
E�cient Incremental Evaluation

of Queries with Aggregation

Raghu Ramakrishnan Kenneth A. Ross

University of Wisconsin Columbia University

Madison, WI 53706 New York, NY 10027

raghu@cs.wisc.edu kar@cs.columbia.edu

Divesh Srivastava S. Sudarshan

AT&T Bell Laboratories AT&T Bell Laboratories

Murray Hill, NJ 07974 Murray Hill, NJ 07974

divesh@research.att.com sudarsha@research.att.com

Abstract

We present a technique for e�ciently evaluating queries on programs with mono-

tonic aggregation, a class of programs de�ned by Ross and Sagiv. Our technique

consists of the following components: incremental computation of aggregate func-

tions, incremental �xpoint evaluation of monotonic programs and Magic Sets trans-

formation of monotonic programs. We also present a formalization of the notion of

incremental computation of aggregate functions on a multiset, and upper and lower

bounds for incremental computation of a variety of aggregate functions. We describe

a proof-theoretic reformulation of the monotonic semantics in terms of computa-

tions, following the approach of Beeri et al.; this reformulation greatly simpli�es

the task of proving the correctness of our optimizations.

1 Introduction

There has been a lot of recent work in the literature on de�ning the semantics of

complex database queries involving aggregate functions. Early work assumed some

form of strati�cation of predicates to ensure that there was no recursion through

aggregation. Subsequent proposals allowed recursion through predicates de�ned

using aggregation, but required other forms of strati�cation to ensure that no fact

depended on itself through aggregation (e.g., [13]). However, there are many useful

queries that cannot be easily (if at all) expressed using these semantics, and more

recent semantics such as [7, 9, 14, 15, 16, 17] have relaxed or removed strati�cation

requirements.

In particular, the monotonic semantics of Ross and Sagiv [14] provides an in-

tuitive meaning for a large class of programs that are not handled by the various

strati�ed semantics. The semantics is a natural extension of the traditional least

�xpoint semantics and is intuitive and easy to understand. The company controls

program from [9], with cyclic stock ownership between companies, and the cheapest

path program on a labeled, directed graph with cycles are two such programs. (We

discuss the examples in more detail later.) In this paper, we present the �rst results

(to our knowledge) on the problem of e�cient evaluation of queries on programs

under the monotonic semantics.

Our �rst contribution is on the incremental computation of aggregate func-

tions (Section 2). We formalize what it means to incrementally compute aggregate

functions on a multiset across a sequence of updates to the multiset. We present a

framework for incremental computation of a large class of aggregate functions which

are of a simple form, which provides extensibility by allowing user-de�ned aggregate

functions to be incrementally computed. We also provide upper and lower bounds

for incremental computation of a variety of common aggregate functions.

Our second contribution is a novel reformulation of the monotonic semantics in

terms of computations, following the approach of Beeri et al. [3] (Section 3). The

least �xpoint characterization in [14] is very sensitive to the order in which facts

are derived. Consequently, using this formulation, it is very di�cult to show the

correctness of program optimizations, such as the Magic Sets transformation, that

change the order in which facts are derived. Our formulation allows for a better

understanding of program optimizations, and helps us prove the correctness of the

optimizations. We believe that it will help remove some of the restrictions of the

monotonic semantics as well.

Our third contribution is to show how existing incremental evaluation tech-

niques, e.g., Semi-Naive evaluation [1], can be combined with our techniques for

incremental computation of aggregate functions, for the evaluation of monotonic

programs (Section 4). This enables the e�cient integration of the incremental eval-

uation procedure for programs with monotonic aggregation into existing deductive

database systems. Many of the techniques for the evaluation of monotonic programs

described in this paper have been implemented in the Coral deductive database sys-

tem [11].

Our �nal contribution is to show that for left-to-right monotonic programs,

which is a large sub-class of monotonic programs, the Magic Sets transformation

(under simple restrictions such as using left-to-right \sips") can be applied to restrict

computation to facts \relevant" to a given query. The correctness proof of the

Magic Sets transformation depends crucially upon our semantic reformulation of

the monotonic semantics.

1.1 Motivating Example

We assume familiaritywith basic logic programming notation. Aggregate functions,

such as min;max; sum and count are typically used in combination with a grouping

facility, which is used to partition values into groups and aggregate on the values

within each group. A groupby literal has the following syntax: groupby(p(X;Z; Y);

[X]; S = GhY i), where X and Z denote tuples of variables, and G is an aggregate

function on multisets. Intuitively, this literal is equivalent to the literal p

0

(X;S)

where the relation p

0

is de�ned as follows. A tuple p

0

(x; s) is present in p

0

i�

s =G(m), where m = �

Y

(�

X=x

(p(X;Z; Y))) is non-empty; here, � is the multiset

projection operator, and � is the selection operator, of relational algebra.

Example 1.1 (Company Controls Program)

Consider the company controls program below (modi�ed from Mumick et al. [9]):

cv(X;X; Y;N) : � owns stock(X;Y;N):

cv(X;Z; Y;N) : � controls(X;Z); owns stock(Z; Y;N):

cv

1

(X;Y; S) : � groupby(cv(X;Z; Y;N); [X;Y]; S = sumhN i):

controls(X;Y) : � cv

1

(X;Y; S); S > 0:5:

A database fact of the form owns stock(c1; c2; n) represents the information

that company c1 owns fraction n of the stock of company c2.

0 1 2 n−2 n−1 n

0.2

0.20.2

1/2n

1/2n

1/2n

1/2n
0.6

0.4 0.4 1/n

Figure 1: The owns stock Relation

The above program can be understood under the monotonic semantics as follows.

A fact of the form controls(X;Y) indicates that company X has a controlling

interest in company Y , i.e., X owns (directly or indirectly through an intermediate

company that X controls) more than 50% of the stock of Y . The relation cv

maintains information about (direct and indirect) stock ownership. A fact of the

form cv(X;X; Y;N) means that company X directly owns fraction N of the stock

of company Y . A fact of the form cv(X;Z; Y;N) means that company X indirectly

owns fractionN of the stock of company Y via companyZ, since X has a controlling

interest in company Z, which directly owns fraction N of the stock of company Y .

The relation cv

1

(X;Y; S) maintains information about the total fraction S of the

stock of company Y owned by company X, by adding up the fractions of the stock

of company Y owned (directly and indirectly) by company X.

Consider a dataset with the owns stock relation depicted in Figure 1. The

dataset is de�ned as follows: owns stock(0; 1; 0:6), owns stock(i; i+1; 0:4); 1 � i �

n� 2, owns stock(0; i; 0:2); 2 � i � n� 1, owns stock(i; n; 1=2n); 0 � i � n� 2 and

owns stock(n�1; n; 1=n). The �xpoint computation of [14] recomputes the relation

cv

1

each time new facts are added to the relation cv, which would result in a �(n

2

)

total cost for computing cv

1

. Using our techniques of incremental computation of

aggregate functions and incremental evaluation of monotonic programs, the total

cost for computing cv

1

is only O(n). 2

2 Incremental Computation of Aggregates

2.1 Model of Computation

De�nition 2.1 (Aggregate Function) LetM(D) denote the set of all multisets

on domain D. An aggregate function G is any function whose domain isM(D). 2

Informally, incremental computation refers to recomputing some value when

the input changes \by a small amount". In our context, the input is a multiset,

and we assume that the change in the input is caused by one of the following

update operations on multisets: insertion, deletion, replacement, and monotonic-

replacement. In all cases, only one element is inserted or deleted or replaced by an

update operation.

The �rst three update types are self-explanatory. The last update type, mono-

tonic-replacement, requires a partial ordering � on the domain D to be de�ned by

the aggregate function G, such that hD;�i is a complete lattice. We say that c

2

is

\better than" c

1

if c1 � c2. Monotonic-replacement is the replacement of a value

c

1

2 D in a multiset by a \better" value c

2

2 D.

1

For example, in computing cheapest paths in a graph with costs on the edges,

the min aggregate function is used; a \better" path here between two vertices is a

cheaper path. Hence, in this program, the partial ordering for the min aggregate

function over multisets of reals is given by �, i.e., c

1

� c

2

i� c

1

� c

2

.

Our model of computation is the Random Access Model (RAM), with the addi-

tional assumption that each of the basic arithmetic and comparison operations can

be performed in constant time.

Our algorithms as well as the complexity analysis always assume that updates

are correct, i.e., deletion, replacement and monotonic-replacement occur only on an

existing value in the multiset. There are usually semantic reasons ensuring that this

is always the case, e.g., if we have a relation with an aggregate function speci�ed on

an attribute, the deleted value is from that attribute of a deleted tuple. An indepen-

dent check for existence of the value can be performed if updates may be incorrect;

however, it would require maintaining the multiset and would take logarithmic time,

which may change the incremental cost of the aggregate computation.

2.2 Incremental Aggregate Functions

The following de�nitions are based on [4, 12].

De�nition 2.2 (Incremental Aggregate Algorithm) Let G: M(D) ! D

0

be an aggregate function, with domainM(D) being the set of problem inputs, and

range D

0

being the set of problem outputs. The size of a problem instance, i.e., the

size of a multiset p 2M(D), is denoted by n.

Let U � finsertion, deletion, replacement, monotonic-replacementg be a set of

permitted update types. Let p be an input multiset, �p (of a type in U) be an

update on p, and p

0

be the result of update �p on p. If, given as input p, G(p),

�p and possibly auxiliary information corresponding to p, algorithm A returns

q

0

= G(p

0

), and updates the auxiliary information to incorporate �p, then A is

called an incremental aggregate algorithm for G. 2

Obviously, any algorithm for computing G can be used in this situation since

the entire input, p and �p, is available to the algorithm. But in many applications,

small changes in the input cause correspondingly small changes in the output, and it

would be more e�cient to compute the new output from the old output rather than

to recompute the entire output from scratch, and we are interested in incremental

algorithms that do exactly this.

We let t

G

(n) denote the optimal worst-case asymptotic time complexity of com-

puting an aggregate function G (when an optimal algorithm exists) on an input of

size n, and let t

A

(n) denote the worst-case asymptotic time complexity of executing

algorithm A on an input of size n.

De�nition 2.3 (Incremental Complexity) Let G be an aggregate function.

Let A be an incremental aggregate algorithm for computing G, given a set U of

update types. Let h and r be functions of n, the size of the input.

1

Although replacement and monotonic-replacement can be modeled by the deletion of the

old value followed by an insertion of the new value, there are cases where the \incremental"

computation of an aggregate function is faster if we realize that the update is in fact a replacement

or a monotonic-replacement, so we treat these cases separately.

Aggregate Updates Incremental Complexity Space

Absolute Relative Requirement

min fins., mon-repl.g O(1) O(1) O(1)

fins., del., repl.g O(log(n)) O(log(n)) O(n)

max fins., mon-repl.g O(1) O(1) O(1)

fins., del., repl.g O(log(n)) O(log(n)) O(n)

sum fins., del., repl.g O(1) O(1) O(1)

product fins., del., repl.g O(1) O(1) O(1)

count fins., del., repl.g O(1) O(1) O(1)

average fins., del., repl.g O(1) O(1) O(1)

variance fins., del., repl.g O(1) O(1) O(1)

median fins., del., repl.g O(log(n)) O(log(n)) O(n)

mode fins., del., repl.g O(log(n)) O(1) O(n)

Table 1: Incremental Cost of Evaluating Aggregates

If it can be shown that t

A

(n) = O(h(n)), we say that A has (U;O(h)) absolute

incremental complexity. If t

G

exists, and (�

n

i=1

t

A

(i))=t

G

(n) is O(r(n)) for some

function r, we say that A has (U;O(r)) relative incremental complexity. 2

For all aggregate functions G considered in this paper, t

G

exists and is known.

However, we should repeat the following remark from [4]: \More typically, we have

a `best known' algorithm, and our [relative incremental complexity] is relative to

the complexity of that algorithm."

The space requirement of an incremental aggregate algorithm is the size of the

part of the input (p, G(p), �p and auxiliary information) that is actually required

to compute q

0

in De�nition 2.2 above.

Table 1 provides a summary of lower and upper bounds results for updates on

a variety of aggregate functions. Some of these results are straightforward; details

of others, such as median and mode, are presented in the full paper.

2.3 Extensible Incremental Aggregation

Several aggregate functions are de�nable by structural recursion on an associa-

tive, commutative binary operator [17]. This class is important for two reasons.

First, this class includes a large number of standard aggregate functions such as

min;max; sum and count. Second, and perhaps more important, it provides an

extensible way to add new aggregate functions to a database query language.

De�nition 2.4 (Aggregate Function De�nable by Structural Recursion)

An aggregate function G : M(D) ! D

0

is said to be de�nable using structural

recursion if there exist functions f : D ! D

0

and g : D

0

� D

0

! D

0

such that G

can be de�ned as follows:

G(fag) = f(a); for all a 2 D

G(S [T) = g(G(S);G(T)); for all nonempty S; T 2M(D): 2

It follows from the above de�nition that g must be both associative and commuta-

tive. For example, the aggregate function count has f(a) = 1 and g(x; y) = x+ y.

Theorem 2.1 Every aggregate function that is de�nable by structural recursion

has (finsertg; O(1)) absolute incremental complexity, if f and g can be computed

in constant time on any values for its arguments. 2

Examples of aggregate functions that satisfy the above theorem include min;max;

sum and count.

Similar to the \insert" function g, we can also de�ne a binary \delete" function d,

and a ternary \replace" function r to capture deletion and monotonic-replacement

of values from a multiset. Details are presented in the full paper.

LDL [10] allows users to de�ne new aggregate functions by specifying the f and

g functions. Our formalization generalizes the LDL approach by allowing users to

also provide the functions d and r to incrementally recompute aggregates under

deletion and monotonic-replacement. For example, a user can de�ne a sum-of-

squares aggregate function, using f(x) = x

2

; g(x; y) = x + y; d(x; y) = x � y and

r(x; y; z) = x � y + z, and the system can automatically evaluate it incrementally

under insertions, deletions and replacements.

Some aggregate functions, such as average and variance, which cannot be di-

rectly de�ned using structural recursion, can still be recomputed incrementally by

computing them from other incrementally computable aggregate functions, such as

sum; count and sum-of-squares. (This point was also noted by Dar et al. [6].)

3 Monotonic Semantics Revisited

The monotonic semantics of Ross and Sagiv is de�ned for a class of programs

called \cost-consistent monotonic programs". We present the intuition here; formal

de�nitions may be found in [14].

Some predicates of a program are de�ned to be cost predicates. For such pred-

icates, one of the arguments is distinguished from the rest, and is called a cost

argument; the rest of the arguments are called non-cost arguments. We represent

such a predicate as p

i

(X;C), where C denotes the cost argument, and X the rest of

the arguments. The intuition is that the cost predicate is used in a groupby literal

of the program, where an aggregate function is applied on the cost argument.

De�nition 3.1 (The � Ordering) For each cost predicate, a domain D is

speci�ed for the cost argument, and a partial order � is de�ned on the domain s.t.

hD;�i is a complete lattice.

The partial order on cost arguments is extended to ground facts for the cost

predicates as follows: p(a

1

; c

1

) � p(a

2

; c

2

) i� a

1

= a

2

and c

1

� c

2

.

For sets of facts, a pre-order � is de�ned as follows:

2

S

1

� S

2

i� 8s

1

2 S

1

; 9s

2

2

S

2

s.t. s

1

� s

2

. 2

A set of facts S is said to be cost-consistent if there are no two facts p

i

(a; c

1

)

and p

i

(a; c

2

) in S, s.t. p

i

is a cost predicate and c

1

6= c

2

; in other words, no two

facts in S di�er only on their cost argument.

In the program of Example 1.1, the predicate cv

1

(X;Y;C) is a cost-predicate,

with cost argument C and � de�ned as �. Then cv

1

(a; b; :1) � cv

1

(a; b; :2), and

fcv

1

(a; b; :2); cv

1

(a; b; :3)g � fcv

1

(a; b; :4)g. Note that the set of facts fcv

1

(a; b; :2);

cv

1

(a; b; :3)g is not cost-consistent.

De�nition 3.2 (T

R

and T

P

) For a rule R, and a cost-consistent set of facts S,

T

R

(S) denotes the set of facts that can be derived in one step using R and S. For a

program component P = fR

1

; R

2

; : : : ; R

n

g, T

P

(S) denotes T

R

1

(S) [T

R

2

(S) [: : :[

T

R

n

(S). 2

2

This is not a partial order since it is not anti-symmetric.

The above de�nition can be made more precise in terms of substitutions and satis-

faction, in the usual fashion.

For example, let P be the following program with cost predicate q:

p(X) : � q(X;Y;C):

r(X;T) : � groupby(q(X;Y;C); [X]; T = sumhCi):

and a set of facts S = fq(1; a; 3); q(1; b; 4)g. Then S is cost-consistent and T

P

(S) is

fp(1); r(1; 7)g.

De�nition 3.3 (Monotonicity and Cost-Consistency) A program compo-

nent P is said to be monotonic if, given cost-consistent sets of facts S

1

and S

2

that

di�er only in facts for predicates de�ned in P ,

S

1

� S

2

) T

P

(S

1

) � T

P

(S

2

):

A monotonic program component P is said to be cost-consistent if, whenever S

is cost-consistent, T

P

(S) is also cost-consistent.

A program is monotonic (resp. cost-consistent) if each of its components is mono-

tonic (resp. cost-consistent). 2

De�nition 3.4 (Monotonic Semantics) A cost-consistent set of facts S is

said to be a pre-model for a cost-consistent monotonic program component P if

T

P

(S) � S, i.e., S is \better than" T

P

(S). A pre-model S

1

for P is said to be a

least model for P if for all cost-consistent sets S

i

that are pre-models of P , S

1

� S

i

.

The monotonic semantics of a cost-consistent monotonic program component

P is de�ned as the least model of P . This can be shown to always exist. 2

The above de�nition is extended to multi-component programs in a manner similar

to the semantics for strati�ed negation.

3.1 Monotonic Semantics Reformulated

It is not obvious from the de�nition of the monotonic semantics how to compute

it. It is shown in [14] that the least model of a program component P is equivalent

to the least �xpoint of T

P

, which itself can be computed as follows. We start

with the empty set, and repeatedly apply T

P

until we reach a �xpoint at some

(possibly trans�nite) ordinal . The computation of this �xpoint involves taking

the least upper bound (under the � ordering) of the facts at limit ordinals. If T

P

is continuous, the �xpoint can be computed in at most ! steps.

If the least �xpoint computation is optimized in any manner that a�ects the

order in which facts are derived (as happens, for instance, with variants of Semi-

Naive evaluation, or with query-directed evaluation techniques, such as Magic Sets),

then the set of facts derived over the various iterations could change. Unlike with

usual logic programming semantics, it may even be the case that an intermediate

fact that was derived using the �xpoint on the original program is not derived if

the order of derivations changes, even if the �nal set of facts is the same.

Proving correctness of program optimizations using either the least model or

the least �xpoint characterizations of the monotonic semantics can hence be quite

di�cult. We address the problem by presenting a new formulation of the monotonic

semantics in terms of \computations", following the proof-theoretic approach of

[3, 15]. It is much easier to reason about correctness of optimizations using this

formulation.

3.1.1 A Proof Theoretic Approach to Semantics

The idea behind the proof-theoretic approach to semantics [3, 15] is to �rst de�ne

rules for inferring positive information (i.e., which facts are true) and rules for

inferring negative information (i.e., which facts are false). A general notion of

(bottom-up) computation is then de�ned as a sequence of derivation (or, proof)

steps, where each derivation step uses information about which facts are true and

which facts are false prior to the derivation step, and uses the positive inference

rule to derive a new fact and add it to the collection of true facts. The negative

inference rule is used to determine the set of facts that are false after the derivation

step.

As long as the positive and negative inference rules satisfy some simple mono-

tonicity properties, a program can be assigned a unique semantics based on these

inference rules, along with the notion of \complete" computations, i.e., computa-

tions that cannot be extended to derive new facts. This semantics can be shown to

satisfy important properties such as foundedness [3].

To reformulate the monotonic semantics, we need only the positive inference

rules. The negative inference rules provide a clean way to extend the monotonic

semantics to handle negation; for lack of space we do not consider them further.

3.1.2 Positive Inference Rules

De�nition 3.5 (I

+

(R;S)) The positive inference rule I

+

(R;S) is a function

Rules�Interpretations ! Interpretations, de�ned as follows: p(a) 2 I

+

(R;S) i�

9S

0

(S

0

� S ^ S

0

is cost-consistent ^ p(a) 2 T

R

(S

0

)). 2

Note that, unlike the de�nition of T

R

, the above de�nition of I

+

allows the use

of non-cost-consistent interpretations.

Example 3.1 Suppose we are given program P consisting of the rule R:

r(X;T): �groupby(q(X;Y;C); [X]; T = sumhCi):

and a non-cost-consistent set of facts S = fq(1; a; 3); q(1; a; 5); q(1; b;4)g. Also sup-

pose that the cost argument of q has a � ordering de�ned by � on the integers.

There are many di�erent cost-consistent interpretations S

0

, such that S

0

� S, i.e., S

is \better than" S

0

. fq(1; a; 3); q(1; b;4)g and fq(1; a; 5); q(1; b; 4)g are two possibili-

ties. Therefore, the facts r(1; 7) and r(1; 9) (among others) are present in I

+

(R;S).

2

An immediate question is, what about e�ciency? Should we really look at

every possible S

0

such that S

0

� S in order to compute the monotonic semantics?

The answer is no, as long as the program is monotonic. In fact it turns out that

among all the cost-consistent subsets of S, it su�ces to use only those that are

maximalunder the � ordering. In terms of the above example, we need only consider

the cost-consistent interpretation fq(1; a; 5); q(1; b;4)g. Further, we show later that

there is a unique maximal cost-consistent subset of S, as long as the program is

cost-consistent. However, the formulation in terms of all possible cost-consistent

subsets helps simplify understanding the semantics and proofs of correctness of

optimizations.

The following de�nition is derived from [3], and is crucial to proving uniqueness

of semantics de�ned using the proof-theoretic approach.

De�nition 3.6 (DerivationMonotonic) An inference rule I : Rules �Interp-

retations ! Interpretations is said to be derivation monotonic if S

1

�

S

2

) I(R;S

1

) � I(R;S

2

). 2

Proposition 3.1 Positive inference rule I

+

is derivation monotonic. 2

The following de�nition is used in our reformulation of the monotonic semantics.

De�nition 3.7 (Normal Form) Interpretation S

0

is said to be the normal form

of S, denoted nf(S), if (1) S � S

0

^S

0

� S, i.e., S and S

0

are equivalent, under the

� ordering, and (2) no two facts in S

0

are comparable under the � ordering. 2

The normal form of an interpretation is unique and always exists. Further, if the

� ordering is a total order (as is the case for all the examples in the paper), the

normal form of an interpretation is cost-consistent.

3.1.3 Computations For De�ning Semantics

We now show how to reformulate the monotonic semantics using I

+

, the positive

inference rule, following the framework of [3]. The �rst step is to de�ne sequences of

derivations, which we call pre-computations; then we de�ne computations, which are

pre-computations where each derivation uses the positive inference rule I

+

; �nally

we de�ne the meaning of programs using the notion of \complete" computations.

De�nition 3.8 (Pre-computation) A pre-computation C is a mapping from

all ordinals less than some ordinal � to the set of pairs of the form (R; p(a)), where

R is a rule of the program, and p(a) is a fact. The ordinal � is the length of the

pre-computation.

We call each pair in C a step; C(�) denotes step � of C, where � is an ordinal

less than the length of C. If C(�) = (R; p(a)), we use fact(C(�)) to denote p(a),

and rule(C(�)) to denote R. 2

If a pre-computation is �nite, it can be simply viewed as a sequence of pairs of

the form (R; p(a)). The above de�nition is speci�ed in terms of mappings to handle

trans�nite pre-computations.

De�nition 3.9 (Computation) A pre-computation C is called a computation if

for each step C(�) = (R; p(a)) in C, p(a) 2 I

+

(R;S) where S =

S

<�

ffact(C())g.

For limit ordinals �, the

S

operation is de�ned to compute the least upper bound

(under the �) of the facts.

A computation C

1

is said to be a complete computation if there is no computa-

tion C

2

such that (a) C

1

is a proper pre�x of C

2

and (b) C

2

derives a \new fact",

i.e., C

2

has a step (R; p(a)) such that fp(a)g 6�

S

�

fact(C

1

(�)). 2

Complete computations are used as the basis for providing a meaning to pro-

grams. Given a complete computation C, let T

C

denote

S

�

fact(C(�)), i.e., the

collection of all facts computed in C. We call T

C

the result of computation C for

the program P . The key to proving that all complete computations de�ne the same

result (up to equivalence under �) is to show that concatenations of computations

are also computations. This is shown using the derivation monotonicity property

of positive inference rules. Hence we have the following results:

Theorem 3.2 ([3]) For each program P , there exists a complete computation of

P . Further, if the positive inference rule is derivation monotonic, all complete

computations of P have the same result (up to equivalence under �). 2

De�nition 3.10 (Reformulated Monotonic Semantics) Given a program

component P , the reformulated monotonic semantics of P is de�ned as the normal

form of the result of any complete computation of P . 2

Theorem 3.3 Given a cost-consistent monotonic program component P , the refor-

mulated monotonic semantics of P (based on De�nition 3.10) is well-de�ned, i.e.,

it exists, and is unique. 2

Note that the reformulated monotonic semantics of a program component is unique,

not just unique up to equivalence under �.

Theorem 3.4 For any cost-consistent monotonic program, the reformulated mono-

tonic semantics and the monotonic semantics according to [14] coincide. 2

The above result justi�es the use of the term \monotonic semantics" in De�ni-

tion 3.10. The proof basically shows that the procedure in [14] for computing the

least �xpoint generates a complete computation.

Computing the monotonic semantics using computations as above can be inef-

�cient since I

+

(R;S) uses T

R

(S

0

) for all cost-consistent S

0

� S. However, we show

below that the monotonic semantics can be computed much more e�ciently.

De�ne a normal form computation as a computation in which at each step of

the computation T

R

(S

0

), where S

0

is any maximal cost-consistent subset of nf(S)),

is used instead of I

+

(R;S). A normal form computation C

1

is said to be complete

if there is no normal form computation C

2

such that (a) C

1

is a proper pre�x of C

2

and (b) C

2

derives a \new fact".

Theorem 3.5 For any cost-consistent monotonic program component P , (a) the

normal form of the result of any normal form computation of P is cost-consistent,

(b) complete normal form computations of P exist, and (c) the normal form of the

result of any complete normal form computation of P coincides with the monotonic

semantics of P . 2

The de�nition of normal form computations allowed for the possibility of many

cost-consistent subsets of nf(S), all of which have to be considered; since nf(S)

is cost-consistent by the above theorem, it is the only subset that needs to be

considered. Hence, the monotonic semantics can be e�ciently computed.

Example 3.2 (Cheapest Path Program: Computations)

Consider the cheapest path program CP below (from Ross and Sagiv [14]):

r1 : cost(X;X; Y;C) : � edge(X;Y;C):

r2 : cost(X;Z; Y;C) : � mincost(X;Z;C1); edge(Z; Y;C2); C = C1 +C2:

r3 : mincost(X;Y;C) : � groupby(cost(X;Z; Y;C1); [X;Y]; C = minhC1i):

For both cost and mincost, their last arguments are de�ned as cost arguments

with the � ordering given by �. Each of the following are computations from the

database D = fedge(a; b; 3); edge(b; c; 4); edge(a; c; 9)g:

C

1

= (r1; cost(a; b; b; 3)); (r1; cost(b; c; c;4)).

C

2

= (r1; cost(a; c; c; 9)); (r3;mincost(a; c; 9)).

C

3

= (r1; cost(a; b; b; 3)); (r1; cost(b; c; c;4)); (r3;mincost(a; b; 3));

(r2; cost(a; b; c; 7)); (r3;mincost(a; c; 7)); (r3;mincost(b; c; 4));

(r1; cost(a; c; c; 9)).

C

4

= (r1; cost(a; b; b; 3)); (r1; cost(b; c; c;4)); (r1; cost(a; c; c; 9));

(r3;mincost(a; b; 3)); (r3;mincost(b; c; 4)); (r3;mincost(a; c; 9));

(r2; cost(a; b; c; 7)); (r3;mincost(a; c; 7)).

Computations C

1

and C

2

are not complete computations; computation C

3

, for ex-

ample, is an extension of C

1

that derives new facts. Both computations C

3

and

C

4

are complete computations. The result of C

3

is fcost(a; b; b; 3); cost(b; c; c;4);

cost(a; c; c; 9); cost(a; b; c; 7),mincost(a; b; 3),mincost(b; c; 4),mincost(a; c; 7)g, and

the result of C

4

contains mincost(a; c; 9) in addition to all the facts in the result of

C

3

. Note that the normal forms of the results of these computations are identical,

given by the result of computation C

3

. 2

3.2 Using The Reformulated Semantics for Optimization

Our reformulation of the monotonic semantics makes it easier to show that an

optimization technique is correct. The question \what happens if an optimization

technique changes the order of derivations, and a fact f that was derived earlier is

not derived?" is settled as follows. The monotonicity properties of I

+

are used to

show that if the fact f is not derived due to the change in the order of derivations,

a fact that is better than f (in the � ordering) is derived.

4 Incremental Evaluation of Monotonic Programs

In this section we present an e�cient incremental evaluation technique for mono-

tonic programs, based on the Semi-Naive evaluation technique (see [1], for example).

It is straightforward to use rule evaluation techniques developed for programs with

aggregation to de�ne the function T

P

(I) for a cost-consistent interpretation I. We

separate the program into two parts: a set of rules P and a set of facts D, called

the database.

3

The following procedure de�nes our evaluation algorithm for a single program

component. Multi-component programs can be evaluated component-by-component

in a straightforward way.

Procedure IncrEvalMonotonic (P,D) f

Let I = nf(T

P

(D))

Let OldI = ;

While (OldI 6= I)

OldI = I

I = nf(T

P

(D [I))

return I; /* The result of the evaluation of P on D */

g

An important point (from e�ciency considerations) is that the evaluation pro-

cedure uses T

P

(D [I), not T

P

(I

0

) for all I

0

� D[I, to make new derivations. The

3

This is in keeping with the convention in deductive database literature, and helps distinguish

between the (usually small) program and the (potentially very large) database.

computation of T

P

(D [I) in the above procedure is carried out incrementally as

follows. We assume that the program is pre-processed by moving each groupby

literal in the program into a separate rule by itself. For rules without groupby

literals, Semi-Naive evaluation [1] is used to perform incremental evaluation. For

rules with the groupby literals, incremental evaluation is done using incremental

aggregation techniques.

The normal form of an interpretation can also be maintained incrementally

during evaluation by means of an \extended subsumption check"; whenever a fact

p(a; c1) is inserted, we check to see if there already exists a fact p(a; c2). If there is

such a fact and c1 � c2, we discard p(a; c1). If c2 � c1^c1 6= c2, we replace p(a; c2)

by p(a; c1). As discussed in Section 3.1.3, the resulting set of facts in each iteration

of the evaluation is cost-consistent, if the program is cost-consistent. Evaluation

terminates when no \new" facts are derived in an iteration.

Theorem 4.1 If a program P is monotonic and cost-consistent, incremental eval-

uation of the program using Procedure IncrEvalMonotonic is sound, i.e., the result of

the procedure is contained in the monotonic semantics of P . Further, the evaluation

is complete whenever it terminates, i.e., the monotonic semantics of P is contained

in the result of the procedure. 2

Example 4.1 (Company Controls Program: Revisited)

Consider again the company controls program from Example 1.1, with the same

dataset (shown in Figure 1). As the evaluation proceeds, facts of the form:

controls(0; 1); controls(0; 2); : : : ; controls(0; n� 2); controls(0; n� 1)

are derived, each in a separate iteration. Correspondingly, facts

cv

1

(0; n; 1=2n); cv

1

(0; n; 2=2n); cv

1

(0; n; 3=2n); : : :; cv

1

(0; n; (n� 1)=2n)

are derived, and �nally a fact cv

1

(0; n; (n+ 1)=2n) is derived. Using the evaluation

strategy of [14], the cost of computing cv

1

(0; n; i=2n); 1� i � (n�1), would require

computing the sum of i numbers which has cost �(i). Hence, the total cost of

computing facts of the form cv

1

(0; n;) would be �(n

2

).

The incremental evaluation makes use of the fact that cv

1

(0; n; (i� 1)=2n) can

be updated to cv

1

(0; n; i=2n) in constant time, instead of recomputing the aggregate

function from scratch. Thus, the total cost of computing facts of the form cv

1

(0; n;)

is only O(n), as is the total cost of the incremental evaluation procedure. The use

of incremental aggregates results in a reduction of the asymptotic time complexity.

Further, the incremental evaluation is similar to Semi-Naive evaluation in that

it does not repeat any derivation steps. 2

5 Magic Sets: Adding Goal Directed Behavior

One of the main optimizations performed in a bottom-up evaluation is the special-

ization (using, e.g., Magic Sets) of the program with respect to the query so that

the evaluation will generate only facts that are in some way \relevant" to answering

the query. We assume familiarity with the Magic Sets transformation, and refer the

reader to [2] for more details.

Consider, for example, the company controls program with the following addi-

tional rule:

controls(X;Y) : � groupby(cv(X;Z; Y;N); [X;Y]; S = sumhN i);

S < 0:3; controls(Y;X); false:

where false is a predicate that is always de�ned to fail. The resulting program

is still monotonic because this rule cannot be used to compute any facts. Given

a query of the form ? controls(c1; c2), if a left-to-right subgoal evaluation order is

used, one of the rules in the Magic Sets transformed program is:

m controls(Y;X) : � m controls(X;Y); groupby(cv(X;Z; Y;N);

[X;Y]; S = sumhN i); S < 0:3:

This rule is not monotonic, and the presence of this rule makes the Magic Sets

rewritten program non-monotonic.

We can de�ne a sub-class of monotonic programs that does not have this prob-

lem, in a fashion similar to the de�nition of left-to-right modularly strati�ed pro-

grams [13]. We refer to these programs as left-to-right monotonic programs, and

show that the corresponding Magic Sets transformed programs are monotonic; de-

tails are presented in the full paper.

A second problem arises if the sip strategy binds cost arguments of predicates.

Such a sip strategy could result in a Magic Sets transformed program with the rule:

4

p(X;C) : � m p(X;C); p1(X;C):

where both p and p1 are de�ned in the original program to have cost arguments.

This rule would make the transformed program non-monotonic, even if the original

program is monotonic, whether the second argument of the predicate m p is de�ned

to be a cost argument or not. This problem can be avoided if the Magic Sets

transformation considers only sip strategies that do not bind cost arguments of

predicates. We call such sip strategies as cost-restricted sip strategies.

The main result of this section is the following:

Theorem 5.1 Consider a left-to-right monotonic program component P . Let MP

be the Magic Sets transformation of P using left-to-right cost-restricted sip strate-

gies. Then, MP is a left-to-right monotonic program component, and is equivalent

to P w.r.t. the query predicate. 2

Our reformulation of the monotonic semantics is the key to our proof of correct-

ness of Magic Sets rewriting for monotonic programs.

The monotonic semantics is de�ned for individual components of a program

containing aggregation; the semantics of a multi-component program is then de�ned

in a component-by-component fashion. However, Magic Sets transformations do

not \preserve" components; given a program with two components, for example,

it is possible that the Magic Sets transformed program combines the two into a

single component and the resultant program may not even be monotonic. (For

the same reason that the Magic Sets transformation of a strati�ed program may

be non-strati�ed.) We can show that techniques used for evaluating the Magic

Sets transformation of strati�ed programs can be used (essentially unchanged) to

evaluate the Magic Sets transformation of multi-component left-to-right monotonic

programs.

6 Related Work

Mumick et al. [9] de�ne a sub-class of monotonic programs, the r-monotonic pro-

grams, where rules with groupby literals in the body cannot have the aggregated

4

The original rule can be obtained by deleting the m p(X;C) literal in the rule body.

value appearing in the head of the rule. They also present a bottom-up �xpoint

procedure to compute this semantics, and show that the Magic Sets transformation

preserves r-monotonicity.

Ganguly et al. [7] de�ne the class of cost-monotonic programs, which have only

the min and max aggregate functions, and is incomparable with the class of mono-

tonic programs. They also present an e�cient evaluation procedure for the class of

cost-monotonic programs, that uses a form of control to ensure that a derived fact

does not need to be replaced by a \better" fact subsequently in the derivation.

Koestler et al. [8] have independently proposed a di�erential �xpoint opera-

tor, which allows the user to specify a \subsumption" meta-predicate and evaluate

an aggregate-free program by eliminating tuples that are subsumed by previously

derived tuples. While their formalism does not allow explicit aggregates, it can

simulate min and max aggregate functions.

7 Discussion and Conclusions

The techniques we developed have several applications outside of e�cient evalu-

ation of queries under the monotonic semantics. First, the techniques developed

for incremental computation of aggregate values can be used to enhance existing

incremental view maintenance/integrity veri�cation techniques (see, e.g., [5]).

Second, the proof-theoretic reformulation of the monotonic semantics can form

the basis for extending the monotonic semantics in several directions that we are

pursuing; e.g., to deal with a larger class of programs with aggregation, and to

allow negation. Checking for cost-consistency of programs is often di�cult; we

believe that the proof-theoretic reformulation can be used to enhance the class of

programs by removing the requirement of cost-consistency. Also, extending the �

ordering of facts is useful. For example, a version of the cheapest path program

which also computes the actual cheapest path, in addition to the cost of the path,

can be expressed as follows. An extra argument containing a list of the nodes in

the path is added to the cost and the mincost predicates; the � ordering needs to

be extended to ignore this path argument. (This extension enhances expressivity,

but may make checking for monotonicity harder.)

The monotonic semantics does not deal with program components with negation.

Deductive database systems, such as Coral, allow both aggregation and negation

in program components. An interesting direction of future research is to integrate

the monotonic semantics for aggregation with semantics developed for negation, to

derive a more general semantics that is still e�ciently computable.

Acknowledgements

We wish to thank Shaul Dar whose careful reading of an earlier version of the

paper considerably improved the presentation of this paper. The research of Raghu

Ramakrishnanwas supported by a David and Lucile Packard Foundation Fellowship

in Science and Engineering, a Presidential Young Investigator Award with matching

grants from DEC, Tandem and Xerox, and NSF grant IRI-9011563. The research

of Kenneth A. Ross was supported by NSF grant IRI-9209029, by a grant from

the AT&T Foundation, by a David and Lucile Packard Foundation Fellowship in

Science and Engineering, and by a Sloan Foundation Fellowship.

References

[1] I. Balbin and K. Ramamohanarao. A generalization of the di�erential approach

to recursive query evaluation. Journal of Logic Programming, 4(3):259{262,

Sept. 1987.

[2] C. Beeri and R. Ramakrishnan. On the power of Magic. Journal of Logic

Programming, 10(3&4):255{300, 1991.

[3] C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. A proof the-

oretic approach to semantics for logic programs. Submitted for publication.

Parts of the paper appeared in `The Valid Model Semantics for Logic Pro-

grams' (PODS'92), and in `Extending the Well-Founded and Valid Semantics

for Aggregation' (ILPS'93)., 1994.

[4] A. M. Berman, M. C. Paull, and B. G. Ryder. Proving relative lower bounds

for incremental algorithms. Acta Informatica, 27:665{683, 1990.

[5] F. Bry, R. Manthey, and B. Martens. Integrity veri�cation in knowledge bases.

In Logic Programming, pages 114{139, 1992. LNAI 592.

[6] S. Dar, R. Agrawal, and H. V. Jagadish. Optimization of generalized transitive

closure queries. In Proceedings of Seventh IEEE International Conference on

Data Engineering, Kobe, Japan, 1991.

[7] S. Ganguly, S. Greco, and C. Zaniolo. Minimum and maximum predicates in

logic programming. In Proceedings of the ACM Symposium on Principles of

Database Systems, 1991.

[8] G. Koestler, W. Kiessling, H. Thone, and U. Guntzer. The di�erential �xpoint

operator with subsumption. In Proceedings of the International Conference on

Deductive and Object-Oriented Databases, 1993.

[9] I. S. Mumick, H. Pirahesh, and R. Ramakrishnan. Duplicates and aggregates in

deductive databases. In Proceedings of the Sixteenth International Conference

on Very Large Databases, Aug. 1990.

[10] S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases.

Principles of Computer Science. Computer Science Press, New York, 1989.

[11] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL: Control, Rela-

tions and Logic. In Proceedings of the International Conference on Very Large

Databases, 1992.

[12] G. Ramalingam. Bounded Incremental Computation. PhD thesis, University

of Wisconsin, Madison, Aug. 1993. Technical Report #1172.

[13] K. Ross. Modular Strati�cation and Magic Sets for DATALOG programs with

negation. In Proceedings of the ACM Symposium on Principles of Database

Systems, pages 161{171, 1990.

[14] K. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. In

Proceedings of the ACM Symposium on Principles of Database Systems, pages

114{126, 1992.

[15] S. Sudarshan, D. Srivastava, R. Ramakrishnan, and C. Beeri. Extending the

well-founded and valid model semantics for aggregation. In Proceedings of the

International Logic Programming Symposium, 1993.

[16] A. Van Gelder. The well-founded semantics of aggregation. In Proceedings of

the ACM Symposium on Principles of Database Systems, pages 127{138, 1992.

[17] A. Van Gelder. Foundations of aggregation in deductive databases. In Pro-

ceedings of the International Conference on Deductive and Object-Oriented

Databases, 1993.

