at the least distance from the source vertex of the itergterdistance measure can be extended to include node
weights of nodes matching keywords). We keep a list of alMimices visited for each iterator. Consider a set
of iterators containing one iterator each from Sgtlf the intersection of their visited vertex lists is non-gly)
then each vertex in the intersection defines a tree rootdabatetrtex. A resulting tree is a connection tree only
if the root of the tree has more than one child. If the root afea thas only one child then the tree formed by
removing the root node is also present in the result set amibie relevant to the keyword nodes in question.

5 Browsing

The BANKS system provides a rich interface to browse dateedtin a relational database and is well integrated
with the search facility. The browsing system automatjcgknerates browsable views of database relations,
and of query results, by using two mechanisms: foreign kiaiomships and nesting of data using a mechanism
similar to GROUP BY in SQL. For every attribute that is a foreign key, a link isatezl in the display to the
referenced tuple. In addition, primary key columns can bmwvked backwards, to find referencing tuples,
organized by referencing relation (a specific referenceigtion can be selected by the user).

Each table displayed comes with a variety of tools for irdeng with data. Apart from direct schema
browsing we support operations like sorting data on a specifolumn, restricting the data by a predicate
on a column, projecting away a column, taking join with théerenced table by clicking on a foreign key
column, data nesting wherein only the distinct values oflarna specified are displayed, etc. Controls for these
operations can be accessed by clicking on the column nantles table header.

Note that all the hyperlinks are automatically generatethleysystem and no content programming or user
intervention is needed. Each hyperlink is really an SQL gudrich is executed when a user clicks on the links.
Another important feature atemplates templates provide several predefined ways of displayirygdaita.
Templates must be customized by specifying various inftongdepending on the template); a customized

template is given a hyperlink name and is then available ¢éosu®r browsing.

6 Experience and Performance

We have implemented BANKS using servlets, with JDBC corinastto an IBM Universal Database. We have
experimented with two datasets: One is the DBLP Bibliogyaghatabase shown in Figure 1. We converted a
dump of DBLP into structured relational format and ran BANKS this data. There are 124,612 nodes and
319,232 edges in this graph. The other one is a small thesbakze. |IT Bombay’s database of Masters and
Phd dissertations are available in relational format;eteee input to BANKS.

A system like BANKS may be evaluated along (at least) two messs quality of the results and speed.
Unfortunately, neither is easy to characterize. There aragneed-upon benchmarks for evaluating proximity-
or prestige-base ranking algorithms in this domain. To wamdund this, we selected data sets that academics
and database researchers are familiar with and can rejateléast w.r.t. the schema. This makes the discussion
of results more meaningful, albeit qualitative. While wen @mpare the different heuristics with each other
on the quality of their answers, it is not clear what is an ftopd” answer to compare against. Eventually, user
experience counts, which is what led us to releasing thelsdacility on a Web site.

We give a few examples of queries on the bibliographic da@bgor the query “Mohan”, C. Mohan came
out at the top of the ranking, with Mohan Ahuja and Mohan Kafo#dowing. This was due to the prestige
conferred by thevritesrelation which had many tuples for these authors. The queap$action” returned Jim
Gray'’s classic paper and the book by Gray and Reuter as thevtoanswers.

The query “soumen sunita” returned only one answer: a tragagong a node corresponding to the paper
“Mining Surprising Patterns Using Temporal Descriptionngéh” as the information node. This paper has
Soumen and Sunita as co-authors and the tree has the twemmmdingauthor tuples as leaf nodes and two
writestuples — connecting the two author tuples to the paper tupkeintermediate nodes.

The query “sunita olap” returned some interesting resultsepart of DBLP we had loaded had no paper
by “sunita” with “olap” in its title, but the system found senal papers with “olap” in the title that cited or were
cited by papers authored by “sunita”. Several of the resulpapers by “sunita” were on OLAP even though
the word was absent in the title. A useful extension wouldddifferentiate between papers that cite papers
by “sunita” and papers cited by papers by “sunita”. We cofdd,nstance, provide a way to select an answer
corresponding to one of these forms (at the level of the dabchema) and ask for more answers of that form.

The BANKS system supports metadata queries. For exampeleuiry “thesis sudarshan” returns all thesis’
advised by Sudarshan (in addition to thesis’ written by ag®sftan, if there had been any).

Currently loading the DBLP database takes 2 minutes, andtali MB of memory, but we expect this
to decrease greatly with a better tuned Java or C implementaOnce the database graph is loaded, queries
usually take a second or so to get the first answer, and a femndedo get all answers (up to some relevance
cutoff) on the DBLP database. Our prototype implementatiearly demonstrates the feasibility of using a
system such as BANKS for moderately large databases.

7 Extensions and Future Work

Several extensions are possible to our model. A keyword upketrelation-name may not be exactly equal to
a search term but instead be a synonym to it. The BANKS modesgy extendible to allow scaling down of
node weights to account for approximate match or synonyrngaorg/ms are particularly useful in the context
of matching metadata. Performance issues caused by nmeetagarords matching large numbers of nodes are
being addressed in BANKS.

The model can be easily extended to support predicate obthedttr:[op]value, e.g.“author:Sudarshan,
year:>2000". We want to allow user-defined rankings for temporal androdheéered domains. E.g., one may
search folconcur rency recent requiring a paper about concurrency published “recently”.

For a given set of keywords, there may not exist a reasonablgiee that includes one node corresponding
to each keyword. In such a situation a tree including only esafithe keywords may be useful. In our current
implementation we set the node prestige to the indegreeeafitkde. We can incorporate a full-fledged eigen-
analysis as in Google/PageRank so as to facilitate prestgesfer (a form of spreading activation), wherein
nodes pointed to by heavy nodes become heavier. We are alsmenng several additional functionalities in
the user interface such as ways of getting answers with atneeture (form) similar to a chosen answer, and of
getting summaries as answers. We plan to apply our currehiaéer proximity algorithms to XML/OEM.

8 Conclusions

Many Web sites are becoming database-centric, and maruralfifing interfaces for browsing and querying

data is time consuming. Systems supporting keyword searatelational data reduce the effort involved in

publishing relational data on the Web and making it seadehabxamples of the types of data that could be
published with keyword search support include organipafialata, bibliographic data and product catalogs.
We surveyed several approaches to keyword search on desaba& have developed BANKS, an integrated
browsing and keyword querying system for relational dasabaBANKS has many useful features which allow
users with no knowledge of database systems or schema tp @ugbrowse relational databases with ease.

Acknowledgments: We wish to thank B. Aditya, Urmila Kelkar, Megha Meshram araatd®) for implementing
some parts of the BANKS system and for their help with loadigdatabases.

10

References

[1]

[2]

[3]
[4]
[5]
[6]
[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Sergey Brin and Lawrence Page. The anatomy of a large-bgpertextual Web search engir@omputer
Networks and ISDN Systen89(1-7), 1998.

Michael J. Carey, Laura M. Haas, Vivekananda Magantg dohn H. Williams. Pesto : An integrated
query/browser for object databases.Hrocs. of the International Conf. on Very Large Databagesyes
203-214, 1996.

Shaul Dar, Gadi Entin, Shai Geva, and Eran Palmon. DTlasaSpot: Database exploration using plain
language. IrProcs. of the International Conf. on Very Large Databagesjes 645-649, 1998.

Shaul Dar, Narain H. Gehani, H. V. Jagadish, and J. Sxsan. Queries in an object-oriented graphical
interface.Journal of Visual Languages and Computiggl):27-52, 1995.

Daniela Florescu, Donald Kossmann, and loana Manolesaiegrating keyword search into xml query
processingWWW?9/Computer Network33(1-6):119-135, 2000.

David Gibson, Jon M. Kleinberg, and Prabhakar Ragha@dunstering categorical data: An approach based
on dynamical systems. Procs. of the International Conf. on Very Large Databagegyes 311-322, 1998.

Roy Goldman, Narayanan Shivakumar, Suresh Venkatasudomian, and Hector Garcia-Molina. Proximity
search in databases. rocs. of the International Conf. on Very Large Databasemes 26—37, 1998.

Jon M. Kleinberg. Authoritative sources in a hyperlidkenvironmentJACM, 46(5):604—632, 1999.

Wen-Syan Li, K Selcuk Candan, Quoc Vu, and Divyakant Agah Retrieving and organizing web pages
by “information unit”. InWorld-wide Web Conferenc&0, pages 230-244, 2001.

Ute Masermann and Gottfried Vossen. Design and Impieation of a novel approach to Keyword Search-
ing i n Relational Databases. [urrent Issues in databases and information systqmages 171-184,
September 2000.

Kevin D. Munroe and Yannis Papakonstantinou. BBQ: Auwgisinterface for integrated browsing and
querying of xml. InVisual Database Systemiday 2000.

Eran Palmon. Associative search method for heteragendatabases with an integration mechanism con-
figured to combine schema-free data models such as a hypetbiated States Patent Number 5,740,421,
Granted April 14, 1998, filed in 1995. Availableaw. uspt o. gov, 1998.

Eran Palmon and Shai Geva. Associative search methtid nvavigation for heterogeneous databases
including an integration mechanism configured to combites@-free data models such as a hyperbase.
United States Patent Number 5,819,264, granted Octob868, filed in 1995. Available atww. uspt o.

gov, 1998.

N. L. Sarda and Ankur Jain. Mragyati: A system for keydirased searching in databases. Submitted for
publication. Contact: nls@cse.iitb.ac.in., 2001.

Hinrich Schitze, David A. Hull, and Jan O. Pedersen.ofparison of classifiers and document represen-

tations for the routing problem. IACM SIGIR’'95, (Special Issue of the SIGIR Forympages 229-237,
1995.

John C. Shafer and Rakesh Agrawal. Continuous queryinglatabase-centric web applications.
WWW9/Computer Network33(1-6):519-531, 2000.

Ron Weiss, Bienvenido Vélez, Mark A. Sheldon, Chaimatbemprempre, Peter Szilagyi, Andrzej Duda,
and David K. Gifford. Hypursuit: A hierarchical network sel engine that exploits content-link hypertext
clustering. InProc. of ACM Hypertextpages 180-193, 1996.

11

