
Keyword Search on Form Results

Aditya Ramesh∗

Stanford University

aramesh1@stanford.edu

S. Sudarshan
IIT Bombay

sudarsha@cse.iitb.ac.in

Purva Joshi
IIT Bombay

jpurva@cse.iitb.ac.in

ABSTRACT

In recent years there has been a good deal of research in the area
of keyword search on structured and semi-structured data. Most
of this body of work has a significant limitation in the context of
enterprise data since it ignores the application code that has often
been carefully designed to present data in a meaningful fashion to
users. In this work, we consider how to perform keyword search on
enterprise applications, which provide a number of forms that can
take parameters; parameters may be explicit, or implicit such as the
identifier of the user. In the context of such applications, the goal of
keyword search is, given a set of keywords, to retrieve forms, along
with parameter values, such that result of each retrieved form exe-
cuted on the corresponding retrieved parameter values will contain
the specified keywords. Some earlier work in this area was based
on creating keyword indices on form results, but there are problems
in maintaining such indices in the face of updates. In contrast, we
propose techniques based on creating inverted SQL queries from
the SQL queries in the forms. Unlike earlier work, our techniques
do not require any special purpose indices, and instead make use
of standard text indices supported by most database systems. We
have implemented our techniques and show that keyword search
can run at reasonable speeds even on large databases with a signif-
icant number of forms.

1. INTRODUCTION
Keyword search has been extremely successful in the context of

Web search. There has been a good deal of research on applying
keyword search to structured data over the past decade, for example
[3], [11] and [1], with a number of systems built to support such
keyword search. However, these systems have thus far not seen
wide adoption. A primary reason is that they expose the underly-
ing schema to users, which is not appropriate for lay users. Even
expert users would find it hard to deal with the complexity of the
schema in large ERP systems. Thus, users of database-backed ap-
plications typically only interact with the database through (Web)
form interfaces, where they can fill in parameter values (with some
values, such as the current user’s identifier, automatically filled in)

∗Work done while visiting IIT Bombay

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 11
Copyright 2011 VLDB Endowment 21508097/11/08... $ 10.00.

and view the result of executing the form. Such form based inter-
faces are ubiquitous, with ERP systems being a classic example of
a mission critical system based on form interfaces.

Form-based interfaces allow users to retrieve required informa-
tion in a convenient manner. However, enterprise applications to-
day typically have a very large number of forms, and it is not trivial
for a user to even find out what forms exist and what information
they provide. Even if the user knows what forms are available, it is
not possible in general to know what parameter values would lead
to results containing the desired keywords; as an example, a form
may take a student ID and return the name and other information,
but given the name of a student, there is no way for a user to find
the student ID, unless a search form is created for that purpose.
Even if such a search form were available, to get information about
a student, the user would have to first find the student ID using the
search form, then navigate to another form that provides desired
information, and paste the student ID in that form, which can be
rather tedious.

Keyword search is a promising alternative for retrieving infor-
mation from such form-based applications. In a form-based setting,
the goal of keyword search is to retrieve forms, along with associ-
ated parameter values, such that executing the retrieved form on
the retrieved parameter values would return a result containing the
specified keywords. When there can be multiple answers (whether
multiple forms, or multiple different parameter values for a form),
there is an associated need to rank answers, and present the highest
ranked ones to users.

Consider the query ‘Silberschatz course’, whose goal is to find
what courses Silberschatz teaches. A form that takes an instruc-
tor ID as parameter and returns the name of the instructor and
the courses taught by the instructor may return a result with the
above keywords, given the ID of instructor Silberschatz (we as-
sume the keyword “course” matches metadata, or static words in a
form). Even if there is no form as above in the system, a form that
takes a department ID as a parameter and returns the names of in-
structors and courses they teach may return the above answer, with
the CS department as the parameter value. Our goal is to retrieve
such (form, parameter-value) pairs. There may be other more spe-
cific forms that return instructor/course information for specified
semesters, or less restrictive forms that return instructor/course in-
formation for all courses in the university. It is important to be able
to rank such forms; for example, ranking could be based on the
length of the form result.

As another example, given a query ‘Programming Languages
Database Systems’ if there is a form that returns the courses taken
by a specified student (identified by ID), a form search system can
return such a form along with the IDs of students for whom the
form result contains all the keywords, i.e. they have taken both

courses. The query would also return other results as well, such
as professors who have taught both courses, departments that offer
both courses, and so on.

Some enterprise applications provide keyword based search to
retrieve relevant forms, but these are restricted to search on text
that describes the form, rather than on text in form results. For ex-
ample, if we search for ‘professor course’, the system should return
the form that describes which professors teach which courses, pro-
vided that the form’s metadata contains the terms “professor” and
“course”. However, parameter values, such as the IDs of instructor
or department names, which are required to execute the forms, are
not returned by such systems. Moreover, if we phrase our query
as “Silberschatz course”, with the goal of finding what courses are
taught by Silberschatz, or as “Silberschatz database”, with the goal
of finding what form results related Silberschatz and database, then
no form will be returned if (as expected) the keyword terms “Sil-
berschatz” and “database” do not appear in the descriptive text of
any form.

An approach that provides the functionality we desire is to mate-
rialize form results for each possible parameter value, and building
an index on the materialized results, treating each result as a doc-
ument. An optimized version of this approach is described in [8].
This approach can be expensive in a setting where there are a large
number of forms, each of which can take a large number of differ-
ent parameter values, resulting in a large number of materialized
form results. Although disk size is no longer a limitation for many
systems these days, the bigger problem lies in maintaining the ma-
terialized results in the face of updates.

Ideally, materialized results should be maintained incrementally;
in this case, in the face of an update, the system must identify which
(form, parameter-value) combinations are affected. This problem is
not addressed in [8], but the keyword-independent query inversion
techniques we describe can in fact be used to create a material-
ized views that help in the above task. However, our experimental
results show that even such incremental maintenance can be very
expensive given a large number of materialized form queries. For
systems where keyword queries are used less frequently than nor-
mal form interfaces, the overhead of view maintenance is imposed
on every update, for the benefit of the occasional keyword query,
which is not a reasonable tradeoff.

Moreover, support for incremental view maintenance on most
database systems is restricted to simple types of queries. Queries
used in forms are often more complicated, and cannot be main-
tained incrementally; recomputation requires executing the form
queries on a very large number of parameter values, and would be
unreasonably expensive.

To avoid the above problems, we provide solutions to the prob-
lem of keyword search on forms, based on executing queries gen-
erated by a rewriting of queries used in the forms.

We address the keyword search on forms problem in the follow-
ing setting. Each form contains one or more underlying queries
(hereby defined as form queries) which are executed when the form
is submitted; the form result consists of a static textual part, and a
dynamic part based on the results of the queries. For simplicity, we
assume initially that each form contains only one query although
Sections 6.4 and Appendix C.3 deal with forms having more than
one query. Each form has an associated set of (zero or more) pa-
rameters for which values must be provided; we assume that all
parameters are mandatory, and do not consider the case of optional
parameters. We assume that these values are directly provided to
the queries, and the results of the queries are returned directly to the
form result. Thus, technically speaking, we address the problem of
keyword search on parameterized queries.

Unlike earlier work based on materializing form results and in-
dexing the materialized results, our approach works directly on the
queries and the underlying database. As a result, there is no need
to create and maintain form results. However, we face the chal-
lenge of “inverting” parametrized queries; normally the query is
executed, with the given values for its parameters, to get a result.
However, for a given query, and a given set of keywords, we need
to find parameter values that would generate a result containing the
specified keywords.

The contributions of this paper are as follows:

• After addressing the issue of safety (in Section 4), we present
(in Sections 5 and 6) a two-step algorithm for inverting para-
metrized SQL queries, which takes a set of keywords, and
generates parameter values such that the query executed on
the parameter values would generate a result containing the
keywords. Step 1 of our algorithm can also be used to create
a materialized view which would be useful for identifying
parameters for which a form result is affected by a given re-
lation update.

• We describe several optimizations to the basic algorithm, wh-
ich can improve performance significantly.

• With certain keywords, there may be large number of results
(a result is a 〈form-id,parameter(s)〉 pair). We discuss (in
Section 7) how to rank results in a meaningful fashion.

• We have implemented our algorithms on two different data-
base systems (PostgreSQL and Microsoft SQL Server), using
two different datasets (including a real academic database
application from IIT Bombay, and an application based on
TPCE). We present (in Section 8) results of a performance
study showing the practicality of our proposed techniques,
and the benefits over the alternative of materializing form re-
sults.

2. RELATED WORK
The problem of keyword search on form interfaces was addressed

earlier by [8]; their approach is based on indexing materialized
form results, but with an optimization called predicate-based index-
ing. They do not provide details on how to incrementally maintain
the index in the face of updates. There has been work on database
search in the enterprise search industry; however we are not aware
of any publicly revealed approaches other than crawling the appli-
cation forms and applying text indexing on the crawled result.

Combining keyword search with databases has been a very ac-
tive area of research, including systems such as BANKS [3], DBX-
Plorer [1], DISCOVER [11], and algorithms proposed by [7], [13]
and [12]. However, the goal of these papers is fundamentally dif-
ferent from our application in two major aspects. First, the above
body of work deals directly with the database data and schema,
and does not have any concept of forms, or form queries. Some
of the above work actually generates SQL queries from the given
keywords; however, the generated SQL queries are basically join
queries that help to find connections between tuples containing the
keywords, and there is no notion of parameters. In contrast, form
queries can be quite different; for example, a form may contain a
query that selects all courses taught by an instructor, without a join.
A keyword query on forms which returns the above form can also
be executed as a keyword query on the underlying data, and could
be satisfied by a self join query, with the instructor identifier as the
join attribute. However, the results would not be presented in a
manner that is intuitive to users, and the keyword query may return
connections that are meaningless to lay users.

The notion of QUnits was proposed by [14] to make keyword
query results more relevant by defining (parametrized) queries that
gather related information, and which can be subsequently queried;
however [14] do not provide algorithms for answering keyword
queries. QUnits can in fact be considered as forms, and our tech-
niques can be applied to perform keyword queries on QUnits.

A somewhat different problem of form search is addressed by [6,
2]; in contrast to our work, they assume that a schema is given, but
forms do not exist a-priori, and have to be generated by the system.
They generate a space of forms based on SQL queries. The main
contribution is to find a form that may be relevant to a given set
of keywords; however, they do not generate parameter values, and
further do not even guarantee that there exists a parameter value for
a retrieved form, whose result would contain the given keywords.
As an example of the limitation of that approach, if a form takes
a employee ID and returns the name, a keyword search on name
would retrieve the form, but not provide the employee ID; without
that value, the user would have no idea how to use the form. (Tech-
nically, in the approach of [6], parameter values are optional, but
if the employee ID is omitted, the form would return names of all
employees.)

3. SYSTEM MODEL
We assume that the system at hand has a set of forms F =

{f1, f2, · · · fn}, and each form fi ∈ F takes a set of parameters
Pi. Formally, the goal of our application is as follows: given a set of
keywords K = {k1, k2, . . . , km}, to return a ranked list of (form,
parameter-value) pairs (fj , pj) such that form fj when executed
on parameter values pj returns a result that contains all keywords
in K; the metrics for ranking answers are discussed later.

We assume initially that each form is defined by a single pa-
rameterized query, which uses all the form parameters; later, in
Section 6.4, we discuss how to handle forms with multiple queries
which may each use a subset of the parameter values.

We also assume initially that the result of a form executed with a
specified value for the parameters contains exactly the result of the
query executed on the given parameter values; extensions to allow
static text in the form result are discussed later in Appendix C.2.
Some applications construct form queries dynamically, based on
which several optional parameter values are provided by a user; we
do not handle such dynamically constructed queries, and require
that queries in a form be statically fixed.

We use the term query inversion to refer to the following task:
given a query and a set of keywords, retrieve all possible tuples of
parameter values such that the query result with each tuple of pa-
rameter values contains the given keywords.1 Although we present
our techniques using relational algebra, our actual implementation
is based on SQL.

We use the following university schema as a running example in
this paper.

prof (ID,name, dept)
course(CID,title,dept)
teaches(ID,CID,year, sem)

Here teaches(ID) and teaches(CID) are foreign keys referencing
prof(ID) and course(CID) respectively.

4. UNSAFE QUERIES
There are certain queries for which the solution set for the pa-

rameters is infinite. As an example, assume that the relation prof

1The idea of query inversion arose out of conversations with Surajit
Chaudhuri.

contains two records: (1,‘John’,‘CS’) and (2,‘Bob’,‘EE’) and con-
sider the following parametrized query Q:

Πname(σdept<>$DeptID(prof))

If the keyword query is ‘John’, then the possible parameter val-
ues for Q are all strings except ‘CS’. This even includes values that
are not valid departments because the clause “dept <> $DeptID”
will always evaluate to true as long as DeptID is not ‘CS’. Thus, the
solution set for this query is unbounded.

Formally a parametrized query is considered to be unsafe if it
returns a non-empty result for an unbounded number of parameter
values, including values that are not legal database values. This
principle is similar to the concept of domains and safety in tuple
relational calculus (see, e.g. [15]). There are a number of reasons
why a query may be unsafe, including parameters used only in in-
equality conditions (e.g. P.name < $N1); parameters used only
in disjunctive conditions (e.g. “P.dept = $D1 ∨ P.ID = $D2”);
parameters used only in the right hand input of an antijoin>< (cor-
responding to not-in or not-exists subqueries in SQL); parameters
used only in the right input of a left outer join –

–1, and symmetri-
cally, left input of a right outer join, and either input of a full outer
join, and parameters used only in one input of a union (⋒) opera-
tion. See Section A of the appendix for a more detailed explanation.

A sufficient syntactic condition for safety of a parametrized query
is that every parameter is equated to a relation attribute values in
some selection condition, no selection condition has a disjunctive
condition, and the only operators above that parameter occurrence
are σ, Π, 1 and the aggregation/grouping operator γ; –

–1/1–
– can

also be allowed, provided the parameter occurs in the input that is
preserved, i.e. left input of –

–1 and right input of 1
–
–.

Note that the above condition rules out parameters that only oc-
cur as arguments to a function, for example fn($DeptId), since
arbitrary functions cannot be inverted (and may be unsafe).

A sufficient semantic condition for safety is that the query can
be rewritten to a form that satisfies the above syntactic conditions.
Such a semantic condition is particularly useful for SQL queries
containing subqueries; such queries can be represented in relational
algebra using semijoin/antijoin, or in some more complex cases,
by using an “apply” operator [9]. A variety of decorrelation tech-
niques are available for such queries, which can be used to remove
subqueries, and syntactic safety can be checked on the rewritten
query. To handle such queries, we assume they have been rewritten
to satisfy the syntactic conditions.

Another sufficient semantic condition, which exploits knowledge
of the application that uses the parametrized query, is that every
parameter can only take on only values from a finite domain; in
such cases, for a parameter $P1 the query Q can be rewritten as
Q × σP=$P1DP , where DP is a relation with a single attribute
P , containing all values that parameter P1 can take. It should be
clear that the rewritten query is syntactically safe with respect to
parameter $P1.

Although we primarily address safe queries, we show later how
to handle inversion of certain cases of unsafe queries by using a
special value (‘∗’) which represents the set of all possible values.

5. INVERTING SIMPLE QUERIES
In this section we consider how to handle simple queries con-

taining σ, Π and ×. We consider more complex queries later, in
Section 6.

In general, inversion is done in two steps:

1. The first step is independent of the keyword query; it takes
as input the given query, and gives as output another query

which we call the keyword independent inverted query. This
step can be done as part of preprocessing, before any key-
word queries are submitted to the system.

2. The second step uses the keyword independent inverted query,
along with the given keywords, to form a query that gives the
keyword search result, i.e. parameter values, corresponding
to the original query.

Given multiple forms (for now, assuming each has only a single
query) the same process is applied to each query.

5.1 Keyword Independent Inversion
Suppose query Q is of the following form, with k parameters:

ΠA1,...,An(σpp(r1 × r2 × . . . × rn))

where parameterized predicate pp is of the form B1 = $B1 ∧
B2 = $B2 ∧ ... ∧ Bk = $Bk) ∧ p, where p is a predicate that
does not contain any parameters, and Bj is the column to which the
parameter $Bj is bound. Then the keyword-independent inverted
query KIQ is as follows:

ΠB1,B2,...,Bk,A1,...,An(σp(r1 × r2 × . . . × rn))

The idea is that the query generates all possible parameter values
that could have given a non-empty result. As of now, there is no
restriction on the keywords, these restrictions will be added subse-
quently as selections on the query. We keep track of the source of
each attribute in the output of KIQ, i.e. whether it is a parameter
or an original projection attribute.
Example: Suppose we are given the query

Πname,title(σdept=$DeptID∧sem=$Sem(prof 1 teaches 1 course))

Although this query uses natural join, the rewriting is identical to
the case described above, where the relations have a Cartesian prod-
uct. The resultant keyword independent inverted query is

Πdept,sem,name,title(prof 1 teaches 1 course)

Note that the selection condition in this rewritten query is empty,
i.e. true, so the selection has been omitted.

Observe that as a condition to ensure safety, we required that
every parameter is equated to an attribute of some relation; we call
such attributes that are equated to query parameters as parameter

attributes.
The basic idea of keyword-independent inversion is to create a

query that outputs the parameter attributes along with the values
that result from query execution on each parameter binding. This
task is trivial for queries that involve only joins (including Carte-
sian products) and selections, since all attributes are available in
the query result. If the query additionally includes projection, it is
straightforward to rewrite the query to pull the projection to the top
of the query, to bring it to the form discussed above. We discuss
other relational algebra operations later in Section 6.

It is worth noting that the keyword-independent inverted query
can be stored as a materialized view, which can be used to find
which (form, parameter) values are affected by a database update.
Specifically, if a particular (form, parameter) value is affected, then
one of the rows in the corresponding materialized view, with that
parameter value, will be affected by the update (i.e., inserted, deleted,
or updated). Thus, this materialized view can be used to maintain a
materialized form index such as the one proposed in [8]. Note that
[8] do not address how to maintain the index.

5.2 Inverting Single Keyword Queries
To process a given keyword query on a given form query, we

first invert the form query, and then add selections based on the
given keywords to the WHERE clause of the inverted query. The
selections ensure that the given keywords occur in the result. We
first handle the case of a single keyword, and then address the more
general case of multiple keywords.

Given a query Q, a keyword independent inverted form KIQ
of Q, and a single keyword K1, the resulting inverted query is as
follows:

ΠB1,B2,...,Bk(σContains((B1,...,Bk,A1,...,An),K1)(KIQ))

where Contains((B1, . . . , Bk, A1, . . . , An), K1) denotes that
K1 is contained in at least one of the attributes of B1, . . . , Bk, A1,
. . . , An.

Note that we need to add the parameter attributes B1, . . . Bk to
the Contains clause even if they are not part of the original query
result, since many applications output parameter values directly to
the form result, without (redundantly) retrieving the value of the
corresponding parameter attribute Bi in the query. Adding the Bi’s
ensures that parameter binding results from such forms are included
in the inverted query result.

For the case where B1, . . . , Bk, A1, . . . , An are attributes of a
single relation r, the above Contains predicate can be efficiently
evaluated almost exactly as shown, provided a text index has been
built on all attributes of relation r (or at least those that appear in the
query result); the syntax shown is modeled on SQL Server, where
the predicate can be written as
“contains((B1, . . . , Bk, A1, . . . , An), K1) > 0”,
but other databases such as PostgreSQL offer equivalent features.2

As an example, given the preceding example query with the pro-
jection result containing only the attribute name, and a keyword
’John’, the inverted query taking the keyword into account is

Πdept,sem,name(σContains((dept,sem,name),‘John′)(J))

where J denotes prof 1 teaches 1 course.
In case A1, . . . , An contain attributes from more than one rela-

tion, the predicate can be split into one contains predicate per re-
lation, which are combined disjunctively. For example, of A1, A2
are from r1 and A3, A4 are from r2, the predicate can be written
as where Contains((A1, A2), K1)∨Contains((A3, A4), K1).
Equivalently, the inverted query can be shown as the union of two
queries

ΠB1,B2,...,Bk(σcontains((A1,A2),K1)(KIQ))

∪ ΠB1,B2,...,Bk(σcontains((A3,A4),K1)(KIQ))

In the preceding example, with the projection list containing both
name and title, which come from relations prof and course, respec-
tively, the inverted query can be expressed either as

Πdept,sem(σP1∨P2∨P3(J))

where P1, P2, and P3 denote, respectively, Contains((name),‘Jo-

hn’), Contains((dept,sem),‘John’) and Contains((title),‘John’), or
as

Πdept,sem(σP1(J)) ∪ Πdept,sem(σP2(J)) ∪ Πdept,sem(σP3(J))

In practise, we found the formulation using union was faster on
both PostgreSQL and SQL Server, and we use this version in our
performance study.

2Values from non-text types, such as integer or date, can be in-
cluded in a full-text index by casting to text type (in PostgreSQL),
or by adding a (persisted) computed column of text/varchar type
containing the textual representation of the value of the column.

5.3 Inverting MultipleKeyword Queries
Keyword queries using multiple keywords can be handled using

the AND semantics, in a straightforward manner, as follows. Given
a query Q, and keywords K1, . . . , Kn, let the inverted query using
Ki be denoted by IQi. Then the overall inverted query is

IQ1 ∩ IQ2 ∩ . . . IQn

Continuing with our earlier form query example, if the keyword
query were {Avi, database}, the inverted query would be as fol-
lows:

Πdept,sem(σC1∨C2∨C3(J)) ∩ Πdept,sem(σC4∨C5∨C6(J))

where J denotes prof 1 teaches 1 course, and C1, C2, . . . C6
denote, respectively, Contains((name),‘Avi’), Contains((dept, sem),

‘Avi’), Contains((title),‘Avi’), Contains((dept, sem),‘database’),
Contains((name),‘database’) and Contains((title),‘database’). Al-
ternatively, the query can be expressed as:

(Πdept,sem(σC1(J) ∪ Πdept,sem(σC2(J) ∪ Πdept,sem(σC3(J))

∩ (Πdept,sem(σC4(J) ∪ Πdept,sem(σC5(J) ∪ Πdept,sem(σC6(J))

As a special case, if the query result is guaranteed to have at
most one result for a parameter binding, instead of intersecting two
queries, we use a conjunction of the Contains predicates. For ex-
ample if (unrealistically) each (dept,sem) combination had exactly
one result above, the query would be

Πdept,sem(σ(C1∨C2∨C3)∧(C4∨C5∨C6)(J))

where the Ci are as defined earlier. We call the above optimization
the primary key optimization.

6. COMPLEX QUERIES
We now consider the case of inverting more complex queries

containing other relational operations. For the case of queries us-
ing only the basic operations σ, Π and 1, it was easy to rewrite the
queries to get the parameter attribute in the result of the inverted
query. This task is more complicated with other relational opera-
tions, and we consider those operations in this section; a few cases
such as set difference are covered in Appendix C.

Once the keyword-independent inverted query has been gener-
ated, the task of adding the keyword conditions can be done as
described earlier in Sections 5.2 and 5.3, since that step does not
depend on the structure of either the original query or the keyword-
independent inverted query.

6.1 Aggregation Operations
As discussed earlier, for the case of queries with projections at

the top, we added the parameter attributes to the projection list.
However, if there is an aggregate operation on top of the projection,
adding parameter attributes to a projection can change the number
of duplicates. But the more important question is, how to make pa-
rameter attribute values available above an aggregation operation.
We solve both problems as outlined below.

Consider an aggregation operation Gγaggfns(A)(E) where G

denotes the group-by attributes, and aggfns(A) denotes the aggre-
gation functions and the attributes they are applied on. Suppose that
the set of parameter attributes from expression E are B1, . . . , Bn.
We then rewrite the expression as

G,B1,...,Bnγaggfns(A)(INVQ(E))

where INVQ(E) denotes the inverted query generated from E. (As
should be clear, we are informally defining a recursive procedure
to perform the inversion, but omit formal details for lack of space.)

Observe that by adding the parameter attributes to the group-by
list, the rewritten query returns the same aggregate result for any
particular binding of values to the parameter attributes as the origi-
nal query with the specific parameter binding. This property holds
even if some of the parameter attributes are used in the aggregation
operation (for a specific parameter binding, these would be con-
stants).

6.2 Intersection Operation
Keyword-independent inversion can be done for the intersection

operations ∩ as discussed below. The case of union queries are
more complicated, and is discussed later in Section 6.3.

A first incorrect attempt to handle queries with intersection would
be to independently invert the inputs to the intersection, and then to
compute their intersection. Unfortunately, however, different pa-
rameters may be used in each of the inputs, leading to different
parameter attributes being present in the different inverted inputs,
and a direct intersection is not possible.

When the intersection is a set intersection (the default in SQL)
an alternative is to turn intersection into a join. Specifically, given
a query Q = Q1∩Q2 where the attribute names of Q1 and Q2 are
identical, the inverted query is simply

INVQ(Q1) 1 INVQ(Q2)

where each of Q1 and Q2 is inverted with respect to just the pa-
rameters that occur in it. Note that if each parameter occurs in only
one of Q1 or Q2, the natural join above would equate only the orig-
inal attributes of Q1 and Q2, but if any parameter appears in both
Q1 and Q2, the natural join would ensure that both have the same
value.

For example, given the query

ΠID(σname=′Mike′ (prof)) ∩ ΠID(σsem=$Sem(teaches))

the inverted query is

ΠID(σname=′Mike′(prof)) 1 ΠID,sem(teaches)

For the case of multiset union, the duplicate count matters only
if the result is used in some aggregation or set operation above. If
it is not, the multiset union can be replaced by a set union; but if
it is used, the conversion of intersection to a join would change
the number of duplicates. To handle such a case, we can add extra
parameter attributes to each of INVQ(Q1) and INVQ(Q2), so they
have the same schema. The value of the parameter attributes added
thus is set to a special constant “top” value “*”, which matches with
every concrete value. The rewritten query is then

INVQ(Q1) ⋓ INVQ(Q2)

where ⋓ denotes intersection taking the special semantics of the
“*” value.

For example, suppose parameter P1 occurs in Q1 and P2 in
Q2, and if we have tuples t1 and t2 from the two inverted inputs,
that are identical on all other attributes, but have extra parameter
attributes B1 (with value v1) and B2 (with value v2) respectively.
To make their schemas identical, we add parameter attributes B2
and B1, with value ∗, to t1 and t2 respectively. Now the result of
intersecting these two tuples has the values (v1, v2) for attributes
(B1, B2). If both tuples have a value ∗ for a common parameter
attribute, the result also has the value ∗ for that attribute. For the
example above, this form of the inverted query is as follows:

ΠID,∗(σname=′Mike′(prof)) ⋓ ΠID,sem(teaches)

6.3 Union Operation
The case of union operations is more complicated, since for a

particular parameter binding some of the keywords may be present
only in one input to the union, and others may be present only in
the other input. Additionally, as in the case of intersection, some
parameters may be used in one input and others in the other input,
complicating the task of inversion.

Suppose Q = Q1 ∪ Q2. If each subquery Qi has the same set
of parameters, the result of the inverting Q is simply INVQ(Q1) ∪
INVQ(Q2), where INVQ(Qi) is the keyword-independent inverted
query corresponding to Qi. However, if the subqueries have differ-
ent sets of parameters, the problem is more complicated.

Suppose that Q = Q1 ∪ Q2 has parameters $B1, $B2 and $B3,
and suppose that Q1 has parameters $B1 and $B2, while Q2 has
parameters $B2 and $B3. The output of the inverted form of Q1
would contain two attributes B1 and B2, while that of Q2 would
contain B2 and B3.

6.3.1 SingleKeyword with Union

Consider first the case of a single keyword query, with the key-
word K1. The query in the above example is in fact unsafe with
respect to a single keyword query; if K1 is contained in an answer
for Q1, then the value of $B3 is irrelevant, and it can take any pos-
sible value, while if K1 is contained in an answer for Q2, then the
value of $B1 is similarly irrelevant. However, it is possible that for
specific pairs of keywords K1, K2, the query is not unsafe. How-
ever, the lack of safety can be handled specially here, by using the
special “top” value * in keyword query answers. If parameter $Bi
is not present in subquery Qj, we add a column corresponding to
Bi in the result of inverting Qj, but with the constant value *. Thus,
the schema of all inverted subqueries of a union becomes the same,
and the inversion of Q is simply the union of the inversions of Qi.

Processing a single keyword query is straightforward, except that
the result may contain the special value * for one or more parame-
ters. In this case, the query is actually unsafe, but the special value
* provides us a finite representation of an infinite number of values.
Here, * can be taken to represent “don’t care”.

6.3.2 MultipleKeywords with Union

To handle a multi-keyword query, intersection of the results for
each keyword can be done as described earlier. However the in-
tersection is made more complicated by the presence of the spe-
cial * value. For example, given two tuples (*, ‘B’) and (‘A’, *)
respectively from two relations being intersected, their result on in-
tersection would be (‘A’, ‘B’). This illustrates how it is possible for
the overall query result to be safe even though the results for each
keyword may be unsafe. Similarly intersecting (*, ‘B’) and (*,‘B’)
would result in (*,‘B’).

Unfortunately, database systems do not support the special “don’t
care” value * when performing intersection (for union, the value *
can be treated as a normal value). Intersection taking * values into
account can be done in application code, but efficiency remains an
issue, since standard techniques for intersection, such as sorting,
cannot be applied in a straightforward manner in the presence of
the * value. However, there is a implementation technique, which
we call the Keyword-at-a-time (KAT) implementation, described in
Appendix B.1, which allows the query to be processed efficiently,
and entirely in the database. The basic idea is to partition the pa-
rameter bindings based on which subset of attributes have a * value.
Intersection of each pair of partitions can then be implemented by
a join on the partitions, equating only non * attributes, followed by
projection of appropriate non-* attributes. Finally, the results of the
joins are combined by a regular union operation.

In addition, there is an alternative approach, which in effect finds
the results (sets of parameter bindings) of inverting each input to
the union separately, and then combines the results. This approach,
called the Query-at-a-time (QAT) approach, is described in Ap-
pendix B.2. The QAT approach solves each query with all the
keywords, but allowing bindings for which the query result con-
tains only a subset of keywords, using a bitmap to record which
keywords are present. It then merges the intermediate results of all
queries to find the answer. This is in contrast to the keyword-at-a-
time approach, which computes parameter values that satisfy one
keyword, across the union of subqueries, and merges the interme-
diate results from each of keywords to get the final solution.

6.4 Multiple Queries in a Form
So far all of our examples have dealt with forms containing only

a single query. However, there are instances of forms that contain
multiple queries. For example, a form can be used to access in-
formation about a particular student (query S1) as well as a list of
courses that the student has taken (query C1); such a form can be
represented by two separate SQL queries.

In the simplest and most common case, the different queries are
independent, that is they can be evaluated independently using the
form parameter values. Such a form can be handled by consider-
ing it as having a single query which is defined as the union of the
two separate queries. Of course the attributes of the queries may
be different, but we can follow the SQL outer union approach of
using the union of the attribute sets, with null values used for at-
tributes that are present in one query but not the other. Thus, any
solution for the union operation can also be used to handle forms
with multiple independent queries as above.

In the above example, the form can be considered to have a single
query S1 ∪ C1. We discuss the case where the queries are not
independent, later, in Appendix C.3.

6.5 Semijoin and Antijoin
Uncorrelated where clause subqueries in SQL lead to semijoins

and antijoins in the relational algebra representation. Correlated
subqueries can be modeled using the apply operator [9]; but as
shown in [9], decorrelation techniques can be used to replace the
apply operator by a join, semijoin, or antijoin.

Inversion of queries with a semijoin/antijoin is straightforward
for parameters that appear in the left input, since the corresponding
parameter attributes are already present in the result.

However, inversion is harder if parameters appear in the right
hand side input, since the corresponding attributes do not appear in
the result, and cannot be directly added. The solution for the case
of semijoins is to use decorrelation techniques such as those in [9]
to replace semijoins by joins. The decorrelation technique can in
fact be simplified in the absence of aggregation, since we do not
care about the number of duplicates in the inverted query result.
We omit details for lack of space.

Parameters appearing in the right input of antijoins (correspond-
ing to not-in or not-exists subqueries) are harder to handle. The
safety requirement in this case requires that any such parameter
must also be equated to an attribute of some other (finite) relation.
We can use techniques similar to those described in Appendix C.1
to handle this case; we omit details for lack of space.

7. RANKING AND PRESENTING RESULTS
In general, a keyword query can have multiple answers, and

ranking the answers is an important task. For a given form, we dis-
play the set of parameter bindings together, rather than mixing up
results corresponding to different forms. Thus, the ranking prob-

lem is broken up into two problems: ranking forms, and ranking
parameter values within each form.

We experimented with two variants of form ranking. The first
variant is based on form result length, favoring forms with short
results since they tend to contain more specific information. For
example, given a form F1 which retrieves course/instructor infor-
mation for a specified department, and a form F2 that retrieves
courses of a specified instructor, form F2 is likely to have a much
smaller size on average. Given a keyword query such as ‘Silber-
schatz database’, the form F2 would rank higher and the inverted
query for F2 would be executed first. The second variant multiples
the average form result length with the number of different param-
eter values returned as answers to the given query.

In cases where the higher ranked forms provide sufficient an-
swers, inverted queries may not even need to be executed for lower
ranked forms.

The exact length of a form result depends on the specific parame-
ter values, which can again be expensive to compute, so we instead
use statistics on average form result size. Form result size is in turn
estimated as the sum of the average result size of the queries con-
tained in the form; average query result sizes can be precomputed
and stored in the database, and need only periodic maintenance.
Computing the average query result size can be done either by exe-
cuting the query on a sample of parameter bindings, or by executing
the keyword-independent inverted query, and aggregating on its re-
sult to find the number of tuples for each binding (by grouping on
the parameter attributes), and then taking the average. We used the
latter approach.

Many forms contain more than one query; for example a form
displaying student information may first show the name and other
key information about the student, and then show the grades ob-
tained by the student. We give higher importance to the occurrence
of a keyword in the first query than in the second, when ranking the
form. For details of this scheme, and of ranking of parameter val-
ues within a form, see Appendix C.5. Extensions to support access
control are discussed in Appendix C.7.

8. EXPERIMENTAL RESULTS
In this section we present the results of a study of the perfor-

mance of our techniques.

8.1 Experimental Setup
The code for our system is written in Java. For our main perfor-

mance tests, we used PostgreSQL 8.4 as the database, on a machine
with an Intel Core 2, 1.86 GHz processor, with 3GB of RAM, run-
ning Ubuntu with a Linux 2.6.24 kernel. The application and the
database ran on the same machine. We report numbers using a 80
GB 7200 rpm hard disk (Seagate ST380211AS), as well as with a
Transcend SSD18M 64 GB solid state disk (SSD) with an eSATA
interface.

We report numbers using a real database application, used to
handle all academic information at IIT Bombay, with about 1 GB
of data, and 90 form interfaces. In Appendix D, we also report
numbers using a (fake) application with 4.3 GB of TPC-E data and
16 forms with queries based on the TPC-E queries.

Other than the full-text indices, we used exactly the same set
of indices as were present in the live database, which included
primary/foreign-key indices and a few more manually chosen in-
dices. Full-text indexes, needed by the Contains operator, are built
on all attributes of all tables. We present numbers for cold cache
(CC) and warm cache (WC). Details of how we used the full-text
indices, as well as details of how we enforced cold cache, are de-
scribed in Section D.

In response to a keyword query, the system outputs up to 25 rel-
evant forms. All timing numbers that we present are elapsed time
for computing the keyword query results. To account for some ran-
dom variations in measured time, by default we ran each keyword
query multiple times, and report average numbers.

8.2 Basic Results and Effect of Optimizations
We implemented a pruning optimization, which does the follow-

ing. Many of the keywords are present in only some of the relations,
and are absent in others; before executing inverted queries, for each
keyword we first find which relations contain the keyword, by ac-
cessing the corresponding text indices. Using this information, we
prune out a form if the set of relations whose attributes appear in
the SELECT clauses of the queries in a form do not together con-
tain all the query keywords. Similarly, we prune out subqueries
containing a conjunctive selection condition Contains((Ri.A1,. . .,

Ri.An),Kj), if we have found that Ri does not contain Kj. Pruning
is particularly important as the number of forms increases, since it
can potentially help keep the number of inverted query executions
under control. The pruning optimization was turned on by default.

The first set of experiments studied the effectiveness of keyword
querying in retrieving desired forms. We used a set of keyword
queries (described in Appendix D) reflecting common tasks such as
finding student information given the name or the student ID, find-
ing course information given keywords describing the course or a
course ID, finding grades of student, finding students registered for
a course, and so on. The number of keywords ranged from 1 to 4.
We compared the following form ranking methods: (a) ordered by
average form result size (AVG), and (b) ordered by average form
result size multiplied by the number of parameter values in the re-
sult for that form (AVGMULT) (we stopped once we found 500
parameter values).

We measure the quality of the results returned as follows. For
each task, we identified a particular form as the desired result. We
then manually examined the results of the corresponding query, and
found the position at which the desired form was present. Across
all the queries, the average position at which the desired form was
present was 2.42 for AVG and 1.83 for AVGMULT. The maximum
positions of the desired form were 6 and 3 for AVG and AVG-
MULT.

For the above set of queries, we measured the execution time us-
ing the QAT inversion method for forms with multiple queries, on
cold cache. With flash disk, the execution time ranged from 0.8 to
10.8 seconds, with an average of 4.8 seconds, while for hard disk
the time ranged from 3.5 to 49.5 with an average of 18.9 seconds,
with cold cache. With warm cache, the time for hard disk as well
as flash ranged from 0.6 to 10.9 seconds, with an average of 3.6
seconds; the timings were almost identical since there was almost
no disk access on these queries. The KAT inversion method gener-
ated the same set of results as the QAT method, but took marginally
more time, with an average of 5.1 seconds on flash cold cache, 3.8
seconds on flash warm cache, 19.5 seconds on hard disk cold cache,
and 3.9 seconds on hard disk warm cache.

Overall, the results show that keyword search runs with reason-
able speed with flash disk, even with cold cache, and given current
trends it is quite reasonable to assume that enterprise application
data will fit on flash disk for all but the largest enterprises. Execu-
tion times can be reduced by optimizations sketched in Section 9,
and by using a faster CPU/disk. For example, we could reduce cold
cache query execution times for some sample inverted queries by
up to 40% by running them on a system with a higher end hard disk
(WD5000AACS, with 9 msec. avg. seek time versus 13 msec. for
the ST380211AS), and a faster processor (Intel Core i5, 3.2 GHz).

Figure 1: Performance on Academic database .

We also compared QAT and KAT methods, with the number of
keywords varying from 1 to 5. We used a single 5 keyword query,
and used each of its size k subsets as the set of queries using k key-
words. The results for the case of forms on the academic database,
running on PostgreSQL, using flash disk, are shown in Figure 1,
with separate numbers for cold cache (CC) and warm cache (WC).
As can also be seen from the figure, both KAT and QAT scale
slightly sub-linearly with the number of keywords, for both cold
and warm cache, and QAT performs slightly better than KAT.

Next we studied how the time taken for processing a keyword
query scales with an increasing number of forms. The results, de-
scribed in detail in Appendix D, show that the time increases sub-
linearly with increasing number of forms.

8.3 Performance of Form Result Indexing
The approach of [8], which is an alternative to ours, is to materi-

alize form results, and build a text index on the materialized results.
For queries that can be incrementally maintained, we can imple-
ment indexing and view maintenance as described in Appendix C.8,
by creating a materialized view for each form query. To test the
overheads, we implemented a simplified form of materialization
and view maintenance, which materializes and maintains inverted
form queries, along with text indices on the materialized relations.
For the academic database, the total size of the resultant material-
ized views along with indices was 1431 MB, on a 1GB database.

We measured the view maintenance performance on an update
that added 9 course registrations for one student, measured on a
cold cache. View maintenance took 3.6 seconds with a hard disk,
and 1 second with a flash disk, for an update that takes a few tens of
milliseconds, which is an unacceptable overhead for the academic
application. We note that the time is actually an underestimate of
the actual cost, since some of the form queries were too complex
for the simple view maintenance algorithm we used, so we did not
maintain them. Further, the view maintenance overhead increases
with the number of form queries, and has to be paid for every up-
date even if keyword queries are used only occassionally. It is also
worth noting that some updates may cause a very large number of
form results to be recomputed. Even worse, many queries cannot
even be maintained incrementally (most databases which support
view maintenance have significant restrictions on the queries sup-
ported) and may require full recomputation.

9. CONCLUSION
The problem of keyword search on the results of form interfaces

is of increasing importance, since such interfaces provide informa-
tion in a form fit for human consumption. We have presented an

approach to keyword search on form results, based on inverting
database queries, to return parameter bindings for which the form
result contains the given keywords. We have proposed several opti-
mizations of our basic technique and presented a performance study
which shows that the proposed techniques are effective and practi-
cal for gigabyte sized databases.

As part of future work, we plan to improve the efficiency of
query processing by caching inverted queries, creating a merged
text index which will avoid the need for separate keyword lookups
on each table, and caching mappings of which keywords are present
in which tables. We also plan to extend our implementation to work
with a larger class of SQL queries, and to handle complex applica-
tion code with conditional execution of queries, and loops contain-
ing queries. We also plan to work on integrating search with access
control, which is typically implemented at the form level. We also
plan to address the form ranking problem in more detail.
Acknowledgment: We thank Surajit Chaudhuri for discussions
leading to the idea of inverting form queries.

10. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system

for keyword-based search over relational databases. ICDE,
pages 5–16, 2002.

[2] A. Baid, I. Rae, J. Li, A. Doan, and J. F. Naughton. Toward
scalable keyword search over relational data. PVLDB,
3(1):140–149, 2010.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using banks. ICDE, pages 431–440, 2002.

[4] I. T. Bowman and K. Salem. Semantic prefetching of
correlated query sequences. In ICDE, pages 1284–1288,
2007.

[5] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection
queries over relational databases: Mapping strategies and
performance evaluation. ACM Trans. Database Syst.,
27(2):153–187, 2002.

[6] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton.
Combining keyword search and forms for ad hoc querying of
databases. SIGMOD Conference, pages 349–360, 2009.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin.
Finding top-k min-cost connected trees in databases. ICDE,
pages 836–845, 2007.

[8] C. Duda, D. A. Graf, and D. Kossmann. Predicate-based
indexing of enterprise web applications. CIDR, pages
102–107, 2007.

[9] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. Joshi.
Execution strategies for SQL subqueries. In SIGMOD

Conference, pages 993–1004, 2007.

[10] R. Guravannavar and S. Sudarshan. Rewriting procedures for
batched bindings. PVLDB, 1(1):1107–1123, 2008.

[11] V. Hristidis and Y. Papakonstantinou. Discover: Keyword
search in relational databases. VLDB, pages 670–681, 2002.

[12] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. SIGMOD

Conference, pages 563–574, 2006.

[13] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k
keyword query in relational databases. SIGMOD Conference,
pages 115–126, 2007.

[14] A. Nandi and H. V. Jagadish. Qunits: queried units in
database search. In CIDR, 2009.

[15] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database

System Concepts. McGraw-Hill, sixth edition, 2010.

APPENDIX

A. EXAMPLES OF UNSAFE QUERIES
Unsafe queries can result from any of the following constructs:

1. Queries where at least one parameter is not bound to a database
value by an equality condition; for example, a query of the
form P.DeptId > ‘$DeptId’ can give the same output for
an infinite number of values of $DeptId.

2. Queries where a parameter value is contained in disjunctive
condition which can possibly be satisfied ignoring the pa-
rameter value; for example a condition such as P.DeptId =
$P1 OR P.Id = $P2 Then, the solution set can be infinite
as any value can be plugged in for the parameter; in the above
example if $P1 = “CS” returns an answer, then every possible
value of $P2 would be a valid answer. A similar problem can
arise if parameters are present in queries that are part of the
UNION clause.

3. Queries where the parameters are present only in subqueries
linked by an antijoin, or a set difference operation (note that
SQL op ALL operation are also naturally represented by an-
tijoins). A problem arises with empty sets in the right input,
because all of the above operators will return the left input
as in in these cases. A similar problem also arises with pa-
rameters that are present only on the right-hand size of the
EXCEPT clause.

4. Queries where the parameters are present in the join clause
with the join type being either left, right or full outer join.
The reason why these queries are unsafe is because outer joins
always preserve the tuples of at least one relation regardless of
the constraints specified in the join clause. If the constraint is
enforced through a parameter, then the solution set is infinite,
as any value can be plugged into the parameter and the tuples
of the first and/or second relation(s) will always be returned.

Here are three examples of unsafe queries, pertaining to cases
2-4:

Q1 : Πname(σprof.ID=teaches.ID∨sem=$Sem(prof × teaches)

Q2 : Πname(prof><σsem=$Sem(teaches))

Q3 : Πname(prof –
–1prof.ID=teaches.ID∧sem=$Sem teaches)

B. OPTIMIZING UNION INVERSION
In this section we outline two alternative approaches to handling

union queries, as well as forms with multiple queries which are
treated identically to union queries. The notation in this section
assumes that a query Q is a union of queries Q1, . . . , Qn.

B.1 Keyword at a Time (KAT) Implementa
tion

As discussed earlier, the keyword-at-a-time (KAT) approach for
handling the union operation is made complicated by the presence
of the special “top” value “*”, which must be handled specially.
We now outline how we can modify the approach to use standard
database joins, without requiring special support for the “*” value.

The KAT approach inverts each query in the union with respect
to each keyword, and then adds extra columns corresponding to
form-parameters that are not used in the query, with the value set
to “*”. Let the resultant relation corresponding to keyword Ki
and query Qj be Ri,j ; each of these relations is materialized as a
temporary table. We then define Ri as

⋃
j
{Ri,j}. The next step

computes the logical intersection of the Ri’s, but using a series of

join steps instead of intersections. The result relation R is first set
to R1, and step i computes the logical intersection of R with Ri+1.

The logical intersection of two relations r and s is computed as
follows. First, both r and s are partitioned into groups, such that
each group has an identical pattern of *’s, i.e. all group members
have a * in the same attributes. Let the resultant partitions of r
and s be denoted as ri and si. Each ri is then logically intersected
with each sj , by computing ΠL(ri 1P si), where P equates every
column of r with the column of s for the same parameter, provided
that attribute does not have the value * (all tuples in ri have the
same * pattern, and similarly so do all tuples in sj). The projection
list L is defined as follows: for each parameter pk, if ri has a * for
pk but sj does not, the kth attribute of L is sj .pk, otherwise the kth
attribute of K is ri.pk. Thus, if both ri and sj have the value *,
so would the result; if only one of them has the value *, the result
would contain the other value, while if both are not *, the result
would contain the common value. Thus each tuple in the join result
corresponds to a pair of tuples that agree on all non-* attributes,
and would have thus been part of the logical intersection; attributes
that are non-* in at least one relation are set appropriately.

As described above, the intermediate result R at each step is ma-
terialized for use in the next step. However, our current implemen-
tation does not materialize the results, but instead creates separate
queries for each group in each intermediate R; the queries for the
final state of R are combined by a union to get the final result.

B.2 Query at a Time (QAT) Implementation
We now give details of the query at a time (QAT) approach,

which first computes those parameter bindings for each query that
contain at least one of the given keywords, and then combines these
results across queries.

The query-at-a-time (QAT) implementation carries out the fol-
lowing steps:

1. First consider each query Qi separately and do the follow-
ing: (a) For each keyword Kj , find the parameter values for
Qi whose result contains that keyword, i.e. invert the query
with respect to Kj . (b) take the union of the parameter val-
ues, across all keywords Kj , but with each parameter value
additionally annotated with the set of keywords present in the
query result with that parameter value; a bitmap is used to
represent this set. (This step can be implemented by a mi-
nor extension of the union operation, or by a straightforward
extended aggregation operation.)

The result of this step is represented as a relation Ri for each
Qi, with one attribute per parameter of Qi, plus an attribute
storing the bitmap; the name of the bitmap attribute is set to
bi, so it is unique to Ri. Note that different queries can have
different parameters. We filter out tuples from Ri which have
a null value for any parameter attribute.

2. The next step is to find parameter value combinations that are
common across queries. If all queries had the same param-
eters, this could be done by a union of the Ri’s followed by
a grouping step. The basic intuition for handling the general
case of different parameters is to do a join of the Ris on their
shared attributes.

By joining the results of the previous step using an inner join,
we would ensure that all tuples in the join result agree on the
join attributes. However, an inner join would eliminate pa-
rameter values from one inverted query that do not occur in
another inverted query; such parameter values can still con-
tribute to the final result. A full outerjoin would preserve
such parameter values, but may still lose information. For ex-

ample given queries Q1 and Q2 with parameters (A,B) and
(B,C), it is possible that Q1 on a particular (A,B) combina-
tion, say (a1, b1) returns keywords K1 and K2, so for a key-
word query K1, K2, C should be don’t care. A full outerjoin
would lose this information if Q2 with parameters (b1, c1)
contains one or more of the keywords; the (outer)join would
then contain only the tuple (a1, b1, c1). Now suppose query
Q3 with parameters (B,C) set to (b1, c2) contains keyword
K3, and the keyword query is K1, K2, K3. Then even a full
outerjoin (R1 –

–1
–
– R2) –

–1
–
– R3 would not contain the cor-

rect answer (a1, b1, c2). To work around this problem, we
use an outer union operation, as outlined below. We use ⋒ to
denote the SQL outer union operation, which brings all inputs
to a common schema by adding required attributes, with their
value set to null.

To combine the results across all queries Ri we do the follow-
ing. We set result to R1, and at each step i = 2, . . . , n, we
set

result = result ⋒ Ri ⋒ (result 1θi
Ri)

with join condition θi defined as below.

Before defining θi, we note that result contains tuples with
different “*” patterns, with “*” represented as a null value due
to the outer union. One option for computing the join is to par-
tition result based on the pattern of null values, similar to the
case for KAT. Another option is to use a more complex join
condition, as follows. Let P1, . . . , Pk be the set of all query
parameters; each Ri has all or some subset of the parame-
ters Pk. Then, θ = C1 ∧ . . . ∧ Ck, where Cj is defined as
(result.P j = Ri.P j∨result.P j is null ∨Ri.P j is null),
if both result and Ri contain Pj, and Cj is true otherwise.
The above disjunction allows matching in case either value is
null value, representing “*”. The value of Pj projected in the
result is null if Pj is null in both input tuples, and is set to the
non-null value otherwise.

In addition to the parameter attributes, a new bitmap attribute
b is added to the join result, with its value set to the bit-wise
OR of the bitmaps bi. Note that due to the outerjoin, some
of the bis may be null; these are treated as equivalent to the
bitmap will all zeros.

3. The join condition described in the previous step can result in
poor execution plans, so we make use of the following impor-
tant optimizations. First, if a parameter Pj is present in all of
R1 . . . Ri, we defined Cj as just result.P j = Ri.P j, omit-
ting the disjunction, since Pj cannot be null in either input.

Further, if all parameters Pj present in Qi are also present in
all queries already joined into result, and vice versa, instead
of setting result to the outer union of result, Ri, and the join
result, we set result = result––1

–
– Ri, using a natural full outer

join on the shared parameter attributes. This condition was in
fact satisfied in most cases of forms with multiple queries in
our example application.

4. Let the result of the previous step be relation R. Finally, pa-
rameter attribute values from tuples from R that have all the
bits set in the bitmap attribute b are output as answers. Some
of the parameter attribute values may be null, indicating the
result contains the given keywords regardless of the value of
the corresponding parameter.

C. OTHER CASES
In this section we consider extensions to handle a larger class of

forms.

C.1 Set Difference Operation
The case of set difference is a little trickier than intersection,

since a query may be unsafe if a parameter occurs only in the
right input of set difference. To ensure safety, we require that any
such parameter must also be equated to an attribute of some other
(finite) relation. Let us denote such a relation corresponding to
parameter Pi and BindRel(Pi), and let BindV als(Pi) denote
ΠPi(BindRel(Pi)). Similarly let Star(Pk) denote the constant
relation with a single attribute name Pk, and a single tuple with the
special top value ∗ for that attribute.

Given the expression

Q = Q1 − Q2

where the attribute names of Q1 and Q2 are identical, suppose that
Pi and Pj are two parameters that occur only in Q2, and Pk is an
attribute that only occurs in Q1 (the case of more or less parameters
is straightforward and omitted for simplicity). The inverted query
is

(BindV als(Pi) 1 BindV als(Pj) 1 INV Q(Q1)

− Star(Pk) 1 INV Q(Q2)

Note that since the special value ∗ matches all concrete values, the
set difference has the required semantics: i.e. if for some parameter
binding, a particular Q1 tuple was also present in Q2 that parameter
binding would not be present in the above result, and conversely if
a Q1 tuple was not present in Q2, that parameter binding would be
in the result.

C.2 Static Text and Forms Without Parame
ters

Forms often have static text inserted by the application program,
which does not depend on database content or on form parameters.
We assume that application code that generates the forms has been
analyzed, and static text that appear in forms has been indexed; for
each keyword, the posting list in such an index contains the iden-
tifiers of the forms where the keyword appears as static text. In
addition it is often useful to annotate forms with metadata describ-
ing the purpose and description of the form, which can be used
when searching for forms.

Before executing a keyword query on the queries in a form, all
query keywords that appear in static text in that form are removed
from the list of keywords, and the remaining keywords are actually
used for querying. In a special case, all the keywords in the query
may appear in static text, in which case the form parameters don’t
actually matter. We can use a special value * to denote that all
possible values for a corresponding parameter are answers.

Another special case is form queries that do not take any param-
eter values. Such a form would be an answer to a keyword query
if the keywords are part of the form result. Checking this is no dif-
ferent from the usual case, except that the output of inverted query
does not have any parameter values; a constant value such as 1 can
be used to ensure that the output has at least one attribute. Also, we
do not need to execute the inverted query completely, we just need
to ensure that its answer is non-empty.

C.3 Multiple Dependent Queries
However, there are forms that can contain multiple queries. For

can be handled using the same technique we saw earlier for queries
are different doesn’t really matter since absent from some of the
queries, the special value * identical.

We saw earlier how to handle forms with multiple independent
queries. In some forms, however, the result of one query is used as
a parameter to a second query. For example, a student roll number

may be used to retrieve a unique student identifier by means of a
query Q1, and the identifier may then be used to execute a second
query Q2. This situation can be handled by rewriting the second
query by adding a join with the first query, and replacing the pa-
rameter by a reference to the value from the first query result.

Another common case is where a query Q1 has multiple results,
and a loop iterates over these results and invokes query Q2 with
parameters set to attributes in the result of Q1. This case can be
handled by replacing the loop by a single query which in effect
performs a join of Q1 and Q2, as described for example in [4, 10].

C.4 Handling Arbitrary Queries using Param
eter Binding Restrictions

Many queries contain restrictions on the parameter bindings that
can produce a non-empty result. For example, we can infer that
a parameter must be a professor’s ID, or a dept by analyzing the
query. Then, the set of all possible bindings that can lead to non-
empty results is exactly the set of values for that attribute in the
corresponding relation, such as prof.ID or Dept.deptȦnother way
in which we can infer such a restriction is from the the search form
that a user sees; for example, a particular form parameter may come
from a drop-down box, which is populated either statically or from
a database query.

If each parameter has such a restriction, we can trivially invert
a query as follows. Suppose we are given query Q, with parame-
ters B1 through Bm, with each Bi restricted to values in Ri.Bi (if
the restriction is from static text in a form, we can create a tempo-
rary table Ri containing the relevant values). Then the keyword-
independent inverted query is simply

(R1 × . . . × Rm)Apply
1(Q′)

where Q’ is simply Q with each parameter $Bi replaced by the
corresponding Ri.Bi from the outer level relation. (The LATERAL
clause is in standard SQL, although SQL SERVER uses the term
CROSS APPLY instead.)

C.5 Extended Ranking Techniques
For form with multiple queries, if in some form result a keyword

occurs in the result of an earlier query, that form result could be
counted as more important than one where the keyword only ap-
pears in the result of a later query. One simple way of giving more
importance to keyword occurrences in earlier queries is to treat a
multi-query form with queries q1, . . . , qn as a set of n forms, with
form Fj containing queries q1, . . . , qj . The ranking methods de-
scribed earlier are applied on each Fi, and the best rank is chosen.
We have currently implemented the above scheme manually.

An alternative which we are currently implementing is to modify
the queries to track, for each parameter binding in the query result,
which queries contained each of the keywords. The occurrence of
a keyword in an earlier occurring query can be viewed as providing
a higher TF to that keyword in that form. Similarly, statistics about
keyword occurrences in the overall database (available from the
text index) can be used as a rough estimate of the IDF (with form
results treated as documents) of each query keyword. From these
statistics, a TFIDF measure can be computed for each parameter
binding, and used to rank the bindings for a given form.

We have assumed the AND semantics for keywords, but our
techniques are can be modified to support a fuzzy AND, allow-
ing some keywords to be omitted but reducing the score/ranking
accordingly. We omit details.

For ranking of parameter values within a single form, we used
heuristics; for example, if the parameter value is a year or semester,
the current year/semester is given higher preference, if the param-

eter value is a department, the department that the current user be-
longs to is given higher preference, and so on.

C.6 Result Presentation
In our implementation, results are displayed as hyperlinks, and

pointing at/clicking on a result causes the corresponding form to
be executed with the parameter values, and the form result is dis-
played to the user. Our inversion techniques may return don’t care
(*) values for certain parameters. If the corresponding parameters
are mandatory for the form, we can use domain knowledge of the
application to select a meaningful set of values for such parame-
ters, and replace each answer containg one or more *’s by a set of
answers with the *’s replaced by the above values.

C.7 Access Control
To provide access control, applications need to have a module

that takes a user identifier, a form identifier, and, optionally, pa-
rameter values, and can decide if the user is authorized to execute
the specified form with the specified parameters. This module can
be used to filter query results to return only authorized results. In
many authorization systems, some query parameter values, such
as the user-identifier in a query, are taken from session parameters
such as the user-identifier of the authenticated user. Such param-
eters can be replaced by the corresponding constant values in the
form queries, before the queries are inverted.

C.8 Materializing Form Results
As discussed earlier, materializing and indexing form results is

an alternative to our approach. To estimate the cost of using this
approach, we materialized the keyword-independent inversion of
each form query. Standard techniques for view maintenance such
as those described in [15] (Chapter 13) can be used to compute the
changes to the form query result when an underlying relation is
updated, and the index must be updated correspondingly. We omit
details for lack of space.

There are at least two ways to build a full-text index on the result.
The first way is to create another view with one tuple per parameter
binding, with a text attribute that contains the concatenation of all
attribute values from all tuples with the same parameter binding.
The view contains a form-id attribute, and all parameter attributes
are combined into one single view attribute by concatenating them
(with suitable delimiters). The above views across all forms can
be combined using a union operation, and materialized. A full-text
index can be built on the resultant view. The implementation we
used for our performance testing used this approach, but for lack of
time omitted the combination across forms, instead building a text
index separately on each form.

The second way is to directly use an existing full-text index such
as Lucene, and create a (virtual) document corresponding to each
tuple in the preceding merged view. Note that in this case the view
need not actually be materialized, since Lucene does not insist that
the actual documents it indexes be retained after they have been
indexed.

D. PERFORMANCE STUDY DETAILS
We now present a few more details of our experimental setup,

and additional experimental results, which could not fit in the main
body of the paper.

D.1 Experimental Setup
The set of 12 queries we used to study the quality of ranking were

as follows. We cannot give all the actual queries since the database
we use contains confidential data which cannot be made public.

Figure 2: Hard Disk versus Flash, Academic database.

The queries modeled common information needs, which were as
follows. (a) Given a student identifier (roll number), or a student
name, find overall academic information about the student. (b) As
above, but find just the grades. (c) Given a course identifier or
keywords from the course title, find information about the course.
(d) As in (c), but find the students registered for the course, and find
if a specified student identifier took the course. (e) Given identifiers
of two courses, find students who have taken both courses, using
two different sets of descriptive keywords.

Cold cache results were generated by forcing the database to
drop all clean buffers (using the DBCC DROPCLEANBUFFERS
command of SQL Server, and by restarting PostgreSQL after clear-
ing Linux file system buffers). However, in our context, we run not
just one inverted query, but several, for a given keyword query, and
it is fine for the later inverted queries to exploit data brought into
buffer by earlier queries. Therefore we flush the buffer only once
for a single keyword query, instead of once per form query. Warm
cache numbers were generated by running the query repeatedly,
and ignoring the time for the first execution.

Since it is not possible to create keyword indices on each subset
of columns of interest, we create a single index on all columns of
each table. To perform keyword lookup on specified columns, we
use an index lookup on the all-column index, followed by filtering
to ensure the keyword is present in the specified columns. We found
that using the PostgreSQL text indexing syntax for filtering was
expensive, since it did stemming on the fly. We therefore used a
case insensitive substring match of the attributes with the keyword,
to implement the filtering step.

D.2 Results
We also ran some experiments on a 4.3 GB TPC-E dataset with

1000 total customers, scale factor of 500 and 100 work days, and
had indices on primary/foreign-key attributes. The (fake) appli-
cation had 16 forms, and we used 7 different queries. These ex-
periments were run on SQL Server 2008. The results here were
even better than for the Academic database on PostgreSQL, rang-
ing from 0.2 to 2.3 seconds, with an average time of just 0.6 sec-
onds, on flash disk with cold cache, and using the QAT method.
The results using the KAT method were very similar.

We compared the performance on hard disk versus flash, using
the QAT method, with an increasing number of keywords, using
the same set of 5 keywords as before. The results are shown in Fig-
ure 2. As mentioned earlier, cold cache numbers on hard disk are
relatively high, since most query execution plans involved indexed
nested loops, resulting in random IO, but performance is much bet-
ter on warm cache.

Figure 3: Scalability with no. of forms, Academic database.

Next, we studied the advantage of enabling the pruning optimiza-
tion, using the academic database on PostgreSQL, using a flash
disk, and the QAT method, using the same set of keywords used
earlier for testing scalability with number of keywords. The im-
provement due to pruning ranged from 20%-40% (for cold/warm
cache resp.) with just 1 keyword, to 95%-98% with 5 keywords.
As the number of keywords increased, more queries/subqueries got
pruned before execution, accounting for the increase in effective-
ness.

Figure 3 shows how the time taken increases with number of
forms. For a given number of forms n, we partition the overall set
of forms into partitions of size k, and take the average execution
time across these partitions. We use a subset of 4 of the 12 queries
described earlier for quality of ranking experiments, each with 3 to
4 keywords, and ran the experiments on flash disk. The results for
cold cache (CC) and warm cache (WC) appear to indicate that the
time taken grows highly sub-linearly with number of forms, with
a 20 fold increase in number of forms resulting in less than 2 fold
increase in time. However, there is a significant fixed overhead
for pruning, which checks, for each keyword, which tables contain
the keyword. This overhead does not increase with the number of
forms. The bars CC-PP and WC-PP show the time taken after the
above pruning step, for cold and warm cache; both these increase
by more than 6 fold when going from 5 to 80 forms. Thus, the
growth remains sub-linear even in this case.

We found that performance was relatively slow for queries where
some keyword was present in the results of some form for a very
large number of different parameter values. By default we added a
LIMIT L clause to the top level of the inverted queries, to ensure
that at most L parameter bindings are fetched for each form. This
limit was 10 for ranking by AVG, and 500 for ranking by AVG-
MULT. Recall that the top level query is in general an intersection
of the results of subqueries, one subquery per keyword. Ideally
the database optimizer should use the top-level LIMIT hint, and
generate only as many results for the subqueries as are required to
get the desired number of final results, using techniques such as
those in Bruno et al. [5]. However, we found that the optimizer
usually chose plans that generated all results for the subqueries.
While we can partially implement the approach of Bruno et al. out-
side the database, by adding LIMIT clauses to subqueries, there
are significant overheads due to the need for recomputation in case
not enough answers are generated with the current LIMIT. There
are also additional overheads for deciding when recomputation can
terminate without any further increase in the LIMIT value. Our
current implementation does not include the LIMIT optimization
on subqueries.

