
Foundations of Aggregation Constraints�Kenneth A. RossColumbia UniversityNew York, NY 10027, USAkar@cs.columbia.edu Divesh SrivastavayAT&T Bell LaboratoriesMurray Hill, NJ 07974, USAdivesh@research.att.comPeter J. StuckeyUniversity of MelbourneParkville, 3052, Australiapjs@cs.mu.oz.au S. SudarshanzIndian Institute of TechnologyPowai, Bombay 400 076, Indiasudarsha@cse.iitb.ernet.inAbstractWe introduce a new constraint domain, aggregation constraints, that is useful indatabase query languages, and in constraint logic programming languages that incor-porate aggregate functions. First, we formally study the fundamental problem of deter-mining if a conjunction of aggregation constraints is solvable, and show that, for manyclasses of aggregation constraints, the problem is undecidable. Second, we describe acomplete and minimal axiomatization of aggregation constraints, for the SQL aggre-gate functions min, max, sum, count and average, over a non-empty, �nite multiset onseveral domains. This axiomatization helps identify e�ciently solvable classes of aggre-gation constraints. Third, we present a polynomial-time algorithm that directly checksfor solvability of a conjunction of aggregation range constraints over a single multiset;this is a practically useful class of aggregation constraints. Fourth, we discuss the rela-tionships between aggregation constraints on a �nite multiset of reals, and constraintson the elements of the multiset. Finally, we show how these relationships can be usedto push constraints through aggregate functions to enable compile-time optimization ofdatabase queries involving aggregate functions and constraints.Keywords: Aggregate functions, solvability, constraint selections, query optimization�A preliminary version of this paper appeared in [RSSS94].yContact author. AT&T Bell Laboratories, Room 2C-404, 600 Mountain Avenue, Murray Hill, NJ 07974,USA, Tel: +1-(908)-582-3194, Fax: +1-(908)-582-7550, E-mail: divesh@research.att.com.zThe work of this author was performed while he was at AT&T Bell Laboratories, Murray Hill, NJ 07974,USA. 0

1 IntroductionDatabase query languages (e.g., SQL) use aggregate functions (such as min, max, sum,count and average) to obtain summary information from the database, typically in combi-nation with a grouping facility, which is used to partition values into groups and aggregateon the multiset of values within each group. Database query languages also allow con-straints (e.g., M1 > 0;M2 � 10000) to be speci�ed on values, in particular on the resultsof aggregate functions, to restrict the answers to a query.In this paper, we formally study constraints on the results of aggregate functions onmultisets; we refer to this constraint domain as aggregation constraints. This is a novelconstraint domain that is useful in database query languages, and in constraint logic pro-gramming languages that incorporate aggregate functions [MS94]. We make the followingcontributions in this paper:1. We study the fundamental problem of determining if a conjunction of aggregationconstraints is solvable, and show that, for many classes of aggregation constraints, theproblem is undecidable (Section 3).2. We describe a complete and minimal axiomatization of aggregation constraints, forthe aggregate functions min, max, sum, count and average, over a non-empty, �nitemultiset on several domains. These aggregate functions are exactly those supportedin SQL-92 [MS93]. The axiomatization enables a natural reduction from this classof aggregation constraints to the class of mixed integer/real, non-linear arithmeticconstraints (Section 4). This axiomatization also helps identify e�ciently solvableinteresting classes of aggregation constraints.3. We present a polynomial-time algorithm that checks for solvability of a conjunctionof aggregation range constraints, for the SQL aggregate functions, on a non-empty,�nite multiset of reals (Section 5 and Appendix A). Our algorithm operates directlyon the aggregation constraints, rather than on the reduced form obtained using theaxiomatization; it is not clear how to operate directly on the reduced form to attainthe same complexity.4. We discuss the relationships between aggregation constraints on a �nite multiset ofreals, and constraints on the elements of the multiset. In Section 6, we describe howto infer aggregation constraints on a multiset, given constraints on the elements ofthe multiset. In Section 7, we describe how to infer constraints on multiset elements,given aggregation constraints on the multiset.5. We show how aggregation constraints on queries (i.e., query constraints involvingaggregation) can be used for compile-time database query optimization. (Section 8).Example 1.1 (Illustrative Example)Let E denote an employee relation with attributes Emp denoting the employee identi�er,1

Dept denoting the employee's department, and Salary denoting the employee's salary. Thefollowing view V de�nes departments (and aggregates of their employees' salaries) wherethe minimum salary is greater than 0, where the maximum salary is less than or equal to10000 and where the number of employees is less than or equal to 10:Create View V (Dept, Min-Sal, Max-Sal, Sum-Sal, Count) AsSelect Dept, MIN(Salary), MAX(Salary), SUM(Salary), COUNT(Salary)From EGroup-by DeptHaving COUNT(Salary)� 10 and MIN(Salary)> 0 and MAX(Salary)� 10000Consider the query Q given bySelect *From VWhere Sum-Sal> 100000To determine (at compile-time, by examining only the view de�nition and the query,but not the database) that there are no answers to this query, we need to determine that,independent of the actual tuples in the employee relation E, the conjunction of aggregationconstraints: min(M) > 0 ^ count(M) � 10 ^ max(M) � 10000 ^ sum(M) > 100000is unsolvable, where M is a non-empty, �nite multiset of salaries. This can be determinedby observing that the results of di�erent aggregate functions on a multiset M are notindependent of each other. For example, the results of the sum, count and max aggregatefunctions are related as follows:sum(M) � count(M) �max(M).This inequality can be used to infer the unsolvability of the previous conjunction of aggre-gation constraints, and hence determine that the query Q has no answers. The techniquesdescribed in this paper can be used to e�ciently check for solvability of such aggregationconstraints.Checking solvability of aggregation constraints can be used much like checking solv-ability of ordinary arithmetic constraints in a constraint logic programming system likeCLP(R) [JMSY92]. Aggregate functions are typically applied only after multisets havebeen constructed. However, checking solvability of aggregation constraints even before themultisets have been constructed can be used to restrict the search space by not generatingsubgoals that are guaranteed to fail, as illustrated by the above view and query. 2Our work provides the foundations of the area of aggregation constraints. We believethere is a lot of interesting research to be done in the further study of aggregation con-straints, e.g., the relationships between aggregation constraints on di�erent multisets thatare related by multiset functions and predicates such as [;\;�, applications of aggrega-tion constraints to query optimization, database integrity constraints and constraint logicprogramming. 2

2 Aggregation ConstraintsThe constraint domain we study is speci�ed by the class of �rst-order languages L(J), whereJ � R, is an arithmetic domain, and R denotes the reals. For example, J can denote thereals, the integers, the non-negative integers, etc. The distinguished sorts in L(J) are:� the atomic sorts, which include J , the non-negative integers N , the positive inte-gers N+, and the sort J=N+ (e.g., N =N+ denotes the non-negative rationals, andR=N+ = R), and� themultiset sorts, which include �nite multisets of elements from J , denoted byM(J),and non-empty, �nite multisets of elements from J , denoted by M+(J).Clearly,M(J) contains M+(J).Constants of the atomic sorts are in L(J). Variables of sortM(J) andM+(J) are calledmultiset variables, and are usually denoted by S, S1, etc. For simplicity, we do not considervariables of the atomic sorts in our treatment.Multiplication and addition functions on the atomic sorts J;N ;N+ and J=N+ (andbetween these sorts) are in L(J). We require that each of J , N , N+, and J=N+ is closedunder addition and multiplication, as is any union of these domains.There are aggregate functions sum, min, max, count and average in L(J). The func-tions sum, min, and max take arguments from M+(J) and return a value of sort J . Thefunction count takes arguments from M(J) and returns a value of sort N . The functionaverage takes arguments fromM+(J) and returns a value of sort J=N+.The primitive terms of L(J) are constants of the atomic sorts, and aggregation terms,which are formed using aggregate functions on multiset variables. Thus, 7, 3:142 andmax(S) are primitive terms of L(R), where S is a multiset variable that ranges over non-empty, �nite multisets of reals. Complex terms are constructed using primitive terms andarithmetic functions such as + and �. Thus, min(S1) �max(S2) + (�3:142) � count(S2) isa complex term in L(R).A primitive aggregation constraint in L(J) is constructed using complex terms andarithmetic predicates such as �; <;=; 6=; > and �, which take arguments of the atomicsorts J , N , N+ and J=N+. Thus, sum(S1) � min(S1) + max(S2) + 3:1 is a primitiveaggregation constraint in L(R). Complex aggregation constraints can be constructed usingconjunction, disjunction and complementation, in the usual manner. However, in this paper,we shall deal only with conjunctions of primitive aggregation constraints. Note that themultiset variables cannot be quanti�ed in L(J).Given a primitive aggregation term E, an aggregation range constraint on E is a con-junction of primitive aggregation constraints, where each primitive constraint is of the formE�c or of the form c�E, � is one of < and �, and c is a constant of an atomic sort.3

2.1 SolvabilityGiven a sort J for multiset elements, an argument of an aggregate function in fmin, max,sum, count, averageg is said to be well-typed, if it matches the signature of the aggregatefunction. Thus, S in max(S) is well-typed if it is a non-empty, �nite multiset on J .The notion of assignments, �, of values to free variables (here, the multiset variables) isde�ned in the usual way; given a sort J , an assignment is said to be well-typed if each ofthe variables in the assignment is well-typed for the aggregate functions it participates in.We are interested in the following fundamental problem:Solvability: Given a conjunction C of primitive aggregation constraints, doesthere exist a well-typed assignment � of multisets to the multiset variables in C,such that C� is satis�ed?Checking for solvability of more complex aggregation constraints can be reduced tothis fundamental problem. The other important problems of checking implication (or en-tailment) and equivalence of pairs of aggregation constraints can be reduced to checkingsolvability of other aggregation constraints, in polynomial-time.2.2 A TaxonomyWe present below several factors that a�ect the complexity of checking for solvability, andin later sections present algorithms for checking solvability of special cases of aggregationconstraints, de�ned on the basis of these factors.Domain of multiset elements : This determines the feasible assignments to the mul-tiset variables in checking for solvability. Possibilities include integers and reals;correspondingly, the multiset variables range over �nite multisets of integers or �-nite multisets of reals. In general, restricting the domain of the multiset elements tointegers increases the di�culty of the problem.Operations : If we allow just addition and multiplication, solving constraints may beeasier than if we also allowed exponentiation, for example.Aggregate functions : This determines the possible aggregate functions that are allowedin constructing aggregation terms. Possibilities include min,max,sum,count,average,etc. In general, the complexity of checking for solvability increases if more aggregatefunctions are allowed.Class of constraints : This determines the form of the primitive aggregation constraintsconsidered. There are at least two factors that are relevant:4

1. Linear vs.Non-linear constraints: Checking for solvability of linear constraintsis, in general, easier than for non-linear constraints. By restricting the form evenfurther, such that each primitive aggregation constraint has at most one or twoaggregation terms, the problem can become even simpler.2. Constraint predicates allowed: The complexity of checking for solvability alsodepends on which types of the constraint predicates are allowed. We can chooseto allow only equational constraints (=) or add inequalities (<;�) or possiblyeven disequalities (6=). In general, the di�culty of the solvability problem in-creases with each new type.Separability : This also determines the form of the primitive aggregation constraintsconsidered. The two possible dimensions in this case are:1. Multiset variables: A conjunction of primitive aggregation constraints is saidto be multiset-variable-separable if each primitive aggregation constraint involvesonly one multiset variable. For example, the conjunction of primitive aggrega-tion constraints min(S1) +max(S1) � 5 ^ sum(S2) � 10 is multiset-variable-separable, while min(S1) +min(S2) � 10 is not. In general, multiset-variable-separability makes the solvability problem easier since one can check solvabilityof the aggregation constraints separately for each multiset variable.2. Aggregate functions: A conjunction of primitive aggregation constraints issaid to be aggregate-function-separable if each primitive aggregation constraintinvolves only one aggregate function. For example, the conjunction min(S1) �min(S2) ^ sum(S1) � sum(S2) + 2 is aggregate-function-separable. Note thatthis conjunction is not multiset-variable-separable.3 Undecidability ResultsWe show undecidability of checking solvability of conjunctions of primitive aggregationconstraints by a linear-time, linear-space reduction from quadratic arithmetic constraintsover the positive integers to linear aggregation constraints over non-empty, �nite multisetsof reals. The reduction makes essential use of the relationships sum(S) = count(S) �average(S), and min(S) = max(S) implies that sum(S) = count(S) �min(S).Theorem 3.1 Checking solvability of a conjunction C of linear aggregation constraints over�nite multisets of reals is undecidable if:1. C involves the sum, count and average aggregate functions, or2. C involves the sum, min, max and count aggregate functions.5

Proof: Consider a conjunction C of quadratic primitive arithmetic constraints over thepositive integers. Replace each quadratic termXj�Xk (whereXj andXk are not necessarilydistinct variables) in C by a \new" positive integer variable Xi, and conjoin a quadraticequation of the form Xi = Xj � Xk to C. The resulting conjunction of constraints C1is equivalent to C (on the variables of C). Further, C1 contains only linear arithmeticconstraints and quadratic equations of the form Xi = Xj �Xk over the positive integers.For each variable Xi in C1, the reduction algorithm creates a new multiset variableSi, and replaces each occurrence of Xi in the linear arithmetic constraints of C1 by theaggregation term count(Si) + 1. For each quadratic equation of the form Xi = Xj � Xkin C1, the reduction algorithm creates a new multiset variable Sijk , and replaces the abovequadratic equation by the following three linear aggregation equations:count(Si) + 1 = sum(Sijk)count(Sj) + 1 = count(Sijk)count(Sk) + 1 = average(Sijk)The resulting conjunction of linear aggregation constraints C2 is solvable over �nite multisetsof reals if and only if the original conjunction of quadratic constraints C is solvable over thepositive integers.There is a similar reduction using the aggregate functions sum, min, max and count,where the quadratic arithmetic equationXi = Xj�Xk is replaced by the following four linearaggregation equations: count(Si)+1 = sum(Sijk); count(Sj)+1 = count(Sijk); count(Sk)+1 = min(Sijk) and count(Sk) + 1 = max(Sijk). Again, the resulting conjunction of linearaggregation constraints is solvable over �nite multisets of reals if and only if the originalconjunction of quadratic constraints is solvable over the positive integers.The theorem follows from the undecidability of the solvability of quadratic arithmeticconstraints over the positive integers (e.g., Diophantine equations). 2The proof of the above theorem also shows the following result:Corollary 3.1 Checking solvability of a conjunction C of linear aggregation constraintsover �nite multisets of integers is undecidable if:1. C involves the sum, count and average aggregate functions, or2. C involves the sum, min, max and count aggregate functions.2 A natural question that can be raised is the complexity of checking for solvability whenfewer aggregate functions occur in the aggregation constraints. The following result estab-lishes the hardness of some simple special cases.6

Theorem 3.2 Checking solvability of a conjunction of linear aggregation constraints over�nite multisets of values drawn from any domain, involving just the count aggregate functionis NP-complete.Checking solvability of a conjunction of linear aggregation constraints, over �nite mul-tisets of integers, involving either min or max or sum is NP-complete.Proof: For integer linear arithmetic constraints, there is a reduction to linear aggregationconstraints, where integer variable Xi is replaced by either of:� count(Si1) � count(Si2), where Si1 and Si2 are new multiset variables ranging over�nite multisets of values drawn from any domain, or� any of the aggregation termsmin(Si); max(Si) or sum(Si), where Si is a new multisetvariable ranging over non-empty, �nite multisets of integers.There is a similar reduction from linear aggregation constraints to integer linear arithmeticconstraints as well. Checking for solvability of linear arithmetic constraints over the integersis NP-complete [Sch86]. The result follows. 24 An AxiomatizationIn this section, we present a complete and minimal set of relationships between the aggre-gate functions on a single multiset. The intuition here is that the domain of aggregationconstraints only allows primitive aggregate functions on individual multisets. Interactionsbetween di�erent multisets is possible only via arithmetic constraints between the resultsof the aggregate functions on individual multisets. Consequently, relationships between theresults of aggregate functions on di�erent multisets can be inferred using techniques fromthe domain of ordinary arithmetic constraints (see [Sch86], for example).De�nition 4.1 (Aggregate Assignment and Aggregate Solvability) An aggregateassignment maps each aggregation term of the form F (S), where F is an aggregate functionand S is a free variable, to a value.Given a sort J , an aggregate assignment is said to be well-typed if each term F (S) ismapped to a value that is in the sort of the result of F (S).An aggregation constraint is said to be satis�ed by an aggregate assignment if theaggregate assignment is well-typed and the constraint obtained by replacing each F (S) byits value in the aggregate assignment is solvable.An aggregation constraint is said to be aggregate solvable if there exists an aggregateassignment that satis�es the constraint. 2 7

A set of aggregation constraints A(S) that de�nes the relationships between the resultsof aggregate functions on a multiset S is said to be an axiomatization of the aggregatefunctions on S.Intuitively, to ensure solvability of a given aggregation constraint, we must check theaggregate solvability of the conjunction of the aggregation constraint with the axiomatiza-tions A(Si) for every multiset Si in the aggregation constraint. (The axiomatization maydepends on the sort of Si.) Checking for aggregate solvability amounts to treating eachF (Si) as a distinct variable (of the appropriate sort), and using techniques from the domainof ordinary arithmetic constraints.De�nition 4.2 (Soundness and Completeness) A set of axioms A(S) is sound for agiven sort of multisets if every �nite multiset S of the appropriate sort satis�es A(S).A set A(S) of axioms is complete for a given sort of multisets and a given collectionof aggregate functions if for every aggregate assignment that assigns values to the givenaggregate functions on S, and that satis�es the axioms A(S), there exists a �nite multisetS of the appropriate sort, with the corresponding aggregate values. 2Theorem 4.1 Suppose a set of axioms A(S) is sound and complete for a given sort and agiven collection of aggregate functions. An aggregation constraint C using the given aggregatefunctions on multisets S1; : : : ; Sn of the given sort is solvable i� C ^A(S1)^ : : :^A(Sn) isaggregate solvable.Proof: For the \only if" direction, if the constraints are solvable by an assignment to themultiset variables S1; : : : ; Sn, we can assign to each aggregate expression F (Si) the valuede�ned by the assignment to Si. The soundness of the axiomatization implies aggregatesolvability.For the \if" direction, suppose we have an aggregate assignment that satis�es C^A(S1)^: : :^A(Sn). For each variable Si, the completeness of the axiomatization implies that thereis a multiset S 0i of the appropriate sort such that A(Si) is solvable using S 0i, and the resultsof the aggregate functions on S 0i are the same as in the aggregate assignment. Hence C issolvable. 2For the SQL aggregate functions sum, min, max, count and average, on the sortsM+(J) for several di�erent J , there is a sound and complete axiomatization as shown bythe following theorem. The only aggregate function in the above set applicable to M(J),for any J , is count. The axiomatization for this case is trivial.Theorem 4.2 The following relationships provide a sound, complete and minimal axioma-tization of the relationships between aggregate functions min, max,sum,count and averageon a �nite multiset S from M+(J), where J is either the reals, the rationals, the integers,the non-negative integers, or the integers divisible by any �xed number k.1. min(S) � max(S). 8

2. count(S) �min(S) +max(S) � sum(S) +min(S).3. sum(S) +max(S) � min(S) + count(S) �max(S).4. sum(S) = average(S) � count(S).Proof: That each of these axioms is sound follows from the mathematical properties of thevarious aggregate functions. We now consider completeness.Consider an arbitrary non-empty multiset S = fX1; � � � ; Xng where n � 1 and X1 �X2 � � � � � Xn. By de�nition, we have min(S) = X1, max(S) = Xn, sum(S) = X1+ � � �+Xn, count(S) = n, and average(S) = (X1 + � � �+Xn)=n. We consider several cases.count(S) = 1 : The axioms imply that min(S) = max(S) = sum(S) = average(S). Forany choice of min(S), we let X1 = min(S), and we have the required multiset.count(S) = 2 : The axioms imply that min(S) � max(S), sum(S) = min(S) +max(S),sum(S) = 2 � average(S). Choose X1 = min(S), X2 = max(S), and we have therequired multiset.count(S) = 3 : The axioms imply thatmin(S) � max(S), sum(S) � min(S)+2�max(S),sum(S) � 2 �min(S) +max(S), sum(S) = 3 � average(S). Choose X1 = min(S),X3 = max(S), X2 = sum(S)�min(S)�max(S) and we have the required multiset.count(S) � 4 : The axioms imply that min(S) � max(S), sum(S) � min(S) + (n � 1) �max(S), sum(S) � (n� 1) �min(S)+max(S), sum(S) = n �average(S). We chooseX1 = min(S), Xn = max(S). We now subdivide into several cases:1. J is the reals or the rationals. Choose X2 = : : : = Xn�1 = (sum(S)�min(S)�max(S))=(n� 2), and we have the required multiset.2. J is the integers. Let x = (sum(S)�min(S)�max(S))=(n� 2). Choose X2 =� � � = Xj = bxc and Xj+1 = � � � = Xn�1 = dxe, where j = 1 + (n � 2)(dxe � x),and we have the required multiset.3. If J is the non-negative integers, or the even integers, or the integers divisible byk for any �xed k, then a construction similar to that of the previous case applies.This completes the proof of completeness. Minimality follows from the fact that none ofthe axioms is entailed by the remaining axioms.1 2Other relationships between the results of aggregate functions can be inferred using thesebasic relationships. For example, we can infer that count(S) = 1 implies that min(S) =max(S). Similarly, we can infer that the constraint max(S) < average(S) is unsolvable.The above set of axioms contains nonlinear constraints. We now show that linear con-straints are not su�cient to axiomatize aggregation constraints.1Axiom (1) is implied by axioms (2) and (3) only for the case that count(S) � 3.9

Theorem 4.3 There is no �nite set of linear aggregation constraints over non-empty, �nitemultisets of reals and integers that soundly and completely axiomatizes the relationshipsbetween the aggregate functions min, max, sum and count.Proof: From axioms (1){(3), the following statement Q is provable:min(S) = max(S)^min(S) = count(S)) sum(S) = count(S) � count(S)Given the linear aggregation constraint (min(S) = max(S)^min(S) = count(S)), the setof possible values for sum(S) is f1; 4; 9; 16; : : :g, which cannot be expressed as the solutionof a �nite set of linear constraints. Thus Q cannot be entailed by a �nite linear set ofaxioms.For any sound �nite linear axiomatization A, Q is not entailed by A. It follows that itis possible to choose values ofmin(S),max(S), sum(S), and count(S) such thatmin(S) =max(S),min(S) = count(S) and sum(S) 6= count(S)�count(S), but for which these valuessatisfy the axioms of A. Since no such multiset S exists, A is not complete. 25 Solvable Special CasesIn this section, we present some special cases of aggregation constraints where checking forsolvability is tractable, i.e., solvability can be checked in time polynomial in the size of therepresentation of the constraints.5.1 Directly Using the AxiomatizationWe briey describe two cases where the axiomatization presented in Section 4 can be used toobtain polynomial-time algorithms for checking solvability. The intuition here is that in eachof the two cases the axiomatization of the relationships between the results of the variousaggregate functions can be simpli�ed to a conjunction of linear arithmetic constraints. Thesesimpli�ed axioms can then be conjoined with the given aggregation constraints, each distinctaggregation term can be replaced by a distinct arithmetic variable (of the appropriate sort)and solvability can be determined using techniques from existing constraint domains.The �rst case is when the conjunction of constraints involves onlymin and max. In thiscase, only the relationshipmin(S) � max(S) needs to be added. If the original conjunctionof aggregation constraints is linear and the multiset elements are drawn from the reals, thetransformed conjunction of arithmetic constraints is also linear over the reals; solvability cannow be checked in time polynomial in the size of the aggregation constraints, using any ofthe standard techniques (see [Sch86], for example) for solving linear arithmetic constraintsover the reals.The second case is when the conjunction of linear aggregation constraints explicitlyspeci�es the cardinality of each multiset, i.e., for each multiset variable Si, we know that10

count(Si) = ki, where ki is a constant. In this case, each of the non-linear constraints inour axiomatization can be simpli�ed to a linear constraint; checking for solvability againtakes time polynomial in the size of the aggregation constraints if the multiset elements aredrawn from the reals.5.2 Linear Separable Aggregation ConstraintsIn this section, we examine a very useful class of aggregation constraints, and present apolynomial-time algorithm to check for solvability of constraints in the class. Our techniqueoperates directly on the aggregation constraints, rather than on their reduction to arithmeticconstraints. The reduced form of this class includes mixed integer/real constraints, and isnon-linear; it is not clear how to operate directly on the reduced form and attain the samecomplexity as our algorithm. We specify the class of constraints in terms of the factors,described in Section 3, that a�ect the complexity of checking for solvability. We require thefollowing:1. The domain of multiset elements is R, the reals.2. The constraints are linear and speci�ed using �; <;=; > and �.3. The constraints are multiset-variable-separable and aggregate-function-separable.The above restrictions ensure that we can simplify the given conjunction of aggregationconstraints to range constraints on each aggregate function on each multiset variable. Werefer to this class of aggregation constraints as LS-aggregation-constraints.2Most aggregation constraints occurring in queries are multiset-variable-separable. Onlywhen we consider constraint propagation or fold/unfold transformations are we likely toobtain non-multiset-variable-separable aggregation constraints. The further restrictions forLS-aggregation-constraints are not onerous; Example 1.1 uses such constraints.The general algorithm along with a proof of correctness is presented in Appendix A.Here, to present the main ideas underlying the general algorithm, we describe the algorithmfor the simpler case when the only aggregate functions present aremin;max; sum and count,i.e., there are no aggregation constraints involving average.5.2.1 Multiset Ranges: No averageThe heart of our algorithm is a function Multiset Ranges that takes four �nite and closedranges, [ml; mh], [Ml;Mh], [sl; sh], and an integer range [kl; kh], and answers the followingquestion:2LS = linear, separable. 11

Do there exist k > 0 numbers, k between kl and kh, such that the minimum ofthe k numbers is betweenml andmh, the maximum of the k numbers is betweenMl and Mh, and the sum of the k numbers is between sl and sh?When a > b, the closed range [a; b] is empty. We use operations such as \overlaps" onpairs of ranges; these can be de�ned easily in terms of the primitive comparison operationsbetween endpoints of the two ranges. Note that the empty range does not overlap with anyrange.function Multiset Ranges (ml; mh;Ml;Mh; sl; sh; kl; kh) f/* We assume �nite and closed ranges. */(1) /* Tighten min;max and count bounds. */(a) if (Ml < ml) then Ml = ml.(b) if (mh > Mh) then mh = Mh.(c) if (kl < 1) then kl = 1.(2) /* Obviously unsolvable cases. */(a) if (kl > kh or ml > mh or Ml > Mh or sl > sh) then/* infeasible ranges */return 0./* Case A: Elements can be negative, positive, or 0. */(3) if ([ml;Mh] overlaps [0; 0]) then(a) if ([sl; sh] does not overlap [(kh � 1) �ml +Ml; mh + (kh � 1) �Mh]) thenreturn 0.(b) else return 1./* Case B: All elements are negative. Switch everything. */(4) if (Mh < 0) then(a) [t1; t2] = [�Mh;�Ml]; [Ml;Mh] = [�mh;�ml]; [ml; mh] = [t1; t2].(b) t = �sl; sl = �sh; sh = t./* Continue with Case C *//* Case C: All elements are positive. */(5) /* ml > 0. */(a) if ([sl; sh] does not overlap [(kl � 1) �ml +Ml; mh + (kh � 1) �Mh]) thenreturn 0. /* sum is too low or too high. */(b) de�ne integers k1 and k2 by sl = mh + (k1 � 1) �Mh � k2; 0 � k2 < Mh./* Multiset cardinality must be � k1, for sum � sl. */(c) de�ne integers k3 and k4 by sh = (k3 � 1) �ml +Ml + k4; 0 � k4 < ml./* Multiset cardinality must be � k3, for sum � sh. */(d) if (([k1; k3] is feasible) and ([k1; k3] overlaps [kl; kh])) thenreturn 1. /* any k in the intersection is a witness. */(e) else return 0.g 12

Theorem 5.1 Function Multiset Ranges returns 1 i� there exist k > 0 (real or integer)numbers, kl � k � kh, such that the minimum of the k numbers is in [ml; mh], the maximumof the k numbers is in [Ml;Mh], and the sum of the k numbers is in [sl; sh].Further, Multiset Ranges is polynomial in the size of representation of the input.Proof: We prove the �rst part of the theorem by showing that the algorithm returns 1 ifand only if the given constraints along with the four axioms of Theorem 4.2 are solvable.Steps (1a) and (1b) generate all constraints on min and max that can be inferred fromthe given range constraints on min and max and the axioms. If Step (2) returns 0, theresultant set of constraints is clearly unsolvable. Else, the conjunction of the given rangeconstraints on min;max and count along with all the axioms is solvable. We now have toconsider only the constraints on sum.All elements in the multiset have to lie in the range [ml;Mh]; the minimumand maximumelements are additionally constrained to lie in the ranges [ml; mh] and [Ml;Mh] respectively.Axioms (2) and (3) are satis�ed if and only if the sum is in the union of the ranges:kh[i=kl[(i� 1) �ml +Ml; mh + (i� 1) �Mh]In general, this union of ranges need not be convex; there may be gaps.Thus, the conjunction of the given constraints and axioms (1){(4) is solvable if andonly if there is an i such that the given range on sum, [sl; sh] overlaps with the range:[(i� 1) �ml +Ml; mh + (i� 1) �Mh]. The algorithm for testing the above has three cases,based on the location of the [ml;Mh] range with respect to zero.The �rst case is when the [ml;Mh] range includes zero; in this case, the union of theranges from which the sum can take values is convex, and is given by:[(kh � 1) �ml +Ml; mh + (kh � 1) �Mh]Step (3) checks that [sl; sh] overlaps with this range.The second case is when the [ml;Mh] range includes only negative numbers, and thethird case is when the [ml;Mh] range includes only positive numbers. These two cases aresymmetric, and we transform the second case into the third case in Step (4), and consideronly the third case in detail.In the third case, the sum lies within the range [(kl�1)�ml+Ml; mh+(kh�1)�Mh], butnot all values in this range are feasible | there may be gaps. The conjunction of constraintsis unsolvable if and only if the [sl; sh] range lies outside [(kl�1)�ml+Ml; mh+(kh�1)�Mh],or entirely within one of the gaps. Step (5a) checks for the �rst possibility, and Steps (5b){(5e) check for the second possibility. The number k1 gives the smallest cardinality that themultiset can have subject to the constraints on min and max, such that its sum is � sl.Similarly, the number k3 gives the largest cardinality that the multiset can have subject tothe constraints on min and max, such that its sum is � sh.13

Clearly, if [k1; k3] is infeasible, the constraints are unsolvable. If [k1; k3] is feasible,let j be any integer in [k1; k3]. The possible values of sum for this j are all values in[(j�1)�ml+Ml; mh+(j�1)�Mh]. Now by the de�nition of k1 the range for j = k1 is notentirely to the left of [sl; sh], and the range for j = k3 is not entirely to the right of [sl; sh].But since k1 � k3, both these ranges must overlap [sl; sh]. It is then easy to show that forall j in [k1; k3] the range for j overlaps [sl; sh]. Since [k1; k3] overlaps [kl; kh], there is a jelement multiset that satis�es all the constraints. This concludes the proof of the �rst partof the theorem.The proof of the second part of the theorem is straightforward because the number ofsteps in Multiset Ranges is bounded above by a constant, and each step is polynomial in thesize of representation of the input. 2Checking for solvability of a conjunction of LS-aggregation constraints proceeds as fol-lows. Since the aggregation constraints are multiset-variable-separable, the primitive aggre-gation constraints can be partitioned based on the multiset variable, and the conjunction ofaggregation constraints in each partition can be solved separately. The overall conjunctionis solvable i� the conjunction in each partition is separately solvable.Though LS-aggregation-constraints are restricted, they are strong enough to infer usefulnew aggregate constraint information. They can be used to infer some information aboutan arbitrary aggregation constraint C by determining an LS-aggregation-constraintH thatis implied by C; any aggregation constraints implied by H are then also implied by C.5.2.2 Dealing with average in Multiset RangesIn Appendix A, we describe Gen Multiset Ranges, which is a generalization of the functionMultiset Ranges, described in the previous section. It takes a �nite and closed range [al; ah]for average, in addition to the ranges for min;max; sum and count, and determines inpolynomial-time if there is a non-empty, �nite multiset of real numbers that satis�es all theaggregation constraints. Gen Multiset Ranges is based on three key observations, presentedhere.� Requiring the minimum value of a multiset to be in the (consistent) range [ml; mh],and the maximumvalue of the multiset to be in the (consistent) range [Ml;Mh], allowsus to infer that the sum of the values of an i element multiset must be in the range:[(i� 1) �ml +Ml; mh + (i� 1) �Mh]Given that the average value of a multiset is in the (consistent) range [al; ah], we caninfer that the sum of the values of an i element multiset must be in the range:[i � al; i � ah]The �rst key observation used in Gen Multiset Ranges combines these two ideas asfollows. Given range constraints on the minimum value, on the maximum value, and14

on the average value of a multiset, the sum of the values of an i element multisetmust be in the intersection of the inferred ranges for sum, based on min and max, onthe one hand, and based on average, on the other. When the count of the multiset isknown to be in the range [kl; kh], we can infer that the sum must be in the followingunion of ranges:kh[i=kl([(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah])� The second key observation used in Gen Multiset Ranges is as follows: If i1 is thesmallest integer i � kl for which the ranges [(i� 1) �ml +Ml; mh + (i� 1) �Mh] and[i � al; i � ah] overlap, then for all i � i1, the two ranges overlap.This observation can be inferred from the following facts: (a) the maximum value ofa multiset can be no smaller than the minimum value (i.e., Ml � ml and Mh � mh),(b) the average value of a multiset can be no smaller than the minimum value (i.e.,al � ml), and no larger than the maximum value of the multiset (i.e., ah �Mh).� The third key observation, repeatedly used in Gen Multiset Ranges, involves two prop-erties of ranges: (a) given three ranges such that every pair from this collection overlap,then there exists at least one point that is common to all three ranges, and (b) giventwo ranges that overlap, a third range does not overlap with the intersection of thetwo ranges if and only if the third range does not overlap with at least one of the tworanges.Thus, in checking that the given range [sl; sh] on the sum of the values of a multisetoverlaps with the inferred union of ranges for sum (see �rst observation above), itsu�ces to check that there exists at least one i in [i1; kh] such that [sl; sh] overlapswith [(i� 1) �ml+Ml; mh+ (i� 1) �Mh], as well as with [i � al; i � ah]. Each of thesechecks can be independently done using the technique described in Multiset Ranges.6 Using Constraints on Multiset ElementsBy using the constraints that are known on the elements of a multiset, we can infer con-straints on the results of aggregate functions on the multiset. The following example illus-trates this:Example 6.1 (Multiset Element Constraints)Consider again the view from Example 1.1.Create View V (Dept, Min-Sal, Max-Sal, Sum-Sal, Count) AsSelect Dept, MIN(Salary), MAX(Salary), SUM(Salary), COUNT(Salary)From EGroup-by DeptHaving COUNT(Salary)�10 and MIN(Salary)>0 and MAX(Salary)�1000015

In addition to the constraints on the results of the aggregate functions present in thebody of the rule, constraints may be known on tuples of the employee relation E; for example,each employee may be known to have a salary between 1000 and 5000. If the employeerelation is a database relation, these constraints may be speci�ed as integrity constraintson the database. If the employee relation is a derived view relation, these constraints maybe computed using the integrity constraints on the database relations and the de�nition ofthe employee relation (see [SR93], for example).Constraints on the tuples of the employee relation can be used to infer constraints onthe results of the aggregate functions (and hence on the tuples of V). For example, if eachemployee is known to have a salary between 1000 and 5000, then the minimum salary andthe maximum salary of each department in the view can be inferred to be between 1000and 5000.Consider the querySelect *From VWhere Sum-Sal>50000.Given the constraints in the Where clause and in the view de�nition, it is possible forthis query to have answers. However, if we take the constraints on the salaries of eachemployee into account, we can determine that min(M) � 1000 ^ max(M) � 5000, whereM is the multiset of salaries of employees in some department. In conjunction with theaggregation constraint count(M) � 10, it is now possible to determine that the query canhave no answers. 2Let each element E of multiset S satisfy constraint C(E), i.e., 8E 2 S; C(E). Thefollowing result provides a technique to infer constraints that hold on the results of aggregatefunctions on multiset S.Theorem 6.1 Let C(E) be an arithmetic constraint (in disjunctive normal form, for sim-plicity). Consider a �nite, non-empty multiset S of reals. Let A(S) be the conjunction ofthe axioms relating the results of aggregate functions min, max, sum, count and averageon multiset S. Suppose 8E 2 S; C(E). Then, the following constraint holds:C(min(S)) ^ C(max(S)) ^ (count(S) > 0) ^ A(S):Proof: We show soundness by showing the soundness of each conjunct in C(min(S)) ^C(max(S)) ^ (count(S) > 0) ^ A(S). Since min(S) and max(S) are both elements ofmultiset S, they must satisfy the constraint C, by assumption. The constraint count(S) > 0is equivalent to the assumption that the multiset S is non-empty. The soundness of A(S)follows from Theorem 4.2. 2Although the constraint C(min(S)) ^ C(max(S)) ^ (count(S) > 0) ^ A(S) is sound,it may not, in general, be the tightest possible constraint that holds on the results of the16

aggregate functions, i.e., the above constraint may be incomplete. The following examplespresent several classes of constraints for which the above constraint is incomplete. Subse-quently, we describe a constraint class for which the above constraint is indeed complete.Example 6.2 (Incompleteness with Disjunctive Linear Constraints)Consider a �nite, non-empty multiset S of reals. Let C(E) � (E = 0 _ E = 2) be theconstraint known to be satis�ed by each element E of the multiset S. It is obvious thatsum(S) is non-negative and even. (Evenness can be expressed using aggregation constraintsby asserting that sum(S) = 2 � count(S1), where S1 is a new multiset variable.3) However,this cannot be inferred using the constraint in Theorem 6.1. Intuitively, this is because theconstraint C(min(S)) ^ C(max(S)) does not imply that each element of the multiset iseither 0 or 2, which is the case in this example. 2Example 6.3 (Incompleteness with Non-Linear Constraints)Consider a �nite, non-empty multiset S of reals. Let C(E) � (E � E = 2 � E) be theconstraint known to be satis�ed by each element E of the multiset S. Since (E �E = 2 �E)is equivalent to E = 0 _E = 2, incompleteness follows from the previous example.. 2Theorem 6.2 Let C(E) be a range constraint on E. Consider a �nite, non-empty multisetS of reals. Let A(S) be the conjunction of the axioms relating the results of aggregatefunctions min, max, sum, count and average for multiset S. Suppose 8E 2 S; C(E).Then,C(min(S)) ^ C(max(S)) ^ (count(S) > 0) ^ A(S)is a complete aggregation constraint satis�ed by the results of the aggregate functions min,max,sum,count and average on multiset S.Proof: Consider the aggregation constraintC(min(S)) ^ C(max(S)) ^ (count(S) > 0) ^ A(S):Since C is a range constraint, the constraint C(min(S)) ^ C(max(S)) implies that eachelement of the multiset lies in the range given by C. Further, the constraint count(S) > 0implies that the multiset is non-empty. 2Note that the constraint C(E) allowed on the multiset elements is quite restricted.For example, constraints of the form 8E1; E2 2 S;E1 � 2 + E2, i.e., constraints thatrelate di�erent elements of the multiset, are not allowed. Constraints of the form, 8E 2S;E = count(S) are not allowed either since the constraint involves an aggregate function.Existential quanti�cation on the set elements, such as 9E 2 S;E = 2 is not allowed either.Although the class of constraints allowed on multiset elements is small, it is of signi�-cant practical value in applications such as database query optimization. Database queriestypically specify only simple range constraints, as is the case in Example 6.1.3Note that C(E) � E = 2 � count(S1), where S1 is a new multiset variable, forces each element of themultiset S to be the same non-negative even integer, rather than S being any multiset of non-negative evenintegers. 17

7 Inferring Constraints on Multiset ElementsConsider a query language that allows the construction of multisets, as well as multisetelement enumeration. Given aggregation constraints on a multiset, it is now useful to beable to infer constraints on the elements of this multiset. Let B be a base relation with asingle attribute Mset containing a multiset of elements. The following example, using anSQL-like syntax for unnesting, illustrates this.Example 7.1 (Inferring Multiset Element Constraints)Consider the following program:Create View V AsSelect XFrom BWhere X In B.MsetSuppose we are given the following (integrity) constraint on the relation B: 8M;B(M))(min(M) > 5). Then we can infer the following constraint on the relation V: 8X; V (X))(X > 5). 2The following result is straightforward.Theorem 7.1 Consider a conjunction of aggregation constraints C(S) on a single multisetdenoted by S. Let A(S) be the axioms on a multiset, as in Theorem 4.2. Let E(E) bethe conjunction of constraints that can be inferred on the variable E from the followingconjunction of constraints:C(S) ^ A(S) ^ (E � min(S)) ^ (E � max(S)):Then, it is the case that 8E 2 S; E(E). 2We conjecture that, if E(E) is a conjunctive constraint linear in E, it is the tightestconstraint in the class of conjunctive constraints linear in E that hold on elements of themultiset. The conjecture does not hold if either disjunction or non-linearity is allowed, asthe following example demonstrates.Example 7.2 (Incompleteness with Disjunctions or Non-Linearity)Consider the following conjunction C of constraints:sum(S) = 13 ^ count(S) = 4 ^ min(S) = 1 ^ max(S) = 10:According to the above conjecture, the tightest conjunction of constraints linear in E is:8E 2 S; (E � 1 ^ E � 10):However, the only multisetS that satis�es C is f1; 1; 1; 10g, for which the stronger disjunctiveconstraint 8E 2 S; (E = 1 _ E = 10) holds. Note that this disjunctive constraint isequivalent to the non-linear conjunctive constraint 8E 2 S; (E �E + 10 = 11 �E). 218

8 Query Constraints and RelevanceQueries can have constraints associated with them. Intuitively, only answers that satisfythese constraints are \relevant" to the query. Such constraints are referred to as query con-straints, and are used extensively in query optimization (e.g., [SR91, SR93, SS94, LMS94]).Query constraints in the presence of aggregate functions have been considered in [SR91,LMS94]. However, they consider special cases. Sudarshan and Ramakrishnan [SR91] essen-tially consider dynamic order constraints of the form X � f1 and X � f2, where f1 is the\current" value of min(S) and f2 is the \current" value ofmax(S), and S is a multiset thatis incrementally computed during program evaluation. Levy et al. [LMS94] only considerconstraints of the form max(S) � c and min(S) � c, where c is a constant.The following examples illustrate the bene�ts of inferring query constraints on multisetelements, given query constraints on the results of aggregate functions on the multiset, incases that are not handled by earlier techniques.Example 8.1 (Inferring Query Constraints)Let P be a base relation with attributes X and Y. Consider the following view:Create View V (X,Max) AsSelect X, MAX(Y)From PGroup-by Xand the following query:Select X, MaxFrom VWhere Max�XConsider a tuple (x; y) of P satisfying y < x. Two cases need to be considered. First,when y is not the maximum value in the group for x. In this case, the tuple (x; y) isirrelevant for computing V. (Note that a (x; y) tuple of P, where y is not the maximum valuein the group for x, is irrelevant whether or not y < x.) Next, consider the case when y is themaximum value in the group for x. Then, the tuple (x; y) is in the extension of V; however,this tuple does not satisfy the given query constraint. In either case, if y < x, the tuple(x; y) of P is irrelevant to the given query. Hence, the query constraint P(X; Y) : Y � Xcan be inferred on the relation P; this can be used to optimize query evaluation.A similar observation holds for the querySelect X, MaxFrom VWhere Max=X 19

Since Max=X)Max�X, the previous arguments can be used to infer the query constraintP(X; Y) : Y � X on the relation P. 2The following theorem indicates how aggregation constraints can be used in query op-timization.Theorem 8.1 Let view V be de�ned as follows.Create View V (X1, � � �, Xn, Max) AsSelect X1, � � �, Xn, MAX(Y)From PGroup-by X1, � � �, Xnwhere X1, � � �, Xn and Y are distinct attributes of P . Let �X denote the attributes X1,� � �, Xn, and let �Z denote the attributes of P other than �X and Y. Suppose we are givena query on V with query constraint C(�X; Max) on the tuples in V. Let f(�X) � Max be aconstraint that is implied by the constraint C(�X; Max). Then the answer to the query is thesame if the de�nition of V is replaced withCreate View V (X1, � � �, Xn, Max) AsSelect X1, � � �, Xn, MAX(Y)From PWhere f(�X) �YGroup-by X1, � � �, XnProof: Consider any tuple (�x; �z; y) of P that does not satisfy f(�x) � y. Two cases need tobe considered. First, when y is not the maximum value in the group for �x. In this case, thetuple (�x; �z; y) does not contribute to any tuple of V. Next, consider the case when y is themaximum value in the group for �x. Then, the tuple (�x; y) is in the extension of V; however,this tuple does not satisfy the given query constraint on V. In either case, if f(�x) � y is notsatis�ed, the tuple (�x; �z; y) of P is irrelevant to the given query. 2A consequence of this theorem is that the constraint f(�X) �Y can be pushed into theevaluation of P. If P is itself a view, or if f(�X) �Y allows a more e�cient indexed lookupof P, then we can potentially improve the performance of the query. Theorem 8.1 can beused for top-down query evaluation or bottom-up query evaluation [SR93, SS94]. A resultsimilar to Theorem 8.1, but with the aggregate function min used in the rule instead ofmax, and a constraint of the form f(�X) �Min instead of f(�X) �Max, also holds.We conjecture that the query constraint derived by the above theorem is the strongestconjunctive query constraint that is linear in Y that can be derived on relation P.9 Conclusions and Future WorkWe have presented a new and extremely useful class of constraints, aggregation constraints,and studied the problem of checking for solvability of conjunctions of aggregation con-straints. There are many interesting directions to pursue. An important direction of active20

research is to signi�cantly extend the class of aggregation constraints for which solvabilitycan be e�ciently checked. We believe that our algorithm works on a larger class of ag-gregation constraints than presented here|for instance, we believe that our algorithm willwork correctly even if we relax the conditions to not require min and max to be separated;characterizing this class will be very useful.Combining aggregation constraints with multiset constraints that give additional infor-mation about the multisets (using functions and predicates such as [;2;�, etc.) will bevery important practically.Another important direction is to examine how this research can be used to improvequery optimization and integrity constraint veri�cation in database query languages suchas SQL. Sudarshan and Ramakrishnan [SR91] and Levy et al. [LMS94] consider how touse simple aggregate conditions for query optimization; it would be interesting to see howtheir work can be generalized. It would also be interesting to see how to use aggregationconstraints in conjunction with Stuckey and Sudarshan's technique [SS94] for compilationof query constraints.We believe that we have identi�ed an important area of research, namely aggregationconstraints, in this paper and have laid the foundations for further research.AcknowledgementsThe research of Kenneth A. Ross was supported by NSF grant IRI-9209029, by a grant fromthe AT&T Foundation, by a David and Lucile Packard Foundation Fellowship in Science andEngineering, by a Sloan Foundation Fellowship, and by an NSF Young Investigator Award.The research of Peter J. Stuckey was partially supported by the Centre for IntelligentDecision Systems and ARC Grant A49130842.A Multiset Ranges: min, max, sum, average and countThe function Gen Multiset Ranges, below, is a generalization of the function in Section 5.2.1.It takes �ve �nite and closed ranges, [ml; mh], [Ml;Mh], [sl; sh], [al; ah] and an integer range[kl; kh], and answers the following question:Do there exist k > 0 numbers, k between kl and kh, such that the minimum ofthe k numbers is betweenml andmh, the maximum of the k numbers is betweenMl and Mh, the sum of the k numbers is between sl and sh, and the average ofthe k numbers is between al and ah?function Gen Multiset Ranges (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh) f/* we assume �nite and closed ranges */21

(1) /* Tighten min;max; average and count bounds. */(a) Tighten MMA Bounds (ml; mh;Ml;Mh; al; ah).(b) Tighten Count Bounds (ml; mh;Ml;Mh; al; ah; kl; kh).(2) if (Obviously Unsolvable (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh)) thenreturn 0./* For each k in [kl; kh], we now have that [k � al; k � ah] overlaps[(k� 1) �ml +Ml; mh + (k � 1) �Mh]. *//* Case A: Based on min and max elements can be < 0, = 0 or > 0. */(3) if ([ml;Mh] overlaps [0; 0]) then(a) if ([sl; sh] does not overlap [(kh � 1) �ml +Ml; mh + (kh � 1) �Mh]) thenreturn 0.(b) if ([al; ah] overlaps [0; 0]) then(i) if ([sl; sh] does not overlap [kh � al; kh � ah]) then return 0.(ii) else return 1.(c) if (ah < 0) then(i) Switch Signs (ml; mh;Ml;Mh; sl; sh; al; ah)./* Falls through to the next case. */(d) /* else al > 0 */(i) if ([sl; sh] does not overlap [kl � al; kh � ah]) then return 0.(ii) else if (In Sum Gap NP (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh)) thenreturn 0.(iii) else return 1./* Case B: All elements are negative. Switch everything. */(4) if (Mh < 0) then(a) Switch Signs (ml; mh;Ml;Mh; sl; sh; al; ah)./* Falls through to the next case. *//* Case C: All elements are positive. */(5) /* else ml > 0 *//* Range for sum outside bounds dictated by min and max. */(a) if ([sl; sh] does not overlap [(kl � 1) �ml +Ml; mh + (kh � 1) �Mh]) thenreturn 0./* Range for sum outside bounds dictated by average. */(b) else if ([sl; sh] does not overlap [kl � al; kh � ah]) thenreturn 0.(c) else if (In Sum Gap PP (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh)) thenreturn 0.(d) else return 1.gTighten MMA Bounds (ml; mh;Ml;Mh; al; ah) f/* Tighten bounds for max based on min(S) � max(S). */(1) if (Ml < ml) then Ml = ml. 22

/* Tighten bounds for min based on min(S) � max(S). */(2) if (mh > Mh) then mh = Mh./* Tighten bounds for average based on min(S) � average(S). */(3) if (al < ml) then al = ml./* Tighten bounds for average based on average(S)� max(S). */(4) if (ah > Mh) then ah = Mh.gTighten Count Bounds (ml; mh;Ml;Mh; al; ah; kl; kh) f/* Tighten lower bound for count using min;max and average ranges. */(1) if (kl < 1) then kl = 1.(2) if (ah < ((kl � 1) �ml +Ml)=kl and Ml 6= ml) then/* Known range for average to the left of smallest inferred range. */(a) kl = d(Ml �ml)=(ah �ml)e.(3) if (al > (mh + (kl � 1) �Mh)=kl and Mh 6= mh) then/* Known range for average to the right of smallest inferred range. */(a) kl = d(Mh �mh)=(Mh � al)e.gfunction Obviously Unsolvable (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh) f/* Infeasible ranges. */(1) if (kl > kh or ml > mh or Ml > Mh or sl > sh or al > ah) thenreturn 1.(2) else return 0.gSwitch Signs (ml; mh;Ml;Mh; sl; sh; al; ah) f(1) [t1; t2] = [�Mh;�Ml]; [Ml;Mh] = [�mh;�ml]; [ml; mh] = [t1; t2].(2) t = �al; al = �ah; ah = t.(3) t = �sl; sl = �sh; sh = t.gIn Sum Gap NP (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh) f/* Check if there is some k in [kl; kh] such that [sl; sh] overlaps the intersectionof [k � al; k � ah] and [(k� 1) �ml +Ml; mh + (k� 1) �Mh]. *//* Case A: Determine a lower count bound based on sum, min, max. */(1) if (sh < (kl � 1) �ml +Ml) then/* sum to the left of smallest inferred range from min;max. */(a) [k1; k3] = [d(sh +ml �Ml)=mle; kh].(2) else if (sl > mh + (kl � 1) �Mh) then/* sum to the right of smallest inferred range from min;max. */(a) [k1; k3] = [d(sl +Mh �mh)=Mhe; kh].23

(3) else [k1; k3] = [kl; kh]./* Case B: check if [sl; sh] overlaps [k � al; k � ah] for any k 2 [kl; kh]. */(4) de�ne k01 and k02 by sl = k01 � ah � k02; 0 � k02 < ah, and integer k01./* multiset cardinality must be � k01, for sum � sl. */(5) de�ne k03 and k04 by sh = k03 � al + k04; 0 � k04 < al, and integer k03./* multiset cardinality must be � k03, for sum � sh. */(6) if ([k01; k03] is not feasible) then /* in a gap, based on average alone */return 1.(7) if ([k1; k3]; [k01; k03] and [kl; kh] all overlap) then/* any k in the intersection of the three ranges is a witness. */return 0.(8) else return 1.gIn Sum Gap PP (ml; mh;Ml;Mh; sl; sh; al; ah; kl; kh) f/* Check if there is some k in [kl; kh] such that [sl; sh] overlaps the intersectionof [k � al; k � ah] and [(k� 1) �ml +Ml; mh + (k� 1) �Mh]. *//* Case A: check if [sl; sh] overlaps [(k � 1) �ml +Ml; mh + (k � 1) �Mh]for any k 2 [kl; kh]. */(1) de�ne k1 and k2 by sl = mh + (k1 � 1) �Mh � k2; 0 � k2 < Mh, and integer k1./* multiset cardinality must be � k1, for sum � sl. */(2) de�ne k3 and k4 by sh = (k3 � 1) �ml +Ml + k4; 0 � k4 < ml, and integer k3./* multiset cardinality must be � k3, for sum � sh. */(3) if ([k1; k3] is not feasible) then /* in a gap, based on min and max alone */return 1./* Case B: check if [sl; sh] overlaps [k � al; k � ah] for any k 2 [kl; kh]. */(4) de�ne k01 and k02 by sl = k01 � ah � k02; 0 � k02 < ah, and integer k01./* multiset cardinality must be � k01, for sum � sl. */(5) de�ne k03 and k04 by sh = k03 � al + k04; 0 � k04 < al, and integer k03./* multiset cardinality must be � k03, for sum � sh. */(6) if ([k01; k03] is not feasible) then /* in a gap, based on average alone */return 1.(7) if ([k1; k3]; [k01; k03] and [kl; kh] all overlap) then/* any k in the intersection of the three ranges is a witness. */return 0.(8) else return 1.gTheorem A.1 Function Gen Multiset Ranges returns 1 i� there exist k > 0 real numbers,kl � k � kh, such that the minimum of the k numbers is in [ml; mh], the maximum of thek numbers is in [Ml;Mh], the sum of the k numbers is in [sl; sh], and the average of the knumbers is in [al; ah]. 24

Further, Gen Multiset Ranges is polynomial in the size of representation of the input.Proof: We prove the �rst part of the theorem by showing that the algorithm returns 1 ifand only if the given constraints along with the four axioms of Theorem 4.2 are solvable.Consider Steps (1) and (2) of Gen Multiset Ranges. Step (1a) generates all constraints onmin;max and average that can be inferred from the given range constraints on min;maxand average and the axioms. Step (1b) extends these by generating all constraints oncount that can be inferred from the given range constraints on min;max and averageand the axioms. Note that all the constraints inferred above are range constraints onmin;max; average and count.If function Obviously Unsolvable returns 1, the resultant set of constraints is clearly un-solvable. If it returns 0, the conjunction of the given range constraints onmin;max; averageand count and all the axioms is solvable.All elements in the multiset have to lie in the range [ml;Mh]; the minimumand maximumelements are additionally constrained to lie in the ranges [ml; mh] and [Ml;Mh] respectively.If the multiset has i elements, axioms (2) and (3) are satis�ed if and only if the multisethas a sum in the range:[(i� 1) �ml +Ml; mh + (i� 1) �Mh]Also, the average value of the multiset elements has to lie in the range [al; ah]. If the multisethas i elements, axiom (4) is satis�ed if and only if the multiset has a sum in the range:[i � al; i � ah]Consequently, if the count of the multiset is constrained to lie in the range [kl; kh], the sumcan take values only from the union of the ranges:kh[i=kl([(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah])In general, this union of ranges may not be convex; there may be gaps.Thus, the conjunction of the given constraints and axioms (1){(4) is solvable if andonly if there is an i such that the given range on sum, [sl; sh] overlaps with the range:[(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah]. The algorithm for testing the abovehas three cases, based on the location of the [ml;Mh] range with respect to zero.� The �rst case is when the [ml;Mh] range includes zero. Three subcases arise basedon the location of the [al; ah] range with respect to zero.The �rst subcase is when the [al; ah] range includes zero; in this case the union of theranges is convex, and is given by:[(kh � 1) �ml +Ml; mh + (kh � 1) �Mh] \ [kh � al; kh � ah]25

To check that the given range for sum, [sl; sh], overlaps with this intersection ofranges, it su�ces to check that [sl; sh] intersects with each of the ranges separately,since [(kh�1)�ml+Ml; mh+(kh�1)�Mh] and [kh �al; kh �ah] are known to intersectat 0. Steps (3a) and (3b) of Gen Multiset Ranges check for this subcase.The second subcase is when the [al; ah] range includes only negative numbers, and thethird subcase is when the [al; ah] range includes only positive numbers. These twosubcases are symmetric, and we transform the second subcase into the third subcasein Step (3c) of Gen Multiset Ranges, and consider only the third subcase in detail inStep (3d).In the third subcase, the sum lies within the range[(kh � 1) �ml +Ml; mh + (kh � 1) �Mh] \ [kl � al; kh � ah]but not all values in this range are feasible | there may be gaps. The conjunction ofconstraints is unsolvable if and only if the [sl; sh] range lies outside [(kh � 1) �ml +Ml; mh + (kh � 1) �Mh] \ [kl � al; kh � ah], or entirely within one of the gaps. SinceFunction Tighten Count Bounds was invoked in Step (1b) of Gen Multiset Ranges, thetwo ranges [(kh � 1) � ml + Ml; mh + (kh � 1) � Mh] and [kl � al; kh � ah] overlap.Consequently, from the property of ranges, it follows that to check that the [sl; sh]range lies outside the intersection of these two ranges, it su�ces to check that [sl; sh]lies outside at least one of the two ranges; steps (3a) and (3d)(i) check for this.Steps (3d)(ii) and (3d)(iii) check for the second possibility, viz., [sl; sh] lies entirelywithin one of the gaps of:kh[i=kl([(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah])Tighten Count Bounds has adjusted kl to ensure that for kl is the smallest i forwhich the ranges [(i � 1) � ml + Ml; mh + (i � 1) � Mh] and [i � al; i � ah] over-lap. Further, Tighten MMA Bounds (invoked in Step (1a) of Gen Multiset Ranges hastightened Ml; mh; al and ah to ensure each of ml � Ml; ml � al, mh � Mh andah � Mh hold. The above two points guarantee that for all i � kl it is the case[(i � 1) � ml + Ml; mh + (i � 1) �Mh] and [i � al; i � ah] overlap. Hence, from theproperty of ranges, it follows that to check that [sl; sh] does not fall entirely within agap of:kh[i=kl([(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah])it su�ces to check that there is at least one i in [kl; kh], such that [sl; sh] overlaps witheach of [(i�1)�ml+Ml; mh+(i�1)�Mh] and with [i�al; i�ah]. Function In Sum Gap NP26

checks for this possibility as follows: (a) it computes the range [k1; k3] such that foreach i in [k1; k3], the range [sl; sh] overlaps with [(i� 1) �ml+Ml; mh+ (i� 1) �Mh];(b) it computes the range [k01; k03] (using the same technique as in Multiset Ranges)such that for each i in [k01; k03], the range [sl; sh] overlaps with [i �al; i �ah]; (c) �nally,it checks that there is some i which lies in each of the three ranges [kl; kh]; [k1; k3] and[k01; k03], which provides the required witness.� The second case is when the [ml;Mh] range includes only negative numbers, and hencethe average must also be negative. Function Tighten MMA Bounds has tightened the[al; ah] range to include only negative numbers. This is symmetric to the third case(discussed in detail below), and Switch Signs (invoked in Step (4a)) transforms thesecond case into the third case.� The third case is when the [ml;Mh] range includes only positive numbers, and hencethe average must also be positive. Function Tighten MMA Bounds has tightened the[al; ah] range to include only positive numbers. In this case, the sum lies within therange[(kl � 1) �ml +Ml; mh + (kh � 1) �Mh] \ [kl � al; kh � ah]but not all values in this range are feasible | as before, there may be gaps. Theconjunction of constraints is unsolvable if and only if the [sl; sh] range lies outside[(kl�1)�ml+Ml; mh+(kh�1)�Mh]\[kl�al; kh�ah], or entirely within one of the gaps.Since Function Tighten Count Bounds was invoked in Step (1b) of Gen Multiset Ranges,the two ranges [(kl � 1) �ml +Ml; mh + (kh � 1) �Mh] and [kl � al; kh � ah] overlap.Consequently, from the property of ranges, it follows that to check that the [sl; sh]range lies outside the intersection of these two ranges, it su�ces to check that [sl; sh]lies outside at least one of the two ranges; steps (5a) and (5b) of Gen Multiset Rangescheck for this. Steps (5c) and (5d) check for the second possibility, viz., [sl; sh] liesentirely within one of the gaps of:kh[i=kl([(i� 1) �ml +Ml; mh + (i� 1) �Mh] \ [i � al; i � ah])As in the third subcase of the �rst case above, it su�ces to check that there is at leastone i in [kl; kh], such that [sl; sh] overlaps with each of [(i�1)�ml+Ml; mh+(i�1)�Mh]and with [i � al; i � ah]. Function In Sum Gap PP checks for this possibility as follows:(a) it computes the range [k1; k3] (using the same technique as inMultiset Ranges) suchthat for each i in [k1; k3], the range [sl; sh] overlaps with [(i�1)�ml+Ml; mh+(i�1)�Mh]; (b) it computes the range [k01; k03] (using the same technique as inMultiset Ranges)such that for each i in [k01; k03], the range [sl; sh] overlaps with [i �al; i �ah]; (c) �nally,it checks that there is some i which lies in each of the three ranges [kl; kh]; [k1; k3] and[k01; k03], which provides the required witness.27

This concludes the proof of the �rst part of the theorem.The proof of the second part of the theorem is straightforward because the number ofsteps in Gen Multiset Ranges is bounded above by a constant, and each step is polynomialin the size of representation of the input. 2References[JMSY92] J. Ja�ar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) language andsystem. ACM Transactions on Programming Languages and Systems, 14(3):339{395, July 1992.[LMS94] Alon Y. Levy, Inderpal S. Mumick, and Yehoshua Sagiv. Query optimization bypredicate move-around. In Proceedings of the International Conference on VeryLarge Databases, Santiago, Chile, September 1994.[MS93] Jim Melton and Alan R. Simon. Understanding the new SQL: A complete guide.Morgan Kaufmann, San Francisco, CA, 1993.[MS94] Kim Marriott and Peter J. Stuckey. Semantics of constraint logic programs withoptimization. Letters on Programming Languages and Systems, 1994.[RSSS94] Kenneth A. Ross, Divesh Srivastava, Peter Stuckey, and S. Sudarshan. Foun-dations of aggregation constraints. In Proceedings of the Second InternationalWorkshop on Principles and Practice of Constraint Programming, Orcas Island,WA, 1994. Lecture Notes in Computer Science 874, Springer-Verlag.[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Discrete Math-ematics and Optimization. Wiley-Interscience, 1986.[SR91] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductivedatabases. In Proceedings of the Seventeenth International Conference on VeryLarge Databases, September 1991.[SR93] Divesh Srivastava and Raghu Ramakrishnan. Pushing constraint selections.Journal of Logic Programming, 16(3{4):361{414, 1993.[SS94] Peter J. Stuckey and S. Sudarshan. Compiling query constraints. In Proceedingsof the ACM Symposium on Principles of Database Systems, Minneapolis, MN,May 1994. 28

