
Using Codewords to Protect Database Data from a Class of Software Errors

Philip Bohannon
�

Rajeev Rastogi
�

S. Seshadri
�

Avi Silberschatz
�

S. Sudarshan
�����

�
Bell Laboratories, Murray Hill, NJ�

bohannon,rastogi,seshadri,avi � @research.bell-labs.com�
Indian Institute of Technology, Bombay, India

sudarsha@cse.iitb.ernet.in

Abstract

Increasingly, for extensibility and performance, special-
purpose application code is being integrated with database
system code. Such application code has direct access to
database system buffers, and as a result, the danger of data
being corrupted due to inadvertent application writes is in-
creased. Previously proposed hardware techniques to pro-
tect from corruption require system calls, and their perfor-
mance depends on details of the hardware architecture.

We investigate an alternative approach which uses code-
words associated with regions of data to detect corruption
and to prevent corrupted data from being used by subse-
quent transactions. We develop several such techniques
which vary in the level of protection, space overhead, per-
formance, and impact on concurrency. These techniques
are implemented in the Dalı́ main-memory storage manager,
and the performance impact of each on normal processing
is evaluated. Novel techniques are developed to recover
when a transaction had read corrupted data caused by a
bad write, and gone on to write other data in the database.
These techniques use limited and relatively low-cost logging
of transaction reads to trace the corruption, and may also
prove useful when resolving problems caused by incorrect
data entry and other logical errors.

1. Introduction

As hardware gets more reliable, software errors are often
the greatest threat to database system availability [20, 7],
even in standard systems where database data is protected
by process boundaries from errors in application programs.
Increasingly, however, for extensibility and performance,

�
The work of S. Sudarshan was performed in part while at Bell Labs.

special-purpose application code is being integrated with
database system code. Extensible databases allow third
party vendors and users to add new data types and stor-
age methods to the database engine [19]. Performance-
critical applications may require the performance which can
be achieved by directly accessing the data stored in a main-
memory database [9, 4]. In either case, due to the high cost
of inter-process communication, direct access to database
internal structures such as the buffer cache is critical to
meeting the performance needs of these applications. Thus,
database availability can be affected not only by software
errors in the DBMS, but also by errors in application pro-
grams. One class of software error which has been shown
to have a significant impact on DBMS availability is the
“addressing” error [20]. This class of error includes copy
overruns and “wild writes” through uninitialized pointers.

Software fault tolerance techniques (see, for exam-
ple, [15, 18]) attempt to mitigate the damage done when
software errors occur in a production environment. One
approach to avoiding addressing errors is the use of type-
safe languages for user applications. Similar results can
be achieved at runtime with the software fault tolerance
technique of sandboxing [23]. However, type-safe lan-
guages have yet to be proven in high-performance situa-
tions, and sandboxing may perform poorly on certain ar-
chitectures (see Section 6, Related Work, for more details).
Finally, communication across process domain boundaries
to a database server process provides protection, but such
communication is orders of magnitude slower than access
in the same process space, even with highly tuned imple-
mentations [1]. With multi-gigabyte main-memories now
easily affordable, one can expect many OLTP databases to
be fully cached, decreasing the impact of disk latency on
performance and consequently increasing the relative im-
pact of inter-process communication.

1



In [21], Sullivan and Stonebraker investigate the use of
hardware memory protection to improve software fault tol-
erance in a DBMS environment by guarding data in the
buffer cache. For example, calls were added to POST-
GRES [19] to unprotect the page containing a tuple before
it is updated and to reprotect it afterwards. In performance
experiments, they found that this protection was relatively
inexpensive. The overhead amounted to 7-11% of the pro-
cessing time using a CPU bound workload which ignored
disk latency, and to 2-3% of processing time when disk
latency was included. However, a number of factors have
motivated us to consider other possible techniques for pro-
tecting data in the DBMS. First, memory protection prim-
itives must be accessed through system calls which may
be slow [17]. An informal test of several systems avail-
able to us confirmed that the performance of mprotect can
vary widely among comparable workstations (see Figure 1
in Section 5.1). Second, in a threaded application, threads
can access pages unprotected by other threads, decreasing
the effectiveness of the scheme. Finally, in a main-memory
DBMS, information such as allocation information or other
control information need not be stored on the same page
as user data. This is the case in the Dalı́ system in which
our experiments are implemented, and it can significantly
increase the number of pages which must be protected and
unprotected during a single operation.

In this paper, we refer to bytes modified in the course of
an addressing error as direct physical corruption. Once data
is directly corrupted, it may be read by a process, which
then issues writes based on the value read. Data written
in this manner is indirectly corrupted, and the process in-
volved is said to have carried the corruption. While this
process could be a database maintenance process, we fo-
cus on transaction-carried corruption, in which the carry-
ing process is an executing transaction. As noted in [21], for
a DBMS to effectively guard data from direct physical cor-
ruption, it must expose an update model by which correct
updates can be distinguished from unintended or erroneous
updates. In our update model, all updates are in place, and
correct updates are ones which use a prescribed interface.

We investigate techniques which protect data by divid-
ing the database into protection regions and associating a
codeword with each such region. Thus, using the prescribed
interface ensures that when data in a region is updated, the
codeword associated with the region is also updated. (This
activity is referred to as “codeword maintenance”.) When a
wild write or other addressing error updates data, with high
probability the codeword value computed from the region
will no longer match the codeword maintained for that re-
gion.

We present several codeword-based techniques for the
prevention or detection of corruption. The first scheme we
describe, Read Prechecking, prevents transaction-carried

corruption by verifying that the codeword matches the data
each time it is read. The Data Codeword scheme, a less
expensive variant of Read Prechecking, allows detection of
direct physical corruption by asynchronously auditing the
codewords.

For detecting indirect corruption, we introduce the Read
Logging scheme in which a limited amount of information
about each data item read by a transaction is added to the
log. Since the data logged consists of the identity of the item
and an optional checksum of the value, but not the value
itself, the performance impact of this logging is limited. The
addition of information about reads allows the database log
to function as a limited form of audit trail [2] for the DBMS.

Since none of these techniques prevents direct physical
corruption, techniques for corruption recovery must be em-
ployed to restore the database to an uncorrupted state. We
introduce the delete-transaction model, a model of recov-
ery which focuses on removing the effects of corruption
from the database image, and present an algorithm which
implements this model as a modification of the Dalı́ recov-
ery algorithm. Recovery from errors when the error is not
immediately detected (for example, not detected until after
the transaction commits) is discussed in [5], but the delete-
transaction model algorithm presented in this paper is the
first concrete proposal we are aware of for defining and im-
plementing corruption recovery in a transaction processing
system.

To ascertain the performance of our algorithms for de-
tecting and recovering from physical corruption, we studied
the impact of these schemes on a TPC-B style workload im-
plemented in the Dalı́ main-memory storage manager. Our
goal was to evaluate the relative impact of the schemes de-
scribed above on normal transaction processing. In addi-
tion to our schemes, we include a hardware-based protec-
tion technique similar to that of [21]. For detection of di-
rect corruption, the overheads imposed cause throughput of
update transactions to be decreased by 8%. Prevention of
transaction-carried corruption with Read Prechecking costs
between 12% and 72%, with the space overheads increasing
as performance improves. Detection of transaction-carried
corruption with Read Logging costs between 17% and 22%.
Using hardware protection decreases throughput in Dalı́ by
about 38%, even on a platform with relatively fast protec-
tion primitives.

The remainder of the paper is organized as follows. Our
system model is discussed in Section 2. Section 3 de-
scribes schemes which prevent or detect corruption. Sec-
tion 4 presents techniques for recovery when corruption is
detected after the fact. Section 5 describes a performance
study of several of the algorithms presented in the paper,
and Section 6 describes related work. Section 7 concludes
the paper and discusses future work.



2. System Model

This paper assumes a database model in which database
data is directly mapped into the address space of applica-
tions. In addition to user data, control information such as
lock tables and log buffers may also be mapped into the ad-
dress space of the application. Note that even if user appli-
cations are not allowed direct access to database data, any
multi-threaded database engine will follow a similar model
in that database server processes will access the buffer cache
in shared memory [8].

Certain of the algorithms we develop depend on details
of the logging and recovery model of the DBMS, and in
these cases, the logging and recovery model of the Dalı́
main-memory storage manager [3] is used. The logging
and checkpointing code in Dalı́ is modified to implement
the protection schemes for the performance study in Sec-
tion 5. Updates in Dalı́ are done in-place, and updates by
a transaction must be bracketed by calls to the functions
beginUpdate and endUpdate. Each physical update to a
database region generates an undo image and a redo image
for use in transaction rollback and crash recovery. Undo and
redo logs in Dalı́ are stored on a per-transaction basis (lo-
cal logging). When a lower-level operation is committed,
the redo log records are moved from the local redo log to
the system log tail in memory, and the undo information for
that operation is replaced with a logical undo record. Both
steps take place prior to the release of lower level locks. A
copy of the logical undo description is included in the oper-
ation commit log record for use in restart recovery.

As a main-memory system, Dalı́ is only page-based to
the extent that it is convenient for tracking storage use and
for the efficient layout of fixed-size records. For example,
allocation information is not stored on the same page as tu-
ple data, and extra free-space for expansion need not be re-
served on each page. Benefits of this approach include effi-
cient use of space, and the ability to store objects larger than
a page contiguously, and thus access them directly without
reassembly and copying.

2.1. The Dalı́ Multi-Level Recovery Algorithm

Dalı́ implements a main-memory version of multi-level
recovery [12]. A multi-level transaction processing system
consists of � logical levels of abstraction, with operations at
each level invoking operations at lower levels. Transactions
themselves are modeled as operations at level � , with level
0 consisting of physical updates.

The contents of the system log tail are flushed to the sta-
ble system log on disk when a transaction commits, or dur-
ing a checkpoint. The system log latch must be obtained
before performing a flush, to prevent concurrent access to
the flush buffers. The stable system log and the tail are to-
gether called the system log. The variable end of stable log

stores a pointer into the system log such that all records
prior to the pointer are known to have been flushed to the
stable system log. While flushing physical log records, we
also note which pages were touched (“dirtied”) by the up-
date which generated the log record. This information about
dirty pages is noted in the dirty page table (dpt).

All redo actions are physical, but when an operation
commits, an operation commit log record is added to the
redo log, containing a logical undo description for that op-
eration. At system recovery, these records are used so
that logical undo information is available for all commit-
ted operations whose enclosing operation (which may be
the transaction itself) has not committed. For transaction
rollback during normal execution, the corresponding undo
records in the transaction’s local undo log are used instead.

Since the database is assumed to fit in main-memory,
Dalı́ does not have a buffer manager and does not write
pages back to disk except during a checkpoint operation.
During a checkpoint, dirty pages from the in-memory
database image are written to disk. In fact, two checkpoint
images, Ckpt A and Ckpt B, are stored on disk, as is the
checkpoint anchor, cur ckpt, which points to the most re-
cent valid checkpoint image for the database. During subse-
quent checkpoints, the newly dirty portions of the database
are written alternately to the two checkpoint images (this is
called ping-pong checkpointing [6]).

Information about active transactions is stored in an ac-
tive transaction table, referred to as the ATT. Due to local
logging, the entry for each transaction in the ATT contains
local undo and redo logs. In addition to the database image,
a copy of the ATT with the local undo logs and a copy of the
dirty page table (dpt) are stored with each checkpoint.

Note that physical undo information is moved to disk
only during a checkpoint. The undo information is taken
by the checkpointer directly from the local undo logs of
each transaction. (Thus, physical undo log records are never
written to disk for transactions which take place between
checkpoints.)

Restart recovery starts from the last completed check-
point image, and replays all redo logs, repeating history
physically. When the end of the log is reached, incomplete
transactions (those without transaction commit or abort
records) are rolled back, using the logical undo informa-
tion stored in either the checkpointed ATT or operation com-
mit log records. Due to multi-level recovery, the rollback is
done level by level, with all incomplete operations at level

�

being rolled back before any at level
�����

.

3. Codeword Protection

In this section, we introduce two codeword-based
schemes for detection and prevention of corruption: Read
Prechecking and Data Codeword. We also discuss the Hard-



ware Protection scheme which is included in the perfor-
mance study in Section 5. When Hardware Protection pre-
vents an addressing error, a trap is issued to the process and
the offending write is not completed. Thus, this scheme pre-
vents direct physical corruption. By contrast, the codeword
schemes can only detect direct physical corruption during
a subsequent audit, and this is the strategy taken with the
Data Codeword scheme. However, direct corruption only
does damage when the corrupted data is read by a subse-
quent process, and this indirect corruption can be prevented
using the Read Prechecking scheme.

Schemes for computing codewords for data are well
known, and selection of a good scheme is not a topic ad-
dressed in this paper. In our implementations, the codeword
is the bitwise exclusive-or of the words in the region. Thus
the
�
’th bit of the codeword represents the parity of the

�
’th

bit of each word on the region.

Control Structures

Corruption can occur not only on the database image, but
also on transient database control structures such as lock in-
formation, etc. Since the interfaces to such data are typ-
ically less uniform than the interface to user data, using
the techniques described below to protect control structures
would entail a significant individual implementation effort
for each structure covered. For this reason, we do not in-
clude protection of these control structures in this study.

Protecting and unprotecting an entire segment was used
to provide protection for control structures in [21]. While
we are aware of no segment-level protection mechanisms in
the UNIX platforms available to us, were such a mechanism
available, it could easily be combined with the schemes for
protection of persistent data studied in this thesis. However,
even with such a mechanism, protection of control struc-
tures in [21] was found to cost approximately ten times as
much as protection of data buffers in CPU-bound tests.

Hardware Protection

While not a codeword scheme, the hardware protection
scheme is included in our performance study as a point of
comparison. Since all updates in Dalı́ are in-place, the hard-
ware protection scheme we implemented most closely re-
sembles the Expose Page Update Model of [21]. On a call
to beginUpdate, the page (or possibly pages) being updated
are unprotected, and are reprotected at the call to endUp-
date.

3.1. Read Prechecking

An alternative to preventing direct corruption of data is
preventing the use of that corrupted data by a transaction.
To accomplish this, the consistency between the data in a
protection region and its codeword is checked during each
read of persistent data. We now present the details of this

scheme.
A protection latch is associated with each protection re-

gion and acquired exclusively when data is being updated,
or when a reader needs to check the region against the code-
word. At endUpdate time, the undo image stored in the log
and the current value of the updated region are used to up-
date the codeword before the protection latch is released. A
flag, codeword-applied, is stored in the undo log record for
a physical update to indicate whether the associated change
to the codeword has been applied. This flag is set at begin-
Update and reset at endUpdate. If a rollback is necessary
when the flag is set, the undo image for this update should
be applied without updating the codeword. When reading
data, the protection latch is taken in exclusive mode and the
codeword for the contents of the region which contains the
data to be read is computed and compared with the stored
codeword.

3.2. Data Codeword

Detecting (but not preventing) direct physical corruption
can be accomplished with a variant of the Read Precheck-
ing scheme described in Section 3.1. The maintenance of
the codewords is accomplished in the same manner; how-
ever, the check of the codeword on each read is dropped in
favor of periodic audits. The process of auditing is nothing
more than an asynchronous check of consistency between
the contents of a protection region and the codeword for
that region. This can be carried out just as if a read of the
region were taking place in the Read Prechecking scheme.

Since prechecks are not being performed, and audits are
asynchronous, it makes sense to use significantly larger pro-
tection regions. In this case the protection latch may become
a concurrency bottleneck. If so, a new latch, the code-
word latch, may be introduced to guard the update to the
actual codewords, and the protection latch for a region need
only be held in shared mode by updaters. During audit, the
protection latch must be taken in exclusive mode to obtain
a consistent image of the protection region and associated
codeword. In particular, data is audited during the propaga-
tion to disk by the checkpointer (or at page-steal time in a
page-based system).

4. Corruption Recovery

In this section, we consider how to recover from physical
corruption which is detected rather than prevented. Since
recovery is necessarily more complicated than prevention,
it may seem an unnecessary effort to design recovery algo-
rithms for this case, even if the corruption detection mech-
anism is significantly more efficient than comparable cor-
ruption prevention mechanisms. However, in the fault in-
jection study performed by Ng and Chen to study the reli-
ability of a non-volatile buffer cache in a DBMS, the addi-



tion of hardware protection only reduced the incidence of
data corruption from 2.7% to 2.3%, indicating that a sig-
nificant risk exists that physical corruption will go unde-
tected [16]. Since they used a hardware protection scheme
following [21], some of this corruption may have occurred
during the time the page was unprotected. Such errors may
be detected by the codeword schemes in this paper if the
area being corrupted, while on the same page, is not speci-
fied as part of the update when the prescribed interface (be-
ginUpdate/endUpdate) is called.

In other cases, however, the corruption may have been
introduced through the prescribed routines, in which case it
does not meet the definition of physical corruption used in
this paper. For these errors, codeword audit procedures will
not be able to automatically detect the corruption. However,
if other audit mechanisms such as those described in [10] or
other asserts within the DBMS are available to determine
the location and a lower bound on the time of the error, the
recovery mechanisms described in this section can aid in the
subsequent recovery.

4.1. Models of Corruption Recovery

We define three models of corruption recovery: the
cache-recovery model, the prior-state model, and the
delete-transaction model. Using the cache-recovery model
with the Read Prechecking scheme and the two Data Code-
word schemes is discussed in Section 4.2, and an algorithm
which implements the delete-transaction model is given in
Section 4.3.

In the cache-recovery model, direct physical corruption
is removed from cache pages, assuming that indirect corrup-
tion has not occurred, and because of that, corrupt data val-
ues are not reflected in any log records. This form of recov-
ery is invoked when a precheck fails in the Read Precheck-
ing scheme or when an audit detects a codeword error in one
of the Data Codeword schemes. By auditing pages before
they are propagated to disk, we ensure that the disk image
is free of corruption and thus repairing the corrupted cache
image can be accomplished by applying standard recovery
techniques to the region of data corrupted. We omit the de-
tails due to lack of space.

In the prior-state model, the goal is to return the database
to a transaction consistent state prior to the first possible oc-
currence of corruption by replaying logs which were gener-
ated prior to that point. Most commercial systems support
this model (see, for example, [13]). We do not discuss it
further.

In our final model, the delete-transaction model, we as-
sume that corruption is dealt with by deleting the effects of
certain transactions from the database image. Any transac-
tion that read corrupted data must be deleted from history,
and any data that such a transaction wrote after reading cor-
rupt data is treated as being corrupted by the transaction.

The identity of deleted transactions is then returned to the
user to allow manual compensation for the effects of these
transactions. Thus we assume that corruption is detected
relatively quickly, and that the amount of corrupted data is
limited. We do not attempt to analyze the speed at which
corruption may spread, since it is dependent on the details
of the application, the DBMS implementation, and the ini-
tially corrupted data. Furthermore, it is up to the user to
deal with any real-world actions or communication with ex-
ternal systems which has occurred during the execution of
the deleted transactions. (Note that in the prior-state model,
it is up to the user to deal with compensating for all transac-
tions which have occurred after the corruption, rather than
just the ones determined to be possibly affected.)

To implement a recovery algorithm for this model, it
must be clearly understood what it means to “delete a trans-
action from history”. One possible interpretation would be
to allow any serializable execution of the remaining, un-
deleted, transactions. However, this definition is not ac-
ceptable, since the values read by other transactions, and
thus the values exposed to the outside world, might change
in the modified history.

To define correctness in this model, we consider two
transaction execution histories, the original history,

���
, and

the delete history,
���

. Each history is specified by the reads
and writes issued by each transaction. In

���
, all reads and

writes of certain transactions no longer appear. These his-
tories include the values read or written by each operation,
and for a given operation, the value read or written in

���
is

the same as for the corresponding operation in
� �

. A delete
history is conflict-consistent1 with the original history if any
read in

� �
is preceded by the same write which preceded it

in
� �

. Similarly,
� �

is view-consistent with
� �

if each read
in
� �

returns the value returned to it in
� �

. A correct re-
covery algorithm in the delete-transaction model recovers
the database according to a delete history which is conflict-
or view-consistent with the original history. Note that it fol-
lows from this definition that in a conflict-consistent delete
history, the final state of any data item written by a transac-
tion in the delete set will have the value it had before being
written by the first deleted transaction.

4.2. Read Logging

In order to trace the indirect physical corruption as re-
quired by recovery in the delete-transaction model, we in-
troduce the idea of limited read logging. When a data item is
read, the identity of that item is added to the transaction log.
Should it be determined through an audit or other means
that certain data is corrupt, the read log records can help
determine if any subsequent transactions have in fact read
the corrupt data by serving as a form of audit trail [2]. The

1Note that the notions of conflict- or view-consistency are distinct from
the standard notions of conflict- or view-equivalence.



read log records combined with the rest of the log allow
the transaction log to be used as a mechanism for tracing
the flow of indirect corruption in the database. Since log
records in Dalı́ are physical, we log reads at the physical
level also. Thus when data is read, the identity of that data
is logged as a start point and a number of bytes. For effi-
ciency, the data logged as read may overestimate the amount
actually read.

Generating Checkpoints Free of Corruption

Since Read Logging supports recovery from indirect cor-
ruption, it becomes crucial that the disk image be free not
only of direct corruption, but indirect corruption as well, so
that a correct recovery does not require loading an archive
image of the database. Thus, when propagating dirty pages
from memory to disk, it is not sufficient to audit the pages
being written. Even if none of the dirty pages has direct
physical corruption, it is possible that a “clean” page has
direct corruption, and a transaction has carried this corrup-
tion over to a page that was written out. Thus the checkpoint
would have data that is indirectly corrupted.

The correct way of ensuring that the checkpoint is free of
corruption is to create the checkpoint, and after the check-
point has been written out, audit every page in the database.
If no page in the database has direct corruption, no indirect
corruption could have occurred either. We can then certify
the checkpoint free of corruption.

This technique cannot be directly applied to page flushes
in a disk-based system, since it amounts to auditing all
pages in the buffer cache before any write of a dirty page
to disk (at page steal time). However, a similar strategy can
be followed if a set of pages are copied to the side, and then
an audit of all pages is performed before writing them to
the database image on disk. To ensure that direct physical
corruption does not escape undetected, a clean page which
is being discarded to make room for a new page must also
be audited.

4.3. Delete-Transaction Model

The delete-transaction model of corruption recovery is
tightly integrated with restart recovery. On detecting an
error, we simply note the region(s) failing the audit, and
cause the database to crash, allowing corruption recovery to
be handled as part of the subsequent restart recovery. For
our delete-transaction model recovery algorithm, we need a
checkpoint which is update-consistent in addition to being
free from corruption. However, in Dalı́, a checkpoint being
used for recovery is not necessarily update-consistent until
recovery has completed (that is, physical changes may only
be partially reflected in the checkpoint image, and certain
updates may be present when earlier updates are not).

The algorithm to obtain an update-consistent checkpoint
in Dalı́ is similar to the audit procedure for the Deferred

Maintenance codeword scheme, and uses a portion of the
redo log and ATT to bring the checkpoint to a consistent
state before the anchor is toggled and the checkpoint made
active. Once performed, the checkpoint is update-consistent
with a point in the log, CK end. We omit the details.

Recovery Algorithm

The main idea of the following scheme is that corruption
is removed from the database by refusing during recovery to
perform writes which could have been influenced by corrupt
data. In order to do this, the transactions which performed
those writes must, at the end of the recovery, appear to have
aborted instead of committed. Certain other transactions
may also be removed from history (by refusing to perform
their writes) in order to ensure that these “corrupt” transac-
tions can be effectively removed, and thus ensuring the final
history as executed by the recovery algorithm is consistent
with a delete history obtained from removing the “corrupt”
transactions from the original execution (see Section 4.1).

Recovery must start from a database image that is known
to be non-corrupt. Note that since errors are only detected
during checkpointing or auditing, we may not know exactly
when the error occurred; the error may have been prop-
agated through several transactions before being detected.
The algorithm below conservatively assumes that the error
occurred immediately after Audit LSN, the point in the log
at which the last clean audit began.

Two tables, a CorruptTransTable and a CorruptDataTable
are maintained. A transaction is said to have read corrupt
data if the data noted in a read or write log record of that
transaction is in the CorruptDataTable.

Restart recovery consists of the redo phase followed by
the undo phase, as follows:

Redo Phase: The checkpointed database is loaded into
memory and the redo phase of the Dalı́ recovery algorithm
is initiated, starting the forward log scan from CK end.

During the forward scan, the following steps are taken
(any log record types not mentioned below are handled as
during normal recovery):

� If a read or write log record is found, then if this
record indicates that the transaction has read corrupted
data, then the transaction is added to CorruptTransTa-
ble (where it may already appear).

� If a log record for a physical write is found, then there
are two cases to consider:

1. The transaction that generated the log record is
not in CorruptTransTable: In this case, the redo
is applied to the database image as in the Dalı́
recovery algorithm.

2. The transaction that generated the log record is
in the CorruptTransTable: In this case, the data it
would have written is inserted into CorruptDataT-
able. However, the data is not updated.



� If a begin operation log record is found for a transac-
tion that is not in CorruptTransTable, then it is checked
against the operations in the undo logs of all trans-
actions currently in CorruptTransTable. If it conflicts
with one of these operations, then the transaction is
added to CorruptTransTable. This ensures that the ear-
lier corrupt transaction can be rolled back. If it does
not conflict, then it is handled as in the normal restart
recovery algorithm.

� If a logical record such as commit operation, commit
transaction or abort transaction is found, the record is
ignored if the transaction that generated the log record
is in CorruptTransTable. Otherwise, the record is han-
dled as in normal restart recovery.

� When Audit LSN is passed, all data noted to be corrupt
by the last audit is added to CorruptDataTable.

Undo Phase: At the end of the forward scan, incomplete
transactions are rolled back. As in the normal Dalı́ al-
gorithm, undo of all incomplete transactions is performed
logically level by level. Note that at the end of the redo
phase, each transaction in CorruptTransTable has a (possi-
bly empty) undo log, containing actions taken by the trans-
action before it first read corrupted data. During the undo
phase, these portions of the corrupt transactions are undone
as if the corrupt transactions were among those in progress
at the time of the crash.

Checkpoint: The recovery algorithm is completed by
performing a checkpoint to ensure that recovery following
any further crashes will find a clean database free of cor-
ruption. If the checkpoint were not performed, a future re-
covery may rediscover the same corruption and in fact ad-
ditionally declare transactions that started after this recov-
ery phase to also be corrupted. Note that this checkpoint
invalidates all archives. The log may be amended during
recovery to avoid this problem, but this scheme is omitted
for simplicity.

Discussion

Following Section 4.1, the database image at the end of
the above algorithm should reflect a delete history that is
consistent (in this case, conflict-consistent) with the original
transaction history. To see (informally) that this is the case,
first observe that all top-level reads of non-deleted transac-
tions read the same value in the history played during re-
covery as in the original history. This is because any data
that could possibly have been read with different values was
previously placed in CorruptDataTable, and top-level reads
must be implemented in terms of reads at the physical-level
where corruption is tracked. The second observation is that
the database image is consistent and contains the original
contents plus the writes of those transactions which do not

appear in the delete set. This follows from the correctness of
the original recovery algorithm, and the fact that the initial
portion of corrupted transactions can be rolled back during
the undo phase along with normal incomplete transactions
to produce a consistent image. This is ensured since we
do not allow any subsequent operations which conflict with
these operations to begin.

Extension: Codewords in Read Log Records

If codewords are stored in read log records, then detec-
tion of indirect corruption becomes more precise. In partic-
ular, the CorruptDataTable can be dispensed with, and in-
stead, the definition of reading corrupt data given above is
replaced by a definition in which a transaction read corrupt
data if either of the following cases hold:

1. A codeword is stored in a read log record, and it does
not match the computed codeword for the correspond-
ing region in the database being recovered.

2. A codeword is stored in a write log record (indicating
that it should be treated as a read followed by a write)
and the codeword does not match the computed code-
word for the corresponding region in the database.

A second benefit of storing codewords in read log
records is that in the case of a true system failure (as op-
posed to one caused by a failed audit) it is possible to detect
physical corruption which occurred after the last audit but
before the crash. More precisely, physically corrupt data
will be detected if any transaction read it, since during re-
covery the codeword for these transactions will not match
the database image being recovered. Thus, if codewords
are present, the corruption recovery algorithm should be ex-
ecuted not only when an error is detected, but also on every
restart.

Note that the modified algorithm produces a recovery
schedule which is view-consistent with the original history,
thus not propagating corruption when the corrupt transac-
tion wrote the same data to a data item as it would have had
in the delete-history.

5. Performance

The goal of our performance study was to compare the
relative cost of different levels of protection, for example
detection versus prevention, as well as comparing different
techniques for obtaining the same level of protection. In
each case, we are interested in the impact of the scheme on
normal processing as opposed to the time taken for recov-
ery. Corruption recovery is expected to be relatively rare,
and the time required is highly dependent on the application
and workload. The algorithms studied were implemented
in the DataBlitz Storage Manager, a storage manager be-
ing developed at Bell Labs based on the Dalı́ main memory
storage manager.



Platform pairs/second
SPARCstation 20 15,600
UltraSPARC 2 43,000
HP 9000 C110 3,300
SGI Challenge DM 8,200

Table 1. Performance of Protect/Unprotect

5.1. Performance of mprotect

Before describing the results of our study of protection
schemes, we begin by looking at the relative performance
of memory protection primitives on commonly available
UNIX platforms. In Table 1, we evaluate the basic perfor-
mance of the memory protection feature on a number of
hardware platforms locally available to us. In each case,
2000 pages were protected and then unprotected, and this
was repeated 50 times. The number reported is the aver-
age number of these pairs of operations which were accom-
plished per second. Even this limited sample indicates the
variability in the performance of mprotect: the HP 9000
C110, which has about twice the integer performance of
the SPARCstation 20 (170.2 SPECint92 for the HP as op-
posed to 88.9 for the Sun2), gives less than one fourth the
performance of the SPARCstation when performing mpro-
tect/unprotect operations.

5.2. Workload

The workload examined is a single process executing
TPC-B style transactions. The database consists of four ta-
bles, Branch, Teller, Account, and History, each with 100
bytes per record. Our database contained 100,000 accounts,
with 10,000 tellers and 1,000 branches. The ratios between
record types are changed from those specified in TPC-B, in
order to increase the size of the smaller tables and thus limit
the effects of CPU caching on these tables. The benchmarks
were run on an UltraSPARC with two 200Mhz processors,
and 1 gigabyte of memory. All tables are in memory during
each run, with logging and checkpointing ensuring recover-
ability. In each run, 50,000 operations were done, where an
operation consists of updating the (non-key) balance fields
of one account, teller and branch, and adding a record to the
history table. Transactions were committed after 500 oper-
ations, so that commit times do not dominate.3 Each test
was run six times, and the results averaged. The results are
reported in terms of number of operations completed per
second.

2From the database at http://performance.netlib.org. It was not
possible to compare these numbers for all machines, as only SPECint95
numbers are available for the newer systems.

3The alternative was to design a highly concurrent test with group com-
mits, introducing a great deal of complexity and variability into the test.

5.3. Results

In Table 2, a representative selection of the algorithms
discussed in this paper are shown, along with the average
number of operations per second the algorithm achieved in
our tests, and the relative slowdown of the algorithm com-
pared to the baseline algorithm, which is just the system
running with no corruption protection. Our experiments
show that detection of direct corruption can be achieved
very cheaply, with a 8% overhead, using data codeword pro-
tection.

The Read Prechecking scheme appears in the table sev-
eral times due to a time-space tradeoff between space used
for codewords and the size of protection domains. for this
scheme. We present the performance of Prechecking with
a small domain size is economical at a 12% cost, depending
on the acceptability of a 6% space overhead. Read logging
lowers the space overhead, but raises the cost to 17%, which
is significant, but may be worthwhile, since automatic sup-
port for repairing the database can then be employed. Log-
ging the checksum of the data read, which increases the
accuracy of the corruption recovery algorithms, adds 5%
to the cost, bringing it to 22%. Memory protection using
the standard mprotect call on an UltraSPARC costs 38%,
more than double the performance hit of codeword protec-
tion with read logging. Finally, prechecking with large do-
main sizes fares very poorly.

By monitoring the number of mprotect calls for the
hardware-based scheme, we determined that on average op-
erations updated about 11 pages. Only 4 tuples are touched
by an operation, and the extra page updates arise from up-
dates to allocation information and control information not
residing on the same page as the tuple. Thus, this number
may be significantly smaller for a page-based system, which
would improve the performance of Hardware Protection
and Read Prechecking relative to the detection schemes.
However, even if a factor of three improvement is realized,
the variability in performance of mprotect described in Sec-
tion 5.1 will more than erase this gain on some systems.

Our conclusion from these results is that some form of
codeword protection should be implemented in any DBMS
in which application code has direct access to database data.
Detection of direct corruption is quite cheap, and while lim-
ited, is still far better than allowing corruption to remain un-
detected in the database. Other levels of protection may be
implemented or offered to users so that they may make their
own safety/performance tradeoff.

6. Related Work

Sullivan and Stonebreaker [21] use the hardware support
for memory protection to un-protect and re-protect the page
accessed by an update. By writing special system calls into



Corruption
Algorithm Direct Indirect Ops/Sec % Slower

Baseline None None 417 0%
Data CW Correct None 380 8.5%
Data CW w/Precheck, 64 byte Correct Prevent 366 12.2%
Data CW w/ReadLog Correct Correct 345 17.1%
Data CW w/CW ReadLog Correct Correct 323 22.4%
Data CW w/Precheck, 512 byte Correct Prevent 311 25.4%
Memory Protection Prevent Unneeded 257 38.2%
Data CW w/Precheck, 8K byte Correct Prevent 115 72.4%

Table 2. Cost of Corruption Protection

the Sprite operating system, and making use of the Trans-
lation Lookaside Buffers on their hardware platform, they
found that page protection could be turned on and off rela-
tively cheaply. In contrast, the new techniques introduced in
this paper do not require special operating system or hard-
ware support, easing portability of the DBMS. More impor-
tantly, the performance of our schemes is not limited by the
operating system’s implementation of the mprotect system
call (see Section 5.1).

Presumably, type-safe languages could be used to pro-
vide protection from direct physical corruption However,
C and C++ are still dominant for CAD and other high-
performance uses of memory-mapped database systems.
Sandboxing (see, for example, [23]) provides an alternate
technique for protecting data by rewriting object modules,
and with only a minor performance impact. However, the
object module rewriting must be redesigned for each target
architecture, which may be a significant limit on portabil-
ity, and since the technique requires a number of free reg-
isters to perform well, it may not be applicable on archi-
tectures without a large register set, such as the Intel x86
architecture. By contrast, our techniques are language and
instruction-set independent.

Ng and Chen [16] study the reliability of three different
interfaces to a persistent cache – (1) based on the I/O model,
(2) based on direct read/write (without memory protection)
and (3) based on direct read/write with memory protection,
using the POSTGRES database system. They inject a vari-
ety of faults (hardware and software) and then check if per-
sistent data has been corrupted. They conclude that the three
interfaces provide a similar degree of protection. What is
more important to note is that about 2.5% of the crashes due
to the injected faults resulted in persistent data being cor-
rupted, a rather high number for a database system. Thus,
techniques to detect and recover from physical corruption
are important, even in the absence of application code with
direct access to the database buffers.

Küspert [10] presents a number of specific techniques for
detecting corruption of DBMS data structures. These tech-

niques are ad-hoc in the sense that they are designed for spe-
cific DBMS storage structures. Taylor, Morgan and Black
[22] provide some theoretical structure to the design of data
structures that can recover from certain failures. However,
this work is not in the context of a DBMS, and does not
apply to corruption of general application data, since it han-
dles only components such as pointers and counts.

Finally, we note that commercial databases may well
have implemented techniques for detecting corruption;
however, such information is not publicly available. Our
page-based direct corruption detection scheme is inspired
by a codeword scheme for protecting telephone switch data
[11], but as far as we are aware, neither codeword based de-
tection and recovery techniques nor read logging techniques
are present in any published description of either a research
or commercial database system.

7. Conclusions and Future Work

We have described a variety of schemes for preventing
or detecting physical corruption using codewords, and an
algorithm for tracing and recovering from physical corrup-
tion under the delete-transaction model. We have presented
a performance study comparing alternative techniques of
corruption detection and recovery. Our study demonstrates
that detection of direct physical corruption is economical to
implement, that transaction-carried corruption can be pre-
vented cheaply if enough space is available for small pro-
tection domains, and that detection of transaction-carried
corruption for later correction through read logging imposes
about a 17% overhead on update transaction performance.
However, this technique opens up interesting possibilities
in tracing errors through the database system and aiding in
their correction. For a non-page-based system such as Dalı́,
the new schemes are much cheaper than using the UNIX
memory protection primitives for every update. Further-
more, since the codeword schemes depend on simple inte-
ger operations, we expect them to be easily portable, to per-
form consistently over all platforms, and to scale in speed



with the integer performance of new machines, while hard-
ware based protection may be much slower on certain sys-
tems with expensive system calls.

We believe our techniques for physical corruption will be
of increasing importance since applications are increasingly
being provided direct access to persistent data. Since it is
relatively cheap, we believe implementors of database sys-
tems in which application code has direct access to database
buffers should always provide detection of direct physical
corruption as a minimum.

We believe the delete-model recovery algorithm is the
first concrete proposal for integrating recovery from cross-
transaction errors into the crash recovery subsystem of a
DBMS. The model of tracing the indirect effects of errors
is applicable for other forms of corruption. When an error
in the database results from incorrectly coded application
programs or due to incorrect user input, we define this to
be logical corruption, based on the intuition that the error is
introduced at a higher level of abstraction than addressing
errors. Unlike physical corruption, direct logical corruption
cannot be efficiently detected (unless the violation of an in-
tegrity constraint causes the transaction which would enter
the corruption to roll back). Thus, logical corruption may
remain in the database until a user or auditor notices the er-
ror. Recovery from such corruption can be very difficult,
with problems ranging from accurate tracing of corruption
over much longer times to dealing with external actions as-
sociated with transactions. We are nevertheless convinced
that 1) automatic tools can be a significant aid in this pro-
cess, following the outline of [5], and 2) as with the imple-
mentation of read logging for the delete-transaction model,
such tools can benefit significantly from support within the
DBMS.

Acknowledgments We would like to thank Dennis Lein-
baugh for insightful discussions on codeword maintenance.

References

[1] B. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. ACM Transac-
tions on Computer Systems, 8(1):37–55, Feb. 1990.

[2] L. A. Bjork, Jr. Generalized audit trail requirements and
concepts for data base applications. IBM Systems Journal,
14(3):229–245, 1975.

[3] P. Bohannon, J. Parker, R. Rastogi, S. Seshadri, A. Silber-
schatz, and S. Sudarshan. Distributed multi-level recovery
in a main-memory database. In Proceedings of the Fourth
International Conference on Parallel and Distibuted Infor-
mation Systems, Miami Beach, Florida, 1996.

[4] P. Bohannon, R. Rastogi, D. Lieuwen, S. Seshadri, A. Silber-
schatz, and S. Sudarshan. The architecture of the dali main
memory storage manager. Journal of Multimedia Tools and
Applications, 4(2):115–151, Mar. 1997.

[5] C. Davies, Jr. Data processing spheres of control. IBM Sys-
tems Journal, 17(2):179–198, 1978.

[6] D. J. DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker,
and D. Wood. Implementation techniques for main memory
database systems. In Proc. of ACM-SIGMOD Int’l Confer-
ence on Management of Data, pages 1–8, Boston, Mass.,
June 1984.

[7] J. Gray. A census of Tandem system availability be-
tween 1985 and 1990. IEEE Trans. on System Reliability,
39(4):409–418, Oct. 1990.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo, California,
1993.

[9] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz,
and S. Sudarshan. Dali: A high performance main-memory
storage manager. In Proc. of the Int’l Conf. on Very Large
Databases, 1994.

[10] K. Kuspert. Principles of error detection in storage structures
of database systems. Reliability Engineering, 14:275–290,
1986.

[11] D. Leinbaugh, November 1994. Personal communication.
[12] D. Lomet. MLR: A recovery method for multi-level sys-

tems. In Proc. of ACM-SIGMOD Int’l Conference on Man-
agement of Data, pages 185–194, 1992.

[13] K. Loney. ORACLE8 DBA Handbook. Osborne McGraw-
Hill, 1998.

[14] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Sys-
tems, 17(1):94–162, Mar. 1992.

[15] D. Morgan and D. Taylor. A survey of methods for achieving
reliable software. IEEE Computer, 10(2), Feb. 1977.

[16] W. Ng and P. Chen. Integrating reliable memory in
databases. In Procs. of the International Conf. on Very Large
Databases, pages 76–85, Aug. 1997.

[17] J. Ousterhout. Why aren’t operating systems getting faster
as fast as hardware. In USENIX Summer 1990 Conference
Proceedings, pages 247–256, 1990.

[18] B. Randell. System structure for software fault tolerance.
IEEE Computer, 10(2), Feb. 1977.

[19] M. Stonebraker and L. Rowe (eds). The POSTGRES papers.
Technical report, UCB, Elec.Res.Lab, Memo No.M86-85,
rev. Jun.1987., Nov. 1986.

[20] M. Sullivan. System Support for Software Fault Tolerance
in Highly Available Database Management Systems. PhD
thesis, University of California, Berkeley, Jan. 1993.

[21] M. Sullivan and M. Stonebraker. Using write protected
data structures to improve software fault tolerance in highly
available database management systems. In Procs. of the In-
ternational Conf. on Very Large Databases, pages 171–179,
1991.

[22] D. Taylor, D. Morgan, and J. Black. Redundancy in data
structures: Improving software fault tolerance. IEEE Trans-
actions on Software Engineering, 6(6):585–594, Nov. 1980.

[23] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating System Princi-
ples, pages 203–216, Asheville, North Carolina, Dec. 1993.


