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ABSTRACTComplex queries make heavy use of join, aggregation andsorting operations and these operations are memory inten-sive. Typi
al optimizers assume all the memory to be avail-able to ea
h operator in the query tree. But while exe
utingpipelines memory will get divided amongst all the opera-tors running simultaneously in a pipeline. The 
ost of anoperator generally depends on the available memory. If thememory allo
ated to an operator is less than what an op-timizer assumes, 
ost estimated by the optimizer would bewrong. Thus the query optimization and memory distribu-tion are interdependent and if done separately may not yieldbest results. The query optimizer should not only 
onsiderthe total memory available but should also de
ide how todivide it optimally among the operators of the plan.We show how to optimize a query given the 
ost versusmemory allo
ation fun
tion for ea
h operator. We have ex-tended the Vol
ano optimizer to make it memory 
ognizant.Part of the job of the optimizer is to de
ide whi
h edge topipeline and whi
h edge to blo
k. A pipelinable edge 
an bebroken (i.e. 
onverted) into a blo
king edge. But the de
i-sion to break a pipelinable edge depends upon whether theextra memory available to individual pipelinable trees thusformed 
an more than o�set the extra disk IO of the inter-mediate results. This de
ision is integrated into our memory
ognizant optimizer.
1. INTRODUCTIONComplex queries make heavy use of join, aggregation andsorting operations whi
h are memory intensive. Conven-tional query optimizers have the drawba
k that they assumeea
h of these operators 
an avail entire memory available tothe query exe
ution engine. This assumption is 
learly notvalid when exe
uting a pipeline, where the available mem-ory has to be divided among several 
on
urrently exe
utingoperators in the pipeline and may lead to suboptimal plans.Motivating Example: Consider a query R 1 T 1 Swith two join predi
ates: one between relations R and Tand other between relations S and T . Cross produ
ts arenot allowed. Relation sizes are jRj = 60, jSj = 60 and�Supported by Infosys Fellowship.
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jT j = 130 disk blo
ks, memory available is 80 blo
ks. Costis measured in terms of number of disk blo
k a

esses.A traditional optimizer generates plan shown in Figure 1(a)and (b). Sin
e the available memory is suÆ
ient to exe
uteeither of the two nested loops join operators in memory, thetwo nested loops join operators in the plan are assumed torun in pipelined fashion in the best plan. The estimated
ost of this plan is the 
ost of reading ea
h relation on
efrom the disk and equals jRj + jSj + jT j = 240. However,both nested loops join operators 
annot be exe
uted simul-taneously in given memory. Thus the 
ost predi
ted by theoptimizer is ina

urate; the a
tual 
ost is more than the es-timated 
ost and depends upon s
heduling of the operatorsin given memory. For example, as shown in Figure 1(a) aworst-
ase memory s
heduling will allo
ate 79 blo
ks to onenested loops join and only one unit to other, thus making the
ost approximately 7860 units whi
h is signi�
antly higherthan the estimated 
ost.Least 
ost would be in
urred when the memory is dividedequally between the operators as shown in Figure 1(b), Herethe total 
ost in
urred will be 610 units and is the optimalfor the given query plan and the given memory.However, if we employ hybrid hash1 join instead of nestedloops join for the two join operations as shown in Figure 1(
)and equally divide memory between the two joins, the total
ost in
urred will be 500 and the plan is optimal for givenmemory. 2The example illustrates two key issues: First, 
ost of aplan may 
hange when division of memory is 
hanged. Se
-ond, the 
hoi
e of plan itself needs to involve 
onsiderationof memory allo
ation.We propose two approa
hes to solve this problem: a 2-phase approa
h and a 1-phase approa
h.In the 2-phase approa
h, we �rst optimize the query usinga 
onventional optimizer to get a traditional optimal plan,and in the se
ond phase we divide memory among opera-tors in ea
h pipeline of the plan so that ea
h pipeline runsoptimally in available memory. In the example above, Fig-ure 1(b) shows appli
ation of the 2-phase approa
h.In the 1-phase approa
h we modify the traditional queryoptimizer to make it memory 
ognizant. The modi�ed op-timizer takes into a

ount division of memory amongst op-erators while 
hoosing between equivalent plans. In the ex-1assume left input to be a build input and right input to bea probe input
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Figure 1: Motivating Exampleample above, Figure 1(
) shows appli
ation of the 2-phaseapproa
h.Although the 2-phase approa
h is able to optimally dividethe available memory amongst the operators of a given plan,it may not ne
essarily give the optimal exe
ution time for aquery sin
e the plan being 
onsidered may itself be subopti-mal for available memory. Therefore, the 1-phase approa
hseems to be a better alternative.In this paper we address the problem of 
hoosing an op-timal, memory-aware exe
ution plan for a query given the
ost versus memory allo
ation fun
tion for ea
h operator.We build memory 
ognizant query optimizer to solve thisproblem. Our 
ontributions are as follows:� We design eÆ
ient te
hniques to divide the availablememory optimally among operators in a pipeline. Ifdone naively, this pro
ess 
an take time quadrati
 inthe available memory size, and is impra
ti
al. We showhow to solve this problem in reasonable time by usingpie
ewise linear approximation of 
ost-versus-memoryfun
tions of various operators.� We show how some of the assumptions made whileevaluating 
ost of various operators are not valid when
ost is a fun
tion of available memory and we are di-viding memory amongst operators. Based on theseobservations we de�ne various memory 
ognizant exe-
ution algorithms/s
hemes for ea
h operator.� We show how to make a 
ost-based de
ision of break-ing (i.e. 
onverting) a pipelined edge into a blo
kingedge so that the 
hild operator writes the intermedi-ate result to the disk and the parent operator reads itba
k. The de
ision to break a pipelinable edge dependsupon whether the extra memory available to individ-ual pipelinable trees thus formed 
an more than o�setthe extra disk IO of the intermediate results. This de-
ision is integrated into memory 
ognizant optimizer.� It has been 
onje
tured [7℄ that 1PO will perform nobetter than 2PO. But the paper gives no 
on
lusiveeviden
e of this 
laim. We evaluate 1PO against 2POand study the results obtained. Performan
e resultsshow that 2PO performs reasonably well as 
omparedto 1PO for tests 
ondu
ted.

Our dis
ussion is in the 
ontext of Vol
ano query opti-mizer [3℄ but the te
hniques 
an be used with a System-Rstyle optimizer [10℄ also.The rest of the paper is organized as follows: We dis-
uss the related work in Se
tion 2. Se
tion 3 gives briefoverview of memory 
ognizant exe
ution algorithms. InSe
tion 4 we present our te
hnique for 
hoosing the optimaldivision of memory among a set of 
on
urrently running op-erators. This te
hnique forms an important building blo
kof our algorithm for sele
ting the overall optimal plan. Se
-tion 5 des
ribes the basi
 Vol
ano query optimizer, in
ludingthe representation for the sear
h spa
e of all possible queryplans. Se
tion 6 des
ribes how the Vol
ano optimizer isextended to in
lude memory-
ognizan
e and also des
ribeshow pipeline breaking de
ision is taken in 
ost-based man-ner. In Se
tion 7 we present some experimental results, and�nally 
on
lude in Se
tion 8.
2. RELATED WORKPrevious work on resour
e management mainly deals withs
heduling resour
es eÆ
iently for exe
uting a given queryplan. These resour
e s
heduling de
isions do not intera
twith the query optimizer and the two problems (query opti-mization and s
heduling) are solved in separate phases: thequery is optimized �rst to 
ome up with a plan, and thenthe plan is s
heduled.Query s
hedulers 
an be broadly 
lassi�ed into two 
at-egories: stati
 s
hedulers and dynami
 s
hedulers. Stati
s
heduling is applied after query optimization and before ex-e
ution. The dynami
 s
heduling strategy is integrated withthe query exe
ution engine and makes the engine adaptiveto 
u
tuations in resour
e availability.To the best of our knowledge no previous work has triedto integrate s
heduling de
isions in query optimizer and ourwork is the �rst one to do this (1PO). Several papers have
onsidered s
heduling of query plans (2PO). Again, to thebest of our knowledge no previous work has tried 
ost-baseds
heduling and all the previous s
heduling strategies areheuristi
 based, the only ex
eption being a strategy pro-posed by Nag and DeWitt[7℄ whi
h assumes operator 
ostfun
tions to be linear w.r.t to memory. They [7℄ 
onje
-ture that 1PO will perform no better than 2PO but give no




on
lusive eviden
e of this 
laim.Yu and Cornell [11℄ 
onsider an environment of 
on
ur-rently running queries and study the problem of memoryallo
ation to individual queries. They de�ne a 
on
ept ofreturn-on-
onsumption (ROC) to study overall redu
tion inresponse time due to additional memory allo
ation to aquery. Ea
h query is assumed to be a single-join query. Amemory s
heduling poli
y is proposed wherein more mem-ory is allo
ated to queries whi
h have high value of ROC.Mehta and DeWitt[6℄ also 
onsider the problem of mem-ory s
heduling in multi-query environment. They dividequeries in di�erent 
ategories depending upon their mem-ory requirement and provide several heuristi
s for memoryallo
ation depending upon the 
lassi�
ation. Again, onlysingle-join queries are 
onsidered and only hash join opera-tor is 
onsidered.Bouganim et al.[1℄ propose various stati
 and dynami
s
heduling s
hemes for a query tree. They split a given querytree into a set of maximal pipeline 
hains, ea
h 
alled p
 taskand s
heduled separately. Under stati
 s
heduling they pro-pose several heuristi
-based strategies to divide memoryamong operators depending upon minimum (Mopmin) andmaximum (Mopmax) memory requirements of ea
h operator.The heuristi
s proposed in
lude: divide memory equallyamongst the operators, allo
ate maximum memory to theoperator whi
h has the smallest Mopmax, give ea
h opera-tor memory in proportion to its Mopmax, and give maximumamount of memory to an operator having the largest Mopmax.Under dynami
 s
heduling strategy they propose a mem-ory adaptive exe
ution engine, whi
h dynami
ally allo
atesmemory and 
hanges query s
heduling as and when required.If the memory requirement of a p
 task 
an not be satis�ed,they split the p
 task into segments to be s
heduled sepa-rately. The s
heduling strategies de�ned 
onsider only max-imum and minimum memory requirement of the operatorsand the memory allo
ation de
ision is not 
ost-based.Nag and DeWitt[7℄ propose several heuristi
 based stati
s
heduling strategies whi
h are more or less similar to thoseproposed by Bouganim et al.[1℄. They divide a query treeinto 
on
urrently s
hedulable units 
alled shelves and dividememory amongst operators in a shelf. They also propose a
ost based strategy whi
h assumes operator 
ost model tobe linear. We 
onsider more general 
ost model.Davison and Graefe[2℄ and Zeller and Gray[12℄ show howto make a single hash join adaptive to memory 
u
tuationsbut do not 
onsider s
heduling of an entire query plan. Panget.al.[8℄ examine the same problem in the 
ontext of real-time databases where the priority of a query needs to be
onsidered and a query may need to be s
heduled in absen
eof suÆ
ient memory.
3. MEMORY COGNIZANT EXECUTIONGenerally following assumptions are made while evalu-ating 
ost of an operator. These are not valid when 
ostis a fun
tion of available memory and memory is dividedamongst operators:� It is assumed that ea
h operator in a pipeline utilizesall available memory and input is streamed into it inpipelined fashion. Thus the 
ost of an operator is de-
ided by available memory and size of its input. Thisassumption is not valid as already des
ribed.

� It is assumed that for a join operator, the smaller ofthe two inputs is outer or left input and the larger oneis inner or right input and this yields optimal 
ost.This assumption is not valid as des
ribed further.� It is assumed that in multiphase sort or hash operationea
h merging or partitioning phase utilizes all availablememory but in reality the �rst and the last phase needto share the available memory with 
hild operator andparent operator resp. and only intermediate phasesutilize all available memory.Based on these observations we de�ne various exe
utions
hemes for ea
h operator whi
h primarily di
tate s
hedul-ing of various phases of an operator, memory utilization ofthese phases and whi
h one of the two inputs a
ts as leftinput for join operation. We de�ne following four s
hemesfor exe
uting a nested loops join (NLJ) operator. Similars
hemes for rest of the operators 
an be found in [4℄. LetMtot be total available memory,M be memory available forthe plan tree rooted at NLJ and L be size of left input.� S
heme 1: Initially left input tree is 
ompletely pro-
essed to generate all left input tuples whi
h are storedin-memory. Then right input tree is pro
essed andright input tuples, as generated, are mat
hed with leftinput tuples whi
h are memory resident. Thus the leftinput is blo
king though it is not written to disk, andthe right input is pipelined.Of the memory,M units, allo
ated to the tree, L unitsis used by NLJ for storing left input. Thus remaining(M � L) units is used for pro
essing the left inputtree. On
e the left input tree is pro
essed, the rightinput tree is exe
uted and it also gets (M � L) unitsof memory for its exe
ution.� S
heme 2: Here again the left input tree is blo
k-ing and the right input is pipelined but the left inputis written to disk. The left input is 
ompletely pro-
essed before NLJ starts and all the left input tuplesare stored on the disk. Then the right input is ex-e
uted in pipelined fashion with NLJ . As the leftinput is written to disk, NLJ 
an use memory lessthan L units (unlike s
heme 1) and read the left inputmultiple times from disk.As the left input is pro
essed independently, it uses(Mtot�1) units of memory for its exe
ution. One unitis used for bu�ering the tuples before writing them tothe disk. Then the right input is exe
uted in pipelinedfashion with NLJ . So M units memory, allo
ated tothe tree, will be divided optimally between NLJ andthe right input, say M 0 units to NLJ and M �M 0units to the right input.� S
heme 3: Same as s
heme 2 but with the roles ofleft and right inputs reversed.In s
heme 2, the 
ost of exe
uting the tree rooted at NLJin M units of memory would be the summation of 
ost ofexe
uting NLJ inM 0 units of memory, 
ost of the left inputrunning in Mtot � 1 units of memory and 
ost of the rightinput running in M �M 0 units of memory. It is easy to seethat we 
an not de
ide whi
h one of the two inputs should
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Figure 2: Optimal division of memory between o1and o2be the left input based only on their sizes and we need eval-uate the 
ost for both the alternatives, hen
e the need fors
heme 3.
4. OPTIMAL DIVISION OF MEMORY FOR

A GIVEN QUERY PLANWe present here a 
ru
ial building-blo
k of our memory-
ognizant optimizer: the te
hnique used in optimally divid-ing memory among a set of operators running in a pipeline.When a pipeline is exe
uted, all operators in the pipelinerun simultaneously in given memory. The 
ost of runningsu
h a pipeline depends upon how mu
h memory ea
h oper-ator in the pipeline gets, and hen
e it is important to 
hoosethe optimal division of memory among these operators.
4.1 Cost Functions with Arbitrary ShapeIn this se
tion we 
onsider optimal memory allo
ation foroperators in a pipeline, where operator 
ost fun
tions are ofarbitrary shape. We des
ribe our te
hnique by �rst 
onsid-ering the problem of sharing available memory between twooperators. We then 
onsider three operators, and �nally thegeneral 
ase with n operators.Dividing memory between two operators: Consider apipeline P 
omposed of two operators o1 and o2 with
ost fun
tions 
1 and 
2 respe
tively. Let the availablememory be M units. Here, unit refers to a unit of al-lo
ation. We 
an divide this memory between the twooperators by giving m1 units to operator o1 and m2units to operator o2 (m1+m2 =M). Clearly, the 
ostof exe
uting the pipeline is a fun
tion of this division.Let 
p be 
ost of the pipeline as a fun
tion of m1, withm2 =M �m1. Thus 
p(m1) = 
1(m1) + 
2(M �m1).This fun
tion 
an be 
omputed by inverting the 
ostfun
tion 
2 along the memory axis and adding it to the
ost fun
tion 
1. This is shown in Figure 2. We needto �nd value of m1, say mopt1 at whi
h 
p is minimal,say 
optp , as shown in Figure 2. This is the optimalallo
ation to operator o1. Correspondingly optimal al-lo
ation to operator o2 will be mopt2 =M �mopt1 .

8i; 1 � i �M; 8j; 1 � j �M :i+ j =M ) 
1(i)+ 
2(j) � 
1(mopt1 )+ 
2(mopt2 )For 
ost fun
tions with arbitrary shape we need toexamine all possible division points and 
al
ulate 
pfor ea
h value of m1 from 0 to M . This takes O(M)time. Note that there is a tradeo� between time andgranularity of the unit of memory.Dividing memory amongst three operators: Considera pipeline P 
omposed of three operators o1, o2 ando3 with 
ost fun
tions 
1, 
2 and 
3 resp. The goal isto �nd optimal memory allo
ation, saymopt1 , mopt2 andmopt3 units to operators o1, and o2 and o3 resp. su
hthat the exe
ution 
ost of pipeline P is minimized andmopt1 +mopt2 +mopt3 =M . Su
h a division is given by:8i; 1 � i �M; 8j; 1 � j �M; 8k; 1 � k �M :i+ j + k =M ) 
1(i) + 
2(j) + 
3(k) �
1(mopt1 ) + 
2(mopt2 ) + 
3(mopt3 )A naive method would 
he
k all possible 
ombinationsof memory allo
ations and take O(M3) time. But we
an do better by merging the 
ost fun
tions (and thusthe operators) in
rementally, as follows:First, we 
onsider two operators o1 and o2 and �nd
ost of a pipeline P 0 
onsisting these two operatorsas a fun
tion of memory used by the pipeline. Thuswe need to 
al
ulate the optimal 
ost of running thepipeline P 0 with memory i, for ea
h i : 0 � i � M .The 
ost fun
tion of P 0 stores the optimal division ofmemory along with the 
ost value for ea
h memorypoint i (i.e. amount of memory j and k to be given tooperators o1 and o2 resp., where j + k = i). With thisthe operators o1 and o2 are virtually merged into planP 0 with a 
ost fun
tion de�ned for it. For furthermemory division operations, say between plan P 0 andsome other operator or plan, the plan P 0 will be treatedas a super-operator.We 
an 
al
ulate optimal division for a given memorysize i and hen
e 
ost of running the pipeline P 0 withmemory size i in O(M) time. To 
al
ulate this forall i : 0 � i � M we need O(M2) time. Thus the
ost fun
tion of the pipeline P 0 is 
al
ulated in O(M2)time.Next, we �nd the optimal memory division betweenthe plan P 0 and the operator o3. On
e we get thisdivision, saymopt3 andmoptp0 , we 
an tra
e ba
k optimaldivision of memory moptp0 between operators o1 and o2.Dividing memory amongst n operators: Consider ageneral 
ase: a pipeline P 
omposed of n operatorso1, o2, ..., and on with 
ost fun
tions 
1, 
2, ..., 
nrespe
tively. To �nd the optimal memory divisionamongst these operators we extend the strategy usedfor the pipeline with 3 operators, and merge the 
ostfun
tions/operators in
rementally. We merge the 
ostfun
tions of two operators to get their 
ombined 
ostfun
tion. Then we merge this 
ombined 
ost fun
tionwith the 
ost fun
tion of the third operator to get the
ombined 
ost fun
tion of three operators. We 
on-tinue in this manner and merge all operator 
ost fun
-tions to get the 
ost fun
tion of the pipeline P . Now,



we 
an tra
e ba
k ea
h step and �nd, from the 
ostfun
tions of the intermediate plans, the optimal mem-ory allo
ation within ea
h of these intermediate plans.This takes O(n:M2) time for 
ost fun
tions with arbi-trary shape.OptMerge Pro
edure: This pro
edure optimally mergestwo input 
ost fun
tions running in pipeline and gener-ates the 
ombined optimal 
ost fun
tion along with theoptimal memory division for all memory points. Time
omplexity of this pro
edure depends upon shape ofthe input 
ost fun
tions. If the input 
ost fun
tionsare of arbitrary shape then the pro
edure examines allpossible memory division alternatives for ea
h memorypoint and the 
omplexity is O(M2).In the next se
tion, we 
onsider how to redu
e the 
ost as-so
iated with the memory division operation using pie
ewise-linear approximations of the 
ost fun
tions.
4.2 Piecewise Linear Approximation of Cost

FunctionsConsider a pipeline P with two operators o1 and o2 with
ost fun
tions 
1 and 
2 resp. Let 
ost fun
tion of thepipeline be 
p. If the 
ost fun
tions 
1 and 
2 are linear, thepro
edure OptMerge de�ned in previous subse
tion takes
onstant time. Assume that 
1 has slope slope1 in range 0to m1 (m1 �M) and slope 0 in range m1 to M i.e. allo
at-ing memory beyond m1 units yields no bene�t. And 
2 hasslope slope2 in the range 0 to m2 (m2 �M) and slope 0 inrange m2 toM . Assuming that providing more memory willnot in
rease the 
ost of an operator/plan, the 
ost fun
tionsare non-in
reasing and slopes are non-positive (slope1 � 0and slope2 � 0).The OptMerge pro
edure simply allo
ates maximum pos-sible memory to the operator whi
h gains more per unitmemory allo
ation (i.e., the 
ost fun
tion of whi
h has lessslope2) and allo
ates the remaining memory to the other op-erator. Let slope1 � slope2. The pro
edure would allo
atem1 units of memory to operator o1 and 
p follows the slopeslope1 in the range 0 to m1. Next, it allo
ates m2 units(m2 <=M �m1) of memory to operator o2, and 
p followsthe slope slope2 in the range m1 to m1 +m2. For memoryin the range m1 +m2 to M 
p has slope 0 and 
ost valuesame as that for m1 +m2.To use this me
hanism, we need to approximate 
ost fun
-tions of various operators to linear form. However, even afterthis approximation, 
ost fun
tions derived by the pro
edureOptMerge may not be linear: in fa
t the derived fun
tionsmay be pie
ewise linear. Thus 
ost fun
tion of a plan 
antake pie
ewise linear form. Sin
e input to OptMerge pro
e-dure 
an be 
ost fun
tion of a plan, the pro
edure needs tohandle pie
ewise linear 
ost fun
tions.Moreover, the ability to handle pie
ewise linear 
ost fun
-tions means we 
an use pie
ewise-linear approximations forsingle-operator 
ost fun
tions. This provides a better ap-proximation than the linear approximation. It is easy toapproximate 
ost fun
tions of various database operators32
onsidering sign. If we 
onsider absolute values then itwould pi
k the one with higher slope.3in
luding multiphase sort and hash operators whi
h typi-
ally have dis
ontinuous 
ost fun
tions w.r.t. memory

OptMerge(
1, 
2)mergeCost =1for ea
h 
hange-over point (m; 
) in 
1 do
02 = 
2 shifted by (m; 
)mergeCost = MinMerge(mergeCost, 
02)for ea
h 
hange-over point (m; 
) in 
2 do
01 = 
1 shifted by (m; 
)mergeCost = MinMerge(mergeCost, 
01)return mergeCostFigure 3: Pseudo Code for OptMerge Pro
edure forPie
ewise Linear 
ost Fun
tionsto pie
ewise linear form.The OptMerge pro
edure dealing with pie
ewise linear
ost fun
tions is shown in Figure 3. The operation shift byused in the pro
edure shifts the 
ost fun
tion along memoryand 
ost axis by resp amount. The routineMinMerge usedin the pro
edure 
ompares input 
ost fun
tions for entirememory range and at ea
h memory point pi
ks up the lower
ost value.If the input 
ost fun
tions to this pro
edure have o1 ando2 segments (i.e. number of straight line segments in a pie
e-wise linear fun
tion) resp. and z = max(x; y) then the num-ber of segments in the output 
ost fun
tion will be � z2 andthe time 
omplexity of the pro
edure would be O(z2 log z).For ea
h given point i, the algorithm essentially 
he
ksea
h possible memory division, say j units to the �rst 
ostfun
tion and k units to the se
ond 
ost fun
tion (i = j+k),where at least one of j and k is at a 
hange-over point (apoint where the 
ost fun
tion 
hanges slope) in the resp.
ost fun
tions. And following theorem establishes that thepro
edure 
orre
tly 
al
ulates the optimal 
ost fun
tion ofthe pipeline.Theorem: If a pipeline tree P 
omposed of two operators o1and o2 with 
ost fun
tions 
1 and 
2 respe
tively is exe
utedin memory i, then at least one of the (possibly many) optimalmemory divisions, say j units to o1 and k units to o2 (i =j+k), is su
h that at least one of j and k is at a 
hange-overpoint.Proof: Assume that there is no su
h optimal division. Con-sider one of the optimal divisions of the available memoryi, say j units to o1 and k units to o2 (i = j + k). Neitherof i and j is at 
hangeover point. We 
ome up with an al-ternate memory division, say j0 units to o1 and k0 units too2 (i = j0 + k0) su
h that at least one of j0 and k0 is at a
hange-over point and 
1(j0) + 
2(k0) � 
1(j) + 
2(k).Assume that the point j lies on segment s1 in 
1 and kon segment s2 on 
2. Assume further that the segment s1begins at memory point bs1 and ends at memory point es1and the segment s2 begins at memory point bs2 and ends atmemory point es2.Let the slopes of the segments s1 and s2 be slopes1 andslopes2 resp. Assuming that providing more memory willnot in
rease the 
ost of an operator/plan, the 
ost fun
tionsare non-in
reasing and slopes are non-positive (slopes1 � 0and slopes2 � 0) though the algorithm does not depend onthis assumption.



We 
onsider three 
ases:Case I: slopes1 = slopes2Consider two sub
ases:Cast I.A: j � bs1 � es2 � kLet j0 = bs1 and k0 = k + j � bs1.It is easy to see that
1(j0) + 
2(k0) = 
1(j) + 
2(k) and j0 + k0 = i.Cast I.B: j � bs1 > es2 � kLet j0 = j � es2 + k and k0 = es2.It is easy to see that
1(j0) + 
2(k0) = 
1(j) + 
2(k) and j0 + k0 = i.Case II: slopes1 > slopes2Consider two sub
ases:Cast II.A: j � bs1 � es2 � kLet j0 = bs1 and k0 = k + j � bs1.It is easy to see that
1(j0) + 
2(k0) < 
1(j) + 
2(k) and j0 + k0 = i.Cast II.B: j � bs1 > es2 � kLet j0 = j � es2 + k and k0 = es2.It is easy to see that
1(j0) + 
2(k0) < 
1(j) + 
2(k) and j0 + k0 = i.Case III: slopes1 < slopes2Symmetri
 to 
ase II.We see that in all the 
ases, either j0 or k0 is at 
hangeoverpoint and this alternative division in
urs 
ost equal to or lessthan that in
urred by the original division. This 
ontradi
tsthe assumption made in the beginning, hen
e the proof. 2If the pie
ewise linear approximation introdu
es maxi-mum error of �Æ at any memory point in ea
h operator
ost fun
tion in a plan with n operators then 
ost of theplan 
al
ulated using pie
ewise linear approximation will bewithin �nÆ of the a
tual 
ost.
5. VOLCANO OPTIMIZER BACKGROUNDIn this se
tion we des
ribe the basi
 Vol
ano query opti-mizer[3℄. First we des
ribe an AND-OR DAG representa-tion for the sear
h spa
e of all possible query plans. Thenwe des
ribe the vol
ano sear
h algorithm.
5.1 The DAG Representation of QueriesAnAND{ORDAG is a dire
ted a
y
li
 graph whose nodes
an be divided into AND-nodes and OR-nodes; the AND-nodes have only OR-nodes as 
hildren and OR-nodes haveonly AND-nodes as 
hildren.An AND-node in the AND-OR DAG 
orresponds to analgebrai
 operation, su
h as the join operation (1) or a sele
toperation (�). It represents the expression de�ned by theoperation and its inputs. Hereafter, we refer to the AND-nodes as operation nodes. An OR-node in the AND-ORDAG represents a set of logi
al expressions that generate thesame result set; the set of su
h expressions is de�ned by the
hildren AND nodes of the OR node, and their inputs. Weshall refer to the OR-nodes as equivalen
e nodes hen
eforth.The given query tree is initially represented dire
tly inthe AND-OR DAG formulation. For example, the querytree of Figure 4(a) is initially represented in the AND-OR

DAG formulation, as shown in Figure 4(b). Equivalen
enodes (OR-nodes) are shown as boxes, while operation nodes(AND-nodes) are shown as 
ir
les.The initial AND-OR DAG is then expanded by apply-ing all possible transformations on every node of the ini-tial query DAG representing the given set of queries. Sup-pose the only transformations possible are join asso
iativityand 
ommutativity. Then the plans A 1 (B 1 C) and(A 1 C) 1 B, as well as several plans equivalent to thesemodulo 
ommutativity 
an be obtained by transformationson the initial AND-OR-DAG of Figure 4(b). These are rep-resented in the DAG shown in Figure 4(
). We shall refer tothe DAG after all transformations have been applied as theexpanded DAG. Note that the expanded DAG has exa
tlyone equivalen
e node for every subset of fA;B;Cg; the noderepresents all ways of 
omputing the joins of the relationsin that subset.
5.2 Physical AND-OR DAGProperties of the results of an expression, su
h as sortorder, that do not form part of the logi
al data model are
alled physi
al properties. Physi
al properties of intermedi-ate results are important, sin
e e.g. if an intermediate resultis sorted on a join attribute, the join 
ost 
an potentially beredu
ed by using a merge join. It is straightforward to re-�ne the above AND-OR DAG representation to representphysi
al properties and obtain a physi
al AND-OR DAG4.
5.3 The Volcano Search AlgorithmThe Vol
ano Sear
h Engine follows a top-down, goal-drivenapproa
h. It generates the logi
al DAG and expands it intothe physi
al DAG on the 
y. We present below parts of theVol
ano sear
h algorithm, that are relevant to our optimiza-tion algorithms. Figure 6 in Appendix A shows a simpli�edversion of the Vol
ano sear
h algorithm.Before the Vol
ano sear
h algorithm is 
alled on a query,the initial query DAG 
orresponding to the given query is
reated. Next, the initial DAG is fully expanded by applyingthe transformations as des
ribed earlier, to get an expandedlogi
al AND-OR DAG. The sear
h pro
edure is then 
alledon the root of the expanded logi
al AND-OR DAG. (Note:the des
ription of Vol
ano in [3℄ does not make this sep-aration expli
it, but the a
tual implementation does followthis two phase approa
h for 
ompleteness of transformations[5℄.)The input to the Vol
ano sear
h pro
edure is a logi
alequivalen
e node, an initial physi
al property spe
i�
ationand an optional 
ost limit.The sear
h pro
edure tries alternative enfor
ers and algo-rithms for the operation nodes below the equivalen
e node,re
ursively 
alling itself to �nd the best plan for the inputsof the operation nodes. A 
ost limit is passed as a parame-ter to the sear
h algorithm, and if the 
umulative 
ost of anoperation node and the 
osts of the best plans for its inputs
hosen so far ex
eeds the limit, the operation node 
an beabandoned from 
onsideration.On
e the best plan for an (equivalen
e node, physi
al4For example, an equivalen
e node is re�ned to multiplephysi
al equivalen
e nodes, one per required physi
al prop-erty, in the physi
al AND-OR DAG. Enfor
er operationnodes, su
h as sort also get introdu
ed.
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(c) Expanded DAG after transformations(a) Initial Query (b) DAG representation of queryFigure 4: Initial Query and DAG Representationsproperty) pair is found, it is stored in 
ase it needs to bereused. Therefore, in fa
t, the �rst thing to 
he
k beforeperforming the above optimization for a given node and agiven physi
al property is to 
he
k for potential reuse. If aplan mat
hing the property spe
i�
ation is found among theplans stored at the equivalen
e node, and the plan satis�esthe 
ost limit, the plan is returned; if a plan is found but doesnot satisfy the 
ost limit a failure indi
ation is returned. Ifthere is no plan for the expression and the property spe
i�-
ation, then a
tual optimization (as des
ribed above) starts.The best plan for a logi
al equivalen
e node, physi
alproperty pair (thus, a physi
al equivalen
e node) is 
om-pa
tly spe
i�ed by merely noting the 
orresponding physi-
al operation node, and its input physi
al equivalen
e nodes.The overall best plan is re
onstru
ted when required by re-
ursively looking up the best plan for the inputs.
6. MEMORY COGNIZANT OPTIMIZATIONIn this se
tion we present an overview of the extensionsto make the Vol
ano optimizer algorithm memory 
ognizant.Details of the memory 
ognizant optimization algorithm arepresented in Appendix B.Our exe
ution algorithms (des
ribed in Se
tion 3) for queryoperators in
lude memory-awareness and division of mem-ory among 
on
urrent operators. In this framework, we pro-pose following extensions to make the optimization pro
essmemory-
ognizant:� While evaluating 
ost of an operator (AND node inVol
ano DAG framework), evaluate 
ost fun
tions forall the exe
ution s
hemes (as de�ned in se
tion 3) andfor ea
h memory size pi
k the one with the minimum
ost. Note that the inputs to the operator are alreadyoptimized and we know their 
ost fun
tions.� While 
omparing alternative operators or plans, forevaluating an expression (OR node in Vol
ano DAGframework), 
ompare their 
ost fun
tions for ea
h mem-ory size. If one operator/plan is 
onsistently betterthan other in the entire memory range, retain theoperator/plan with less 
ost and dis
ard the opera-tor/plan with more 
ost. If one operator/plan is bet-ter at some memory range and other one is better atsome other memory range, maintain both of them in-di
ating whi
h one in better in whi
h range. The 
ostof the expression at a memory size m is the 
ost of

the operator/plan whi
h in
urs minimum 
ost at thatmemory size.� While evaluating 
ost of a plan P (AND node in Vol-
ano DAG framework), given 
ost fun
tion of root op-erator O and that of sub-plan P 0 = P nO, we 
onsiderfollowing possibilities:{ Edge between O and P 0 is blo
ked: P 0 runsfully before O starts exe
uting. Thus full mem-ory 
an be allo
ated to P 0. This will result inminimum exe
ution 
ost for P 0 and it will beP 0:CostFun
tion(MaxAvailMem). The mem-ory to be allo
ated to operator O 
annot be de-
ided independently of what type of edge it willbe 
onne
ted to its parent by and what is the ex-e
ution 
ost of its parent/as
endents. Thus 
ostfun
tion of the plan P will be the 
ost fun
tionof O with P 0:CostFun
tion(MaxAvailMem), a
onstant, added for ea
h memory point.8i; 1 � i �MaxAvailMem :P:CostFun
tion(i) = O:CostFun
tion(i)+P 0:CostFun
tion(MaxAvailMem){ Edge between O and P 0 is pipelined: O andP 0 run simultaneously in memory allo
ated to theplan P . The 
ost fun
tion of P is obtained byOptMerge-ing 
ost fun
tion of O and that of P 0.Re
all the de�nition of the pro
edure OptMergefrom Se
tion 4.P:CostFun
tion =OptMerge(O:CostFun
tion; P 0:CostFun
tion)
6.1 Breaking Pipelined EdgesConsider a pipelinable plan P and a pipeline edge E in it.If we break the plan P at edge E we get two independentsubplans P1 and P2 and these plans 
an be s
heduled sepa-rately. Let us assume that output of plan P1 is fed to planP2 through edge E.We have two options for evaluating plan P :� S
hedule whole plan P in given memory with the edgeE behaving as a pipeline edge. Here all operators inthe plan P exe
ute simultaneously sharing availablememory. There is no I/O in
urred at edge E, as it isa pipeline edge.



� S
hedule P1 �rst, store its output on disk. Then s
hed-ule P2 with its input being read from disk. Here, asP is divided into two parts and ea
h part is s
heduledseparately, operators will have more memory for exe-
ution. However, we in
ur materialization I/O at edgeE whi
h now behaves as a blo
king edge.Clearly, there is a tradeo� between letting the edge E be-have as a pipeline edge and breaking it to make it behaveas a blo
king edge. If it is a pipelined edge, no materializa-tion IO is in
urred but operators in P will get less memoryfor exe
ution as all the operators in the plan exe
ute si-multaneously in the available memory. If the edge E is ablo
king edge, materialization IO is in
urred but as the op-erators in the plan are divided into two independent plansand s
heduled separately, the operators will get more mem-ory for exe
ution.We in
orporate, into our memory 
ognizant optimizer, a
ost-based te
hnique for de
iding when to break a pipelinededge and is des
ribed below.Consider a plan P feeding its output to parent C in pipelinedfashion. Let the pipelined 
ost fun
tion of P be PPC (withits output edge pipelined and no IO in
urred at it). Andlet read/write 
ost be IO at its output edge if it is blo
ked.The problem is to de
ide at ea
h memory point, say i:� Let the plan P and its parent C exe
ute in pipelinedfashion. The 
ost of the plan P is PPC(i).� Let the plan P exe
ute independent of its parent Cutilizing all available memory, say MaxAvailMem5and write intermediate result to disk whi
h will beread by the parent C. The 
ost of the plan P isPPC(MaxAvailMem� 1)+ IO. Note that it is inde-pendent of the available memory i.6Let blo
king 
ost fun
tion of plan P be BPC (with itsoutput edge blo
ked and IO in
urred at it). It is given by:8i; 1 � i �MaxAvailMem :BPC(i) = P (MaxAvailMem� 1) + IOThe optimal 
ost fun
tion for plan P with the blo
kingde
ision in
orporated within is given by:MinMerge(PPC;BPC)The routine MinMerge 
ompares two input 
ost fun
-tions for the entire memory range and at ea
h memory pointpi
ks up the lower 
ost value. Thus applying MinMerge
hooses better of the options: blo
king and pipelining theedge. Figure 5 shows the operation graphi
ally. If an opera-tor or a plan is made to exe
ute in memory less than 
ertainthreshold m
ut off , it will, instead, utilize full memory andwrite its output to disk. For a 
ost fun
tion with arbitraryshape the time 
omplexity of this de
ision is O(M), whereasfor a pie
ewise linear 
ost fun
tion with x linear segments itis O(x).5A
tually, 
hild will get (MaxAvailMem � 1) for its exe-
ution as one unit of memory will be used for holding theintermediate tuples as they are written to disk.6A
tually, we need 1 � i sin
e at least one bu�er is neededto read ba
k the intermediate result from disk and feed theparent.

IOcost

0 Mmemorycut-off
m

BPC

PPC

Figure 5: Breaking a pipelined edge
7. EXPERIMENTAL EVALUATIONIn this se
tion we des
ribe our experimental setup and theresults obtained.The 1PO and 2PO algorithms are based on Vol
ano queryoptimizer. The �rst phase of 2PO (whi
h uses the basi
 vol-
ano optimizer to optimize the query in 
onventional man-ner) assumes that ea
h operator in the plan uses all availablememory.The memory blo
k size is taken as 4K. Standard te
h-niques are used for estimating 
osts, using statisti
s aboutrelations. The 
ost estimates 
ontain an I/O 
omponent anda CPU 
omponent. The metri
 used to 
ompare the good-ness of the optimization algorithms is the estimated 
ost ofthe optimal plan produ
ed by the optimizer; all our 
ostnumbers are estimates from the optimizer.The tests are performed on a Sun workstation with Ultra-Spar
 10 333Mhz pro
essor, 256MB main memory, runningSolaris 5.7.
Test QueriesWe tested our algorithms with around 20,000 randomly gen-erated queries on a TPCD-based star s
hema similar to theone proposed by [9℄. The s
hema has a 
entral orders fa
ttable, and four dimension tables part, supplier, 
ustomerand time. The size of ea
h of these tables is same as that inthe TPCD-1 database. This 
orresponds to base data size ofapproximately 1 GB. Ea
h generated query is of the form:sele
t sum(quantity)from orders, supplier, part, 
ustomer, timewhere join-list and sele
t-listgroup by groupby-list;The join-list enfor
es equality between attributes of theorder fa
t table and primary keys of the dimension tables.The sele
t-list i.e., the predi
ates for the sele
ts are gener-ated by sele
ting some attributes at random from the joinresult, and 
reating random equality or inequality predi
ateson the attributes. The groupby-list is generated by pi
king asubset of f
ustkey, suppkey, partkey, 
ustkey, month, yeargat random.We randomly 
hoose, between 10 blo
ks to 10,000 blo
ks,the total memory available to exe
ution engine and thisforms part of the input to the optimizer.



Experimental ResultsWe tested total 23,603 randomly generated queries and per-forman
e bene�t of 1PO over 2PO is reported below7:Cost Redu
tion of 1PO over 2PO #Queries %Queries00-10 % 22682 96.09710-20 % 57 0.24120-30 % 527 2.23230-40 % 238 1.00140-50 % 99 0.419The maximum 
ost redu
tion reported by 1PO over 2POin our experiments is 50%. For around 96% of the queriesredu
tion is between 0% to 10%, and for only 4% of thequeries redu
tion is between 10% to 50%. Thus, for the 
lassof queries we 
onsidered, 1PO gives bene�ts, but generally2PO performs about as well as 1PO.The average optimization time taken by 2PO and 1PO isshown in the table below:Algorithm Optimization Time (mse
)2PO 1501PO 1110The 
ost based pruning feature of Vol
ano is not im-plemented in 1PO algorithm and 1PO explores full sear
hspa
e. Whereas, 2PO uses standard vol
ano implementationin its �rst phase and hen
e in
ludes 
ost based pruning.
8. CONCLUSION AND FUTURE WORKWe have designed eÆ
ient te
hniques to divide availablememory optimally among operators in a pipeline. If donenaively, this pro
ess is impra
ti
al. We showed how to im-prove optimization time by using pie
ewise linear approxi-mation for the 
ost-versus-memory fun
tions of various op-erators and this made evaluation of 1PO feasible.It has been 
onje
tured that 1PO will perform no betterthan 2PO, but there has been no published eviden
e of this
laim. We designed a pra
ti
al 
ost-based algorithm for 1POand 
ompared it against 2PO. For the 
lass of queries we
onsidered, 1PO gives bene�ts, but generally 2PO performsabout as well as 1PO. Thus, the preliminary results indi
atethat using 1PO for query optimization may not be bene�
ial.This is a good news in general as the optimizer remainssimpler and faster.The te
hniques developed here are of independent interestand 
an very well be applied to other problems.The 
ost of a query plan depends on many parameters andavailable memory is just one of them. We see a natural 
on-ne
tion between memory 
ognizant optimization and para-metri
 query optimization and 
onsider applying te
hniquesdeveloped in 
ontext of memory 
ognizant optimization tosolve general parametri
 query optimization problem.Unlike simple predi
ates and expressions, in Obje
t-Relational Database (ORDB), expensive predi
ates operateon large 
omplex data types and 
onsume signi�
ant mem-ory. This resour
e usage should be taken into 
onsidera-tion during optimization. Thus the te
hniques developed7Sin
e we are using stri
tly 
ost-based exhaustive explo-ration of the sear
h spa
e, 1PO will never miss a 2PO plan,and hen
e is atleast as 
heap as 2PO.

for memory 
ognizant query optimization 
an be easily ap-plied to query optimization in ORDB. We wish to explorethe possibility of integrating memory allo
ation de
isionswith the ORDB optimizer.We propose to modify some query exe
ution engine tomake it memory 
ognizant. Su
h an exe
ution engine willtake the optimized plan from the optimizer along with thememory allo
ation number for ea
h operator, pipeline orblo
king de
ision for ea
h edge, sequen
ing de
isions of thepipelinable segments in the plan and exe
ute the plan a
-
ordingly.
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APPENDIX

A. VOLCANO OPTIMIZER ALGORITHMFigure 6 presents pseudo 
ode for basi
 vol
ano query op-timization algorithm.
B. MEMORY COGNIZANT VOLCANO

B.1 Extended Cost Function and PlanWe present here some de�nitions and extensions that areused in memory 
ognizant optimization algorithm.A 
onventional optimizer has a single value as 
ost for anoperator or a query plan and its 
orresponding (LogExp,PhysProp) pair. Here we have a 
ost asso
iated with ea
hmemory size, i.e. we de�ne 
ost as a fun
tion of memorysize. We refer to a fun
tion of 
ost versus memory size asCostFun
tion(m), and we have one su
h 
ost fun
tion forea
h operator and query plan with a (LogExp;PhysProp)pair. P lan:CostFun
tion(m) denotes 
ost fun
tion of aplan, AlgorithmCostFun
tion(m) denotes 
ost fun
tion ofan algorithm and Enfor
erCostFun
tion(m) denotes 
ostfun
tion of an enfor
er.For ea
h operator, as we are 
onsidering a range of mem-ory, more than one memory 
ognizant exe
ution s
hemes (asdes
ribed in se
tion 3) may be optimal, ea
h being optimalin a parti
ular memory range.Further, for a (LogExp;PhysProp) pair, as we are 
on-sidering the range of memory, more than one physi
al planmay be optimal, ea
h being optimal in a parti
ular memoryrange8. The optimal P lan for a (LogExp;PhysProp) pairwill 
ontain a list of pairs. Ea
h pair will 
ontain a range ofmemory size and an optimal physi
al plan in that range. Aphysi
al plan P spe
i�ed with a memory range (x,y) impliesthat the optimal way of evaluating the (LogExp;PhysProp)pair, given that the memory size is in the range (x,y), is byusing the plan P .A 
onventional optimizer has a single value as a 
ostlimit. Here we have a 
ost limit for ea
h memory point.We use CostLimitFun
tion(m) to denote a fun
tion givingthe value of the 
ost limit for memory m.Additionally, in a 
ost fun
tion for a (LogExp;PhysProp)pair, an algorithm or an enfor
er, we may have a segmentwhere we have no optimal plan or exe
ution s
heme but afailure indi
ation. In this segment, the 
ost fun
tion a
tu-ally indi
ates a 
ost limit on the plan. The 
ost of the planwill be more than the 
ost fun
tion at ea
h memory pointin this range.
B.2 Operations on Cost FunctionsLet MaxAvailMem be the available memory. We de�nefollowing operators on CostFun
tion:� �all : 
ostFun
tionx �all 
ostFun
tiony means,8i; 1 � i �MaxAvailMem :
ostFun
tionx(i) � 
ostFun
tiony(i)� >all : 
ostFun
tionx >all 
ostFun
tiony means,8i; 1 � i �MaxAvailMem :
ostFun
tionx(i) > 
ostFun
tiony(i)

� AddCostFun
tions: It takes two CostFun
tions as ar-guments, and 
reates a new CostFun
tion by addingthe input CostFun
tions at ea
h memory point.� Subtra
tCostFun
tion: it takes two CostFun
tionsas arguments, and 
reates a new CostFun
tion by sub-tra
ting se
ond input CostFun
tion from the �rst one.� MinMerge: It 
ompares two 
ost fun
tions for the en-tire memory range and at ea
h memory point pi
ks upthe lower 
ost value.� OptMerge: It optimally 
ombines the CostFun
tionsof the two operators/plans whi
h run simultaneously.Given two CostFun
tions 
orresponding to two plansit divides the memory available between the two planssu
h that the 
ombined exe
ution 
ost is minimizedand does this for all memory points from 0 andMaxAvailMem. This pro
edure has been des
ribedin Se
tion 4.
B.3 Detailed AlgorithmFigure 7 shows the Memory Cognizant Vol
ano Sear
hAlgorithm FindBestP lan.The fun
tion FindBestP lan returns:� SUCCESS: when the optimized plan optP lan for the(LogExp;PhysProp) pair to be optimized is s.t.optP lan:CostFun
tion() �all CostLimitFun
tion.� FAILURE: when the optimized plan optP lan for(LogExp;PhysProp) pair to be optimized is s.t.optP lan:CostFun
tion() >all CostLimitFun
tion.� PARTIAL SUCCESS: when the optimized planoptP lan for the (LogExp;PhysProp) pair to be opti-mized is s.t. 9m; 1 � i �MaxAvailMem :optP lan:CostFun
tion()(m) � CostLimitFun
tion(m).To optimize a given (LogExp;PhysProp) pair within agiven 
ostLimitFun
tion, if there has been no previous at-tempt to optimize this (LogExp;PhysProp) pair, the sear
halgorithm pro
eeds as follows: It �rst applies transformationon the given logi
al expression to generate all equivalentlogi
al expressions. Figure 8 shows pseudo 
ode for appli
a-tion of transformations. Then it re
ursively optimizes trans-formed (LogExp;PhysProp) pairs by applying ea
h appli-
able operator (algorithm or enfor
er) with the spe
i�ed 
ostlimit.If there has been a previous attempt to optimize this(LogExp;PhysProp) pair then we have a plan and 
ostfun
tion available. The (LogExp;PhysProp) pair may havesu

essful plan in some memory ranges and failures w.r.t theprevious 
ost limit in some other memory ranges.If the plan returned by the previous attempt hasat least one point with failure indi
ation and 
ost lessthan the 
ost limit then we need to reoptimize the the(LogExp;PhysProp) pair.Else, if for ea
h memory point we have a su

essful planand the 
ost limit is more than or equal to the 
ost of theplan at ea
h point we return SUCCESS along with theplan. Else, if the plan has 
ost less than or equal to the 
ostlimit at some point we return PARTIAL FAILURE along8This may in
rease the sear
h spa
e



Pro
edure FindBestPlan(LogExp;PhysProp;Limit)if the pair LogExpr and PhysProp is in the lookup tableif the 
ost in the lookup table < Limitreturn P lan and Costelse return failureelse /* Optimization required */
reate the set of possible \moves" fromappli
able transformations,algorithms that give the required PhysProp andenfor
ers for the required PhysPropfor ea
h move in the move setif the move uses a transformationapply the transformation 
reating NewLogExpr
all FindBestPlan(NewLogExpr;PhysProp;Limit)else if the move uses an algorithmLimit = Limit - 
ost of the algorithmfor ea
h input I of the algorithm while Limit � 0determine required physi
al properties PP for ICost = FindBestPlan(I;PP; Limit)Limit = Limit� Costelse /* Move uses an enfor
er */Limit = Limit - 
ost of enfor
ermodify PhysProp for enfor
ed property
all FindBestPlan for LogExpr with modi�ed PhysProp/* Maintain the lookup table of explored fa
ts */if LogExpr is not in the lookup tableinsert LogExpr into the lookup tableinsert PhysProp and best plan found into lookup tableFigure 6: Vol
ano Sear
h Algorithmwith the plan. Else the plan has, at ea
h memory point, 
ostgreater than the 
ost limit and hen
e we return FAILURE.Figure 9 shows appli
ation of an algorithm. Appli
ationof an enfor
er is similar and 
an be found in [4℄. Appli
a-tion of an operator is done as follows: First we evaluate 
ostfun
tion of the operator. We need to optimize its 
hildrenand for this we need to evaluate 
hild 
ost limit. As of now,we do not know exa
tly how mu
h memory the tree rootedat this operator is going to take. For 
al
ulating the 
hild
ost limit, we assume that the tree will exe
ute in memoryMaxAvailMem units.If an edge between the operator and the 
hild is pipelinedand the operator takes MaxAvailMem � i units of mem-ory, the 
hild will take i units of memory. Thus the 
hild
ost limit for memory i, with pipelined edge, is 
al
ulatedby subtra
ting the 
ost of the operator at memory pointMaxAvailMem� i from the 
ost limit of the plan at mem-ory point MaxAvailMem.If an edge between the operator and the 
hild is blo
kedthe 
hild 
ost limit is 
al
ulated by subtra
ting the 
ost ofthe operator running in memory MaxAvailMem and ma-terialization 
ost at the edge.The 
ost limit passed to the 
hild is the maximum of thetwo 
hild 
ost limits des
ribed above at ea
h memory point.

After optimizing ea
h 
hild we merge the 
ost of the 
hildwith that of the plan 
ost and this plan 
ost is used as theoperator 
ost to 
al
ulate the 
ost limit of the next 
hild tobe optimized.If the 
hild optimization returns FAILURE (i.e. withinthe given 
ost limit, the optimizer 
ould not �nd aplan even for a single memory point) then for the given(LogExp;PhysProp) pair there exists no plan within thegiven 
ost limit for any memory points, and the optimizerreturns FAILURE. Instead, if the 
hild optimization re-turns a plan for even a single memory point with the given
ost limit, the optimization 
ontinues.Finally when the optimization is over, if the optimizer
ould �nd plans within the given 
ost limit for all memorypoints, it returns SUCCESS. If it 
ould �nd plans withinthe given 
ost limit for some memory points but not forall of them, then it returns PARTIAL SUCCESS. The
ost fun
tion will have multiple segments. If for a memoryrange we get a su

essful plan then within that range the
ost fun
tion will indi
ate su

ess along with the plan. If nosu

essful plan is found in a memory range failure will beindi
ated in that range along with the 
ost limit. If no planis found within the given 
ost limit at any of the points inthe given memory range then it returns FAILURE.



FindBestPlan(LogExp;PhysProp;CostLimitFun
tion)if the pair LogExpr and PhysProp is in the lookup table with P lan as the optimal plan/* optimized already, attempting reuse */if there exists a memory point i at whi
h P lan is failed and its 
ost is < CostLimitFun
tion(i)goto Label X /* reoptimization required */else /* no reoptimization required */if for all memory points i, P lan is su

essful and its 
ost � CostLimitFun
tion(i)return (SUCCESS, P lan)else if there exists a memory point i where P lan is su

essful and its 
ost � CostLimitFun
tion(i)return (PARTIAL SUCCESS, P lan)else return FAILURE /* for all memory points i, P lan 
ost > CostLimitFun
tion(i)else /* Optimization required */Label X:(Result; P lan) = ApplyTransformations(LogExpr;PhysProp;CostLimitFun
tion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFun
tion = optP lan:CostFun
tion()(Result; P lan) = ApplyAlgorithms(LogExpr;PhysProp;CostLimitFun
tion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFun
tion = optP lan:CostFun
tion()(Result; P lan) = ApplyEnfor
ers(LogExpr;PhysProp;CostLimitFun
tion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan =MinMerge(optP lan;P lan)CostLimitFun
tion = optP lan:CostFun
tion()/* Maintain the lookup table of explored (expression, physi
al property) pairs */if LogExpr is not in the lookup tableinsert LogExpr into the lookup tableinsert (LogExp, PhysProp, optP lan) into lookup tableFigure 7: Memory Cognizant Vol
ano Sear
h: FindBestP lan AlgorithmApplyTransformations(LogExp;PhysProp;CostLimitFun
tion)for ea
h appli
able transformation
reate NewLogExpr by applying the transformation(Result; P lan) =FindBestPlan(NewLogExpr;PhysProp;CostLimitFun
tion)/* if plan returned, merge it with the planGroup optPlan */if Result 6= FAILURE thenoptP lan = P lanCostLimitFun
tion = P lan:CostFun
tion()if optP lan is su

essful for all memory pointsreturn (SUCCESS; optP lan)if optP lan is su

essful for no memory pointreturn (FAILURE)return (PARTIAL SUCCESS; optP lan)Figure 8: Memory Cognizant Vol
ano Sear
h: ApplyTransformations Algorithm



ApplyAlgorithms(LogExp;PhysProp;CostLimitFun
tion)for ea
h appli
able Algorithm doif AlgorithmCostFun
tion >all CostLimitFun
tion
ontinue /* 
ost of the operator is more than the 
ost limit */AlgoP lan:CostFun
tion = AlgorithmCostFun
tionfor ea
h input I of the algorithmfor memory i = 1 to MaxAvailMemChildCostLimit(i) = CostLimitFun
tion(MaxAvailMem)�Min(AlgorithmCostFun
tion(MaxAvailMem� i);AlgorithmCostFun
tion(MaxAvailMem) + CostOfResultIO(I))if 8i : ChildCostLimit(i) < 0break /* no plan within the given 
ost limit */determine required physi
al properties PP for I(Result; P lan) = FindBestPlan(I;PP;ChildCostLimit)if result = FAILUREbreak /* no plan within the given 
ost limit */for memory i = 1 to MaxAvailMemCostWithChildBlo
ked(i) = AlgoP lan:CostFun
tion(i)+P lan:CostFun
tion(MaxAvailMem)+CostOfResultIO(I)if an edge between the algorithm and the 
hild I is pipeline edge/* divide memory optimally between the operator and its 
hild */CostWithChildP ipelined =OptMerge(AlgoP lan:CostFun
tion; P lan:CostFun
tion)/* 
onsider breaking the pipelined edge */AlgoP lan:CostFun
tion =MinMerge(CostWithChildP ipelined;CostWithChildBlo
ked)else /* blo
king edge, full memory is available to the input */AlgoP lan:CostFun
tion = CostWithChildBlo
ked/* Merge the operator plan with the planGroup optPlan */optP lan =MinMerge(optP lan;AlgoP lan)CostLimitFun
tion = optP lan:CostFun
tion()if optP lan is su

essful for all memory pointsreturn (SUCCESS; optP lan)if optP lan is su

essful for no memory pointreturn (FAILURE)return (PARTIAL SUCCESS; optP lan)Figure 9: Memory Cognizant Vol
ano Sear
h: ApplyAlgorithms Algorithm


