Memory Cognizant Query Optimization

- -* -
Arvind Hulgeri S. Seshadri S. Sudarshan
Deptt. of Computer Sci. & Engg. Bell Labs Deptt. of Computer Sci. & Engg.
IIT-Bombay Murray Hill, NJ IIT-Bombay

aru@cse.iitb.ernet.in

ABSTRACT

Complex queries make heavy use of join, aggregation and
sorting operations and these operations are memory inten-
sive. Typical optimizers assume all the memory to be avail-
able to each operator in the query tree. But while executing
pipelines memory will get divided amongst all the opera-
tors running simultaneously in a pipeline. The cost of an
operator generally depends on the available memory. If the
memory allocated to an operator is less than what an op-
timizer assumes, cost estimated by the optimizer would be
wrong. Thus the query optimization and memory distribu-
tion are interdependent and if done separately may not yield
best results. The query optimizer should not only consider
the total memory available but should also decide how to
divide it optimally among the operators of the plan.

We show how to optimize a query given the cost versus
memory allocation function for each operator. We have ex-
tended the Volcano optimizer to make it memory cognizant.
Part of the job of the optimizer is to decide which edge to
pipeline and which edge to block. A pipelinable edge can be
broken (i.e. converted) into a blocking edge. But the deci-
sion to break a pipelinable edge depends upon whether the
extra memory available to individual pipelinable trees thus
formed can more than offset the extra disk IO of the inter-
mediate results. This decision is integrated into our memory
cognizant optimizer.

1. INTRODUCTION

Complex queries make heavy use of join, aggregation and
sorting operations which are memory intensive. Conven-
tional query optimizers have the drawback that they assume
each of these operators can avail entire memory available to
the query execution engine. This assumption is clearly not
valid when executing a pipeline, where the available mem-
ory has to be divided among several concurrently executing
operators in the pipeline and may lead to suboptimal plans.

Motivating Example: Consider a query R X T X S
with two join predicates: one between relations R and T
and other between relations S and T. Cross products are
not allowed. Relation sizes are |R| = 60, |S| = 60 and

*Supported by Infosys Fellowship.

ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd.

© CSI 2000

seshadri@research.bell-labs.com

sudarsha@cse.iith.ernet.in

|T'| = 130 disk blocks, memory available is 80 blocks. Cost
is measured in terms of number of disk block accesses.

A traditional optimizer generates plan shown in Figure 1(a)
and (b). Since the available memory is sufficient to execute
either of the two nested loops join operators in memory, the
two nested loops join operators in the plan are assumed to
run in pipelined fashion in the best plan. The estimated
cost of this plan is the cost of reading each relation once
from the disk and equals |R| + |S| + |T'| = 240. However,
both nested loops join operators cannot be executed simul-
taneously in given memory. Thus the cost predicted by the
optimizer is inaccurate; the actual cost is more than the es-
timated cost and depends upon scheduling of the operators
in given memory. For example, as shown in Figure 1(a) a
worst-case memory scheduling will allocate 79 blocks to one
nested loops join and only one unit to other, thus making the
cost approximately 7860 units which is significantly higher
than the estimated cost.

Least cost would be incurred when the memory is divided
equally between the operators as shown in Figure 1(b), Here
the total cost incurred will be 610 units and is the optimal
for the given query plan and the given memory.

However, if we employ hybrid hash' join instead of nested
loops join for the two join operations as shown in Figure 1(c)
and equally divide memory between the two joins, the total
cost incurred will be 500 and the plan is optimal for given
memory. O

The example illustrates two key issues: First, cost of a
plan may change when division of memory is changed. Sec-
ond, the choice of plan itself needs to involve consideration
of memory allocation.

We propose two approaches to solve this problem: a 2-
phase approach and a I-phase approach.

In the 2-phase approach, we first optimize the query using
a conventional optimizer to get a traditional optimal plan,
and in the second phase we divide memory among opera-
tors in each pipeline of the plan so that each pipeline runs
optimally in available memory. In the example above, Fig-
ure 1(b) shows application of the 2-phase approach.

In the 1-phase approach we modify the traditional query
optimizer to make it memory cognizant. The modified op-
timizer takes into account division of memory amongst op-
erators while choosing between equivalent plans. In the ex-

'assume left input to be a build input and right input to be
a probe input

q\ NLJ

><J1<= Memory <= 79

/N

NLJ

R ><] 1<=Memory <=79 R

a

Estimated Plan Cost (10) = 240
Actual Plan Cost (I0) = [610...7860]

(a) Conventional Optimizer (b)

IR| = 60, |S| = 60, |T| = 130

/N

D<]Memory= 40 R

/N /N

2-Phase Optimizer (c)

NLJ
Memory = 40

q\ HHJ
Memory = 40

/N

D<]Memory:40

T S T

Estimated Plan Cost (I0) = 610 Estimated Plan Cost (I0) = 500
Actual Plan Cost (I0) = 610

Actual Plan Cost (I0) = 500
1-Phase Optimizer

Memory = 80

Figure 1: Motivating Example

ample above, Figure 1(c) shows application of the 2-phase
approach.

Although the 2-phase approach is able to optimally divide
the available memory amongst the operators of a given plan,
it may not necessarily give the optimal execution time for a
query since the plan being considered may itself be subopti-
mal for available memory. Therefore, the 1-phase approach
seems to be a better alternative.

In this paper we address the problem of choosing an op-
timal, memory-aware execution plan for a query given the
cost versus memory allocation function for each operator.
We build memory cognizant query optimizer to solve this
problem. Our contributions are as follows:

o We design efficient techniques to divide the available
memory optimally among operators in a pipeline. If
done naively, this process can take time quadratic in
the available memory size, and is impractical. We show
how to solve this problem in reasonable time by using
piecewise linear approximation of cost-versus-memory
functions of various operators.

e We show how some of the assumptions made while
evaluating cost of various operators are not valid when
cost is a function of available memory and we are di-
viding memory amongst operators. Based on these
observations we define various memory cognizant exe-
cution algorithms/schemes for each operator.

e We show how to make a cost-based decision of break-
ing (i.e. converting) a pipelined edge into a blocking
edge so that the child operator writes the intermedi-
ate result to the disk and the parent operator reads it
back. The decision to break a pipelinable edge depends
upon whether the extra memory available to individ-
ual pipelinable trees thus formed can more than offset
the extra disk IO of the intermediate results. This de-
cision is integrated into memory cognizant optimizer.

e It has been conjectured [7] that 1PO will perform no
better than 2PO. But the paper gives no conclusive
evidence of this claim. We evaluate 1PO against 2PO
and study the results obtained. Performance results
show that 2PO performs reasonably well as compared
to 1PO for tests conducted.

Our discussion is in the context of Volcano query opti-
mizer [3] but the techniques can be used with a System-R
style optimizer [10] also.

The rest of the paper is organized as follows: We dis-
cuss the related work in Section 2. Section 3 gives brief
overview of memory cognizant execution algorithms. In
Section 4 we present our technique for choosing the optimal
division of memory among a set of concurrently running op-
erators. This technique forms an important building block
of our algorithm for selecting the overall optimal plan. Sec-
tion 5 describes the basic Volcano query optimizer, including
the representation for the search space of all possible query
plans. Section 6 describes how the Volcano optimizer is
extended to include memory-cognizance and also describes
how pipeline breaking decision is taken in cost-based man-
ner. In Section 7 we present some experimental results, and
finally conclude in Section 8.

2. RELATED WORK

Previous work on resource management mainly deals with
scheduling resources efficiently for executing a given query
plan. These resource scheduling decisions do not interact
with the query optimizer and the two problems (query opti-
mization and scheduling) are solved in separate phases: the
query is optimized first to come up with a plan, and then
the plan is scheduled.

Query schedulers can be broadly classified into two cat-
egories: static schedulers and dynamic schedulers. Static
scheduling is applied after query optimization and before ex-
ecution. The dynamic scheduling strategy is integrated with
the query execution engine and makes the engine adaptive
to fluctuations in resource availability.

To the best of our knowledge no previous work has tried
to integrate scheduling decisions in query optimizer and our
work is the first one to do this (1PO). Several papers have
considered scheduling of query plans (2PO). Again, to the
best of our knowledge no previous work has tried cost-based
scheduling and all the previous scheduling strategies are
heuristic based, the only exception being a strategy pro-
posed by Nag and DeWitt[7] which assumes operator cost
functions to be linear w.r.t to memory. They [7] conjec-
ture that 1PO will perform no better than 2PO but give no

conclusive evidence of this claim.

Yu and Cornell [11] consider an environment of concur-
rently running queries and study the problem of memory
allocation to individual queries. They define a concept of
return-on-consumption (ROC) to study overall reduction in
response time due to additional memory allocation to a
query. Each query is assumed to be a single-join query. A
memory scheduling policy is proposed wherein more mem-
ory is allocated to queries which have high value of ROC.

Mehta and DeWitt[6] also consider the problem of mem-
ory scheduling in multi-query environment. They divide
queries in different categories depending upon their mem-
ory requirement and provide several heuristics for memory
allocation depending upon the classification. Again, only
single-join queries are considered and only hash join opera-
tor is considered.

Bouganim et al.[1] propose various static and dynamic
scheduling schemes for a query tree. They split a given query
tree into a set of maximal pipeline chains, each called pc_task
and scheduled separately. Under static scheduling they pro-
pose several heuristic-based strategies to divide memory
among operators depending upon minimum (M,?) and
maximum (M7%,) memory requirements of each operator.
The heuristics proposed include: divide memory equally
amongst the operators, allocate maximum memory to the
operator which has the smallest MZ%, ., give each opera-
tor memory in proportion to its MSF, ., and give maximum
amount of memory to an operator having the largest MJ%, .
Under dynamic scheduling strategy they propose a mem-
ory adaptive execution engine, which dynamically allocates
memory and changes query scheduling as and when required.
If the memory requirement of a pc_task can not be satisfied,
they split the pc_task into segments to be scheduled sepa-
rately. The scheduling strategies defined consider only max-
imum and minimum memory requirement of the operators
and the memory allocation decision is not cost-based.

Nag and DeWitt[7] propose several heuristic based static
scheduling strategies which are more or less similar to those
proposed by Bouganim et al.[1]. They divide a query tree
into concurrently schedulable units called shelves and divide
memory amongst operators in a shelf. They also propose a
cost based strategy which assumes operator cost model to
be linear. We consider more general cost model.

Davison and Graefe[2] and Zeller and Gray[12] show how
to make a single hash join adaptive to memory fluctuations
but do not consider scheduling of an entire query plan. Pang
et.al.[8] examine the same problem in the context of real-
time databases where the priority of a query needs to be
considered and a query may need to be scheduled in absence
of sufficient memory.

3. MEMORY COGNIZANT EXECUTION

Generally following assumptions are made while evalu-
ating cost of an operator. These are not valid when cost
is a function of available memory and memory is divided
amongst operators:

e It is assumed that each operator in a pipeline utilizes
all available memory and input is streamed into it in
pipelined fashion. Thus the cost of an operator is de-
cided by available memory and size of its input. This
assumption is not valid as already described.

e It is assumed that for a join operator, the smaller of
the two inputs is outer or left input and the larger one
is inner or right input and this yields optimal cost.
This assumption is not valid as described further.

o It is assumed that in multiphase sort or hash operation
each merging or partitioning phase utilizes all available
memory but in reality the first and the last phase need
to share the available memory with child operator and
parent operator resp. and only intermediate phases
utilize all available memory.

Based on these observations we define various execution
schemes for each operator which primarily dictate schedul-
ing of various phases of an operator, memory utilization of
these phases and which one of the two inputs acts as left
input for join operation. We define following four schemes
for executing a nested loops join (NLJ) operator. Similar
schemes for rest of the operators can be found in [4]. Let
Mot be total available memory, M be memory available for
the plan tree rooted at NLJ and L be size of left input.

e Scheme 1: Initially left input tree is completely pro-
cessed to generate all left input tuples which are stored
in-memory. Then right input tree is processed and
right input tuples, as generated, are matched with left
input tuples which are memory resident. Thus the left
input is blocking though it is not written to disk, and
the right input is pipelined.

Of the memory, M units, allocated to the tree, L units
is used by NLJ for storing left input. Thus remaining
(M — L) units is used for processing the left input
tree. Once the left input tree is processed, the right
input tree is executed and it also gets (M — L) units
of memory for its execution.

e Scheme 2: Here again the left input tree is block-
ing and the right input is pipelined but the left input
is written to disk. The left input is completely pro-
cessed before NL.J starts and all the left input tuples
are stored on the disk. Then the right input is ex-
ecuted in pipelined fashion with NLJ. As the left
input is written to disk, NLJ can use memory less
than L units (unlike scheme 1) and read the left input
multiple times from disk.

As the left input is processed independently, it uses
(M¢ot — 1) units of memory for its execution. One unit
is used for buffering the tuples before writing them to
the disk. Then the right input is executed in pipelined
fashion with NLJ. So M units memory, allocated to
the tree, will be divided optimally between NL.J and
the right input, say M’ units to NLJ and M — M’
units to the right input.

e Scheme 3: Same as scheme 2 but with the roles of
left and right inputs reversed.

In scheme 2, the cost of executing the tree rooted at NL.J
in M units of memory would be the summation of cost of
executing NLJ in M’ units of memory, cost of the left input
running in Mio; — 1 units of memory and cost of the right
input running in M — M’ units of memory. It is easy to see
that we can not decide which one of the two inputs should

— m
M 2 0
opt
my

cverted = o ov-i

cost p
= /
copt Cmverted
p 2
P!
0 m M

Figure 2: Optimal division of memory between 01
and o>

be the left input based only on their sizes and we need eval-
uate the cost for both the alternatives, hence the need for
scheme 3.

4. OPTIMALDIVISION OF MEMORY FOR
A GIVEN QUERY PLAN

We present here a crucial building-block of our memory-
cognizant optimizer: the technique used in optimally divid-
ing memory among a set of operators running in a pipeline.

When a pipeline is executed, all operators in the pipeline
run simultaneously in given memory. The cost of running
such a pipeline depends upon how much memory each oper-
ator in the pipeline gets, and hence it is important to choose
the optimal division of memory among these operators.

4.1 Cost Functions with Arbitrary Shape

In this section we consider optimal memory allocation for
operators in a pipeline, where operator cost functions are of
arbitrary shape. We describe our technique by first consid-
ering the problem of sharing available memory between two
operators. We then consider three operators, and finally the
general case with n operators.

Dividing memory between two operators: Consider a
pipeline P composed of two operators 01 and o2 with
cost functions ¢; and ¢y respectively. Let the available
memory be M units. Here, unit refers to a unit of al-
location. We can divide this memory between the two
operators by giving m; units to operator o; and mo»
units to operator o2 (mi+ma = M). Clearly, the cost
of executing the pipeline is a function of this division.
Let ¢p be cost of the pipeline as a function of m,, with
mo = M —my. Thus cp(m1) = c1(m1) + co(M — my).

This function can be computed by inverting the cost
function c» along the memory axis and adding it to the
cost function ¢;. This is shown in Figure 2. We need
to find value of my, say m?”" at which ¢, is minimal,
say co”', as shown in Figure 2. This is the optimal
allocation to operator o;. Correspondingly optimal al-

- . t t
location to operator oz will be m3?" = M — m7?".

Vi,1<i<MNVj,1<j<M:
i+j=M=c1(i) +ca(j) > er(m$”") + ca(m3?")

For cost functions with arbitrary shape we need to
examine all possible division points and calculate ¢,
for each value of m; from 0 to M. This takes O(M)
time. Note that there is a tradeoff between time and
granularity of the unit of memory.

Dividing memory amongst three operators: Consider
a pipeline P composed of three operators o1, 02 and
o3 with cost functions c1, c¢2 and c3 resp. The goal is

to find optimal memory allocation, say mS*t, mSP* and

mgpt units to operators o1, and o2 and oz resp. such
that the execution cost of pipeline P is minimized and
mP" + m3P" 4+ m3P" = M. Such a division is given by:
Vi,1<i<MV),1<j<MVE,1<kE<M:
i+j+k=M=ci(i) +ca(j) + ca(k) >
c1(m$P') + ca(m3P') + ca(mg™)

A naive method would check all possible combinations
of memory allocations and take O(M?) time. But we
can do better by merging the cost functions (and thus
the operators) incrementally, as follows:

First, we consider two operators o; and o2 and find
cost of a pipeline P’ consisting these two operators
as a function of memory used by the pipeline. Thus
we need to calculate the optimal cost of running the
pipeline P’ with memory 4, for each i : 0 < i < M.
The cost function of P’ stores the optimal division of
memory along with the cost value for each memory
point 7 (i.e. amount of memory j and k to be given to
operators o1 and o2 resp., where j + k = ¢). With this
the operators o1 and o2 are virtually merged into plan
P’ with a cost function defined for it. For further
memory division operations, say between plan P’ and
some other operator or plan, the plan P’ will be treated
as a super-operator.

We can calculate optimal division for a given memory
size i and hence cost of running the pipeline P’ with
memory size i in O(M) time. To calculate this for
all i : 0 <4 < M we need O(M?) time. Thus the
cost function of the pipeline P’ is calculated in O(M?)
time.

Next, we find the optimal memory division between
the plan P’ and the operator o3. Once we get this
division, say m3”" and mgf’t, we can trace back optimal

. ¢
division of memory m 7" between operators o1 and os.

Dividing memory amongst n operators: Consider a
general case: a pipeline P composed of n operators
01, 02, ..., and o, with cost functions ci, c2, ..., cp
respectively. To find the optimal memory division
amongst these operators we extend the strategy used
for the pipeline with 3 operators, and merge the cost
functions/operators incrementally. We merge the cost
functions of two operators to get their combined cost
function. Then we merge this combined cost function
with the cost function of the third operator to get the
combined cost function of three operators. We con-
tinue in this manner and merge all operator cost func-
tions to get the cost function of the pipeline P. Now,

we can trace back each step and find, from the cost
functions of the intermediate plans, the optimal mem-
ory allocation within each of these intermediate plans.
This takes O(n.M?) time for cost functions with arbi-
trary shape.

OptMerge Procedure: This procedure optimally merges
two input cost functions running in pipeline and gener-
ates the combined optimal cost function along with the
optimal memory division for all memory points. Time
complexity of this procedure depends upon shape of
the input cost functions. If the input cost functions
are of arbitrary shape then the procedure examines all
possible memory division alternatives for each memory
point and the complexity is O(M?).

In the next section, we consider how to reduce the cost as-
sociated with the memory division operation using piecewise-
linear approximations of the cost functions.

4.2 Piecewise Linear Approximation of Cost
Functions

Consider a pipeline P with two operators 01 and 02 with
cost functions ¢; and c2 resp. Let cost function of the
pipeline be ¢,. If the cost functions ¢; and c» are linear, the
procedure OptMerge defined in previous subsection takes
constant time. Assume that ¢; has slope slope; in range 0
to m1 (m1 < M) and slope 0 in range m1 to M i.e. allocat-
ing memory beyond m; units yields no benefit. And c» has
slope slopes in the range 0 to m2 (m2 < M) and slope 0 in
range mo to M. Assuming that providing more memory will
not increase the cost of an operator/plan, the cost functions
are non-increasing and slopes are non-positive (sloper < 0
and slopes < 0).

The Opt M erge procedure simply allocates maximum pos-
sible memory to the operator which gains more per unit
memory allocation (i.e., the cost function of which has less
slope?) and allocates the remaining memory to the other op-
erator. Let slope; < slopes. The procedure would allocate
m1 units of memory to operator o1 and ¢, follows the slope
slope; in the range 0 to m;. Next, it allocates my units
(m2 <= M —my) of memory to operator o2, and ¢, follows
the slope slopes in the range m; to mi + mo. For memory
in the range mi + ma to M c, has slope 0 and cost value
same as that for m; + mo.

To use this mechanism, we need to approximate cost func-
tions of various operators to linear form. However, even after
this approximation, cost functions derived by the procedure
OptMerge may not be linear: in fact the derived functions
may be piecewise linear. Thus cost function of a plan can
take piecewise linear form. Since input to Opt Merge proce-
dure can be cost function of a plan, the procedure needs to
handle piecewise linear cost functions.

Moreover, the ability to handle piecewise linear cost func-
tions means we can use piecewise-linear approximations for
single-operator cost functions. This provides a better ap-
proximation than the linear approximation. It is easy to
approximate cost functions of various database operators®

2considering sign. If we consider absolute values then it
would pick the one with higher slope.

3including multiphase sort and hash operators which typi-
cally have discontinuous cost functions w.r.t. memory

OptMerge(ci, c2)
mergeCost = 0o
for each change-over point (m,¢) in ¢1 do
¢y = c2 shifted by (m,c)
mergeCost = MinMerge(mergeCost, c5)
for each change-over point (m,c) in c2 do
¢y = c1 shifted by (m,c)
mergeCost = MinMerge(mergeCost, c})
return mergeCost

Figure 3: Pseudo Code for OptMerge Procedure for
Piecewise Linear cost Functions

to piecewise linear form.

The OptMerge procedure dealing with piecewise linear
cost functions is shown in Figure 3. The operation shift by
used in the procedure shifts the cost function along memory
and cost axis by resp amount. The routine MinMerge used
in the procedure compares input cost functions for entire
memory range and at each memory point picks up the lower
cost value.

If the input cost functions to this procedure have o; and
02 segments (i.e. number of straight line segments in a piece-
wise linear function) resp. and z = max(z,y) then the num-
ber of segments in the output cost function will be < 22 and
the time complexity of the procedure would be O(z?log z).

For each given point i, the algorithm essentially checks
each possible memory division, say j units to the first cost
function and k units to the second cost function (i = j + k),
where at least one of j and k is at a change-over point (a
point where the cost function changes slope) in the resp.
cost functions. And following theorem establishes that the
procedure correctly calculates the optimal cost function of
the pipeline.

Theorem: If a pipeline tree P composed of two operators o1
and 0y with cost functions c1 and ca respectively is executed
in memory i, then at least one of the (possibly many) optimal
memory divisions, say j units to o1 and k units to oz (i =
j+k), is such that at least one of j and k is at a change-over
point.

Proof: Assume that there is no such optimal division. Con-
sider one of the optimal divisions of the available memory
i, say j units to o1 and k units to o2 (i = j + k). Neither
of ¢ and j is at changeover point. We come up with an al-
ternate memory division, say j' units to o; and k' units to
02 (i = j' + k') such that at least one of j' and k' is at a
change-over point and c1(5') + c2 (k) < c1(j) + ca(k).

Assume that the point j lies on segment s in ¢; and k
on segment sz on cz. Assume further that the segment s;
begins at memory point bs; and ends at memory point es;
and the segment s» begins at memory point bs2» and ends at
memory point es2.

Let the slopes of the segments s; and s» be slopesi1 and
slopess resp. Assuming that providing more memory will
not increase the cost of an operator/plan, the cost functions
are non-increasing and slopes are non-positive (slopesi < 0
and slopess < 0) though the algorithm does not depend on
this assumption.

We consider three cases:

Case I: slopes1 = slopesa
Consider two subcases:

Cast ILA: j —bs1 <es2— k
Let 7' = bs; and k' =k + j — bs1.
It is easy to see that
c1(§') +c2(k') = c1(4) + ca(k) and §' + k' = 4.

Cast I.B: j —bs1 >es2— k
Let j' = j—es2 + k and k' = e,».
It is easy to see that
c1(§') +c2(k') = c1(4) + co(k) and §' + k' = 1.

Case II: slopesi > slopess
Consider two subcases:

Cast II.LA: j —bs1 <es2 — k

Let 7' = bs; and k' =k + j — bs1.

It is easy to see that

c1(j') +ca(k') < c1(j) + co(k) and §' + k' = .
Cast I1.B: j —bs1 > es0 — k

Let j' = j—es2 + k and k' = e,».

It is easy to see that

c1(§') + ea(k') < c1(j) + ca(k) and §' + k' =i

Case III: slopes1 < slopeso
Symmetric to case II.

We see that in all the cases, either j' or k' is at changeover
point and this alternative division incurs cost equal to or less
than that incurred by the original division. This contradicts
the assumption made in the beginning, hence the proof. O

If the piecewise linear approximation introduces maxi-
mum error of 4 at any memory point in each operator
cost function in a plan with n operators then cost of the
plan calculated using piecewise linear approximation will be
within £né of the actual cost.

5. VOLCANO OPTIMIZER BACKGROUND

In this section we describe the basic Volcano query opti-
mizer[3]. First we describe an AND-OR DAG representa-
tion for the search space of all possible query plans. Then
we describe the volcano search algorithm.

5.1 The DAG Representation of Queries

An AND-OR DAG is a directed acyclic graph whose nodes
can be divided into AND-nodes and OR-nodes; the AND-
nodes have only OR-nodes as children and OR-nodes have
only AND-nodes as children.

An AND-node in the AND-OR DAG corresponds to an
algebraic operation, such as the join operation (X) or a select
operation (o). It represents the expression defined by the
operation and its inputs. Hereafter, we refer to the AND-
nodes as operation nodes. An OR-node in the AND-OR
DAG represents a set of logical expressions that generate the
same result set; the set of such expressions is defined by the
children AND nodes of the OR node, and their inputs. We
shall refer to the OR-nodes as equivalence nodes henceforth.

The given query tree is initially represented directly in
the AND-OR DAG formulation. For example, the query
tree of Figure 4(a) is initially represented in the AND-OR

DAG formulation, as shown in Figure 4(b). Equivalence
nodes (OR-nodes) are shown as boxes, while operation nodes
(AND-nodes) are shown as circles.

The initial AND-OR DAG is then expanded by apply-
ing all possible transformations on every node of the ini-
tial query DAG representing the given set of queries. Sup-
pose the only transformations possible are join associativity
and commutativity. Then the plans A X (B X () and
(A X C) X B, as well as several plans equivalent to these
modulo commutativity can be obtained by transformations
on the initial AND-OR-DAG of Figure 4(b). These are rep-
resented in the DAG shown in Figure 4(c). We shall refer to
the DAG after all transformations have been applied as the
expanded DAG. Note that the expanded DAG has exactly
one equivalence node for every subset of {4, B, C'}; the node
represents all ways of computing the joins of the relations
in that subset.

5.2 Physical AND-OR DAG

Properties of the results of an expression, such as sort
order, that do not form part of the logical data model are
called physical properties. Physical properties of intermedi-
ate results are important, since e.g. if an intermediate result
is sorted on a join attribute, the join cost can potentially be
reduced by using a merge join. It is straightforward to re-
fine the above AND-OR DAG representation to represent
physical properties and obtain a physical AND-OR DAG*.

5.3 The Volcano Search Algorithm

The Volcano Search Engine follows a top-down, goal-driven
approach. It generates the logical DAG and expands it into
the physical DAG on the fly. We present below parts of the
Volcano search algorithm, that are relevant to our optimiza-
tion algorithms. Figure 6 in Appendix A shows a simplified
version of the Volcano search algorithm.

Before the Volcano search algorithm is called on a query,
the initial query DAG corresponding to the given query is
created. Next, the initial DAG is fully expanded by applying
the transformations as described earlier, to get an expanded
logical AND-OR DAG. The search procedure is then called
on the root of the expanded logical AND-OR DAG. (Note:
the description of Volcano in [3] does not make this sep-
aration explicit, but the actual implementation does follow
this two phase approach for completeness of transformations
51,

The input to the Volcano search procedure is a logical
equivalence node, an initial physical property specification
and an optional cost limit.

The search procedure tries alternative enforcers and algo-
rithms for the operation nodes below the equivalence node,
recursively calling itself to find the best plan for the inputs
of the operation nodes. A cost limit is passed as a parame-
ter to the search algorithm, and if the cumulative cost of an
operation node and the costs of the best plans for its inputs
chosen so far exceeds the limit, the operation node can be
abandoned from consideration.

Once the best plan for an (equivalence node, physical

YFor example, an equivalence node is refined to multiple
physical equivalence nodes, one per required physical prop-
erty, in the physical AND-OR DAG. Enforcer operation
nodes, such as sort also get introduced.

(a) Initial Query

(b) DAG representation of query

(Commutativity not shown - every join node has
another join node with inputs exchanged, below
the same equivalence node)

(c) Expanded DAG after transformations

Figure 4: Initial Query and DAG Representations

property) pair is found, it is stored in case it needs to be
reused. Therefore, in fact, the first thing to check before
performing the above optimization for a given node and a
given physical property is to check for potential reuse. If a
plan matching the property specification is found among the
plans stored at the equivalence node, and the plan satisfies
the cost limit, the plan is returned; if a plan is found but does
not satisfy the cost limit a failure indication is returned. If
there is no plan for the expression and the property specifi-
cation, then actual optimization (as described above) starts.

The best plan for a logical equivalence node, physical
property pair (thus, a physical equivalence node) is com-
pactly specified by merely noting the corresponding physi-
cal operation node, and its input physical equivalence nodes.
The overall best plan is reconstructed when required by re-
cursively looking up the best plan for the inputs.

6. MEMORY COGNIZANT OPTIMIZATION

In this section we present an overview of the extensions
to make the Volcano optimizer algorithm memory cognizant.
Details of the memory cognizant optimization algorithm are
presented in Appendix B.

Our execution algorithms (described in Section 3) for query
operators include memory-awareness and division of mem-
ory among concurrent operators. In this framework, we pro-
pose following extensions to make the optimization process
memory-cognizant:

e While evaluating cost of an operator (AND node in
Volcano DAG framework), evaluate cost functions for
all the execution schemes (as defined in section 3) and
for each memory size pick the one with the minimum
cost. Note that the inputs to the operator are already
optimized and we know their cost functions.

e While comparing alternative operators or plans, for
evaluating an expression (OR node in Volcano DAG
framework), compare their cost functions for each mem-
ory size. If one operator/plan is consistently better
than other in the entire memory range, retain the
operator/plan with less cost and discard the opera-
tor/plan with more cost. If one operator/plan is bet-
ter at some memory range and other one is better at
some other memory range, maintain both of them in-
dicating which one in better in which range. The cost
of the expression at a memory size m is the cost of

the operator/plan which incurs minimum cost at that
memory size.

e While evaluating cost of a plan P (AND node in Vol-
cano DAG framework), given cost function of root op-
erator O and that of sub-plan P’ = P\ O, we consider
following possibilities:

— Edge between O and P’ is blocked: P’ runs
fully before O starts executing. Thus full mem-
ory can be allocated to P'. This will result in
minimum execution cost for P’ and it will be
P'.CostFunction(MaxAvailMem). The mem-
ory to be allocated to operator O cannot be de-
cided independently of what type of edge it will
be connected to its parent by and what is the ex-
ecution cost of its parent/ascendents. Thus cost
function of the plan P will be the cost function
of O with P'.CostFunction(MazAvailMem), a
constant, added for each memory point.

Vi, 1 <i< MaxAvail Mem :
P.CostFunction(i) = O.CostFunction(i)+

P'.CostFunction(Mazx Avail Mem)

— Edge between O and P’ is pipelined: O and
P’ run simultaneously in memory allocated to the
plan P. The cost function of P is obtained by
Opt Merge-ing cost function of O and that of P'.
Recall the definition of the procedure OptMerge
from Section 4.

P.CostFunction =
OptMerge(O.CostFunction, P'.Cost Function)

6.1 Breaking Pipelined Edges

Consider a pipelinable plan P and a pipeline edge E in it.
If we break the plan P at edge E we get two independent
subplans P; and P> and these plans can be scheduled sepa-
rately. Let us assume that output of plan P; is fed to plan
P> through edge E.

We have two options for evaluating plan P:

e Schedule whole plan P in given memory with the edge
E behaving as a pipeline edge. Here all operators in
the plan P execute simultaneously sharing available
memory. There is no I/O incurred at edge E, as it is
a pipeline edge.

e Schedule P first, store its output on disk. Then sched-
ule P> with its input being read from disk. Here, as
P is divided into two parts and each part is scheduled
separately, operators will have more memory for exe-
cution. However, we incur materialization I/O at edge
E which now behaves as a blocking edge.

Clearly, there is a tradeoff between letting the edge E be-
have as a pipeline edge and breaking it to make it behave
as a blocking edge. If it is a pipelined edge, no materializa-
tion IO is incurred but operators in P will get less memory
for execution as all the operators in the plan execute si-
multaneously in the available memory. If the edge F is a
blocking edge, materialization IO is incurred but as the op-
erators in the plan are divided into two independent plans
and scheduled separately, the operators will get more mem-
ory for execution.

We incorporate, into our memory cognizant optimizer, a
cost-based technique for deciding when to break a pipelined
edge and is described below.

Consider a plan P feeding its output to parent C in pipelined

fashion. Let the pipelined cost function of P be PPC (with
its output edge pipelined and no IO incurred at it). And
let read/write cost be IO at its output edge if it is blocked.
The problem is to decide at each memory point, say i:

e Let the plan P and its parent C execute in pipelined
fashion. The cost of the plan P is PPC(i).

e Let the plan P execute independent of its parent C
utilizing all available memory, say MazAvail Mem?
and write intermediate result to disk which will be
read by the parent C. The cost of the plan P is
PPC(MazxAvailMem —1) +I0. Note that it is inde-
pendent of the available memory 4.°

Let blocking cost function of plan P be BPC (with its
output edge blocked and IO incurred at it). It is given by:

Vi, 1 <i< MaxAvailMem :
BPC(i) = P(MazAvailMem — 1) + IO

The optimal cost function for plan P with the blocking
decision incorporated within is given by:

MinMerge(PPC,BPC)

The routine MinMerge compares two input cost func-
tions for the entire memory range and at each memory point
picks up the lower cost value. Thus applying MinMerge
chooses better of the options: blocking and pipelining the
edge. Figure 5 shows the operation graphically. If an opera-
tor or a plan is made to execute in memory less than certain
threshold mcutoff, it will, instead, utilize full memory and
write its output to disk. For a cost function with arbitrary
shape the time complexity of this decision is O(M), whereas
for a piecewise linear cost function with z linear segments it

is O(x).

® Actually, child will get (MazAvailMem — 1) for its exe-
cution as one unit of memory will be used for holding the
intermediate tuples as they are written to disk.

6 Actually, we need 1 < i since at least one buffer is needed
to read back the intermediate result from disk and feed the
parent.

cost

0 M. toff Memory—— M

Figure 5: Breaking a pipelined edge

7. EXPERIMENTAL EVALUATION

In this section we describe our experimental setup and the
results obtained.

The 1PO and 2PO algorithms are based on Volcano query
optimizer. The first phase of 2PO (which uses the basic vol-
cano optimizer to optimize the query in conventional man-
ner) assumes that each operator in the plan uses all available
memory.

The memory block size is taken as 4K. Standard tech-
niques are used for estimating costs, using statistics about
relations. The cost estimates contain an I/O component and
a CPU component. The metric used to compare the good-
ness of the optimization algorithms is the estimated cost of
the optimal plan produced by the optimizer; all our cost
numbers are estimates from the optimizer.

The tests are performed on a Sun workstation with Ultra-
Sparc 10 333Mhz processor, 256 MB main memory, running
Solaris 5.7.

Test Queries

We tested our algorithms with around 20,000 randomly gen-
erated queries on a TPCD-based star schema similar to the
one proposed by [9]. The schema has a central orders fact
table, and four dimension tables part, supplier, customer
and time. The size of each of these tables is same as that in
the TPCD-1 database. This corresponds to base data size of
approximately 1 GB. Each generated query is of the form:

select sum(quantity)

from orders, supplier, part, customer, time
where join-list and select-list

group by groupby-list;

The join-list enforces equality between attributes of the
order fact table and primary keys of the dimension tables.
The select-list i.e., the predicates for the selects are gener-
ated by selecting some attributes at random from the join
result, and creating random equality or inequality predicates
on the attributes. The groupby-list is generated by picking a
subset of {custkey, suppkey, partkey, custkey, month, year}
at random.

We randomly choose, between 10 blocks to 10,000 blocks,
the total memory available to execution engine and this
forms part of the input to the optimizer.

Experimental Results

We tested total 23,603 randomly generated queries and per-
formance benefit of 1PO over 2P0 is reported below”:

Cost Reduction of 1PO over 2P0 | #Queries | %Queries
00-10 % 22682 96.097
10-20 % 57 0.241
20-30 % 527 2.232
30-40 % 238 1.001
40-50 % 99 0.419

The maximum cost reduction reported by 1PO over 2PO
in our experiments is 50%. For around 96% of the queries
reduction is between 0% to 10%, and for only 4% of the
queries reduction is between 10% to 50%. Thus, for the class
of queries we considered, 1PO gives benefits, but generally
2PO performs about as well as 1PO.

The average optimization time taken by 2PO and 1PO is
shown in the table below:

Algorithm | Optimization Time (msec)
2PO 150
1PO 1110

The cost based pruning feature of Volcano is not im-
plemented in 1PO algorithm and 1PO explores full search
space. Whereas, 2PO uses standard volcano implementation
in its first phase and hence includes cost based pruning.

8. CONCLUSION AND FUTURE WORK

We have designed efficient techniques to divide available
memory optimally among operators in a pipeline. If done
naively, this process is impractical. We showed how to im-
prove optimization time by using piecewise linear approxi-
mation for the cost-versus-memory functions of various op-
erators and this made evaluation of 1PO feasible.

It has been conjectured that 1PO will perform no better
than 2PO, but there has been no published evidence of this
claim. We designed a practical cost-based algorithm for 1PO
and compared it against 2PO. For the class of queries we
considered, 1PO gives benefits, but generally 2PO performs
about as well as 1PO. Thus, the preliminary results indicate
that using 1PO for query optimization may not be beneficial.
This is a good news in general as the optimizer remains
simpler and faster.

The techniques developed here are of independent interest
and can very well be applied to other problems.

The cost of a query plan depends on many parameters and
available memory is just one of them. We see a natural con-
nection between memory cognizant optimization and para-
metric query optimization and consider applying techniques
developed in context of memory cognizant optimization to
solve general parametric query optimization problem.

Unlike simple predicates and expressions, in Object-
Relational Database (ORDB), expensive predicates operate
on large complex data types and consume significant mem-
ory. This resource usage should be taken into considera-
tion during optimization. Thus the techniques developed

"Since we are using strictly cost-based exhaustive explo-
ration of the search space, 1PO will never miss a 2PO plan,
and hence is atleast as cheap as 2PO.

for memory cognizant query optimization can be easily ap-
plied to query optimization in ORDB. We wish to explore
the possibility of integrating memory allocation decisions
with the ORDB optimizer.

We propose to modify some query execution engine to
make it memory cognizant. Such an execution engine will
take the optimized plan from the optimizer along with the
memory allocation number for each operator, pipeline or
blocking decision for each edge, sequencing decisions of the
pipelinable segments in the plan and execute the plan ac-
cordingly.

Acknowledgment

We are grateful to Krithi Ramamritham and Prasan Roy for
comments on final draft of the paper. Prasan Roy provided
code of basic Volcano Query Optimizer prototype.

9. REFERENCES

[1] L. Bouganim, O. Kapitskaia, and P. Valduriez.
Memory-adaptive scheduling for large query
execution. In Proc. of the 7th CIKM Conf., pages
105-115, Bethesda, USA, 1998.

[2] D. L. Davison and G. Graefe. Memory-contention
responsive hash joins. In Proc. of the Int’l Conf. on
VLDB, pages 379-390, Santiago, Chile, 1994.

[3] G. Graefe and W. McKenna. The volcano optimizer
generator: Extensibility and efficient search. In Proc.
of the IEEE Conf. on Data Engg., Vienna, 1993.

[4] A. Hulgeri, S. Seshadri, and S. Sudarshan. Memory
cognizant query optimization. Technical report, Indian
Institute of Technology, Bombay, Sept 2000.

[6] B. McKenna. Personal communication.

[6] M. Mehta and D. J. DeWitt. Dynamic memory
allocation for multiple query workload. In Proc. of the
Int’l Conf. on VLDB, pages 354-367, Dublin, Ireland,
1993.

[7] B. Nag and D. J. DeWitt. Memory allocation
strategies for complex decision support queries. In
Proc. of the 7th CIKM Conf., pages 116-123,
Bethesda, USA, 1998.

[8] H. Pang, M. J. Carey, and M. Livny. Managing
memory for real-time queries. In Proc. of the
SIGMOD Conf. on Management of Data, pages
221-232, Minneapolis, USA, 1994.

[9] P. Scheuermann, J. Shim, and R. Vingralek. Dynamic
caching of query results for decision support systems.
In Intl. Conf. on Scientific and Statistical Database
Management, 1999.

[10] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational
database management system. In Proc. of the
SIGMOD Conf. on Management of Data, pages 23-34,
1979.

[11] P. S. Yu and D. W. Cornell. Buffer management based
on return on consumption in a multi-query
environment. VLDB Journal, 2(1):1-37, 1993.

[12] H. Zeller and J. Gray. An adaptive hash join
algorithm for multiuser environment. In Proc. of the
Int’l Conf. on VLDB, 1990.

APPENDIX
A. VOLCANO OPTIMIZER ALGORITHM

Figure 6 presents pseudo code for basic volcano query op-
timization algorithm.

B. MEMORY COGNIZANT VOLCANO

B.1 Extended Cost Function and Plan

We present here some definitions and extensions that are
used in memory cognizant optimization algorithm.

A conventional optimizer has a single value as cost for an
operator or a query plan and its corresponding (LogEzp,
PhysProp) pair. Here we have a cost associated with each
memory size, i.e. we define cost as a function of memory
size. We refer to a function of cost versus memory size as
CostFunction(m), and we have one such cost function for
each operator and query plan with a (LogFExzp, PhysProp)
pair. Plan.CostFunction(m) denotes cost function of a
plan, AlgorithmCostFunction(m) denotes cost function of
an algorithm and EnforcerCostFunction(m) denotes cost
function of an enforcer.

For each operator, as we are considering a range of mem-
ory, more than one memory cognizant execution schemes (as
described in section 3) may be optimal, each being optimal
in a particular memory range.

Further, for a (LogExzp, PhysProp) pair, as we are con-
sidering the range of memory, more than one physical plan
may be optimal, each being optimal in a particular memory
range®. The optimal Plan for a (LogEzp, PhysProp) pair
will contain a list of pairs. Each pair will contain a range of
memory size and an optimal physical plan in that range. A
physical plan P specified with a memory range (x,y) implies
that the optimal way of evaluating the (LogFExzp, PhysProp)
pair, given that the memory size is in the range (x,y), is by
using the plan P.

A conventional optimizer has a single value as a cost
limit. Here we have a cost limit for each memory point.
We use CostLimit Function(m) to denote a function giving
the value of the cost limit for memory m.

Additionally, in a cost function for a (LogEzp, PhysProp)
pair, an algorithm or an enforcer, we may have a segment
where we have no optimal plan or execution scheme but a
failure indication. In this segment, the cost function actu-
ally indicates a cost limit on the plan. The cost of the plan
will be more than the cost function at each memory point
in this range.

B.2 Operations on Cost Functions
Let MazAvailMem be the available memory. We define
following operators on CostFunction:
o <uu : costFunction, <qy costFunction, means,
Vi, 1 <i < MazxAvailMem :
costFunction, (i) < cost Functiony (i)
o >.y 1 costFunction, >4y costFunction, means,
Vi, 1 <i < MazxAvailMem :

costFunction, (i) > costFunctiony (i)

8This may increase the search space

e AddCostFunctions: It takes two Cost Functions as ar-
guments, and creates a new CostFunction by adding
the input CostFunctions at each memory point.

e SubtractCostFunction: it takes two CostFunctions
as arguments, and creates a new Cost Function by sub-
tracting second input CostFunction from the first one.

e MinMerge: It compares two cost functions for the en-
tire memory range and at each memory point picks up
the lower cost value.

e OptMerge: It optimally combines the Cost Functions
of the two operators/plans which run simultaneously.
Given two CostFunctions corresponding to two plans
it divides the memory available between the two plans
such that the combined execution cost is minimized
and does this for all memory points from 0 and
MaxAvailMem. This procedure has been described
in Section 4.

B.3 Detailed Algorithm

Figure 7 shows the Memory Cognizant Volcano Search
Algorithm FindBestPlan.

The function FindBestPlan returns:

e SUCCESS: when the optimized plan optPlan for the
(LogExp, PhysProp) pair to be optimized is s.t.
optPlan.Cost Function() <.i CostLimitFunction.

e FAILURE: when the optimized plan optPlan for
(LogExp, PhysProp) pair to be optimized is s.t.
optPlan.Cost Function() >, CostLimit Function.

e PARTIAL_SUCCESS: when the optimized plan
optPlan for the (LogExp, PhysProp) pair to be opti-
mized is s.t. Im,1 < i < MaxAvail Mem :
optPlan.Cost Function()(m) < CostLimitFunction(m

To optimize a given (LogExp, PhysProp) pair within a
given costLimit Function, if there has been no previous at-
tempt to optimize this (LogFExp, PhysProp) pair, the search
algorithm proceeds as follows: It first applies transformation
on the given logical expression to generate all equivalent
logical expressions. Figure 8 shows pseudo code for applica-
tion of transformations. Then it recursively optimizes trans-
formed (LogEzp, PhysProp) pairs by applying each appli-
cable operator (algorithm or enforcer) with the specified cost
limit.

If there has been a previous attempt to optimize this
(LogExp, PhysProp) pair then we have a plan and cost
function available. The (LogExp, PhysProp) pair may have
successful plan in some memory ranges and failures w.r.t the
previous cost limit in some other memory ranges.

If the plan returned by the previous attempt has
at least one point with failure indication and cost less
than the cost limit then we need to reoptimize the the
(LogExp, PhysProp) pair.

Else, if for each memory point we have a successful plan
and the cost limit is more than or equal to the cost of the
plan at each point we return SUCCESS along with the
plan. Else, if the plan has cost less than or equal to the cost
limit at some point we return PARTIAL FAILURE along

Procedure FindBestPlan(LogExp, PhysProp, Limit)
if the pair LogExpr and PhysProp is in the lookup table
if the cost in the lookup table < Limit

return Plan and Cost
else return failure

else /* Optimization required */

create the set of possible “moves” from

applicable transformations,

algorithms that give the required PhysProp and
enforcers for the required PhysProp

for each move in the move set

if the move uses a transformation
apply the transformation creating NewLogEzpr
call FindBestPlan(NewLogExpr, PhysProp, Limit)
else if the move uses an algorithm
Limit = Limit - cost of the algorithm
for each input I of the algorithm while Limit > 0
determine required physical properties PP for I
Cost = FindBestPlan(I, PP, Limit)
Limit = Limit — Cost
else /* Move uses an enforcer */
Limit = Limit - cost of enforcer
modify PhysProp for enforced property
call FindBestPlan for LogExpr with modified PhysProp

/* Maintain the lookup table of explored facts */
if LogExpr is not in the lookup table
insert LogExpr into the lookup table
insert PhysProp and best plan found into lookup table

Figure 6: Volcano Search Algorithm

with the plan. Else the plan has, at each memory point, cost
greater than the cost limit and hence we return FAILURE.

Figure 9 shows application of an algorithm. Application
of an enforcer is similar and can be found in [4]. Applica-
tion of an operator is done as follows: First we evaluate cost
function of the operator. We need to optimize its children
and for this we need to evaluate child cost limit. As of now,
we do not know exactly how much memory the tree rooted
at this operator is going to take. For calculating the child
cost limit, we assume that the tree will execute in memory
Max Avail M em units.

If an edge between the operator and the child is pipelined
and the operator takes MaxAvailMem — i units of mem-
ory, the child will take ¢ units of memory. Thus the child
cost limit for memory 4, with pipelined edge, is calculated
by subtracting the cost of the operator at memory point
MazxAvailMem — i from the cost limit of the plan at mem-
ory point MaxAvail Mem.

If an edge between the operator and the child is blocked
the child cost limit is calculated by subtracting the cost of
the operator running in memory MaxAvailMem and ma-
terialization cost at the edge.

The cost limit passed to the child is the maximum of the
two child cost limits described above at each memory point.

After optimizing each child we merge the cost of the child
with that of the plan cost and this plan cost is used as the
operator cost to calculate the cost limit of the next child to
be optimized.

If the child optimization returns FAILURE (i.e. within
the given cost limit, the optimizer could not find a
plan even for a single memory point) then for the given
(LogExp, PhysProp) pair there exists no plan within the
given cost limit for any memory points, and the optimizer
returns FAILURE. Instead, if the child optimization re-
turns a plan for even a single memory point with the given
cost limit, the optimization continues.

Finally when the optimization is over, if the optimizer
could find plans within the given cost limit for all memory
points, it returns SUCCESS. If it could find plans within
the given cost limit for some memory points but not for
all of them, then it returns PARTIAL SUCCESS. The
cost function will have multiple segments. If for a memory
range we get a successful plan then within that range the
cost function will indicate success along with the plan. If no
successful plan is found in a memory range failure will be
indicated in that range along with the cost limit. If no plan
is found within the given cost limit at any of the points in
the given memory range then it returns FAILURE.

FindBestPlan(LogExp, PhysProp, CostLimit Function)
if the pair LogExpr and PhysProp is in the lookup table with Plan as the optimal plan
/* optimized already, attempting reuse */
if there exists a memory point 7 at which Plan is failed and its cost is < CostLimit Function()
goto Label X /* reoptimization required */
else /* no reoptimization required */
if for all memory points 4, Plan is successful and its cost < CostLimit Function(i)
return (SUCCESS, Plan)
else if there exists a memory point i where Plan is successful and its cost < CostLimit Function(i)
return (PARTIAL.SUCCESS, Plan)
else return FAILURE /* for all memory points ¢, Plan cost > CostLimit Function(i)

else /* Optimization required */
Label X:
(Result, Plan) = ApplyTransformations(LogExpr, PhysProp,CostLimit Function)
/* if plan returned, merge it with the planGroup optPlan */
if Result # FAILURE then
optPlan = MinMerge(optPlan, Plan)
Cost Limit Function = opt Plan.Cost Function()

(Result, Plan) = ApplyAlgorithms(LogExpr, PhysProp, Cost Limit Function)
/* if plan returned, merge it with the planGroup optPlan */
if Result # FAILURE then

optPlan = MinMerge(opt Plan, Plan)

Cost Limit Function = opt Plan.Cost Function()

(Result, Plan) = ApplyEn forcers(LogExpr, PhysProp, CostLimit Function)
/* if plan returned, merge it with the planGroup optPlan */
if Result # FAILURE then

optPlan = MinMerge(optPlan, Plan)

Cost Limit Function = optPlan.Cost Function()

/* Maintain the lookup table of explored (expression, physical property) pairs */
if LogExpr is not in the lookup table

insert LogExpr into the lookup table
insert (LogExp, PhysProp, optPlan) into lookup table

Figure 7: Memory Cognizant Volcano Search: FindBestPlan Algorithm

ApplyTransformations(LogExp, PhysProp, Cost Limit Function)
for each applicable transformation
create NewLogExpr by applying the transformation
(Result, Plan) =
FindBestPlan(NewLogExpr, PhysProp, Cost Limit Function)
/* if plan returned, merge it with the planGroup optPlan */
if Result # FAILURE then
optPlan = Plan
CostLimit Function = Plan.CostFunction()

if optPlan is successful for all memory points
return (SUCCESS, optPlan)

if opt Plan is successful for no memory point
return (FAILURE)

return (PARTIAL_SUCCESS, optPlan)

Figure 8: Memory Cognizant Volcano Search: ApplyTransformations Algorithm

ApplyAlgorithms(LogExp, PhysProp, Cost Limit Function)
for each applicable Algorithm do
if AlgorithmCostFunction > . CostLimit Function
continue /* cost of the operator is more than the cost limit */

AlgoPlan.Cost Function = AlgorithmCost Function
for each input I of the algorithm

for memory i = 1 to MazxzAvailMem
ChildCost Limit(i) = CostLimit Function(Maz Avail Mem)—
Min(AlgorithmCost Function(Maz Avail Mem — 1),
AlgorithmCostFunction(MazAvail Mem) + CostO f ResultIO(I))

if Vi : ChildCostLimit(i) < 0
break /* no plan within the given cost limit */

determine required physical properties PP for I
(Result, Plan) = FindBestPlan(1I, PP, ChildCostLimit)

if result = FAILURE
break /* no plan within the given cost limit */

for memory i = 1 to MaxAvailMem
CostWithChildBlocked(i) = AlgoPlan.Cost Function(i)
+Plan.Cost Function(Mazx Avail Mem)
+CostO f ResultIO(I)

if an edge between the algorithm and the child I is pipeline edge
/* divide memory optimally between the operator and its child */
CostWithChildPipelined =
OptMerge(AlgoPlan.Cost Function, Plan.Cost Function)
/* consider breaking the pipelined edge */
AlgoPlan.Cost Function =
MinMerge(CostWithChildPipelined, CostWithChild Blocked)

else /* blocking edge, full memory is available to the input */
AlgoPlan.Cost Function = CostWithChildBlocked

/* Merge the operator plan with the planGroup optPlan */
optPlan = MinMerge(optPlan, AlgoPlan)
Cost Limit Function = opt Plan.Cost Function()

if optPlan is successful for all memory points
return (SUCCESS, optPlan)

if optPlan is successful for no memory point
return (FAILURE)

return (PARTIAL SUCCESS, optPlan)

Figure 9: Memory Cognizant Volcano Search: ApplyAlgorithms Algorithm

