
Aggregation and Relevance in Deductive Databases

�

S. Sudarshan Raghu Ramakrishnan

y

Computer Sciences Department,

University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract

In this paper we present a technique to optimize queries on

deductive databases that use aggregate operations such as

min, max, and \largest k values." Our approach is based

on an extended notion of relevance of facts to queries that

takes aggregate operations into account. The approach has

two parts: a rewriting part that labels predicates with \ag-

gregate selections," and an evaluation part that makes use of

\aggregate selections" to detect that facts are irrelevant and

discards them. The rewriting complements standard rewrit-

ing algorithms like Magic sets, and the evaluation essentially

re�nes Semi-Naive evaluation.

1 Introduction

Recursive queries with aggregation have been considered by

several people [BNR

+

87, MPR90]. The advantages of a rich

language are clear, but unless e�ective optimization tech-

niques are developed, the performance of specialized systems

based on supporting a limited class of queries (for example

generalized transitive closure queries) cannot be matched. In

this paper we consider optimizations of recursive programs

with aggregate operations.

Consider the (very naive) program shown in Figure 1, for

computing shortest paths between nodes in the relation edge.

It essentially enumerates all paths and chooses shortest paths

among them. The notation path(X;Y;min(< C >)) in the

head of rule R2 denotes that for each value of X;Y all pos-

sible C values that are generated by the body of the rule are

collected in a set, and the min aggregate operation is applied

on this set of values. For each value of X and Y , a path fact

is created with the result of the min operation as the third

argument.

�

This paper appeared in the Int'l Conference on Very Large

Databases, 1991

y

The work of both authors was supported in part by a

David and Lucile Packard Foundation Fellowship in Science and

Engineering, an IBM Faculty Development Award and NSF

grant IRI-8804319. The email addresses of the authors are

fsudarsha,raghug@cs.wisc.edu

A formulation of the problem in this form is desirable since

it is declarative, can be queried in many di�erent ways and

is easy to write. It is easily augmented with additional con-

straints such as \the edges all have a given label" (for in-

stance, ights on United Airlines alone must be considered),

or \there must be no more than three hops on the ight".

The standard bottom-up evaluation of such a program is ex-

tremely ine�cient since it constructs every possible path in

the graph. In contrast, the above problem can be solved in

polynomial time using either Warshall's algorithm or Dijk-

stra's shortest path algorithm (see [AHU74]). It can also be

evaluated e�ciently if it is expressed using specialized oper-

ators for transitive closure ([RHDM86, ADJ88, CN89]).

We propose to optimize bottom-up evaluation using a no-

tion of relevance of facts to some aggregate operations such

as min and max. Our notion of relevance can be seen as

an extension of the notion of relevance used in optimizations

such as Magic sets rewriting [BMSU86, BR87, Ram88]. We

�rst explain the idea informally, using Program Simple (Fig-

ure 1).

Example 1.1 Consider Program Simple (Figure 1)

1

. Ag-

gregate operation min has the property that non-minimal

values in a set are unnecessary for the aggregate oper-

ation on the set. Using this property, we can deduce

that a fact path(a; b; p1; c1) is relevant to the rule de�ning

the query predicate shortest path only if there is no fact

path(a; b; p2; c2) such that c2 < c1. We use tests called aggre-

gate selections to check whether a fact is relevant; conditions

such as the above are used in the tests.

The rewriting (automatically) deduces an aggregate selec-

tion on this occurrence of the predicate path; only facts with

minimum cost values satisfy the aggregate selection. It then

\pushes" this aggregate selection into rules that de�ne path,

and propagates the selections through the program.

The rewriting algorithm outputs a program containing ag-

gregate selections on the predicates. In this case the output

1

We assume that append is de�ned for us, and concentrate on

the rest of the program.

R1 : shortest path(X;Y;P;C) s p length(X;Y; C); path(X;Y;P;C):

R2 : s p length(X;Y;min(< C >)) path(X;Y; P;C):

R3 : path(X; Y;P1; C1) path(X;Z;P;C); edge(Z;Y;EC);

append([edge(Z; Y)jnil]; P; P1); C1 = C +EC:

R4 : path

1

(X;Y; [edge(X;Y)jnil];C) edge(X;Y;C):

Query: ?-s p(X;Y; P;C):

Figure 1: Program Simple

is essentially the same as Program Simple, except that every

occurrence of path in the program has an aggregate selection

that selects minimum cost paths. The rewritten program is

shown in Figure 2, and we discuss it after introducing the

notation used to express aggregate selections.

The evaluation phase of our technique makes use of the

aggregate selections on path, and discards facts on which

the aggregate selection test fails (namely the non-minimal

paths). We can optimize the evaluation further by using in

each iteration only the path fact with minimum cost among

all newly generated path facts. This reduces the cost to the

same as that of Dijkstra's algorithm (O(e � log(n))), and this

is discussed in Section 5.2. The optimized evaluation also

works when edge weights are negative, so long as there are

no negative cost cycles. 2

Recently Ganguly et al. [GGZ91] independently examined

Datalog programs with min or max aggregate operations.

Their work addresses problems that are similar to those that

we consider, but the approaches are quite di�erent and the

techniques are complementary. We present a comparison of

our techniques with those of Ganguly et al. in Section 6.1,

and describe several advantages of our approach.

The rest of the paper is organized as follows. We present

basic de�nitions in Section 2. Our notion of relevance is de-

veloped in Section 3, where we also introduce aggregate selec-

tions and constraints as a way of specifying relevance infor-

mation. Techniques for propagation of aggregate selections

and constraints through single rules are developed in Sec-

tion 4.1. In Section 4.2 we present an algorithm to rewrite

programs by propagating aggregate selections through the

program, starting from the query. In Section 5 we show how

to evaluate rewritten programs.

2 De�nitions

We consider logic programs (an extension of Datalog pro-

grams that allows terms such as lists) extended with aggre-

gation primitives. For simplicity, we only consider programs

without negation although our results can be extended to

deal with strati�ed negation in a straightforward manner.

We also restrict the use of aggregation to be strati�ed. That

is, if p is used to de�ne q via a rule that uses aggregation,

q cannot be used to de�ne p. Further, we require that ev-

ery variable in the head of a rule should appear in the body.

This means that only ground terms can be generated, which

is reasonable in a database context. Finally, we assume that

program transformations such as Magic Sets have already

been carried out; their use is largely orthogonal to our opti-

mizations.

We assume standard de�nitions [Ull89]. We use overlines

to denote tuples of terms, variables etc. We use V ars(t) to

denote the set of variables that occur in a term t. Similarly,

V ars(t) denotes the set of variables that occur in a tuple of

terms t.

The syntax and semantics that we use for aggregation is

very similar to LDL [BNR

+

87]. Wlog we assume that there is

at most one literal in the body of a rule that has an aggregate

operation in the head. The semantics of a rule

p(t; agg f < Y >) q(. . .)

is as follows. We use the set of all facts that can be derived

for q to instantiate q(. . .) and thus generate instantiations of

variables in V ars(t)[fY g. For each value of V ars(t) in this

set, we �rst collect the set of corresponding instantiations of

Y and apply aggregate operation agg f to it to get a value

y

t

, and then create a fact p(t; y

t

).

3 Views of Relevance In Logic

Programs

The idea of relevance of facts to a query is used by Prolog and

other top-down evaluation techniques, as well as by program

rewriting techniques such as Magic sets. Suppose we have a

rule

R : p(t) q

1

(t

1

); q

2

(t

2

); . . . ; q

n

(t

n

)

Assume for simplicity that we have a left-to-right rule evalu-

ation (in the fashion of Prolog). Then a fact q

i

(a

i

) is relevant

if there is an instantiation

R

0

: p(a) q

1

(a

1

); q

2

(a

2

); . . . ; q

i

(a

i

)

of (the head and �rst i body literals of) R such that

the head fact p(a) is relevant, and all instantiated facts

q

1

(a

1

); . . . ; q

i�1

(a

i�1

) have been derived. Thus, the notion

of relevance is local to a rule and to a set of facts that can

instantiate it.

In contrast, in the shortest path problem we can decide

that a particular fact path(a; b; p1; c1) is irrelevant if a shorter

path (fact) has been found. Such information is \global", in

the sense that relevance depends on facts other than those

used to instantiate a rule. We develop this notion of rele-

vance for programs with aggregate operations in the rest of

this section, in three steps. (1) If agg f is an aggregate func-

tion and S a set of values, we consider when some values in S

can be ignored without a�ecting agg f(S) (Section 3.1). (2)

We use the ideas of step 1 to de�ne when a fact is relevant

(Section 3.2). (3) We introduce aggregate selections and ag-

gregate constraints as a way of explicitly identifying irrelevant

facts (Section 3.3).

3.1 Relevance and Aggregate Functions

Given a set of values and an aggregate function on the set,

not all the values may be needed to compute the result of the

aggregate function. For instance, if the aggregate function is

min, no value except the minimum value is needed. We now

formalize the notion of values being unnecessary for aggregate

functions.

De�nition 3.1 Incremental Aggregate Selector (Inc-

Sel) Functions : Let agg f be an aggregate function

agg f : 2

D

! D on domain D. We say that agg f is an in-

cremental aggregate selector (IncSel) function if there exists

a (nontrivial) function unnecc : 2

D

! 2

D

such that

1. 8S � D;8S1; (S � unnecc(S)) � S1 � S)

agg f(S1) = agg f(S)

2. unnecc

agg f

is monotone. i.e., 8S1 � S2 � D;

unnecc

agg f

(S1) � unnecc

agg f

(S2)

3. 8S � D;unnecc

agg f

(S) = unnecc

agg f

(

S � unnecc

agg f

(S)) 2

Given a set S, Part 1 of the above condition lets us drop

values in unnecc

agg f

(S) from S without a�ecting the result

of agg f(S). Part 2 of the above condition lets us detect un-

necessary values before the entire set of values is computed|

when we have computed some S1 � S, any value detected

as unnecessary for agg f on S1 is also guaranteed to be un-

necessary for agg f on S; a value that is necessary for S1

may however be unnecessary for S. Part 3 of this condition

ensures that if a value is detected to be unnecessary for an

aggregate operation on a set, it will continue to be detected

as unnecessary if we discard unnecessary values from the set

2

.

Consider an IncSel function agg f on domain D. There

may be more than one possible function unnecc as required

by the de�nition of IncSel functions.

De�nition 3.2 unnecessary

agg f

: For each incremen-

tal aggregate selector function agg f that is allowed in our

programs, a function unnecc (as above) is chosen, and is de-

noted by unnecessary

agg f

.

The function necessary

agg f

: 2

D

! 2

D

is de�ned as

necessary

agg f

(S) = S � unnecessary

agg f

(S). 2

We do not consider how this choice is made, but assume it

is made by the designer of the system based on the following

criterion. Given two such functions f and g, we say f �

0

g

2

This is used in Theorem 5.1 to show that inferences are not

repeated. None of the other results require aggregate functions to

satisfy this condition.

i� 8S � D;f(S) � g(S); clearly >

0

(the strict version of �

0

)

is an (irreexive) partial order. Preferably, a function that is

maximal under the (irreexive) partial order >

0

is chosen.

Note that unnecessary

agg f

(S) could be in�nite. We do

not construct an in�nite set unnecessary

agg f

(S), but re-

quire that we can e�ciently test for the presence of a value

in unnecessary

agg f

(S), for �nite S.

The function min on reals, with unnecessary

min

(S) =

fx 2 D j x > min(S)g is an IncSel function. The function

max on reals with unnecessary

max

symmetrically de�ned is

also an IncSel function. Other examples (with the functions

unnecessary

agg f

appropriately de�ned), include the aggre-

gate function that selects the kth largest element of a set for

some constant k, and the aggregate function that sums up

the k largest elements of a set. Although we only consider

aggregate functions of the form 2

D

� > D, the ideas in this

paper can be extended to aggregate functions of the form

2

D

� D ! T=F . Examples of such functions include \se-

lect the best three results". We can also extend the ideas to

aggregate functions on multisets.

In the rest of the paper, we assume that the optimization

techniques are applied only on IncSel functions, and that a set

of such aggregate functions and the corresponding functions

unnecessary

agg f

are given to us.

3.2 Relevance of Facts

We now use the notion of necessity with respect to an aggre-

gate function in de�ning our extended notion of relevance of

facts.

De�nition 3.3 Relevance of Facts : Consider a pro-

gram P with a query on it. A fact p(a) is relevant to the

query i� one of the following is true:

1. p(a) is an answer to the query, or

2. p(a) occurs in the body of an instantiated rule without

aggregation in the head such that every literal in the

body is true in the least model

3

, and the head fact of

the rule is relevant to the query, or

3. There is a rule R in the program

R : q(t

1

; agg f(< Y >)) p(t

2

)

and an instantiation R

0

of R,

R

0

: q(a

1

; agg f(< Y >)) p(a

2

)

such that

(a) Y is free in R

0

and all other variables are bound

to ground terms, and

(b) Let S

Y

be the set of all possible instantiations b

of Y such that p(a

2

)[Y=b] is true in the model.

3

The program semantics is based upon a least model. For posi-

tive Horn logic programs, this is the least Herbrand model. In the

presence of set terms, we must consider models over an extended

Herbrand universe [BNR

+

87]. The de�nition can be extended to

non-strati�ed programs.

Then q(a

1

; agg f(S

Y

)) is present in the model and

is relevant to the query, and

(c) p(a) = p(a

2

)[Y=b1], where b

1

2 necess-

ary

agg f

(S

Y

). 2

A fact is said to be irrelevant to the query if it is not rele-

vant to the query. In future, we simply say relevant (resp.

irrelevant) when we mean \relevant to the query" (resp. \ir-

relevant to the query").

Example 3.1 Consider a program with one rule

R : p(X;min(< Y >)) q(X;Y)

and facts q(5; 4); q(5; 6) and q(5; 3). Let the query on the

program be ?p(X;Y). Fact p(5; 3) is generated as an answer.

With X = 5, the set of facts that match the body of the

rule have Y values of 3; 4 and 6, of which only 3 is necessary

for min. Using the above de�nition of relevance, we �nd

that the facts q(5; 4) and q(5; 6) are irrelevant to the query,

while q(5; 3) is relevant. Also, by the above de�nition, for

the shortest path program (Figure 1) all path facts, except

those corresponding to shortest paths, are irrelevant. 2

Our extended notion of relevance is very tight, and in gen-

eral we may not be able to determine the relevance of a fact

without actually computing the least model of the program.

The techniques we present will use su�cient but not neces-

sary conditions to test for irrelevance. During the evaluation

of some programs we may generate a fact, and later discover

that it is irrelevant, for instance when some other \better"

fact is generated. Once a fact is found to be irrelevant, by

\withdrawing" this fact, we may be able to determine that

other facts generated using it can no longer be generated, and

hence can also be \withdrawn". The cost of such cascading

withdrawals could be very high, and so we con�ne ourselves

to only discarding irrelevant facts. Although this could re-

sult in some additional irrelevant computation, the gains in

e�ciency from our optimization can still be signi�cant.

3.3 Aggregate Constraints and Select-

ions

We now introduce some concepts that allow us to specify rele-

vance information. Informally, sound aggregate selections are

used to specify tests for relevance of facts|if there is a sound

aggregate selection on a predicate in our rewritten program,

and a fact for the predicate does not satisfy the selection,

the fact is irrelevant. Aggregate selections are introduced by

our rewriting algorithm and the information is used by our

evaluation algorithm. The syntax (using a variant of Star-

burst SQL groupby) and semantics of aggregate selections are

described in the next few de�nitions.

De�nition 3.4 Atomic Aggregate Selection : An

atomic aggregate selection has the following syntax:

c(u) : groupby(p(t); [X]; agg f(Y))

Here c(u) denotes a literal or a conjunction of literals, and

X a set of variables such that X � V ars(t). We must have

Y 2 V ars(t), and agg f must be an IncSel function.

Consider a program P with an associated least model.

Given the set of facts for predicate p in the least model of

P , we have a set of instantiations of t. Since X � V ars(t)

and Y 2 V ars(t), for each value d of X in this set of in-

stantiations, we have a corresponding set of values for Y ; we

denote this set by S

d

. We construct (conceptually) a rela-

tion unnecc agg(X;Y) with a tuple (d; e) for each d, and

each e 2 unnecessary

agg f

(S

d

).

Let c(a) be a ground conjunction. We say that c(a) satis-

�es the atomic aggregate selection s

i

i� there exists a substi-

tution � such that (1) c(a) = c(u)[�], (2) � assigns ground

terms to all variables in V ars(u)[X[fY g, and (3) (X;Y)[�]

is not in unnecc agg

4

. 2

In the above de�nition, the variables in [X] are called

grouped variables and the variable Y is called the aggregated

variable in the atomic aggregate selection. The variables in

the set ((V ars(t) � X) � fY g) are local to the groupby,

and cannot be quanti�ed or instantiated from outside the

groupby.

De�nition 3.5 Aggregate Selection : An aggregate

selection s is a conjunction of atomic aggregate selections,

s = (s

1

^ s

2

^ . . . ^ s

n

).

A ground conjunction c(a) satis�es an aggregate selection

s = (s

1

^ s

2

^ . . . ^ s

n

) i� it satis�es each of the atomic

aggregate selections s

i

individually. 2

We use the short form c(u) : g1 ^ g2 to denote (c(u) :

g1) ^ (c(u) : g2). We often say \the aggregate selection s on

the body of R" to denote the aggregate selection c(u) : s,

where c(u) is the body of rule R. Note that a conjunction of

aggregate selections is also an aggregate selection.

Our approach to rewriting the program consists of placing

aggregate selections on literals and rule bodies in the pro-

gram in such a fashion that if a fact/rule instantiation does

not satisfy the aggregate selection it is guaranteed to be ir-

relevant. Hence we de�ne the concept of sound aggregate

selections formally below.

De�nition 3.6 Sound Aggregate Selection : An ag-

gregate selection s is a sound aggregate selection on the body

of a rule R i� only irrelevant facts are produced by instanti-

ations of the body of R that do not satisfy s.

An aggregate selection s is a sound aggregate selection for

a literal p(t) in the body of a rule R i� only irrelevant facts

are produced by instantiations of R that use for literal p(t)

any fact p(a) that does not satisfy s.

An aggregate selection s is a sound aggregate selection on

a predicate p i� any fact p(a) is irrelevant if it does not satisfy

s. 2

4

Note that the relation unnecc agg could be in�nite. To actu-

ally perform the test, we would take an instantiationof Y , and test

if it is in unnecessary

agg f

(X)[�] without actually constructing

the whole (possibly in�nite) set unnecessary

agg f

(X)[�], or the

(possibly in�nite) relation unnecc agg.

Given a sound aggregate selection on a literal/rule, we can

(partially) test during an evaluation whether a fact or an

instantiated rule satis�es it. The extension of each predi-

cate p at that point is a subset of the extension of p in the

least model of the program. Since the aggregate functions

are incremental aggregate selectors, an answer of \no" at

that point means that the answer would be \no" in the least

model of the program, and hence the fact/instantiation is ir-

relevant. However, an answer of \yes" is conservative, since

the fact/instantiation may be detected to be irrelevant if all

facts in the least model were available.

Example 3.2 Consider an aggregate selection

path(X;Y; P;C) : groupby(path(X; Y; P;C); [X;Y];

min(C))

Suppose we have two facts path(a; b; ; 2) and path(a; b; ; 3)

at a point in the computation. Then we know that

path(a; b; ; 3) does not satisfy the selection. Later in the

computation we may derive a fact path(a; b; ; 1). At this

point we �nd that path(a; b; ; 2) also does not satisfy the

selection. 2

We de�ne sound aggregate constraints next|they di�er

slightly from sound aggregate selections, and we use them in

our rewriting algorithm to generate aggregate selections.

De�nition 3.7 Sound Aggregate Constraint : An ag-

gregate selection s is a sound aggregate constraint for pred-

icate p i� every fact that can be derived for p satis�es the

aggregate selection s. 2

The following are technical de�nitions that we use primar-

ily to ensure that the aggregate selections that we generate

can be tested e�ciently. The motivation is that the fact/rule

instance on which we have an aggregate selection must bind

all the variables in the aggregate selection.

De�nition 3.8 Non-bound Variables : The non-

bound variables of an atomic aggregate selection c(u) :

groupby(p(t); [X]; agg f(Y)) are the variables in the set

(V ars(X) [fY g). The non-bound variables of aggregate se-

lection s = s

1

^. . .^s

n

are those variables that are non-bound

in at least one of the atomic selections aggregate s

i

. 2

De�nition 3.9 Restrictions of Aggregate Selections

: An atomic aggregate selection s

i

is said to be restricted

to a given set V of variables if every non-bound variable

in s

i

occurs in V . Let s = (s

1

^ s

2

^ . . . ^ s

n

). Then

restriction(s; V) = ^fs

i

j s

i

is restricted to V g 2

Example 3.3 Consider the following selection:

s = c(u) : groupby(path(X; Y;P;C); [X;P];min(C))^

groupby(path(X; Y;P;C); [X;Y];min(C))

The non-bound variables of s are X;Y; P and C, and

restriction(s;fX;Y; Cg) =

c(u) : groupby(path(X; Y; P;C); [X;Y];min(C)) 2

4 Aggregate Rewriting

We present a quick overview of the next few sections of the

paper. We develop our algorithm for propagating relevance

information in two steps. (1) In Section 4.1 we present a

collection of techniques for generating sound aggregate se-

lections. (2) In Section 4.2, we present our main rewriting

algorithm, Algorithm Push Selections, which uses these tech-

niques as subroutines. In Section 5, we examine an evaluation

mechanism that can take advantage of sound aggregate se-

lections on predicates of the form p=s that are generated by

the rewriting mechanism.

As a preview of what the techniques can achieve, consider

Program Simple (Figure 1). The result of rewriting is Pro-

gram Smart, shown in Figure 2. The notation path=s1

denotes a (new) predicate that is a version of path with the

sound aggregate selection s1 on it. The other predicates have

no aggregate selections on them. This selection tells us that

paths that are not of minimum length between their end-

points are irrelevant. Discarding such facts during the evalu-

ation leads to considerable time bene�ts, and is discussed in

Section 5.2.

4.1 Generation of Aggregate Constra-

ints and Selections

In this section we present a collection of techniques for gen-

erating aggregate constraints and selections. The techniques

are shown below. The reader may skip this section and pro-

ceed to Section 4.2 on a �rst reading. Technique C1 describes

a way of deducing sound aggregate constraints on predicates.

Techniques BS1, BS2 and BS3 describe three ways to gen-

erate sound aggregate selections on the bodies of rules. In

Sections 4.1.1 and 4.1.2 we present a more sophisticated anal-

ysis that helps us to derive further sound aggregate selections

on body literals. For lack of space we omit several other tech-

niques for generating sound aggregate constraints and selec-

tions.

Technique C1: Suppose that there is only one rule de�ning

p, and it is of the form:

p(t; agg f(< Y >)) q(t

b

)

Let X = V ars(t), and let agg f be an IncSel function

such that 8S � D;agg f(S) = relevant

agg f

(S). Then

p(t; Y) : groupby(q(t

b

); [X]; agg f(Y)) is a sound aggre-

gate constraint on p.

Technique BS1: Let R be of the form

R : head(t

h

) c(t

b

); p(t)

and suppose there is an aggregate constraint on p of the

form: p(t

1

) : s where all non-bound variables in s are

included in V ars(t

1

). Suppose there exists a renaming

5

� of variables in t

1

such that p(t) = p(t

1

)[�]. Then s[�]

is a sound aggregate selection on the body of rule R.

Technique BS2: Suppose we have a rule of the form

p(t; agg f(< Y >)) q(t

b

)

with an aggregate operation in its head. Let X =

V ars(t). Then groupby(q(t

b

); [X]; agg f(Y)) is a sound

aggregate selection on the body of rule R.

Technique BS3: Consider a rule of the form

R : p(t

h

) body(t

b

).

R1 : shortest path(X;Y; P;C) s p length(X;Y;C); path=s1(X; Y;P;C):

R2 : s p length(X;Y;min(< C >)) path=s1(X;Y; P;C):

R3 : path=s1(X;Y; P1; C1) path=s1(X;Z;P;C); edge(Z;Y; EC);

append([edge(Z;Y)jnil]; P;P1); C1 = C + EC:

R4 : path=s1(X;Y; [edge(X;Y)jnil]; C) edge(X;Y;C):

Selections:: s1 = path=s1(X; Y;P;C) : groupby(path=s1(X; Y;P;C); [X;Y];min(C)))

Figure 2: Program Smart

Suppose the head predicate p has a sound aggregate

selection p(t) : s on it, where all non-bound variables

in s are included in V ars(t). Suppose there exists a

renaming

5

� of variables in t such that p(t

h

) = p(t)[�].

Then s[�] is a sound aggregate selection on the body of

rule R.

Technique LS1: Let s be a sound aggregate selection on

the body of a rule R, and let p(t) be a literal in the

body of R. Then p(t) : restriction(s; V ars(t)) is a

sound aggregate selection on the literal p(t) in the body

of R.

Example 4.1 Consider Program Simple (Figure 1). Using

Technique C1 and rule R2 we get the aggregate constraint

s p length(X;Y; C) : groupby(path(X; Y; P;C); [X;Y];

min(C))

on the predicate s p length. Using this aggregate constraint

with rule R1, Technique BS1 deduces the following sound

aggregate selection on the body of rule R1:

groupby(path(X; Y;P1; C); [X;Y];min(C)).

Using Technique BS2 we get the following sound aggregate

selection on the body of rule R2:

groupby(path(X; Y;P;C); [X;Y];min(C))

If we had a sound aggregate selection

path(X;Y; P;C) : groupby(path(X; Y;P;C); [X;Y];min(C))

on the head predicate of rule R3, Technique BS3 would

derive the following sound aggregate selection on the body

of rule R3:

groupby(path(X; Y;P1; C1); [X;Y];min(C1)).

From these sound aggregate selections on the bodies of R1

and R2, using LS1, we deduce the sound aggregate selection

path(X;Y; P;C) : groupby(path(X; Y; P1; C); [X;Y];

min(C))

on the literal path(X;Y;P;C) in the body of the rule R1,

and the sound aggregate selection

path(X;Y; P;C) : groupby(path(X; Y; P;C); [X;Y];

min(C))

on the literal path(X;Y; P;C) in the body of the rule R2. 2

5

We could allow � to be a substitution on variables. However,

to simplify the task of ensuring that our rewriting algorithm ter-

minates, we restrict ourselves to renamings.

4.1.1 Pushing Aggregate Selections

We now look at another way of generating aggregate selec-

tions on rule body literals. But �rst we present some de�ni-

tions. Aggregate functions such as min and ordinary func-

tions as + or � interact in a particular fashion, and we use this

interaction to generate sound aggregate selections on literals

in the bodies of rules.

De�nition 4.1 Distribution : Let fn be a total function

fn : D�D� . . .�D! D that maps n-tuples of values from

D to a value in D. De�ne s fn(U) =

S

ffn(t) j t 2 Ug.

Let agg f be an aggregate function agg f : 2

D

! D. Let

S

1

; S

2

; . . .S

n

be subsets of D, and let S = S

1

� S

2

� . . . �

S

n

. Let R = necessary

agg f

(S

1

) � necessary

agg f

(S

2

) �

. . . � necessary

agg f

(S

n

). Then necessary

agg f

is said to

distribute over fn i� for every S

1

; . . . ; S

n

, agg f(s fn(R)) =

agg f(s fn(S)). 2

For example necessary

min

distributes over \+" for reals

and integers, and over � for positive reals and positive in-

tegers, but does not distribute over � for arbitrary reals

6

.

Technique PS1 shows a way of deriving aggregate selections

on literals in rule bodies by making use of distribution of

aggregate functions over ordinary functions.

Technique PS1: Let R be a rule of the form

R : p

h

(t

h

) . . . ; p(t;Wi); . . . ; Y = fn(W1; . . . ;Wn)

such that there is no aggregate operation in the head of

R. Suppose

1. There is a sound atomic aggregate selection on the

body of R, of the form

groupby(p

h

(t

h

); [X]; agg f(Y))

2. necessary

agg f

distributes over fn, and

3. Each of W1; . . . ;Wn; Y are distinct variables, and

they each occur in exactly one literal other than

Y = fn(W1; . . . ;Wn) in the body of R; no two

W

i

's appear in the same literal; further, Y does

not appear in any other literal in the body of the

rule.

De�ne the non-repeated arguments of p(t;Wi) as those

of the form V , where V is a variable that does not

appear anywhere else in the body of the rule, and

6

We extend the notion of distribution considerably in the full

version of the paper.

V 62 V ars(X) [fY g. Then the following is a sound

atomic aggregate selection on the literal p(t;Wi) in the

body of the rule:

p(Z;W

i

) : groupby(p(Z;Wi); [Z

0

]; agg f(Wi))

where Z is a tuple of new variables, with arity the same

as t, and where Z

0

contains all variables in Z other

than those that appear in non-repeated arguments of

p(t;W

i

).

The above technique works for a version of the shortest

path program, that computes the path length but does not

keep track of the path information. In the next section we

see some shortcomings of this technique, and extend it.

4.1.2 Extended Techniques for Pushing Selec-

tions

Certain predicates, such as append, used in the bodies of

rules are total functions on some types. Given any two val-

ues of type list as the �rst two arguments of append, there

is guaranteed to be a third value such that the predicate is

true. Such functions are said to be \non-constraining" on ar-

guments of the appropriate type. Under certain conditions,

if such a function appears as a literal in the body of a rule

we can drop the literal before applying Technique PS1. The

result of dropping such literals from a rule is the reduction

of the rule; if we apply Technique PS1 and generate an ag-

gregate selection s for a literal in the reduction of the rule,

then s is a sound aggregate selection for the literal in the

original rule. Due to lack of space, we do not give details of

the technique here, but present a brief example of its use.

Example 4.2 We continue with Example 4.1. Sup-

pose we have a sound atomic aggregate selection

groupby(path(X; Y;P1; C1); [X;Y];min(C1)) on the body of

rule R3. The reduction of R3 wrt to the atomic aggregate

selection is

R3

0

: path(X;Y;P1; C1) path(X;Z;P;C);

edge(Z;Y;EC); C1 = C +EC:

Using Technique PS1, on the reduction, we �nd that the third

argument of path(X;Z;P;C) is non-repeated. Hence we de-

duce the following sound aggregate selection on the literal

path

path(X;Y; P;C) : groupby(path(X; Z;P;C); [X;Z];

min(C))

and the sound aggregate selection

edge(Z;Y;EC) : groupby(edge(Z; Y; EC); [Z;Y];min(EC))

on the literal edge.

If we used Technique PS1 without the reduction step, we

would get the aggregate selection

path(X;Y; P;C) : groupby(path(X; Z;P;C); [X;Z;P];

min(C))

which is \weaker" than the selection described above. 2

4.2 The Aggregate Rewriting Algorithm

In this section we present a rewriting of the program based on

the propagation of sound aggregate selections. The rewriting

algorithm is somewhat similar to the adornment algorithm

used in Magic sets rewriting (see [Ull89]). When it detects

that an occurrence of a predicate p in the body of a particular

rule has a sound aggregate selection s on it, it creates a new

labeled version p=s of p. That occurrence of predicate p is

replaced by p=s, and by using aggregate selection s, (copies

of) rules de�ning p are specialized to de�ne p=s.

The rewriting algorithm is shown below. In Step 7 of the

algorithm, s is a sound aggregate selection on the head of

R

0

, and this along with any aggregate constraints on body

predicates may be used with techniques from Section 4.1 to

generate new aggregate selections.

Algorithm Push Selections(P; P

as

)

Input: Program P , and query predicate query pred.

Output: Rewritten program P

as

.

1)Derive sound aggregate constraints on the predicates of

the program.

2)Push query pred=nil onto stack.

3)While stack not empty do

4) Pop p=s from the stack and mark p=s as seen.

5) For each rule R de�ning p do

6) Set R

0

= a copy of R with head predicate

replaced by p=s.

7) Derive sound aggregate selections for each body

literal p

i

of R

0

.

8) For each p

i

in the body of R

0

do

9) Let si denote the conjunction of sound

aggregate selections derived for p

i

.

10) If a version p

i

=t of p

i

such that t � si has been

seen,

11) Then choose one such, and set si = t ;

12) Else push p

i

=si onto stack.

13) Output a copy of R

0

, with each p

i

replaced by p

i

=si.

14) Output selection s on p=s.

End Algorithm.

Postprocessing 1: For each predicate p, for each version

p=s of p, choose the weakest version p=t of p in the rewritten

program such that s � t. Replace all occurrences of p=s

in bodies of rules in the rewritten program by p=t. Finally,

remove all rules that are not reachable from the query.

Postprocessing 2: Suppose we have an atomic aggregate

selection s = groupby(p(t); [X]; agg f(Y)) in the rewritten

program. If p is absent from the rewritten program select

version p=s of p if it exists. If not, select a version

7

p=s1 of

p if any such version exists. If no p=s1 was found, p is not

connected to the query predicate|drop the selection s from

all predicates that use it. Otherwise rename p in the groupby

in s to p=s or p=s1 as the case may be.

An aggregate selection s is stronger than an aggregate se-

lection t (denoted as s � t), if whenever t classi�es an instan-

tiation as irrelevant, then so does s. We can obtain simple

su�cient conditions for this, which we omit for lack of space.

If in the rewritten program there are two versions of p, p=s

and p=t such that s > t, there is no point using the stronger

version p=s|all the facts computed for p=s will be computed

anyway for p=t. Preprocessing to remove p=s is described in

Postprocessing 1.

As a result of the renaming of predicates, predicates in

aggregate selections may not be present in the rewritten pro-

gram. Postprocessing 2 describes how to �x this.

8

Algorithm Push Selections terminates on all �nite input

programs, producing a �nite rewritten program. The rewrit-

ten program could potentially be large, but, as is the case

with the adornment algorithm for Magic sets rewriting, this

is very unlikely to happen in practice|the rewritten program

is likely to be not much larger than the original program. To

ensure that the rewritten program is small we could adopt

heuristics such as bounding the number of atomic aggregate

selections in an aggregate selection to some �xed small value,

or bounding the number of di�erent aggregate selections on

each predicate. We omit details here; these restrictions may

increase the number of facts computed, but will not a�ect

correctness.

Proposition 4.1 (Strati�cation) : If the initial pro-

gram is strati�ed wrt aggregation, then the aggregate rewrit-

ten program is also strati�ed wrt aggregation. 2

Lemma 4.1 (Correctness of Rewriting) : Semi-

Naive Evaluation of P

as

gives the same set of answers for

query pred as Semi-Naive evaluation of P . Further, the ag-

gregate selections on each predicate in P

as

are sound aggre-

gate selections.2

Example 4.3 Applying this algorithm to Program Simple,

we get the optimized program, Program Smart shown in

Figure 2). The algorithm starts with the query predicate

shortest path. Creation of aggregate constraints, and push-

ing them into rules is done as discussed in earlier exam-

ples, and the operation of Algorithm Push Selections is fairly

straightforward. As a result of the rewriting we get the rules

of Program Smart, but with path=s1 having the following

sound aggregate selection on it:

path=s1(X;Y; P;C) : groupby(path(X; Y; P;C); [X;Y];

min(C))

On postprocessing, we rename predicate path in the above

7

We omit details on how to make this choice from this version

of the paper.

8

A renaming of p is a version of p with an aggregate selection on

it, and is thus a subset of p. Due to monotonicity of the functions

unnecessary

agg f

, any value that is found unnecessary wrt the

subset would also be unnecessary wrt the full set. Hence while

the new selection may not be as strong as the original one, the

renaming is guaranteed to be sound.

selection to path=s1, to get Program Smart. To get the ben-

e�ts of the rewriting, the evaluation must make use of the

aggregate selections present in Program Smart. We describe

how to do this in the next section. 2

5 Aggregate Retaining Evalua-

tion

In this section we see how to evaluate a rewritten program

making use of aggregate selections on predicates. Essentially,

once we know that a fact does not satisfy a sound aggregate

selection on it we know that it is irrelevant to the computa-

tion, and can discard it.

We de�ne Aggregate Retaining Evaluation as a modi�ca-

tion to Semi-Naive evaluation (see e.g. [Ull89]): At the end

of each iteration of Semi-Naive evaluation, we discard facts

that have been computed for each predicate if they do not

satisfy a sound aggregate selection on the predicate.

Theorem 5.1 (Correctness, Completeness, Non-Red-

undancy) : Evaluation of P

as

using Aggregate Retaining

evaluation gives the same set of answers for query pred as

evaluation of P using Semi-Naive evaluation, and does not

repeat any inferences. Further, the Aggregate Retaining eval-

uation of P

as

terminates whenever the Semi-Naive evaluation

of P terminates. 2

Example 5.1 Predicate path=s1 in Program Smart has

a sound aggregate selection s1 = path=s1(X;Y; P;C) :

groupby(path=s1(X; Y; P;C); [X;Y];min(C)). In the evalua-

tion of Program Smart, we maintain at most one path=s1 fact

at a time with a given value for X;Y . If a fact is generated

with any value for X and Y and another fact with the same

value for X and Y already exists we know that the one with

the greater C value does not satisfy the aggregate selection.

Hence it can be discarded. 2

5.1 Pragmatic Issues Of Testing Aggre-

gate Selections

Our selection propagating techniques ensure that all non-

bound variables in a groupby of an atomic aggregate selection

also appear in the corresponding literal on which the selec-

tion is applied. When testing an atomic aggregate selection

on a fact f , we have a unique instantiation of the grouped

variables of the selection, and the test can be performed ef-

�ciently. If the test determines that fact f is irrelevant, f

is discarded, else it is retained. As the computation pro-

ceeds, the set of unnecessary values for the \group" to which

f belongs (i.e., the set of facts with the same values in the

grouped arguments) could change, and this might enable us

to determine that f is irrelevant after all. By sorting the set

of facts on the grouped arguments, this \re-testing" can be

done e�ciently. The cost of sorting is small for the aggregate

operations we consider in this paper; in the case of max or

min aggregate operations there is at most one fact stored in

each set.

Proposition 5.1 (Bounds on Performance) : Given a

program that uses only aggregate operations de�ned in this

paper, and a data set, let the time for Aggregate Retaining

Evaluation of the program on the dataset be t

R

, and let t

O

be the time taken to evaluate the original program on the

dataset. There is a constant k (independent of the data set)

such that t

R

� k � t

O

. 2

This means that Aggregate Retaining evaluation of the

rewritten program can do at most a constant factor worse

than Semi-Naive evaluation of the original program| the

converse is not true.

Using Aggregate Retaining Evaluation, Program Smart

runs in time O(EV

2

), and the single source version of the

program

9

runs in time O(EV). These bounds hold even

if there are negative length edges, so long as there are no

negative cycles in the edge graph.

5.2 Ordered Search

Consider the shortest path problem with a given starting

point. Dijkstra's algorithm takes O(E � log(V)) time if we

use a heap data structure to �nd the minimum cost path

at each stage. However, Aggregate Retaining Evaluation on

the single source shortest path program takes O(E �V) time.

We can get the e�ect of Dijkstra's algorithm by extending at

each stage only the shortest path that hasn't been extended

yet. In other words, we use only the path facts that are of

minimal cost among those that haven't yet been used. This

important observation is made in [GGZ91] and is used in their

evaluation algorithm (see Section 6.1 for a brief description)

for monotonic min programs (in their notation a min program

is one that uses only the aggregate operation min, and it is

said to be monotonic if it is monotonically non-decreasing on

a particular argument of each predicate).

We make use of this idea to derive an improved evaluation

technique for strati�ed min programs. The basic idea is to

modify Aggregate Retaining Evaluation by hiding all facts

whose cost arguments are not of minimum value until no

more derivations can be made. At this stage the hidden fact

whose cost argument is minimum (over all hidden facts) is

made visible. The whole process is repeated until there are

no more hidden facts. As before, facts that do not satisfy

sound aggregate selections on predicates are discarded. We

omit details here due to lack of space. We call this evaluation

technique as Ordered Aggregate Retaining Evaluation.

Theorem 5.2 Ordered Aggregate Retaining Evaluation is

sound, and is complete for and terminates on those programs

9

This version is obtained automatically by using the Factoring

transformation [NRSU89] on Program Dumb, before using Aggre-

gate Rewriting. We do not show details here, but the net e�ect is

as if the �rst argument of path becomes a �xed constant. Aggre-

gate Rewriting optimizes the resultant program successfully. We

also assume that sharing of ground lists between the body and

head facts of a rule can be done, so that the append calls in the

program can be executed in constant time.

on which Aggregate Retaining evaluation terminates.

The e�ect of the above evaluation is exactly the same as

if Ganguly et al.'s evaluation technique were used, for the

case of strati�ed monotonic min programs. For instance, Or-

dered Aggregate Retaining Evaluation of the single source

shortest path program would explore paths in order of in-

creasing cost, and would have time complexity O(Elog(V))

which is the same as that of the technique of Ganguly et al.

and Dijkstra's algorithm. Program Smart would have time

complexity O(EV log(V)) using any of these techniques.

Ordered Aggregate Retaining Evaluation also works on

(and Theorem 5.2 holds for) min programs that are not

monotonic. For instance, the shortest path program is non-

monotonic if there are negative cost edges. But even in this

case, Ordered Aggregate Retaining Evaluation of Program

Smart functions correctly, and terminates if there are no neg-

ative cost cycles.

6 Discussion

We now see some more examples of programs to which our

techniques are applicable.

Example 6.1 The following program de�nes the earliest �n-

ish time of a task, given the �nish times of preceding tasks.

R1 : e fin(X;max(< T >)) fin(X;T):

R2 : fin(X;T) precedes(X;Y); fin(Y; T1);

delay(X;D); T = T1 +D:

R3 : fin(X;T) first(X); delay(X;T):

This program can be optimized using our tech-

niques, and in the resultant program fin is replaced by

fin=s, where s is the aggregate selection fin=s(X;T) :

groupby(fin=s(X; T); [X];max(T)). The rules and other

predicates are the same, but finish facts that don't have

maximal times are deduced to be irrelevant. We can extend

this program to compute the critical path, and still apply our

optimizations. 2

Example 6.2 With a minor modi�cation to Technique BS1,

to allow pushing aggregate selections through rules with ag-

gregate operations in the head, we can optimize the following

program. Predicate path2(X;Y;H;C) denotes a path where

X and Y are source and destination, H denotes hops, and C

denotes cost.

Query: ?-p best(X;Y;H;C):

R1 : p best(X;Y;H;C) p few(X;Y;H);

p short(X;Y;H;C)

R2 : p few(X;Y;min(< H >)) p short(X;Y;H;C):

R3 : p short(X;Y;H;min(< C >)) path2(X; Y;H;C):

/* ... Rules for path2 ... */

The program �nds ights with the minimum number

of hops, and within such ights, �nds those with mini-

mum cost. Our technique generates the aggregate selection

path2(X;Y;H;C) : s where:

s = groupby(path2(X; Y;H;C); [X;Y;H];min(C))^

groupby(path2(X; Y;H;C); [X;Y];min(H)).

The selection propagates unchanged through the rules de�n-

ing path2, so that the rewritten program is the same except

for having the sound aggregate selection s1 on path2 as well

as aggregate selections on p few and p best. 2

Example 6.3 The following program can be used to �nd the

cost of the cheapest three paths, and illustrates the ability

of our techniques to handle aggregate operations other than

min and max. We use the aggregate operation least3 that

selects the three least values

10

.

Query: ?-shortest3(X;Y; C):

R1 : shortest3(X;Y;P; least3(< C >) path(X;Y; P;C):

/* ... Rules for path as in Figure 1 ... */

Aggregate operation least3 is an IncSel function (under

an extended de�nition of IncSel functions that we do not

present in this paper), with unnecessary

least3

(S) de�ned as

all values greater than the third lowest value in S. Also,

necessary

least3

distributes over \+". Hence our rewriting

technique proceeds on the rules for path in this program ex-

actly as it does for the earlier shortest path problem (Exam-

ple 4.3) and the path rules in the rewritten program are the

same as in Program Smart (Example 4.3) except that min

is replaced by least3. Evaluation of the rewritten program is

very similar too, except that instead of retaining only mini-

mum paths between pairs of points, the cheapest three paths

between pairs of points are retained. 2

Our optimization techniques are orthogonal to the Magic

Sets transformation, and are applicable to programs that can-

not be expressed using transitive closure, as the next example

shows.

Example 6.4 Consider Program Nearest Same Generation

(adapted from [GGZ91]) in Figure 3, that computes the

\nearest" among all nodes in the \same generation" as a

node s. Our techniques can be applied to optimize this pro-

gram. This program has been rewritten using the Magic Sets

transformation.

The rewriting produces essentially the same program ex-

cept that there is an aggregate selection s = sg

bff

(X;Y;D) :

groupby(sg

bff

(X;Y;D); [X;Y];min(D)) on predicate sg

bff

.

In the evaluation of the rewritten program, for each X;Y

pair only the fact sg

bff

(X;Y;D) such that D is minimum is

retained. 2

6.1 Related Work

Several papers in the past [RHDM86, ADJ88] addressed op-

timizations of generalized forms of transitive closure that al-

lowed aggregate operations. Cruz and Norvell [CN89] exam-

ine the same problem in a generalized algebraic framework.

On the other hand, we deal with a language that can express

more general recursive queries with aggregation, and do not

make use of any special syntax.

10

This aggregate operation returns a value that is in the ex-

tended Herbrand universe[BNR

+

87]. Although we do not con-

sider these in this paper due to space limitations, this causes no

problems for our optimization techniques.

Recently Ganguly et al. [GGZ91] presented optimization

techniques for monotonic increasing (resp. decreasing) logic

programs with min (resp. max) aggregate operations. Infor-

mally, there must be a single cost argument for each pred-

icate in the program and the program must be monotonic

on this argument. They transform such a program into a

(possibly unstrati�ed) program with negation whose stable

model yields the answers to the original program, but does

not contain any irrelevant facts. They also present an e�-

cient evaluation mechanism for computing the stable model

for the transformed program.

Our results were obtained independently of Ganguly et

al. [GGZ91]. The results of Ganguly et al. complement this

work in two important ways. Their idea of ordering of facts

in the computation (which we have adapted and extended in

Section 5.2) o�ers signi�cant improvements in time complex-

ity, and unlike our technique, theirs can handle monotonic

min programs even if the use of min is unstrati�ed.

Our techniques are more general than those of Ganguly

et al. in several ways. (1) Our techniques are applicable to

strati�ed programs that are not monotonic, and that can con-

tain multiple aggregate operations including min and max.

(2) For the class of strati�ed monotonic min programs, our

rewriting techniques generate selections that are at least as

strong as those generated by Ganguly et al. (3) Given a strat-

i�ed monotonic min program, its evaluation using rewriting

and Ordered Aggregate Retaining Evaluation computes no

more facts (in an order of magnitude sense) than its evalua-

tion using their techniques.

There are many common examples of programs that can

bene�t from our optimizations, although they cannot be han-

dled by [GGZ91] since they are not appropriately monotonic.

These include the shortest path problem with edges of nega-

tive weight, and the the earliest �nish time problem shown in

Example 6.1.

11

Further, the Magic Sets rewritten versions

of many monotonic non-linear programs are non-monotonic,

and our optimizations would be useful in this context.

Unlike [GGZ91] we allow aggregate operations other than

max and min, for instance \least k values". We also allow

predicates with multiple cost arguments and allow multiple

atomic aggregate selections on the same predicate. The use

of these generalizations is illustrated in Examples 6.2 and 6.3,

which cannot be handled by Ganguly et al.

7 Extensions and Conclusions

We believe that evaluation with Aggregate Optimization will

o�er signi�cant time bene�ts for a signi�cant class of strat-

i�ed programs that use aggregate operations similar to min

and max. We believe that given a technique such as that

of Ganguly et al., or of Beeri et al. [BRSS89] for evaluat-

ing special classes of unstrati�ed programs, our results can

11

This program uses max and is monotonically increasing,

whereas Ganguly et al. require it to be monotonically decreasing.

R1 : nearest sg

bff

(X;Y;min(< D >)) m nearest sg

bff

(X); sg

bff

(X;Y;D):

R2 : sg

bff

(X;Y;D) m sg

bff

(X); up(X;Z1); sg

bff

(Z1; Z2;D1); down(Z2; Y);D = D1 + 1:

R3 : sg

bff

(X;Y; 1) m sg

bff

(X); f lat(X;Y):

R4 : m sg

bff

(X) m nearest sg

bff

(X):

R5 : m sg

bff

(Z1) m sg

bff

(X); up(X;Z1):

R6 : m nearest sg

bff

(s):

Figure 3: Program Nearest Same Generation

be adapted to detect irrelevant facts using aggregate selec-

tions. Our optimization techniques may be useful for opti-

mizing (non-recursive) SQL-like queries that use aggregate

operations. We believe our techniques will �nd use in the

bottom-up evaluation of quantitative logic programs (see e.g.,

[SSGK89]). Our techniques can be adapted to \push" a more

general class of aggregate operations through rules, so that

aggregate operations can be performed on smaller interme-

diate relations rather than on larger �nal relations. This in

turn could enable us to discard facts that have been used in

the aggregation. Operations such as sum or count, to which

the optimization techniques we described do not apply, can

bene�t from such adaptations.

Acknowledgements: The authors would like to thank Di-

vesh Srivastava for his comments and suggestions.

References

[ADJ88] R. Agrawal, S. Dar, and H. V. Jagadish. On

transitive closure problems involving path com-

putations. Technical Memorandum, 1988.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Je�rey D.

Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sa-

giv, and Je�rey D. Ullman. Magic sets and other

strange ways to implement logic programs. In

Proceedings of the ACM Symposium on Prin-

ciples of Database Systems, pages 1{15, Cam-

bridge, Massachusetts, March 1986.

[BNR

+

87] Catriel Beeri, Shamim Naqvi, Raghu Ramakrish-

nan, Oded Shmueli, and Shalom Tsur. Sets and

negation in a logic database language. In Pro-

ceedings of the ACM Symposium on Principles

of Database Systems, pages 21{37, San Diego,

California, March 1987.

[BR87] Catriel Beeri and Raghu Ramakrishnan. On the

power of magic. In Proceedings of the ACM Sym-

posium on Principles of Database Systems, pages

269{283, San Diego, California, March 1987.

[BRSS89] C. Beeri, R. Ramakrishnan, D. Srivastava, and

S. Sudarshan. Magic implementation of strati�ed

programs. Manuscript, September 89.

[CN89] I. F. Cruz and T. S. Norvell. Aggregative closure:

An extension of transitive closure. In Proc. IEEE

5th Int'l Conf. Data Engineering, pages 384{389,

1989.

[GGZ91] Sumit Ganguly, Sergio Greco, and Carlo Zan-

iolo. Minimum and maximum predicates in logic

programming. In Proceedings of the ACM Sym-

posium on Principles of Database Systems, 1991.

[MPR90] Inderpal S. Mumick, Hamid Pirahesh, and

Raghu Ramakrishnan. Duplicates and aggre-

gates in deductive databases. In Proceedings of

the Sixteenth International Conference on Very

Large Databases, August 1990.

[NRSU89] Je�rey F. Naughton, Raghu Ramakrishnan,

Yehoshua Sagiv, and Je�rey D. Ullman. Argu-

ment reduction through factoring. In Proceed-

ings of the Fifteenth International Conference on

Very Large Databases, pages 173{182, Amster-

dam, The Netherlands, August 1989.

[Ram88] Raghu Ramakrishnan. Magic Templates: A

spellbinding approach to logic programs. In Pro-

ceedings of the International Conference on Logic

Programming, pages 140{159, Seattle, Washing-

ton, August 1988.

[RHDM86] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola.

Traversal recursion: A practical approach to sup-

porting recursive applications. In Proceedings

of the ACM SIGMOD Conf. on Management of

Data, pages 166{176, 1986.

[SSGK89] Nikolaus Steger, Helmut Schmidt, Ulrich

G�untzer, and Werner Kiessling. Semantics and

e�cient compilation for quantitative deductive

databases. In IEEE International Symposium on

Logic Programming, pages 660{669, 1989.

[Ull89] Je�rey D. Ullman. Principles of Database and

Knowledge-Base Systems, volume 2. Computer

Science Press, 1989.

