
Memory Cognizant Query Optimization

Arvind Hulgeri
�

Deptt. of Computer Sci. & Engg.
IIT-Bombay

aru@cse.iitb.ernet.in

S. Seshadri
Bell Labs

Murray Hill, NJ

seshadri@research.bell-labs.com

S. Sudarshan
Deptt. of Computer Sci. & Engg.

IIT-Bombay

sudarsha@cse.iitb.ernet.in

ABSTRACTComplex queries make heavy use of join, aggregation andsorting operations and these operations are memory inten-sive. Typial optimizers assume all the memory to be avail-able to eah operator in the query tree. But while exeutingpipelines memory will get divided amongst all the opera-tors running simultaneously in a pipeline. The ost of anoperator generally depends on the available memory. If thememory alloated to an operator is less than what an op-timizer assumes, ost estimated by the optimizer would bewrong. Thus the query optimization and memory distribu-tion are interdependent and if done separately may not yieldbest results. The query optimizer should not only onsiderthe total memory available but should also deide how todivide it optimally among the operators of the plan.We show how to optimize a query given the ost versusmemory alloation funtion for eah operator. We have ex-tended the Volano optimizer to make it memory ognizant.Part of the job of the optimizer is to deide whih edge topipeline and whih edge to blok. A pipelinable edge an bebroken (i.e. onverted) into a bloking edge. But the dei-sion to break a pipelinable edge depends upon whether theextra memory available to individual pipelinable trees thusformed an more than o�set the extra disk IO of the inter-mediate results. This deision is integrated into our memoryognizant optimizer.
1. INTRODUCTIONComplex queries make heavy use of join, aggregation andsorting operations whih are memory intensive. Conven-tional query optimizers have the drawbak that they assumeeah of these operators an avail entire memory available tothe query exeution engine. This assumption is learly notvalid when exeuting a pipeline, where the available mem-ory has to be divided among several onurrently exeutingoperators in the pipeline and may lead to suboptimal plans.Motivating Example: Consider a query R 1 T 1 Swith two join prediates: one between relations R and Tand other between relations S and T . Cross produts arenot allowed. Relation sizes are jRj = 60, jSj = 60 and�Supported by Infosys Fellowship.
ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd. CSI 2000

jT j = 130 disk bloks, memory available is 80 bloks. Costis measured in terms of number of disk blok aesses.A traditional optimizer generates plan shown in Figure 1(a)and (b). Sine the available memory is suÆient to exeuteeither of the two nested loops join operators in memory, thetwo nested loops join operators in the plan are assumed torun in pipelined fashion in the best plan. The estimatedost of this plan is the ost of reading eah relation onefrom the disk and equals jRj + jSj + jT j = 240. However,both nested loops join operators annot be exeuted simul-taneously in given memory. Thus the ost predited by theoptimizer is inaurate; the atual ost is more than the es-timated ost and depends upon sheduling of the operatorsin given memory. For example, as shown in Figure 1(a) aworst-ase memory sheduling will alloate 79 bloks to onenested loops join and only one unit to other, thus making theost approximately 7860 units whih is signi�antly higherthan the estimated ost.Least ost would be inurred when the memory is dividedequally between the operators as shown in Figure 1(b), Herethe total ost inurred will be 610 units and is the optimalfor the given query plan and the given memory.However, if we employ hybrid hash1 join instead of nestedloops join for the two join operations as shown in Figure 1()and equally divide memory between the two joins, the totalost inurred will be 500 and the plan is optimal for givenmemory. 2The example illustrates two key issues: First, ost of aplan may hange when division of memory is hanged. Se-ond, the hoie of plan itself needs to involve onsiderationof memory alloation.We propose two approahes to solve this problem: a 2-phase approah and a 1-phase approah.In the 2-phase approah, we �rst optimize the query usinga onventional optimizer to get a traditional optimal plan,and in the seond phase we divide memory among opera-tors in eah pipeline of the plan so that eah pipeline runsoptimally in available memory. In the example above, Fig-ure 1(b) shows appliation of the 2-phase approah.In the 1-phase approah we modify the traditional queryoptimizer to make it memory ognizant. The modi�ed op-timizer takes into aount division of memory amongst op-erators while hoosing between equivalent plans. In the ex-1assume left input to be a build input and right input to bea probe input

(a) Conventional Optimizer

R

S T

Estimated Plan Cost (IO) = 240

NLJ

NLJ
1 <= Memory <= 79

1 <= Memory <= 79

Estimated Plan Cost (IO) = 500

R

S T

Actual Plan Cost (IO) = 500

HHJ

HHJ
Memory = 40

Memory = 40

Estimated Plan Cost (IO) = 610

R

S T

Actual Plan Cost (IO) = 610

NLJ
Memory = 40

NLJ
Memory = 40

(c) 1-Phase Optimizer(b) 2-Phase Optimizer

|R| = 60, |S| = 60, |T| = 130 Memory = 80

Actual Plan Cost (IO) = [610...7860]

Figure 1: Motivating Exampleample above, Figure 1() shows appliation of the 2-phaseapproah.Although the 2-phase approah is able to optimally dividethe available memory amongst the operators of a given plan,it may not neessarily give the optimal exeution time for aquery sine the plan being onsidered may itself be subopti-mal for available memory. Therefore, the 1-phase approahseems to be a better alternative.In this paper we address the problem of hoosing an op-timal, memory-aware exeution plan for a query given theost versus memory alloation funtion for eah operator.We build memory ognizant query optimizer to solve thisproblem. Our ontributions are as follows:� We design eÆient tehniques to divide the availablememory optimally among operators in a pipeline. Ifdone naively, this proess an take time quadrati inthe available memory size, and is impratial. We showhow to solve this problem in reasonable time by usingpieewise linear approximation of ost-versus-memoryfuntions of various operators.� We show how some of the assumptions made whileevaluating ost of various operators are not valid whenost is a funtion of available memory and we are di-viding memory amongst operators. Based on theseobservations we de�ne various memory ognizant exe-ution algorithms/shemes for eah operator.� We show how to make a ost-based deision of break-ing (i.e. onverting) a pipelined edge into a blokingedge so that the hild operator writes the intermedi-ate result to the disk and the parent operator reads itbak. The deision to break a pipelinable edge dependsupon whether the extra memory available to individ-ual pipelinable trees thus formed an more than o�setthe extra disk IO of the intermediate results. This de-ision is integrated into memory ognizant optimizer.� It has been onjetured [7℄ that 1PO will perform nobetter than 2PO. But the paper gives no onlusiveevidene of this laim. We evaluate 1PO against 2POand study the results obtained. Performane resultsshow that 2PO performs reasonably well as omparedto 1PO for tests onduted.

Our disussion is in the ontext of Volano query opti-mizer [3℄ but the tehniques an be used with a System-Rstyle optimizer [10℄ also.The rest of the paper is organized as follows: We dis-uss the related work in Setion 2. Setion 3 gives briefoverview of memory ognizant exeution algorithms. InSetion 4 we present our tehnique for hoosing the optimaldivision of memory among a set of onurrently running op-erators. This tehnique forms an important building blokof our algorithm for seleting the overall optimal plan. Se-tion 5 desribes the basi Volano query optimizer, inludingthe representation for the searh spae of all possible queryplans. Setion 6 desribes how the Volano optimizer isextended to inlude memory-ognizane and also desribeshow pipeline breaking deision is taken in ost-based man-ner. In Setion 7 we present some experimental results, and�nally onlude in Setion 8.
2. RELATED WORKPrevious work on resoure management mainly deals withsheduling resoures eÆiently for exeuting a given queryplan. These resoure sheduling deisions do not interatwith the query optimizer and the two problems (query opti-mization and sheduling) are solved in separate phases: thequery is optimized �rst to ome up with a plan, and thenthe plan is sheduled.Query shedulers an be broadly lassi�ed into two at-egories: stati shedulers and dynami shedulers. Statisheduling is applied after query optimization and before ex-eution. The dynami sheduling strategy is integrated withthe query exeution engine and makes the engine adaptiveto utuations in resoure availability.To the best of our knowledge no previous work has triedto integrate sheduling deisions in query optimizer and ourwork is the �rst one to do this (1PO). Several papers haveonsidered sheduling of query plans (2PO). Again, to thebest of our knowledge no previous work has tried ost-basedsheduling and all the previous sheduling strategies areheuristi based, the only exeption being a strategy pro-posed by Nag and DeWitt[7℄ whih assumes operator ostfuntions to be linear w.r.t to memory. They [7℄ onje-ture that 1PO will perform no better than 2PO but give no

onlusive evidene of this laim.Yu and Cornell [11℄ onsider an environment of onur-rently running queries and study the problem of memoryalloation to individual queries. They de�ne a onept ofreturn-on-onsumption (ROC) to study overall redution inresponse time due to additional memory alloation to aquery. Eah query is assumed to be a single-join query. Amemory sheduling poliy is proposed wherein more mem-ory is alloated to queries whih have high value of ROC.Mehta and DeWitt[6℄ also onsider the problem of mem-ory sheduling in multi-query environment. They dividequeries in di�erent ategories depending upon their mem-ory requirement and provide several heuristis for memoryalloation depending upon the lassi�ation. Again, onlysingle-join queries are onsidered and only hash join opera-tor is onsidered.Bouganim et al.[1℄ propose various stati and dynamisheduling shemes for a query tree. They split a given querytree into a set of maximal pipeline hains, eah alled p taskand sheduled separately. Under stati sheduling they pro-pose several heuristi-based strategies to divide memoryamong operators depending upon minimum (Mopmin) andmaximum (Mopmax) memory requirements of eah operator.The heuristis proposed inlude: divide memory equallyamongst the operators, alloate maximum memory to theoperator whih has the smallest Mopmax, give eah opera-tor memory in proportion to its Mopmax, and give maximumamount of memory to an operator having the largest Mopmax.Under dynami sheduling strategy they propose a mem-ory adaptive exeution engine, whih dynamially alloatesmemory and hanges query sheduling as and when required.If the memory requirement of a p task an not be satis�ed,they split the p task into segments to be sheduled sepa-rately. The sheduling strategies de�ned onsider only max-imum and minimum memory requirement of the operatorsand the memory alloation deision is not ost-based.Nag and DeWitt[7℄ propose several heuristi based statisheduling strategies whih are more or less similar to thoseproposed by Bouganim et al.[1℄. They divide a query treeinto onurrently shedulable units alled shelves and dividememory amongst operators in a shelf. They also propose aost based strategy whih assumes operator ost model tobe linear. We onsider more general ost model.Davison and Graefe[2℄ and Zeller and Gray[12℄ show howto make a single hash join adaptive to memory utuationsbut do not onsider sheduling of an entire query plan. Panget.al.[8℄ examine the same problem in the ontext of real-time databases where the priority of a query needs to beonsidered and a query may need to be sheduled in abseneof suÆient memory.
3. MEMORY COGNIZANT EXECUTIONGenerally following assumptions are made while evalu-ating ost of an operator. These are not valid when ostis a funtion of available memory and memory is dividedamongst operators:� It is assumed that eah operator in a pipeline utilizesall available memory and input is streamed into it inpipelined fashion. Thus the ost of an operator is de-ided by available memory and size of its input. Thisassumption is not valid as already desribed.

� It is assumed that for a join operator, the smaller ofthe two inputs is outer or left input and the larger oneis inner or right input and this yields optimal ost.This assumption is not valid as desribed further.� It is assumed that in multiphase sort or hash operationeah merging or partitioning phase utilizes all availablememory but in reality the �rst and the last phase needto share the available memory with hild operator andparent operator resp. and only intermediate phasesutilize all available memory.Based on these observations we de�ne various exeutionshemes for eah operator whih primarily ditate shedul-ing of various phases of an operator, memory utilization ofthese phases and whih one of the two inputs ats as leftinput for join operation. We de�ne following four shemesfor exeuting a nested loops join (NLJ) operator. Similarshemes for rest of the operators an be found in [4℄. LetMtot be total available memory,M be memory available forthe plan tree rooted at NLJ and L be size of left input.� Sheme 1: Initially left input tree is ompletely pro-essed to generate all left input tuples whih are storedin-memory. Then right input tree is proessed andright input tuples, as generated, are mathed with leftinput tuples whih are memory resident. Thus the leftinput is bloking though it is not written to disk, andthe right input is pipelined.Of the memory,M units, alloated to the tree, L unitsis used by NLJ for storing left input. Thus remaining(M � L) units is used for proessing the left inputtree. One the left input tree is proessed, the rightinput tree is exeuted and it also gets (M � L) unitsof memory for its exeution.� Sheme 2: Here again the left input tree is blok-ing and the right input is pipelined but the left inputis written to disk. The left input is ompletely pro-essed before NLJ starts and all the left input tuplesare stored on the disk. Then the right input is ex-euted in pipelined fashion with NLJ . As the leftinput is written to disk, NLJ an use memory lessthan L units (unlike sheme 1) and read the left inputmultiple times from disk.As the left input is proessed independently, it uses(Mtot�1) units of memory for its exeution. One unitis used for bu�ering the tuples before writing them tothe disk. Then the right input is exeuted in pipelinedfashion with NLJ . So M units memory, alloated tothe tree, will be divided optimally between NLJ andthe right input, say M 0 units to NLJ and M �M 0units to the right input.� Sheme 3: Same as sheme 2 but with the roles ofleft and right inputs reversed.In sheme 2, the ost of exeuting the tree rooted at NLJin M units of memory would be the summation of ost ofexeuting NLJ inM 0 units of memory, ost of the left inputrunning in Mtot � 1 units of memory and ost of the rightinput running in M �M 0 units of memory. It is easy to seethat we an not deide whih one of the two inputs should

(i) = c (M-i)
2

inverted
2c

m1
opt

m2
opt

pcopt

m

cost

M

m1

2

2cinverted

0

0

M

c1

pc

Figure 2: Optimal division of memory between o1and o2be the left input based only on their sizes and we need eval-uate the ost for both the alternatives, hene the need forsheme 3.
4. OPTIMAL DIVISION OF MEMORY FOR

A GIVEN QUERY PLANWe present here a ruial building-blok of our memory-ognizant optimizer: the tehnique used in optimally divid-ing memory among a set of operators running in a pipeline.When a pipeline is exeuted, all operators in the pipelinerun simultaneously in given memory. The ost of runningsuh a pipeline depends upon how muh memory eah oper-ator in the pipeline gets, and hene it is important to hoosethe optimal division of memory among these operators.
4.1 Cost Functions with Arbitrary ShapeIn this setion we onsider optimal memory alloation foroperators in a pipeline, where operator ost funtions are ofarbitrary shape. We desribe our tehnique by �rst onsid-ering the problem of sharing available memory between twooperators. We then onsider three operators, and �nally thegeneral ase with n operators.Dividing memory between two operators: Consider apipeline P omposed of two operators o1 and o2 withost funtions 1 and 2 respetively. Let the availablememory be M units. Here, unit refers to a unit of al-loation. We an divide this memory between the twooperators by giving m1 units to operator o1 and m2units to operator o2 (m1+m2 =M). Clearly, the ostof exeuting the pipeline is a funtion of this division.Let p be ost of the pipeline as a funtion of m1, withm2 =M �m1. Thus p(m1) = 1(m1) + 2(M �m1).This funtion an be omputed by inverting the ostfuntion 2 along the memory axis and adding it to theost funtion 1. This is shown in Figure 2. We needto �nd value of m1, say mopt1 at whih p is minimal,say optp , as shown in Figure 2. This is the optimalalloation to operator o1. Correspondingly optimal al-loation to operator o2 will be mopt2 =M �mopt1 .

8i; 1 � i �M; 8j; 1 � j �M :i+ j =M) 1(i)+ 2(j) � 1(mopt1)+ 2(mopt2)For ost funtions with arbitrary shape we need toexamine all possible division points and alulate pfor eah value of m1 from 0 to M . This takes O(M)time. Note that there is a tradeo� between time andgranularity of the unit of memory.Dividing memory amongst three operators: Considera pipeline P omposed of three operators o1, o2 ando3 with ost funtions 1, 2 and 3 resp. The goal isto �nd optimal memory alloation, saymopt1 , mopt2 andmopt3 units to operators o1, and o2 and o3 resp. suhthat the exeution ost of pipeline P is minimized andmopt1 +mopt2 +mopt3 =M . Suh a division is given by:8i; 1 � i �M; 8j; 1 � j �M; 8k; 1 � k �M :i+ j + k =M) 1(i) + 2(j) + 3(k) �1(mopt1) + 2(mopt2) + 3(mopt3)A naive method would hek all possible ombinationsof memory alloations and take O(M3) time. But wean do better by merging the ost funtions (and thusthe operators) inrementally, as follows:First, we onsider two operators o1 and o2 and �ndost of a pipeline P 0 onsisting these two operatorsas a funtion of memory used by the pipeline. Thuswe need to alulate the optimal ost of running thepipeline P 0 with memory i, for eah i : 0 � i � M .The ost funtion of P 0 stores the optimal division ofmemory along with the ost value for eah memorypoint i (i.e. amount of memory j and k to be given tooperators o1 and o2 resp., where j + k = i). With thisthe operators o1 and o2 are virtually merged into planP 0 with a ost funtion de�ned for it. For furthermemory division operations, say between plan P 0 andsome other operator or plan, the plan P 0 will be treatedas a super-operator.We an alulate optimal division for a given memorysize i and hene ost of running the pipeline P 0 withmemory size i in O(M) time. To alulate this forall i : 0 � i � M we need O(M2) time. Thus theost funtion of the pipeline P 0 is alulated in O(M2)time.Next, we �nd the optimal memory division betweenthe plan P 0 and the operator o3. One we get thisdivision, saymopt3 andmoptp0 , we an trae bak optimaldivision of memory moptp0 between operators o1 and o2.Dividing memory amongst n operators: Consider ageneral ase: a pipeline P omposed of n operatorso1, o2, ..., and on with ost funtions 1, 2, ..., nrespetively. To �nd the optimal memory divisionamongst these operators we extend the strategy usedfor the pipeline with 3 operators, and merge the ostfuntions/operators inrementally. We merge the ostfuntions of two operators to get their ombined ostfuntion. Then we merge this ombined ost funtionwith the ost funtion of the third operator to get theombined ost funtion of three operators. We on-tinue in this manner and merge all operator ost fun-tions to get the ost funtion of the pipeline P . Now,

we an trae bak eah step and �nd, from the ostfuntions of the intermediate plans, the optimal mem-ory alloation within eah of these intermediate plans.This takes O(n:M2) time for ost funtions with arbi-trary shape.OptMerge Proedure: This proedure optimally mergestwo input ost funtions running in pipeline and gener-ates the ombined optimal ost funtion along with theoptimal memory division for all memory points. Timeomplexity of this proedure depends upon shape ofthe input ost funtions. If the input ost funtionsare of arbitrary shape then the proedure examines allpossible memory division alternatives for eah memorypoint and the omplexity is O(M2).In the next setion, we onsider how to redue the ost as-soiated with the memory division operation using pieewise-linear approximations of the ost funtions.
4.2 Piecewise Linear Approximation of Cost

FunctionsConsider a pipeline P with two operators o1 and o2 withost funtions 1 and 2 resp. Let ost funtion of thepipeline be p. If the ost funtions 1 and 2 are linear, theproedure OptMerge de�ned in previous subsetion takesonstant time. Assume that 1 has slope slope1 in range 0to m1 (m1 �M) and slope 0 in range m1 to M i.e. alloat-ing memory beyond m1 units yields no bene�t. And 2 hasslope slope2 in the range 0 to m2 (m2 �M) and slope 0 inrange m2 toM . Assuming that providing more memory willnot inrease the ost of an operator/plan, the ost funtionsare non-inreasing and slopes are non-positive (slope1 � 0and slope2 � 0).The OptMerge proedure simply alloates maximum pos-sible memory to the operator whih gains more per unitmemory alloation (i.e., the ost funtion of whih has lessslope2) and alloates the remaining memory to the other op-erator. Let slope1 � slope2. The proedure would alloatem1 units of memory to operator o1 and p follows the slopeslope1 in the range 0 to m1. Next, it alloates m2 units(m2 <=M �m1) of memory to operator o2, and p followsthe slope slope2 in the range m1 to m1 +m2. For memoryin the range m1 +m2 to M p has slope 0 and ost valuesame as that for m1 +m2.To use this mehanism, we need to approximate ost fun-tions of various operators to linear form. However, even afterthis approximation, ost funtions derived by the proedureOptMerge may not be linear: in fat the derived funtionsmay be pieewise linear. Thus ost funtion of a plan antake pieewise linear form. Sine input to OptMerge proe-dure an be ost funtion of a plan, the proedure needs tohandle pieewise linear ost funtions.Moreover, the ability to handle pieewise linear ost fun-tions means we an use pieewise-linear approximations forsingle-operator ost funtions. This provides a better ap-proximation than the linear approximation. It is easy toapproximate ost funtions of various database operators32onsidering sign. If we onsider absolute values then itwould pik the one with higher slope.3inluding multiphase sort and hash operators whih typi-ally have disontinuous ost funtions w.r.t. memory

OptMerge(1, 2)mergeCost =1for eah hange-over point (m;) in 1 do02 = 2 shifted by (m;)mergeCost = MinMerge(mergeCost, 02)for eah hange-over point (m;) in 2 do01 = 1 shifted by (m;)mergeCost = MinMerge(mergeCost, 01)return mergeCostFigure 3: Pseudo Code for OptMerge Proedure forPieewise Linear ost Funtionsto pieewise linear form.The OptMerge proedure dealing with pieewise linearost funtions is shown in Figure 3. The operation shift byused in the proedure shifts the ost funtion along memoryand ost axis by resp amount. The routineMinMerge usedin the proedure ompares input ost funtions for entirememory range and at eah memory point piks up the lowerost value.If the input ost funtions to this proedure have o1 ando2 segments (i.e. number of straight line segments in a piee-wise linear funtion) resp. and z = max(x; y) then the num-ber of segments in the output ost funtion will be � z2 andthe time omplexity of the proedure would be O(z2 log z).For eah given point i, the algorithm essentially hekseah possible memory division, say j units to the �rst ostfuntion and k units to the seond ost funtion (i = j+k),where at least one of j and k is at a hange-over point (apoint where the ost funtion hanges slope) in the resp.ost funtions. And following theorem establishes that theproedure orretly alulates the optimal ost funtion ofthe pipeline.Theorem: If a pipeline tree P omposed of two operators o1and o2 with ost funtions 1 and 2 respetively is exeutedin memory i, then at least one of the (possibly many) optimalmemory divisions, say j units to o1 and k units to o2 (i =j+k), is suh that at least one of j and k is at a hange-overpoint.Proof: Assume that there is no suh optimal division. Con-sider one of the optimal divisions of the available memoryi, say j units to o1 and k units to o2 (i = j + k). Neitherof i and j is at hangeover point. We ome up with an al-ternate memory division, say j0 units to o1 and k0 units too2 (i = j0 + k0) suh that at least one of j0 and k0 is at ahange-over point and 1(j0) + 2(k0) � 1(j) + 2(k).Assume that the point j lies on segment s1 in 1 and kon segment s2 on 2. Assume further that the segment s1begins at memory point bs1 and ends at memory point es1and the segment s2 begins at memory point bs2 and ends atmemory point es2.Let the slopes of the segments s1 and s2 be slopes1 andslopes2 resp. Assuming that providing more memory willnot inrease the ost of an operator/plan, the ost funtionsare non-inreasing and slopes are non-positive (slopes1 � 0and slopes2 � 0) though the algorithm does not depend onthis assumption.

We onsider three ases:Case I: slopes1 = slopes2Consider two subases:Cast I.A: j � bs1 � es2 � kLet j0 = bs1 and k0 = k + j � bs1.It is easy to see that1(j0) + 2(k0) = 1(j) + 2(k) and j0 + k0 = i.Cast I.B: j � bs1 > es2 � kLet j0 = j � es2 + k and k0 = es2.It is easy to see that1(j0) + 2(k0) = 1(j) + 2(k) and j0 + k0 = i.Case II: slopes1 > slopes2Consider two subases:Cast II.A: j � bs1 � es2 � kLet j0 = bs1 and k0 = k + j � bs1.It is easy to see that1(j0) + 2(k0) < 1(j) + 2(k) and j0 + k0 = i.Cast II.B: j � bs1 > es2 � kLet j0 = j � es2 + k and k0 = es2.It is easy to see that1(j0) + 2(k0) < 1(j) + 2(k) and j0 + k0 = i.Case III: slopes1 < slopes2Symmetri to ase II.We see that in all the ases, either j0 or k0 is at hangeoverpoint and this alternative division inurs ost equal to or lessthan that inurred by the original division. This ontraditsthe assumption made in the beginning, hene the proof. 2If the pieewise linear approximation introdues maxi-mum error of �Æ at any memory point in eah operatorost funtion in a plan with n operators then ost of theplan alulated using pieewise linear approximation will bewithin �nÆ of the atual ost.
5. VOLCANO OPTIMIZER BACKGROUNDIn this setion we desribe the basi Volano query opti-mizer[3℄. First we desribe an AND-OR DAG representa-tion for the searh spae of all possible query plans. Thenwe desribe the volano searh algorithm.
5.1 The DAG Representation of QueriesAnAND{ORDAG is a direted ayli graph whose nodesan be divided into AND-nodes and OR-nodes; the AND-nodes have only OR-nodes as hildren and OR-nodes haveonly AND-nodes as hildren.An AND-node in the AND-OR DAG orresponds to analgebrai operation, suh as the join operation (1) or a seletoperation (�). It represents the expression de�ned by theoperation and its inputs. Hereafter, we refer to the AND-nodes as operation nodes. An OR-node in the AND-ORDAG represents a set of logial expressions that generate thesame result set; the set of suh expressions is de�ned by thehildren AND nodes of the OR node, and their inputs. Weshall refer to the OR-nodes as equivalene nodes heneforth.The given query tree is initially represented diretly inthe AND-OR DAG formulation. For example, the querytree of Figure 4(a) is initially represented in the AND-OR

DAG formulation, as shown in Figure 4(b). Equivalenenodes (OR-nodes) are shown as boxes, while operation nodes(AND-nodes) are shown as irles.The initial AND-OR DAG is then expanded by apply-ing all possible transformations on every node of the ini-tial query DAG representing the given set of queries. Sup-pose the only transformations possible are join assoiativityand ommutativity. Then the plans A 1 (B 1 C) and(A 1 C) 1 B, as well as several plans equivalent to thesemodulo ommutativity an be obtained by transformationson the initial AND-OR-DAG of Figure 4(b). These are rep-resented in the DAG shown in Figure 4(). We shall refer tothe DAG after all transformations have been applied as theexpanded DAG. Note that the expanded DAG has exatlyone equivalene node for every subset of fA;B;Cg; the noderepresents all ways of omputing the joins of the relationsin that subset.
5.2 Physical AND-OR DAGProperties of the results of an expression, suh as sortorder, that do not form part of the logial data model arealled physial properties. Physial properties of intermedi-ate results are important, sine e.g. if an intermediate resultis sorted on a join attribute, the join ost an potentially beredued by using a merge join. It is straightforward to re-�ne the above AND-OR DAG representation to representphysial properties and obtain a physial AND-OR DAG4.
5.3 The Volcano Search AlgorithmThe Volano Searh Engine follows a top-down, goal-drivenapproah. It generates the logial DAG and expands it intothe physial DAG on the y. We present below parts of theVolano searh algorithm, that are relevant to our optimiza-tion algorithms. Figure 6 in Appendix A shows a simpli�edversion of the Volano searh algorithm.Before the Volano searh algorithm is alled on a query,the initial query DAG orresponding to the given query isreated. Next, the initial DAG is fully expanded by applyingthe transformations as desribed earlier, to get an expandedlogial AND-OR DAG. The searh proedure is then alledon the root of the expanded logial AND-OR DAG. (Note:the desription of Volano in [3℄ does not make this sep-aration expliit, but the atual implementation does followthis two phase approah for ompleteness of transformations[5℄.)The input to the Volano searh proedure is a logialequivalene node, an initial physial property spei�ationand an optional ost limit.The searh proedure tries alternative enforers and algo-rithms for the operation nodes below the equivalene node,reursively alling itself to �nd the best plan for the inputsof the operation nodes. A ost limit is passed as a parame-ter to the searh algorithm, and if the umulative ost of anoperation node and the osts of the best plans for its inputshosen so far exeeds the limit, the operation node an beabandoned from onsideration.One the best plan for an (equivalene node, physial4For example, an equivalene node is re�ned to multiplephysial equivalene nodes, one per required physial prop-erty, in the physial AND-OR DAG. Enforer operationnodes, suh as sort also get introdued.

A B

C

A B C

A B C

A B

A B C

(Commutativity not shown - every join node has
 another join node with inputs exchanged, below
 the same equivalence node)

A B C

A B B C A C

(c) Expanded DAG after transformations(a) Initial Query (b) DAG representation of queryFigure 4: Initial Query and DAG Representationsproperty) pair is found, it is stored in ase it needs to bereused. Therefore, in fat, the �rst thing to hek beforeperforming the above optimization for a given node and agiven physial property is to hek for potential reuse. If aplan mathing the property spei�ation is found among theplans stored at the equivalene node, and the plan satis�esthe ost limit, the plan is returned; if a plan is found but doesnot satisfy the ost limit a failure indiation is returned. Ifthere is no plan for the expression and the property spei�-ation, then atual optimization (as desribed above) starts.The best plan for a logial equivalene node, physialproperty pair (thus, a physial equivalene node) is om-patly spei�ed by merely noting the orresponding physi-al operation node, and its input physial equivalene nodes.The overall best plan is reonstruted when required by re-ursively looking up the best plan for the inputs.
6. MEMORY COGNIZANT OPTIMIZATIONIn this setion we present an overview of the extensionsto make the Volano optimizer algorithm memory ognizant.Details of the memory ognizant optimization algorithm arepresented in Appendix B.Our exeution algorithms (desribed in Setion 3) for queryoperators inlude memory-awareness and division of mem-ory among onurrent operators. In this framework, we pro-pose following extensions to make the optimization proessmemory-ognizant:� While evaluating ost of an operator (AND node inVolano DAG framework), evaluate ost funtions forall the exeution shemes (as de�ned in setion 3) andfor eah memory size pik the one with the minimumost. Note that the inputs to the operator are alreadyoptimized and we know their ost funtions.� While omparing alternative operators or plans, forevaluating an expression (OR node in Volano DAGframework), ompare their ost funtions for eah mem-ory size. If one operator/plan is onsistently betterthan other in the entire memory range, retain theoperator/plan with less ost and disard the opera-tor/plan with more ost. If one operator/plan is bet-ter at some memory range and other one is better atsome other memory range, maintain both of them in-diating whih one in better in whih range. The ostof the expression at a memory size m is the ost of

the operator/plan whih inurs minimum ost at thatmemory size.� While evaluating ost of a plan P (AND node in Vol-ano DAG framework), given ost funtion of root op-erator O and that of sub-plan P 0 = P nO, we onsiderfollowing possibilities:{ Edge between O and P 0 is bloked: P 0 runsfully before O starts exeuting. Thus full mem-ory an be alloated to P 0. This will result inminimum exeution ost for P 0 and it will beP 0:CostFuntion(MaxAvailMem). The mem-ory to be alloated to operator O annot be de-ided independently of what type of edge it willbe onneted to its parent by and what is the ex-eution ost of its parent/asendents. Thus ostfuntion of the plan P will be the ost funtionof O with P 0:CostFuntion(MaxAvailMem), aonstant, added for eah memory point.8i; 1 � i �MaxAvailMem :P:CostFuntion(i) = O:CostFuntion(i)+P 0:CostFuntion(MaxAvailMem){ Edge between O and P 0 is pipelined: O andP 0 run simultaneously in memory alloated to theplan P . The ost funtion of P is obtained byOptMerge-ing ost funtion of O and that of P 0.Reall the de�nition of the proedure OptMergefrom Setion 4.P:CostFuntion =OptMerge(O:CostFuntion; P 0:CostFuntion)
6.1 Breaking Pipelined EdgesConsider a pipelinable plan P and a pipeline edge E in it.If we break the plan P at edge E we get two independentsubplans P1 and P2 and these plans an be sheduled sepa-rately. Let us assume that output of plan P1 is fed to planP2 through edge E.We have two options for evaluating plan P :� Shedule whole plan P in given memory with the edgeE behaving as a pipeline edge. Here all operators inthe plan P exeute simultaneously sharing availablememory. There is no I/O inurred at edge E, as it isa pipeline edge.

� Shedule P1 �rst, store its output on disk. Then shed-ule P2 with its input being read from disk. Here, asP is divided into two parts and eah part is sheduledseparately, operators will have more memory for exe-ution. However, we inur materialization I/O at edgeE whih now behaves as a bloking edge.Clearly, there is a tradeo� between letting the edge E be-have as a pipeline edge and breaking it to make it behaveas a bloking edge. If it is a pipelined edge, no materializa-tion IO is inurred but operators in P will get less memoryfor exeution as all the operators in the plan exeute si-multaneously in the available memory. If the edge E is abloking edge, materialization IO is inurred but as the op-erators in the plan are divided into two independent plansand sheduled separately, the operators will get more mem-ory for exeution.We inorporate, into our memory ognizant optimizer, aost-based tehnique for deiding when to break a pipelinededge and is desribed below.Consider a plan P feeding its output to parent C in pipelinedfashion. Let the pipelined ost funtion of P be PPC (withits output edge pipelined and no IO inurred at it). Andlet read/write ost be IO at its output edge if it is bloked.The problem is to deide at eah memory point, say i:� Let the plan P and its parent C exeute in pipelinedfashion. The ost of the plan P is PPC(i).� Let the plan P exeute independent of its parent Cutilizing all available memory, say MaxAvailMem5and write intermediate result to disk whih will beread by the parent C. The ost of the plan P isPPC(MaxAvailMem� 1)+ IO. Note that it is inde-pendent of the available memory i.6Let bloking ost funtion of plan P be BPC (with itsoutput edge bloked and IO inurred at it). It is given by:8i; 1 � i �MaxAvailMem :BPC(i) = P (MaxAvailMem� 1) + IOThe optimal ost funtion for plan P with the blokingdeision inorporated within is given by:MinMerge(PPC;BPC)The routine MinMerge ompares two input ost fun-tions for the entire memory range and at eah memory pointpiks up the lower ost value. Thus applying MinMergehooses better of the options: bloking and pipelining theedge. Figure 5 shows the operation graphially. If an opera-tor or a plan is made to exeute in memory less than ertainthreshold mut off , it will, instead, utilize full memory andwrite its output to disk. For a ost funtion with arbitraryshape the time omplexity of this deision is O(M), whereasfor a pieewise linear ost funtion with x linear segments itis O(x).5Atually, hild will get (MaxAvailMem � 1) for its exe-ution as one unit of memory will be used for holding theintermediate tuples as they are written to disk.6Atually, we need 1 � i sine at least one bu�er is neededto read bak the intermediate result from disk and feed theparent.

IOcost

0 Mmemorycut-off
m

BPC

PPC

Figure 5: Breaking a pipelined edge
7. EXPERIMENTAL EVALUATIONIn this setion we desribe our experimental setup and theresults obtained.The 1PO and 2PO algorithms are based on Volano queryoptimizer. The �rst phase of 2PO (whih uses the basi vol-ano optimizer to optimize the query in onventional man-ner) assumes that eah operator in the plan uses all availablememory.The memory blok size is taken as 4K. Standard teh-niques are used for estimating osts, using statistis aboutrelations. The ost estimates ontain an I/O omponent anda CPU omponent. The metri used to ompare the good-ness of the optimization algorithms is the estimated ost ofthe optimal plan produed by the optimizer; all our ostnumbers are estimates from the optimizer.The tests are performed on a Sun workstation with Ultra-Spar 10 333Mhz proessor, 256MB main memory, runningSolaris 5.7.
Test QueriesWe tested our algorithms with around 20,000 randomly gen-erated queries on a TPCD-based star shema similar to theone proposed by [9℄. The shema has a entral orders fattable, and four dimension tables part, supplier, ustomerand time. The size of eah of these tables is same as that inthe TPCD-1 database. This orresponds to base data size ofapproximately 1 GB. Eah generated query is of the form:selet sum(quantity)from orders, supplier, part, ustomer, timewhere join-list and selet-listgroup by groupby-list;The join-list enfores equality between attributes of theorder fat table and primary keys of the dimension tables.The selet-list i.e., the prediates for the selets are gener-ated by seleting some attributes at random from the joinresult, and reating random equality or inequality prediateson the attributes. The groupby-list is generated by piking asubset of fustkey, suppkey, partkey, ustkey, month, yeargat random.We randomly hoose, between 10 bloks to 10,000 bloks,the total memory available to exeution engine and thisforms part of the input to the optimizer.

Experimental ResultsWe tested total 23,603 randomly generated queries and per-formane bene�t of 1PO over 2PO is reported below7:Cost Redution of 1PO over 2PO #Queries %Queries00-10 % 22682 96.09710-20 % 57 0.24120-30 % 527 2.23230-40 % 238 1.00140-50 % 99 0.419The maximum ost redution reported by 1PO over 2POin our experiments is 50%. For around 96% of the queriesredution is between 0% to 10%, and for only 4% of thequeries redution is between 10% to 50%. Thus, for the lassof queries we onsidered, 1PO gives bene�ts, but generally2PO performs about as well as 1PO.The average optimization time taken by 2PO and 1PO isshown in the table below:Algorithm Optimization Time (mse)2PO 1501PO 1110The ost based pruning feature of Volano is not im-plemented in 1PO algorithm and 1PO explores full searhspae. Whereas, 2PO uses standard volano implementationin its �rst phase and hene inludes ost based pruning.
8. CONCLUSION AND FUTURE WORKWe have designed eÆient tehniques to divide availablememory optimally among operators in a pipeline. If donenaively, this proess is impratial. We showed how to im-prove optimization time by using pieewise linear approxi-mation for the ost-versus-memory funtions of various op-erators and this made evaluation of 1PO feasible.It has been onjetured that 1PO will perform no betterthan 2PO, but there has been no published evidene of thislaim. We designed a pratial ost-based algorithm for 1POand ompared it against 2PO. For the lass of queries weonsidered, 1PO gives bene�ts, but generally 2PO performsabout as well as 1PO. Thus, the preliminary results indiatethat using 1PO for query optimization may not be bene�ial.This is a good news in general as the optimizer remainssimpler and faster.The tehniques developed here are of independent interestand an very well be applied to other problems.The ost of a query plan depends on many parameters andavailable memory is just one of them. We see a natural on-netion between memory ognizant optimization and para-metri query optimization and onsider applying tehniquesdeveloped in ontext of memory ognizant optimization tosolve general parametri query optimization problem.Unlike simple prediates and expressions, in Objet-Relational Database (ORDB), expensive prediates operateon large omplex data types and onsume signi�ant mem-ory. This resoure usage should be taken into onsidera-tion during optimization. Thus the tehniques developed7Sine we are using stritly ost-based exhaustive explo-ration of the searh spae, 1PO will never miss a 2PO plan,and hene is atleast as heap as 2PO.

for memory ognizant query optimization an be easily ap-plied to query optimization in ORDB. We wish to explorethe possibility of integrating memory alloation deisionswith the ORDB optimizer.We propose to modify some query exeution engine tomake it memory ognizant. Suh an exeution engine willtake the optimized plan from the optimizer along with thememory alloation number for eah operator, pipeline orbloking deision for eah edge, sequening deisions of thepipelinable segments in the plan and exeute the plan a-ordingly.
AcknowledgmentWe are grateful to Krithi Ramamritham and Prasan Roy foromments on �nal draft of the paper. Prasan Roy providedode of basi Volano Query Optimizer prototype.
9. REFERENCES[1℄ L. Bouganim, O. Kapitskaia, and P. Valduriez.Memory-adaptive sheduling for large queryexeution. In Pro. of the 7th CIKM Conf., pages105{115, Bethesda, USA, 1998.[2℄ D. L. Davison and G. Graefe. Memory-ontentionresponsive hash joins. In Pro. of the Int'l Conf. onVLDB, pages 379{390, Santiago, Chile, 1994.[3℄ G. Graefe and W. MKenna. The volano optimizergenerator: Extensibility and eÆient searh. In Pro.of the IEEE Conf. on Data Engg., Vienna, 1993.[4℄ A. Hulgeri, S. Seshadri, and S. Sudarshan. Memoryognizant query optimization. Tehnial report, IndianInstitute of Tehnology, Bombay, Sept 2000.[5℄ B. MKenna. Personal ommuniation.[6℄ M. Mehta and D. J. DeWitt. Dynami memoryalloation for multiple query workload. In Pro. of theInt'l Conf. on VLDB, pages 354{367, Dublin, Ireland,1993.[7℄ B. Nag and D. J. DeWitt. Memory alloationstrategies for omplex deision support queries. InPro. of the 7th CIKM Conf., pages 116{123,Bethesda, USA, 1998.[8℄ H. Pang, M. J. Carey, and M. Livny. Managingmemory for real-time queries. In Pro. of theSIGMOD Conf. on Management of Data, pages221{232, Minneapolis, USA, 1994.[9℄ P. Sheuermann, J. Shim, and R. Vingralek. Dynamiahing of query results for deision support systems.In Intl. Conf. on Sienti� and Statistial DatabaseManagement, 1999.[10℄ P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,and T. Prie. Aess path seletion in a relationaldatabase management system. In Pro. of theSIGMOD Conf. on Management of Data, pages 23{34,1979.[11℄ P. S. Yu and D. W. Cornell. Bu�er management basedon return on onsumption in a multi-queryenvironment. VLDB Journal, 2(1):1{37, 1993.[12℄ H. Zeller and J. Gray. An adaptive hash joinalgorithm for multiuser environment. In Pro. of theInt'l Conf. on VLDB, 1990.

APPENDIX

A. VOLCANO OPTIMIZER ALGORITHMFigure 6 presents pseudo ode for basi volano query op-timization algorithm.
B. MEMORY COGNIZANT VOLCANO

B.1 Extended Cost Function and PlanWe present here some de�nitions and extensions that areused in memory ognizant optimization algorithm.A onventional optimizer has a single value as ost for anoperator or a query plan and its orresponding (LogExp,PhysProp) pair. Here we have a ost assoiated with eahmemory size, i.e. we de�ne ost as a funtion of memorysize. We refer to a funtion of ost versus memory size asCostFuntion(m), and we have one suh ost funtion foreah operator and query plan with a (LogExp;PhysProp)pair. P lan:CostFuntion(m) denotes ost funtion of aplan, AlgorithmCostFuntion(m) denotes ost funtion ofan algorithm and EnforerCostFuntion(m) denotes ostfuntion of an enforer.For eah operator, as we are onsidering a range of mem-ory, more than one memory ognizant exeution shemes (asdesribed in setion 3) may be optimal, eah being optimalin a partiular memory range.Further, for a (LogExp;PhysProp) pair, as we are on-sidering the range of memory, more than one physial planmay be optimal, eah being optimal in a partiular memoryrange8. The optimal P lan for a (LogExp;PhysProp) pairwill ontain a list of pairs. Eah pair will ontain a range ofmemory size and an optimal physial plan in that range. Aphysial plan P spei�ed with a memory range (x,y) impliesthat the optimal way of evaluating the (LogExp;PhysProp)pair, given that the memory size is in the range (x,y), is byusing the plan P .A onventional optimizer has a single value as a ostlimit. Here we have a ost limit for eah memory point.We use CostLimitFuntion(m) to denote a funtion givingthe value of the ost limit for memory m.Additionally, in a ost funtion for a (LogExp;PhysProp)pair, an algorithm or an enforer, we may have a segmentwhere we have no optimal plan or exeution sheme but afailure indiation. In this segment, the ost funtion atu-ally indiates a ost limit on the plan. The ost of the planwill be more than the ost funtion at eah memory pointin this range.
B.2 Operations on Cost FunctionsLet MaxAvailMem be the available memory. We de�nefollowing operators on CostFuntion:� �all : ostFuntionx �all ostFuntiony means,8i; 1 � i �MaxAvailMem :ostFuntionx(i) � ostFuntiony(i)� >all : ostFuntionx >all ostFuntiony means,8i; 1 � i �MaxAvailMem :ostFuntionx(i) > ostFuntiony(i)

� AddCostFuntions: It takes two CostFuntions as ar-guments, and reates a new CostFuntion by addingthe input CostFuntions at eah memory point.� SubtratCostFuntion: it takes two CostFuntionsas arguments, and reates a new CostFuntion by sub-trating seond input CostFuntion from the �rst one.� MinMerge: It ompares two ost funtions for the en-tire memory range and at eah memory point piks upthe lower ost value.� OptMerge: It optimally ombines the CostFuntionsof the two operators/plans whih run simultaneously.Given two CostFuntions orresponding to two plansit divides the memory available between the two planssuh that the ombined exeution ost is minimizedand does this for all memory points from 0 andMaxAvailMem. This proedure has been desribedin Setion 4.
B.3 Detailed AlgorithmFigure 7 shows the Memory Cognizant Volano SearhAlgorithm FindBestP lan.The funtion FindBestP lan returns:� SUCCESS: when the optimized plan optP lan for the(LogExp;PhysProp) pair to be optimized is s.t.optP lan:CostFuntion() �all CostLimitFuntion.� FAILURE: when the optimized plan optP lan for(LogExp;PhysProp) pair to be optimized is s.t.optP lan:CostFuntion() >all CostLimitFuntion.� PARTIAL SUCCESS: when the optimized planoptP lan for the (LogExp;PhysProp) pair to be opti-mized is s.t. 9m; 1 � i �MaxAvailMem :optP lan:CostFuntion()(m) � CostLimitFuntion(m).To optimize a given (LogExp;PhysProp) pair within agiven ostLimitFuntion, if there has been no previous at-tempt to optimize this (LogExp;PhysProp) pair, the searhalgorithm proeeds as follows: It �rst applies transformationon the given logial expression to generate all equivalentlogial expressions. Figure 8 shows pseudo ode for applia-tion of transformations. Then it reursively optimizes trans-formed (LogExp;PhysProp) pairs by applying eah appli-able operator (algorithm or enforer) with the spei�ed ostlimit.If there has been a previous attempt to optimize this(LogExp;PhysProp) pair then we have a plan and ostfuntion available. The (LogExp;PhysProp) pair may havesuessful plan in some memory ranges and failures w.r.t theprevious ost limit in some other memory ranges.If the plan returned by the previous attempt hasat least one point with failure indiation and ost lessthan the ost limit then we need to reoptimize the the(LogExp;PhysProp) pair.Else, if for eah memory point we have a suessful planand the ost limit is more than or equal to the ost of theplan at eah point we return SUCCESS along with theplan. Else, if the plan has ost less than or equal to the ostlimit at some point we return PARTIAL FAILURE along8This may inrease the searh spae

Proedure FindBestPlan(LogExp;PhysProp;Limit)if the pair LogExpr and PhysProp is in the lookup tableif the ost in the lookup table < Limitreturn P lan and Costelse return failureelse /* Optimization required */reate the set of possible \moves" fromappliable transformations,algorithms that give the required PhysProp andenforers for the required PhysPropfor eah move in the move setif the move uses a transformationapply the transformation reating NewLogExprall FindBestPlan(NewLogExpr;PhysProp;Limit)else if the move uses an algorithmLimit = Limit - ost of the algorithmfor eah input I of the algorithm while Limit � 0determine required physial properties PP for ICost = FindBestPlan(I;PP; Limit)Limit = Limit� Costelse /* Move uses an enforer */Limit = Limit - ost of enforermodify PhysProp for enfored propertyall FindBestPlan for LogExpr with modi�ed PhysProp/* Maintain the lookup table of explored fats */if LogExpr is not in the lookup tableinsert LogExpr into the lookup tableinsert PhysProp and best plan found into lookup tableFigure 6: Volano Searh Algorithmwith the plan. Else the plan has, at eah memory point, ostgreater than the ost limit and hene we return FAILURE.Figure 9 shows appliation of an algorithm. Appliationof an enforer is similar and an be found in [4℄. Applia-tion of an operator is done as follows: First we evaluate ostfuntion of the operator. We need to optimize its hildrenand for this we need to evaluate hild ost limit. As of now,we do not know exatly how muh memory the tree rootedat this operator is going to take. For alulating the hildost limit, we assume that the tree will exeute in memoryMaxAvailMem units.If an edge between the operator and the hild is pipelinedand the operator takes MaxAvailMem � i units of mem-ory, the hild will take i units of memory. Thus the hildost limit for memory i, with pipelined edge, is alulatedby subtrating the ost of the operator at memory pointMaxAvailMem� i from the ost limit of the plan at mem-ory point MaxAvailMem.If an edge between the operator and the hild is blokedthe hild ost limit is alulated by subtrating the ost ofthe operator running in memory MaxAvailMem and ma-terialization ost at the edge.The ost limit passed to the hild is the maximum of thetwo hild ost limits desribed above at eah memory point.

After optimizing eah hild we merge the ost of the hildwith that of the plan ost and this plan ost is used as theoperator ost to alulate the ost limit of the next hild tobe optimized.If the hild optimization returns FAILURE (i.e. withinthe given ost limit, the optimizer ould not �nd aplan even for a single memory point) then for the given(LogExp;PhysProp) pair there exists no plan within thegiven ost limit for any memory points, and the optimizerreturns FAILURE. Instead, if the hild optimization re-turns a plan for even a single memory point with the givenost limit, the optimization ontinues.Finally when the optimization is over, if the optimizerould �nd plans within the given ost limit for all memorypoints, it returns SUCCESS. If it ould �nd plans withinthe given ost limit for some memory points but not forall of them, then it returns PARTIAL SUCCESS. Theost funtion will have multiple segments. If for a memoryrange we get a suessful plan then within that range theost funtion will indiate suess along with the plan. If nosuessful plan is found in a memory range failure will beindiated in that range along with the ost limit. If no planis found within the given ost limit at any of the points inthe given memory range then it returns FAILURE.

FindBestPlan(LogExp;PhysProp;CostLimitFuntion)if the pair LogExpr and PhysProp is in the lookup table with P lan as the optimal plan/* optimized already, attempting reuse */if there exists a memory point i at whih P lan is failed and its ost is < CostLimitFuntion(i)goto Label X /* reoptimization required */else /* no reoptimization required */if for all memory points i, P lan is suessful and its ost � CostLimitFuntion(i)return (SUCCESS, P lan)else if there exists a memory point i where P lan is suessful and its ost � CostLimitFuntion(i)return (PARTIAL SUCCESS, P lan)else return FAILURE /* for all memory points i, P lan ost > CostLimitFuntion(i)else /* Optimization required */Label X:(Result; P lan) = ApplyTransformations(LogExpr;PhysProp;CostLimitFuntion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFuntion = optP lan:CostFuntion()(Result; P lan) = ApplyAlgorithms(LogExpr;PhysProp;CostLimitFuntion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFuntion = optP lan:CostFuntion()(Result; P lan) = ApplyEnforers(LogExpr;PhysProp;CostLimitFuntion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFuntion = optP lan:CostFuntion()/* Maintain the lookup table of explored (expression, physial property) pairs */if LogExpr is not in the lookup tableinsert LogExpr into the lookup tableinsert (LogExp, PhysProp, optP lan) into lookup tableFigure 7: Memory Cognizant Volano Searh: FindBestP lan AlgorithmApplyTransformations(LogExp;PhysProp;CostLimitFuntion)for eah appliable transformationreate NewLogExpr by applying the transformation(Result; P lan) =FindBestPlan(NewLogExpr;PhysProp;CostLimitFuntion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan = P lanCostLimitFuntion = P lan:CostFuntion()if optP lan is suessful for all memory pointsreturn (SUCCESS; optP lan)if optP lan is suessful for no memory pointreturn (FAILURE)return (PARTIAL SUCCESS; optP lan)Figure 8: Memory Cognizant Volano Searh: ApplyTransformations Algorithm

ApplyAlgorithms(LogExp;PhysProp;CostLimitFuntion)for eah appliable Algorithm doif AlgorithmCostFuntion >all CostLimitFuntionontinue /* ost of the operator is more than the ost limit */AlgoP lan:CostFuntion = AlgorithmCostFuntionfor eah input I of the algorithmfor memory i = 1 to MaxAvailMemChildCostLimit(i) = CostLimitFuntion(MaxAvailMem)�Min(AlgorithmCostFuntion(MaxAvailMem� i);AlgorithmCostFuntion(MaxAvailMem) + CostOfResultIO(I))if 8i : ChildCostLimit(i) < 0break /* no plan within the given ost limit */determine required physial properties PP for I(Result; P lan) = FindBestPlan(I;PP;ChildCostLimit)if result = FAILUREbreak /* no plan within the given ost limit */for memory i = 1 to MaxAvailMemCostWithChildBloked(i) = AlgoP lan:CostFuntion(i)+P lan:CostFuntion(MaxAvailMem)+CostOfResultIO(I)if an edge between the algorithm and the hild I is pipeline edge/* divide memory optimally between the operator and its hild */CostWithChildP ipelined =OptMerge(AlgoP lan:CostFuntion; P lan:CostFuntion)/* onsider breaking the pipelined edge */AlgoP lan:CostFuntion =MinMerge(CostWithChildP ipelined;CostWithChildBloked)else /* bloking edge, full memory is available to the input */AlgoP lan:CostFuntion = CostWithChildBloked/* Merge the operator plan with the planGroup optPlan */optP lan =MinMerge(optP lan;AlgoP lan)CostLimitFuntion = optP lan:CostFuntion()if optP lan is suessful for all memory pointsreturn (SUCCESS; optP lan)if optP lan is suessful for no memory pointreturn (FAILURE)return (PARTIAL SUCCESS; optP lan)Figure 9: Memory Cognizant Volano Searh: ApplyAlgorithms Algorithm

