

Fine Grained Authorization Through Predicated Grants

 Surajit Chaudhuri Tanmoy Dutta S. Sudarshan

*

Microsoft Corp. Microsoft Corp. IIT Bombay

 surajitc@microsoft.com tanmoyd@microsoft.com sudarsha@cse.iitb.ac.in

Abstract
Authorization in SQL is currently at the level of tables

or columns. Many applications need a finer level of con-

trol. We propose a model for fine-grained authorization

based on adding predicates to authorization grants. Our

model supports predicated authorization to specific col-

umns, cell-level authorization with nullification, authori-

zation for function/procedure execution, and grants with

grant option. Our model also incorporates other novel

features, such as query defined user groups, and authori-

zation groups, which are designed to simplify administra-

tion of authorizations. Our model is designed to be a

strict generalization of the current SQL authorization

mechanism.

1. Introduction

Fine-grained access control, which restricts access to only

the information in some rows of a table, and further to only

information in certain columns within those rows, is re-

quired in practically all database applications. As an ex-

ample, a HR application has to ensure that employees can

see only rows corresponding to their own data, and man-

agers can additionally see some columns (such as salary)

of rows corresponding to their employees’ data.

Fine-grained authorization is traditionally implemented

by application programs, with no role for the database sys-

tem. There are several drawbacks to the current approach

of implementing fine-grained authorization purely in the

application layer:

• Authorization checks are distributed over a large body

of code, requiring more programmer effort, and in-

creasing the chances of security problems due to pro-

grammer or design errors. In contrast, providing sup-

port for fine-grained authorization in the database en-

gine could ensure that authorization policies are uni-

formly applied to all accesses.

• Applications typically connect to the database using a

single database user login. Using an operating system

analogy, every query runs with administrator (super

user) privileges, with respect to all data managed by

the application. Since the surface area to be protected

is also very large, the potential for damage due to ma-

licious access is high as a result.

• In an application service provider model, information

belonging to different organizations may reside in the

same relation. An organization may not be willing to

place complete faith in the application logic to protect

its data, and may desire a higher level of confidence,

with database-enforced protection of individual rows

[4]. Further, fine-grained authorization is essential if

the service provider allows organizations to write their

own SQL queries.

The above issues motivate the need for fine-grained ac-

cess control at the database level.

The current SQL authorization model is coarse-grained

in that it grants access to all rows of a table or none at all.

A form of fine-grained authorization can be implemented

in the current SQL language definition by using views, (or

table valued functions) with built-in functions such as

userid() and ismemberof() which provide user-specific

parameter values. However, this approach requires queries

to be phrased against the views rather than on the original

table, which may require rewriting significant parts of an

application. Further, different queries would have to be

written for users with different degrees of authorizations,

causing an unacceptable burden on the programmers and

complicating authorization administration.

In this paper we present a proposal to extend the SQL

authorization model to support fine-grained authorization.

Any such extension to SQL must have the following char-

acteristics:

• Clear and simple semantics.

• Compatibility with existing SQL security model, with

minimal changes.

• Ease of specification and administration of authoriza-

tion..

• The ability to deal with (large numbers of) application

users, not just a set of fixed database users/roles.

• Low impact on existing application code.

Our proposal is designed to meet the above require-

ments, and has several novel aspects:

• An extension of the SQL authorization grant model to

include predicates. Predicates can be applied on any

form of grant, including read and update of rows, and

execution of functions and procedures (with predicates

on function/procedure parameters). Current SQL au-

thorization is a special case of predicated authoriza-

tion, with the predicate being “true”.

• Column-level authorization, including variants that al-

low:

* Work performed while on sabbatical at Microsoft Research.

o nullification of values based on predicates, which

enables cell-level security [3], and

o Authorization on aggregates, while restricting au-

thorization on the underlying data.

• Mechanisms to support administration of systems with

large numbers of application users and database ob-

jects including

o Query-defined user groups.

o Authorization groups, which allow a group of tuples

that together constitute a business object (such as a

purchase order) to be granted as a unit.

Together, these mechanisms enable a compact specifi-

cation of complex authorization policies, including, as

special cases, multi-level security and access control lists.

Several of the above-mentioned features were motivated

by case studies of applications that we carried out. We

were able to concisely specify authorization policies for

these applications using our proposed constructs.

There has been a fair deal of work on fine-grained au-

thorization in recent years, including two commercial im-

plementations: Oracle’s Virtual Private Database (VPD)

[4], and Sybase row-level authorization [5]. Both imple-

mentations are based on adding predicates to query where
clauses, but both are decoupled from traditional SQL au-

thorization. The only earlier work that addresses SQL

extensions is Agrawal et al. [1], which proposes SQL ex-

tensions in the context of privacy; however, our paper ad-

dresses the issue in a significantly more general setting,

and supports systems with complex schemas and multiple

categories of users. See Section 7 for a description of re-

lated work, and their connections with our proposal.

The main goal of this paper is to present to the commu-

nity a detailed initial proposal for extending SQL to sup-

port fine grained authorization, addressing important issues

that arise in this context. Our hope is that this will eventu-

ally lead to extensions to the SQL standard, through re-

finement of the proposal.

The rest of the paper is organized as follows. Section 2

outlines the basic components of our authorization model.

Section 3 describes authorization on columns, including

nullification and aggregate authorization. Section 4 de-

scribes user-groups and authorization-groups. Section 5

discusses issues in predicated grants in cases where the

grantor has restricted (predicated) access to relevant rela-

tions. Section 6 discusses issues such as application au-

thorization and efficiency of implementations. Section 7

describes related work, and Section 8 concludes the paper.

2. Authorization Model Components

Our authorization model extends the authorization model

of the SQL:2003 standard, and introduces several new

components, including a user context, authorization predi-

cates, and query-defined user groups, which we describe in

this and subsequent sections. We use the following

schema in our examples.

• employee(empid, name, deptid, addr, phone)

• manager(mgrid, deptid)

• dept(deptid, deptname)

2.1. Application Users and User Contexts

The notion of users in database systems traditionally maps

to database logins. In contexts, such as web applications,

with large numbers of users, it is infeasible to have a tradi-

tional database login for each user, due to space overheads

for storing authorization information, and time overheads

for session set-up. Instead, applications employ a notion

of an application user, which is distinguished from a data-

base user. Fine-grained authorization has to be done in the

context of application users, rather than database users.

We assume that the identifier of the current application

user and other information, such as the network address

from which the user request was received, may be stored in

a user-context, and made available through functions. Our

user context is the equivalent of the “application context”

in Oracle VPD. Thus, we assume that a SQL function

userId () ,associated with a schema called UserContext,
provides the identity of the application user.

Application users must be authenticated, and their iden-

tity and other user-context information made available to

the database in a secure manner. Mechanisms to do so are

straightforward, but outside the scope of our model.
1

2.2. Predicates in Grants

Predicates can be used in grants as illustrated in the ex-

ample below, which specifies that each person is granted

access to their own employee record:

 grant select on employee
 where (empid = userId())

 to public
Such a predicated grant statement authorizes ac-

cess only to rows that satisfy the grant predicate.
Note that a grant with a true predicate is equivalent
to a normal (unpredicated) SQL grant.

We initially assume that, as in standard SQL, grants are

made to database users or roles. Later, in Section 2.5, we

extend the model to support grants to user groups. Al-

though we do not allow granting of privileges to individual

application users (which would have high administrative

overheads), the predicates in the grant provide the ability

to specify per-application-user authorizations.

For example, suppose we wish to grant each department

head access to the records of their employees. The follow-

ing example shows how this permission can be granted to

all department heads.

grant select on employee E

1 User context information can be securely conveyed to the

database by an extension of existing APIs such as ODBC,

ADO.NET or JDBC. It is possible to convey the information

using SQL commands as well, but such an approach is vulner-

able to SQL injection and other attacks.

 where (E.deptid in
 (select deptid from manages
 where mgrid = userId()))
 to public

Upto this point, we have implicitly assumed that the

grantor has unpredicated access to all the relations in-

volved in the grant, including the relation on which per-

missions are being granted and any relations in the associ-

ated predicate. We relax this restriction later, in Section 5.

2.2.1. Semantics for Queries

Suppose a particular user U has been given the follow-

ing grant on R, with predicate P:

grant select on R where P to U
The semantics of the grant is that all uses of R in any que-

ries issued by the database user U are replaced by the ex-

pression:

(select * from R where P)
Therefore, we informally refer to this as the filter seman-

tics for predicated authorization. If a user has multiple au-

thorizations with predicates P1..Pn, then the disjunction

(P1v …v Pn) is used in place of P in the above expression.

The filter semantics may change the semantics of the query

compared to unpredicated authorizations: it may generate a

subset of the answers, or, in case aggregation or negation

is used in the query, an altogether different answer set,

when compared with unpredicated authorization. For ex-

ample, the filter sematics may give the sum of a subset

when the user asks for the sum of a set of tuples. This

corresponds to the Truman semantics [6]; an alternative

semantics based on query validation is presented in [6], but

it has several drawbacks, which we discuss in Section 7.

Other database systems that support fine-grained authori-

zation, such as Oracle VPD and Sybase, also follow the

filter semantics.

2.2.2. Semantics for Updates

 The example below grants all (select, insert, delete and

update) authorization to all employee records with dept-id

Sales, to the database role SalesDept.

 grant all on employee
 where deptid =’Sales’

 to SalesDept
Assuming this is the only authorization that the role

SalesDept has, we require that any tuple inserted, updated,

deleted or selected by a user with the SalesDept role must

satisfy the predicate. In general, the predicates can be dif-

ferent for different authorizations. For updates, the old and

new value of any updated tuple must satisfy the update

authorization predicates. Inserts, deletes and updates on

tuples that violate the predicate are rejected. Suppose a

SalesDept user executes the following update

update employee
 set phone = ‘555-1212’, deptid = ‘Legal’

where empid = ‘1234’

If the employee 1234 was in the Sales department, the user

would have authorization to update the phone number, but

the update to deptid would fail since the updated tuple fails

the authorization predicate (deptid = ‘Sales’). However, if

the user was additionally granted update authorization with

the predicate deptid = ‘Legal’, the user can update the de-

partment value from Sales to Legal.

If an insert/delete/update affects multiple tuples, each

tuple that is inserted/deleted/updated must satisfy the

authorization predicates; otherwise the transaction must be

rolled back. Note also that if the insert/delete/update had

an associated subquery possibly referring other relations,

the filter semantics is applied to the subquery.

2.3. Authorization on Procedures/Functions

Applications often implement fine-grain authorization on

function/procedure invocations by adding a check at the

beginning of the function/procedure. However, enforce-

ment at the database layer (in lieu of, or in addition to,

authorization checking at application layer) provides a

stronger guarantee. Execution authorization is already part

of the SQL standard. We extend it here by specifying

predicates on parameter values, as illustrated below:

 grant execute on getsalary(userid)
 where (userid = userId()) to employeeGrp
We assume that employeeGrp is a role that is granted to

all employees. Thus each employee is authorized to exe-

cute the getsalary function, provided the parameter value

equals their user id. If the predicate does not evaluate to

true, the function is not invoked. In such a case, one possi-

ble action is to return a null value to the caller. Similarly,

in the case of procedures, if the predicate does not evaluate

to true, the procedure is not invoked, and one possible ac-

tion is to set output-only parameters to null, and leave in-

put-output parameters unchanged. An alternative action in

either situation above is to raise an exception when the

authorization predicates fail. The approach of returning

null is consistent with the filter semantics.

In SQL, stored procedures can run either

• under the privileges of the creator of the stored proce-

dure, or

• under the privileges of the invoker.

Note that the creator or invoker may have only predicated

access to some of the relations used in the procedure. If a

stored procedure is invoked under different privileges, the

queries in the stored procedures may be rewritten differ-

ently for different invocations.

2.4. Revocation

In general, a predicated grant has the structure:

 grant <Perm> on <obj>
 where (<Pred>) to <subj> [as <auth-name>]

Authorization names are automatically generated if they

are not specified, and can be found by querying the set of

authorizations.

An authorization can be revoked by name: the fol-
lowing example revokes the authorization named A1.

 revoke A1 from employeeGrp
Revocation of a named authorization would allow other

authorizations to still be valid on the same object. All au-

thorizations that were explicitly made on an object to a

grantee can be revoked by a standard SQL revoke. For

example the statement

 revoke select on employee
 from employeeGrp

removes all authorizations made on employee to employ-

eeGrp. We do not, however, support predicates in revoca-

tions. Revocation with predicates introduces additional

complexities and it is therefore not part of the current pro-

posal.

2.5. Query-Defined User Groups

Consider a permission that must be granted to all manag-

ers, but not to other employees. In SQL it is possible to

create a manager role and grant the role to each manager

individually. However, this requires a great deal of main-

tenance effort, since a grant/revoke of the role must be

made each time there is a change in the set of managers.

Moreover, the role assignment replicates information al-

ready present in the database, namely who are managers.

Allowing grants to be made to application users would

make authorization checking rather expensive, since each

user may have a completely different authorization predi-

cate, and there may be millions of application users.

Therefore, as mentioned earlier in Section 2.2, we do not

allow grants to be made to application users.

One way around this problem is to make grants to pub-

lic, and encode all checking in the authorization predicate,

as we did in earlier examples. Specifically, consider the

example from Section 2.2 where the grant predicate checks

if the userid is of a manager, and if not returns the empty

set of tuples. In the common case where many or most

users are not managers, checking the predicate would

cause an unnecessary overhead on every access to the em-

ployee relation. The notion of user groups helps tackle

the above problems.

Query-defined user groups (or just groups, for short)

are groups of application users defined using a query.

Membership of the group is defined dynamically, based on

values in the database, by means of a query. Specifically,

a group has an associated query that returns the set of ap-

plication user-ids that belong to the group. For example,

the following creates a group called managers, containing

every mgrid in the manager relation:

 create group managerGrp as
 (select mgrid from manager)
A user can belong to multiple groups. As far as the data-

base system is concerned, a userid is just a string value

(found by calling the function userId()) which is used to

lookup the groups that the user belongs to.

Grants can be made to groups, just as they can be made

to users or roles.

 grant select on employee
 where (deptid in (select deptid from managers

 where mgrid = userId()))
 to managerGrp

Note that the above grant is identical to one we saw earlier,

except that the above grant is to managerGrp, not to pub-

lic. The predicate thus will not be added to query filters

for users who are not in the managerGrp.

 Just as it is possible to grant a role a user, it is also possi-

ble to grant a role to a user group. All group members

then acquire the privileges available to the role.

3. Authorization on Columns

In SQL, permissions may be granted on specified columns,

instead of being granted to all columns of a relation. We

extend that model by allowing predicates to be specified

on such grants. For example to make names of all sales

department people visible to all users, one could use the

following grant.

 grant select on employee(name)
 where (dept =’sales’) to public

If this is the only available authorization, a query that ac-

cesses only the column ‘name’ would see all tuples corre-

sponding to the ‘sales’ department, while a query that ac-

cesses any other column would be rejected.

In general, a user may have multiple grants on different

columns of a relation, with different predicates, and a

query may access columns covered by different authoriza-

tions. There are several possible models for the seman-

tics of such grants:

• If a query accesses multiple columns of a relation, use

only authorizations that cover all accessed. Thus, if a

user has a particular authorization on column A, an-

other on column B and a third on columns A and B,

only the authorization that covers A and B can be used

for a query that accesses A and B.

• Allow different columns accessed in a query to be

covered by different authorizations, but only return

rows that satisfy all the predicates associated with the

authorizations that cover those columns. For example,

if we have two grants, one that allows access to col-

umn A under condition Pa and another that grants ac-

cess to column B under condition Pb. Then a query

that accesses columns A and B should be allowed to

access only those rows that satisfy Pa and Pb and re-

turn all (A,B) pairs for those qualifying rows..

• Allow different columns accessed in a query to be

covered by different authorizations, and return rows

where at least one column satisfies the authorization

predicate on the column. However, nullify cells for

which none of the applicable authorization predicates

evaluate to true.

The first model is rather restrictive. The second model is

consistent with column authorizations in SQL; we adopt it

as the default model, and describe it in Section 3.1. The

third model using nullification is also useful in many set-

tings, and we allow it to be specified using additional syn-

tax; we describe this model in Section 3.2.

3.1. Column Authorization Without Nullification

In this semantics, grants on multiple columns are view-

ed as a collection of grants, one on each column. Thus a

grant on R(A,B) is equivalent to two grants, one on R(A)

and another on R(B).

Multiple grants on a column are treated as defining a

disjunctive condition. That is, the corresponding column

can be accessed provided one of the relevant predicates is

satisfied. Thus, the two grants “R(A,B) where (P1)” and

“R(A) where (P2)” are equivalent to the two grants

“R(A) where (P1 or P2)” and “R(B) where (P1)”.

A query that accesses multiple columns sees only rows that

satisfy the conjunction of the predicates for the grant on

each column.

Note that the above behavior is non-monotonic, in that

if a query accesses more columns, it may get potentially

fewer tuples. In contrast, without predicates, if a query

accesses more columns, it may get rejected (and return no

tuples). In contrast, column authorization with

nullification can have monotonic behavior, as explained in

the next subsection..

3.2. Cell-Level Authorization with Nullification

Consider the following authorization scenario: allow ac-

cess to the address attribute of employees who have

‘opted-in’ to allow their addresses to be made public, but

return a null value for the address attribute of all other em-

ployees

To handle such scenarios, a grant can specify else nul-
lify as illustrated below

 grant select on employee(addr)
 where (P1) else nullify to public
 grant select on employee(phone)
 where (P2) else nullify to public
 grant select on employee(empid)
 where (P0) to public

P0, P1 and P2 denote predicates (left unspecified in the

example). The else nullify clause can only be specified on

columns whose types permit null values; it cannot be used

on primary key columns, for example.

If a grant with nullify is specified on a column, queries

can access that column, but the value returned for a row

will be null unless the predicate is true for at least one of

the grants. Thus, if predicates P1 (resp. P2) in the above

grants evaluate to false for a particular row for a particular

user, that user will see null values for the address (resp.

phone) attribute of the row. On the other hand, if a query

accesses an attribute on which else nullify is not specified,

such as empid in the above example, the entire tuple will

become inaccessible (including attributes for which else

nullify has been specified).

One effect of the above semantics is that users may get

rows where all referenced columns are null. We follow the

null-row suppression model of [3], which eliminates rows

that are null on all attributes. Such cell-level nullification

is required to support privacy policies such as P3P; see for

example, [1],[3].

3.3. Aggregate Authorizations

Authorization can be granted on aggregated values, in-

stead of individual values. For example, if we wish to

allow a salesperson to see the aggregate of sales in their

region, we can use the following grant.

 grant select on sales(region, category,
 anyagg(units), anyagg(price))

 where (region = getUserRegion())
 to salesGrp

We assume that the function getUserRegion() returns the

sales region corresponding to the current user, and

salesGrp is a role (or user group to which salespersons

belong). The aggregate anyagg stands for the SQL aggre-

gate functions min, max, sum, count, avg, It is also pos-

sible to allow a set of the above aggregates to be specified,

for example, [sum,avg](units). Additional aggregate

functions can be supported as well, but we don’t discuss

those extensions in this paper.

Note that the above grant is similar to grants on specific

columns, except that an aggregate authorization is only

applicable to a query only if (a) the query accesses and

groups-by only the columns listed in the authorization, and

further (b) columns listed only within an aggregate func-

tion in the grant are used only within a corresponding ag-

gregate function in the query (expressions, e.g. units/price,

are not allowed on such columns).

Given the above grant, a query

select region, sum(units) from sales
group by region

submitted by a sales user would retrieve total sales of the

region he is responsible for; a query “select sum(units)
from sales” would return the same aggregate value, in-

stead of the total sales across all regions. However, sup-

pose we give the additional authorization

 grant select on sales(anyagg(units),
 anyagg(price))

 to salesGrp
Then a query “select sum(units) from sales” submitted

by a sales user would return the total sales across all re-

gions. If there are multiple aggregate authorizations appli-

cable to a query, their conditions get combined by disjunc-

tion.

Note that unlike regular column level authorization, we

cannot combine aggregate authorizations across different

columns, since that can reveal more fine-grained informa-

tion than the individual authorizations provide. For exam-

ple, the grants

 grant select on sales(region, sum(units),
 sum(price))
 grant select on sales(category, sum(units),
 sum(price))

do not imply

 grant select on sales(region, category,
 sum(units), sum(price))

3.4. Semantics of Multiple Authorizations

In general, there can be multiple grants on a relation,

including multiple grants on a single column. We define

the semantics of multiple grants on relation R by defining

an authorized view of R under a given set of authoriza-

tions. Note that the semantics is in the context of a query,

which defines the set of columns accessed. For each rela-

tion R accessed by Q, let CQ be the set of columns of R

accessed by Q.
2

The authorized view Vr of relation R can be definedas:

 select L
 from R

 where Pa and Pb
Where

• For each column Ci in CQ that does not have any else

nullify authorization, define Pi as the OR of predicates

ionality. in all grants authorizing Ci; include in Pi any

aggregate authorizations applicable to Q. If any col-

umn in CQ has no authorizations, the query is rejected

as unauthorized. Let Pa be the AND of all the result-

ing Pi’s. If Pa is empty, set Pa to TRUE.

• L is defined as follows: for each column Ci in CQ, L

contains either just Ci (if there are no else nullify rules

on Ci), or

 (case when Oi then Ci
 else null
 end) as Ci
 where Oi is the disjunction of all authorizations

 on column Ci

• The clause and Pb is required to implement null-row

suppression, if all columns in CQ have an else nullify

clause. Pb is defined as the OR of the authorization

predicates on all columns in CQ.

Given the earlier defined authorization on employee, for

a query that accessed empid and phone, the resultant

view would be

2. A formal definition of the set of columns accessed by a

query is presented in [9]. The special case of CQ being empty

(e.g. select 1 from R) poses problems even for regular SQL

column authorization without predicates. We follow the (some-

what arbitrary) SQL Server approach of replacing an empty CQ

by the set of all columns.

 select empid, (case when P2 then phone
 else null end) as phone
 from employee
 where P0

While for a query that accesses address and phone number,

the view would be

 select (case when P1 then addr
 else null end) as addr,
 (case when P2 then phone
 else null end) as phone

 from employee
 where true and (P1 or P2)

The above view can be alternatively defined using outer-

joins on the primary key column, as described in [3].

4. Authorization Administration Features

Query defined user groups, introduced in Section 2.5,

enables administration of authorizations without having to

instantiate authorization for each user. In this section, we

further build on user groups. We also introduce the notion

of authorization groups, which allow related groups of

objects to be treated as a single unit for authorization..

4.1. Query-Defined User Groups Revisited

Hierarchies of groups are conceptually straight-forward: to

have group B inherit all members of group A, the group A

can be used in the query defining group B as below.

 create group A as (…)
 create group B as A union (…)

User groups can be thought of as roles that are granted

to application users by means of membership rules (de-

fined by queries); in contrast, SQL roles are granted to

database users (or other roles) explicitly by individual

grant statements. Although our discussion treats groups as

distinct from roles, it is possible to integrate the two, by

extending the role grant mechanism to allow query-defined

membership of application users. Such an integration must

be carefully designed to be faithful to SQL semantics of

roles.

From the view point of efficient authorization checking,

it is a good idea to materialize with each application userid

the set of groups to which the user belongs, which can be

done easily by materializing the queries defining the user

groups.3

 However, note that since groups are defined by que-

ries, it is possible for a user’s group membership to change

during a user session..

User-group membership gives additional authorizations

to a query, in addition to those that have been granted to

the database login under which the query is run. It is ad-

visable to provide minimal authorizations to the database

3 The queries defining groups may have to be constrained in

their expressivity, in order to ensure that they can be efficiently

maintained as a materialized view. This should not pose a prob-

lem since group definitions are usually not very complex.

login used by an application, and provide other authoriza-

tions through grants to user groups.

The authorization to create/modify/delete the definition

of a user group is treated in the same fashion as the au-

thorization to create or delete roles.

We note that a concept of groups already exists in SQL

Server 2005 and Oracle, but group membership is exter-

nally determined from LDAP/Active Directory. Such ex-

ternally defined group information can be made available

through the user context and used just like query-defined

user groups. The notion of query-defined user groups is

widely used in LDAP, but has not been part of SQL.

4.2. Authorization Groups

Granting of permissions in the real world is often done

with respect to business objects, such as medical reports or

purchase orders. Each such conceptual object may span

multiple rows across multiple tables in the database.

Authorization groups define a set of authorizations on a

group of related objects. Each authorization group must

have a root relation, whose purpose is explained shortly.

Each authorization in a group may be predicated on the

authorization of other objects in the group, so long as the

dependency is acyclic.

 create authorization select_purchaseorder
 with root order O as (
 select on order O,

 select on lineitem L where
 (L.order_id=O.order_id)),
 select on part P where
 (P.part_id=L.part_id),

select on partsupp PS where
 (PS.part_id = P.part_id),
 select on supplier S where
 (S.supplier_id = PS.supplier_id))

Note that each component of the authorization (including

the authorization on the root object, which is the relation

order in the above example) can be predicated.

Authorization groups may include authorization on

other authorization groups, creating a (non-recursive) hier-

archy of groups as illustrated below.

 create authorization sel_update_purchaseorder
 with root order O as (

 update on order O,
 update, insert, delete on lineitem L
 where (L.order_id = order.order_id),

 select_purchaseorder O2
 where (O2.order_id = O.order_id));
When an authorization group is granted to a user/user-

group or role, it can be predicated further, using predicates

on the root relation, as illustrated below (assuming em-

ployeeGrp has been defined earlier). The following grants

allow purchase orders to be viewed and updated by em-

ployees who made the purchase, and by those employee’s

managers.

 grant select_purchaseorder
 where(purchaser_id = userId())
 to employeeGrp
 grant sel_update_purchaseorder
 where (purchaser_id in
 (select user_id from employee, manager
 where employee.deptid=manager.deptid
 and manager.mgrid = userId()))
 to managerGrp

Authorization groups can be expanded out as a set of

authorizations, so they do not introduce extra expressive

power. However, they can greatly simplify the task of

authorization administration. Specifying equivalent au-

thorizations without authorization groups would require

multiple grants, each with a complex subquery, and with

significant overlap between the subqueries.

5. Stacked Grants

We had assumed earlier that the grantor of a grant had

unpredicated access to all relations involved in the grant

(the relation on which the grant is being made, as well as

all relations in the grant predicate). This is a reasonable

assumption in many cases since fine-grained authorization

policies will be set by a security administrator, and not by

users. However, if a hierarchy of administrators with dif-

ferent rights is to be supported, we must address the issue

of further granting of predicated grants, which we refer to

as stacked grants.

5.1. Acyclic Stacked Grants

The following is an example of a stacked grant.

grant select on R where P1 to A
 with grant option

and user A executes

 grant select on R where P2 to B
In this section we assume there are no cycles in the chain

of grants (we define grant acyclicity formally in Section

5.2, taking into account grants to public).
We now discuss the semantics of such stacked grants. Two

properties have to be satisfied by any scheme that allows a

restricted grant to be passed on:

1. A grantor A can only pass on authorizations that had

been granted with grant option to the grantor, and

2. The grant predicate cannot reveal information to the

grantee B that was not visible to the grantor A, or was

not granted with grant option to A. (Note, however,

that the grant predicate can involve authorizations

available to A, even if the authorizations are not

granted to B.)

In the above example, the naïve approach of giving to B

select authorization predicated by (P1 ∧ P2) would be in-

correct, since P1 is only authorized to see data satisfying

P1 with values from his/her user context. Suppose P1 is of

the form “empid=userId()”, the userId() value for A is

1234, and that of B is 2345. Then A is authorized only to

access (and grant access to) tuples with empid='1234',

whereas the naïve approach would allow A to grant B au-

thorization with empid=’2345’.

Giving B authorization predicated by (P1’ ∧ P2), where

P1’ is the result of replacing instances of userId() in P1 by

the user-id of A (and similarly for other user-context func-

tions) is incorrect as well. This is because P2 may include

a subquery, and unless the relations it uses are filtered by

authorizations available to A, it may reveal information to

B that A is not authorized to view.

The semantics that assigns to B select authorization on R

predicated by (P1’ ∧ P2’) where P1’ is as before, and P2’

is the result of replacing relations in P2 by the views avail-

able to user A, is intuitive, and easy to implement.

However, it has a subtle form of leakage, since predi-

cate P2’ may reveal information to B which A had not

received with grant option. For example, if A had select

authorization with grant option on employee names, and

select without grant option on employees working on a

secret project. A could grant B select on all employees,

predicated on their working on the secret project; B has

thus been granted (at least partial) access to information

that A was not permitted to pass on.

This subtle form of leakage is acceptable in most situa-

tions as an adequate level of consistency. In cases where it

is not acceptable, predicate P2’ would have to be formed

by using only authorizations available to A with grant op-

tions, instead of using all authorizations available to A.

Note also that if the authorizations granted to A change,

so should the authorizations that A has granted to B. Thus,

at any point in time the grant predicates for a grant with

grantor A must be based on the current authorizations

available to A. For example, if A had select authorization

on R predicated by P1 (with grant option), and passed on

this authorization to B. If the authorization available to A

changes, with P1 replaced by P2, the tuples available to B

change correspondingly. This is in keeping with authori-

zation propagation in standard SQL.

5.2. Cycles in Stacked Grants

Grants in standard SQL can contain cycles, which are rela-

tively easy to handle without predicates. However, the

semantics of grants gets very complicated if there are cy-

cles of predicated grants. The following example illustrates

problems due to cycles in predicated grants..

1. DBA grants select on R and

 select on S (where (S.X < 100)

 to A

 2. DBA grants select on S and

 select on R where (R.X <= 100)

 to B

 3. A grants select on R

 where (exists(select * from S

 where S.X +1 >= R.X))

 to C

 4. B grants select on S

 where (exists(select * from R

 where R.X +1 >= S.X))

 to C

 5. C grants select on S to A

 6. C grants select on R to B

The set of rows accessible to A, B and C is thus defined

recursively, which would make efficient implementation

rather difficult. To further complicate matters, a grant

predicate may in general be non-monotonic; a grant is non-

monotonic when an addition to one relation can cause a

decrease in the granted permissions on another relation.

For example, if the grant from A to C used ‘not exists’

instead of ‘exists’, the grant predicate is non-monotonic;

non-monotonicity may also arise due to aggregation. If

there is a grant cycle involving such a non-monotonic

predicate, the semantics of the grant is hard to define.

Note that cyclicity may be implicit: in the above exam-

ple, if C were public, then grants 5 and 6 above are im-

plicit, and the cyclicity problem occurs although there are

no explicit cycles in the grants.

Grant acyclicity condition: The simplest solution to the

cyclic predicated grant problem is to disallow cycles in

authorization grants. Formally, we define an authorization

graph as follows. Nodes in the graph are of the form (sub-

ject, object) where subjects are users/groups/roles and ob-

jects are relations/procedures. The graph edges are derived

from grants as follows: let A be the grantor and B the

grantee, R be the granted relation and Si be relations used

in the grant predicate. Then there is an edge from (A,R)

�γ (B,R), as well as an edge (A, Si) �θ (B, R) for each Si

used in the grant predicate. To account for grants to pub-

lic, we create a node corresponding to public, and add

edges labeled γ from (public, T) to (A, T) for each subject

A (other than DBA) and each object T.

Grants must check for cycles in the above graph, and

any grant that creates a cycle must be disallowed. Note

that the grant that completes a cycle may not even be

predicated, but the presence of other predicated grants in a

cycle can cause cyclicity.

A weaker form of the acyclicity condition can be de-

fined as follows: when checking for cycles we can drop

edges from (A,R) to (B,R) if A has unpredicated access to

R and the grant to B was unpredicated as well. Such edges

cannot cause any change in the permissions on R available

to B.

6. Discussion

In this section, we discuss several considerations in adopt-

ing our SQL authorization model proposal.

6.1. Other SQL Authorization Mechanisms

Our proposed mechanisms are orthogonal to view au-

thorization. Authorizations to views can be predicated,

and can be granted to query defined user groups.

Reference authorization and schema-level authoriza-

tions are not meaningful for application/database users

who have restricted views of data. Therefore, we did not

consider predicated version of such authorizations.

Access to metadata tables is highly restricted in the

SQL standard, since SQL currently lacks row-level au-

thorization. Predicated authorization has the potential to

be used as a mechanism to give restricted access to such

metadata.

6.2. Other Security Models

The multi-level security (MLS) model is used in certain

high-security applications, while access control lists

(ACLs) are used extensively in file systems. Predicated

grants can be used to implement both MLS and ACL in a

straightforward way, but can be useful in significantly gen-

eralizing both these models. We omit details for lack of

space.

6.3. Query Optimization

Authorization predicates added to queries are often re-

dundant, since queries typically only attempt to access

authorized information. Techniques for detecting and re-

moving redundant authorization checks are described in

Kabra et al. [2].

Query modification to implement fine-grained authori-

zation must be done each time a query is submitted, which

can have a non-trivial cost. To reduce this cost, we can

cache the rewritten query Q’ derived from Q, as well as the

recompiled plan. We reuse Q’ when Q is submitted again,

provided it is submitted by a user with the same or an

equivalent set of authorizations. A sufficient condition for

this is that the user belongs to the same set of query-

defined user groups; the condition can be refined taking

into accounts only groups with authorizations relevant to

Q. Caching of optimized query plans can be done as usual

on the rewritten query.

6.4. Application Level Authorization

Applications often implement their own fine-grained

authorization manager, which is used to decide what web

pages or user controls/interfaces should be shown to a par-

ticular user, as well as to check for authorization before

executing each externally invokable procedure. With our

authorization extensions, organizations can now store their

policies in the database as part of the database authoriza-

tion system, allowing central administration, and uniform

enforcement, across different applications that access the

same data,.

Application level procedures can be modeled in the da-

tabase as external procedures, and the predicated authori-

zation scheme for procedures proposed here can poten-

tially be used to handle authorization of the application

procedures. Since the procedures are externally invoked,

our authorization mechanism cannot enforce authorization,

but our model permits applications to query authorization

information stored in the database, to check if a procedure

execution is authorized.

Querying of authorizations can also be very useful to

answer queries such as “who is authorized to view salary

information for employee X”, or “is Y authorized to exe-

cute the create employee procedure with department=CS”?

The design of a meta-data schema for authorization infor-

mation, which would enable queries such as those dis-

cussed above, is an area of future work.

In our model, grants are made by database us-

ers/administrators or roles. We do not expect application

users to grant privileges at the level of the database

schema. However, delegation of authorization (see, e.g.

[10]) is an important requirement for many applications.

Granting of privileges by application users can form the

underlying basis for supporting delegation. The issue of

predicates in delegation is outside the scope of this paper,

but is an important area for future work.

7. Related Work

The most closely related work is Oracle’s Virtual Pri-

vate Database (VPD) model [4]. VPD allows the system

administrator to specify functions for each relation (differ-

ent functions can be specified for different modes of ac-

cess). The functions can take the application context as

input, and return a predicate as a string; the strings gener-

ated from the different relations in a query are ANDed to

the where clause of the query.

VPD was an early effort in the area, but it has several

limitations, which our model addresses. In particular, pol-

icy specification is decoupled from the SQL grant model in

VPD, whereas they are integrated in our proposal. We be-

lieve our approach will also be more efficient, since it

avoids the overheads of calling policy functions on each

query; VPD has a mechanism to cache policy function

results, but caching is applicable only if the function is

guaranteed to return the same result for all users.

The model we propose allows significantly more cach-

ing and reuse of rewritten queries. Authorization predi-

cates in our model can include calls to user-defined func-

tions, enabling the full power of a programming language

to be used when required, but without having to pay the

higher cost when simpler policies are deployed..

Our proposal is designed to simplify administration of

complex authorization schemes. The notion of query-

defined user groups, which plays a key role in this task, is

not present in VPD, nor is the concept of an authorization

group. VPD (as of Oracle 10g) also does not have a

mechanism for predicate based authorization of function

and procedure calls. A form of nullification is supported

by VPD in Oracle 10g, but by a more complex scheme.

The policy based security management feature of Sy-

base Adaptive Server Enterprise [5] allows predicates to be

associated with columns of tables. Different policies can

be specified on different columns, and are automatically

combined using OR or AND (as specified with the policy)

and added to the query where clause. To the best of our

knowledge, our model is a strict generalization of their

scheme. Their model does not support any column authori-

zation, or features designed to simplify administration,

such as user groups and authorization groups.

SQL Server 2005 Analysis Service provides a form of

row-level authorization on aggregate results. However,

their authorization model is independent of the database

authorization model, and is more restrictive than ours.

The approach presented here, as also those of Oracle

VPD and Sybase row-level authorization, are based, at

their core, on the idea of providing a per-user view of each

relation, filtered by predicates (called a Truman model, in

the terminology of [6]). As noted in [6], the predicates

added by the filtering (Truman) model can change a query

result, resulting in misleading/erroneous answers to a user

query. The non-Truman model described in [6], on the

other hand, guarantees correctness; that is, if a query is

accepted, it will give the same result as if the user had full

authorizations on all relations. However, the non-Truman

model requires a powerful query inferencing mechanism.

Since such inferencing is not decidable in general, imple-

mentations would heuristics, and a query that is accepted

by one database implementation may be rejected by an-

other (perhaps even a different version of the same data-

base system). Such unpredictability is highly undesirable

for applications; we have therefore followed the filtering

model.

Cell-level authorization is described by LeFevre et al.

[3], along with a study of alternative implementation tech-

niques, and optimization techniques. However, their tech-

nique is restricted to handling privacy policies, and does

not constitute a general purpose authorization mechanism.

Our nullification component follows the “query semantics”

model of [3]. A proposal to use predicated grants to man-

age cell-level authorization is described by Agrawal et al.

[1]. Their proposal shares with us predicated grant and

cell-level authorization with nullification features of our

proposal. However, they do not consider any of our other

features, such as aggregate authorization, user groups, au-

thorization groups, and interaction with other SQL au-

thorization components. Rosenthal and Sciore [8] propose

the use of predicates in grants, to control not only what

data can be seen, but even to whom further grants can be

made. However, the predicates they consider are simple

predicates, based for example on environment conditions

such as time-of-day.

 Forms of redundancy removal are present in commer-

cial optimizers, and also discussed in Kabra et al. [2].

Techniques from [6] and [2] can help check whether or not

a query is semantically affected by authorization rewriting.

Kabra et al. [2] also address the problem of information

leakage due to user-defined functions with side effects,

exceptions and error messages, and discuss how to get

optimal “safe” plans.

8. Conclusions

We presented a comprehensive proposal for extending

SQL’s authorization model to support fine-grained au-

thorization. We have carried out case studies of two ap-

plications, and found that our proposed authorization

schemes could concisely represent authorizations for both

these applications.

The next step is to initiate a discussion among database

vendors and application developers to refine the proposal,

and reach a consensus on the SQL extensions. Although

elements of the proposal have been implemented in proto-

types, a full fledged reference implementation needs to be

developed.

Much work remains to be done in the area of managing

authorizations. Extensions to efficiently handle hierarchies

of various types, such as organizational hierarchies, user

hierarchies and user-interface hierarchies are required, as

is database support for application level authorization.

Integration of database and application level authorization

remains an important longer term goal.

References

[1] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, W.

Rjaibi: Extending Relational Database Systems to Auto-

matically Enforce Privacy Policies. In ICDE, pages 1013–

1022, 2005.

[2] G. Kabra, R. Ramamurthy and S. Sudarshan, Redundancy

and Information Leakage in Fine-Grained Access Control,

SIGMOD 2006.

[3] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,

Y. Xu and D. DeWitt, Limiting disclosure in Hippocratic da-

tabases, In VLDB, 2004

[4] The Virtual Private Database in Oracle9ir2: An Oracle

Technical White Paper http://otn.oracle.com/deploy/

security/oracle9ir2/pdf/vpd9ir2twp.pdf.

[5] New Security Features in Sybase Adaptive Server Enter-

prise. Sybase Technical White Paper, 2003.

[6] S. Rizvi, A. Mendelzon, S. Sudarshan and P. Roy, Extend-

ing query rewriting techniques for fine-grained access con-

trol. In SIGMOD, 2004

[7] A. Rosenthal and E. Sciore. View security as the basis for

data warehouse security. In Intl. Workshop on Design and

Management of Data Warehouses (DMDW), 2000.

[8] A. Rosenthal and E. Sciore. Extending SQL's Grant and

Revoke Operations, to Limit and Reactivate Privileges. IFIP

Workshop on Database Security, 2000.

[9] A. Rosenthal and E. Sciore. Abstracting and Refining Au-

thorization in SQL. In Secure Data Management (SDM)

workshop, VLDB 2004.

[10] Xinwen Zhang, Sejong Oh, and Ravi Sandhu, Access Con-

trol Models and Mechanisms: PBDM: a flexible delegation

model in RBAC, Procs. 8th ACM Symp. On Access Control

Models and Technologies, June 2003.

