
Automated Grading of SQL Queries

Bikash Chandra∗, Ananyo Banerjee†, Udbhas Hazra‡, Mathew Joseph§, S. Sudarshan

IIT Bombay

{bikash, ananyo16, udbhas16, sudarsha}@cse.iitb.ac.in, mathew joseph31@yahoo.com

Abstract—Grading student SQL queries manually is a tedious
and error-prone process. The XData system, developed at IIT
Bombay, can be used to test if a student query is correct or
not. However, in case a student query is found to be incorrect,
there is currently no way to automatically assign partial marks.
Manually awarding partial marks is not scalable for classes with
a large number of students, especially MOOCs, and is also prone
to human errors. In this paper, we discuss techniques to award
partial marks to student SQL queries, in case they are incorrect,
based on a weighted equivalence edit distance metric. Our goal is
to find a minimal sequence of edits on the student query such that
it can be transformed to a query that is equivalent to a correct
query. Our system can also be used in a learning mode where
query edits can be suggested as feedback to students to guide
them towards a correct query. Our automated partial marking
system has been successfully used in courses at IIT Bombay and
IIT Dharwad.

Keywords-SQL query grading, SQL query edits

I. INTRODUCTION

Grading SQL queries is typically done by either by manually

checking whether the SQL query submitted by the student

matches the correct query or by comparing results of student

SQL queries with that of correct SQL queries on one or more

fixed datasets. Manual checking of SQL queries is cumbersome

and error-prone. Fixed datasets are query agnostic and may

fail to catch errors in student SQL queries.

The XData [2], [7] system generates datasets that are tailored

to catch common errors for a given SQL query. Datasets

generated by XData, based on correct queries, can hence be

used to execute the correct queries and student queries, and

compare the results. However, for the purpose of grading, just

detecting incorrect queries may not be sufficient; it is also

necessary to provide partial marks to incorrect queries in such

a way that small errors are penalized less than major errors.

A naive approach could be to award partial marks based on

the fraction of datasets where the results of instructor query

and student query match. However, this approach gives very

poor results since student queries may get penalized heavily

for a small error (like an error in a selection condition) while

student queries that do not even use the correct tables may

get some marks since they may pass datasets that produce an

empty result on correct queries.

A better way to grade student queries would be to penalize

the student based on how many changes are required in the

∗Work partially supported by a fellowship from Tata Consultancy Services
†Currently at Oracle India
‡Currently at Apple India
§Currently at Raymour & Flanigan Furniture and Mattresses

student query to make it equivalent to a correct query provided

by the instructor. This allows us to award partial marks in a

calibrated manner; a student query that needs more changes

can be awarded less marks compared to a student query that

needs less changes. However, checking if the edited student

query is identical to a correct query is difficult. Many syntactic

differences cause no difference in the query result. For example,

the selection condition r.A>5 may also be written as 5<r.A.

Similarly, ORDER BY id, name can also be written as ORDER

BY id, when id functionally determines name.

We use a variety of query canonicalization techniques to

remove many irrelevant syntactic and semantic differences

between the student and instructor queries and then compute

the edit distance between them. If the edit distance after

canonicalization (which we call canonicalized edit distance) is

0, the queries are identical. While canonicalized edit distance

between student and correct queries could directly be used

for partial marking, we show that it has some limitations.

Canonicalization and its limitations are discussed in Section II.

In this paper, we propose techniques to award partial marks to

a student SQL query based on the query edits required to make

it equivalent to a correct query provided by the instructor. The

edits could be in the form of insertion, deletion, replacement

or movement of parts of the query. The weight of each type of

edit can be customized by the instructor. The instructor may

provide multiple correct queries. We compute partial marks for

the student query with respect to all correct queries and choose

the best match i.e. the one that gives the highest marks. We

show that the problem of finding the lowest cost edit sequence

can be reduced to the problem of finding the shortest path

in a graph. We also describe a greedy heuristic technique

using canonicalized edit distance that in practice performs well

both in terms of runtime and accuracy. We discuss partial

marking using query edit based techniques in Section III. Our

experiments, described in Section IV, show the effectiveness

of our techniques in terms of fairness of the marks awarded.

II. SQL QUERY CANONICALIZATION

The key idea of this paper is to successively edit a given

student query to make it equivalent to a correct query provided

by the instructor. However, the same SQL query can be written

in multiple correct ways. Our canonicalization techniques aim

to transform queries so that they can be made comparable

as a sufficient check for equivalence and to ignore irrelevant

syntactic differences when computing edit distances.

One way to test for equivalence could be to use datasets

generated by XData. However, it would be very expensive to

1630

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00159

load each dataset and check for equivalence after each edit.

Other techniques for checking equivalence such as Cosette [4]

and techniques based on tableau [1], [5], [6] work on a limited

set of queries. These techniques also do not provide an efficient

way of pruning the search space. In practice, we found that

using canonicalization as a sufficient test for equivalence works

well. The edit distance computed after canonicalization can

also be used as a guidance heuristic for prioritizing edits.

A. Query Canonicalization Rules

In order to reduce irrelevant syntactic differences, we do

some initial preprocessing. These steps replace certain SQL

operators with other operators, enabling us to reduce the number

of types of operators we need to consider during comparison

of student and correct queries. For example, NOT(A>B) can

be replaced by A<=B. Some operators like inner joins are

associative and commutative. We flatten such operators and

construct a flattened tree as shown in Section II-B.

Differences between student and correct queries can also be

reduced by semantic canonicalizations. For example, distinct

clause on primary keys may be removed and redundant relations

in a query may be removed. These canonicalizations can only

be applied to queries provided some query and/or database

constraints are satisfied. Some of these transformations are

widely used in query optimizers to consider alternative query

execution plans.

More details on canonicalization rules that we use may be

found in [3].

B. Flattened Tree Structure

In order to compare the student query and a correct query,

we use a “flattened” tree structure to represent the SQL queries.

For query operators that are commutative and associative

such as INNER JOIN, UNION(ALL), INTERSECT(ALL) as

well as are predicates involving AND or OR are canonicalized

by flattening them. For example (r �� s) �� t is transformed

to �� (r, s, t). Similarly, for conjuncts of predicates with

equality which involve common attributes, the attributes form

an equivalence class and the equality conditions may be

specified using different attribute combinations. For example,

(A = B) ∧ (B = C) ∧ (C = D) can also be specified as

(A = B) ∧ (B = C) ∧ (A = D). Regardless of which form is

given, the predicate is transformed to = (A,B,C,D).
The flattened tree for a query with a join between 3 relations

is shown in Figure 1. Predicates, projections, group by attributes

are modeled as special children (connected by a dashed line)

may themselves be a subtree. As shown in Figure 1, in case the

node is an INNER JOIN this child node would contain all the

join and selection conditions. For non-commutative operators

like LEFT OUTER JOIN and EXCEPT(ALL) we compare

children in order while for commutative operators like INNER

JOIN, we ignore the order when matching children.

C. Computing Canonicalized Edit Distance

The instructor can set weights for each query construct. The

canonical representations of the student and the correct query

Fig. 1. Flattened Tree

can be used to compute the weighted edit distance between

them. We call this edit distance the canonicalized edit distance.

The edits could be made by inserting, removing, replacing or

moving a node/subtree from one position of the flattened tree

to another.

Each query edit has a cost associated with it. The cost

of inserting/deleting a subtree within the flattened tree is

the sum of the cost of all nodes of the subtree. In the

canonicalized flattened tree, each part of the query such as

selection, projection, aggregate or subquery is present as a

node/subtree. We call each of these parts a component of the

query. We find the edit distance for each component separately

and then find the weighted edit distance for the query.

The canonicalized edit distance is computed using the

formula Σc∈componentsWc ∗ Ec where Wc is the weight of a

component and Ec is the edit distance for the component. If

the queries are equivalent, the canonicalized edit distance is 0.

D. Using Edit Distance for Partial Marks

One way to award partial marks could have been to deduct

marks based on the canonicalized edit distance between the

student query and a correct query. However, the partial marks

awarded may not be fair because of the following issues.

a) A small edit may significantly reduce the canonicalized
edit distance: Consider a correct query to be

SELECT * FROM r INNER JOIN s ON (r.A=s.A)

WHERE r.A>10

Consider the student query to be

SELECT * FROM r INNER JOIN s ON (r.A=s.B)

WHERE s.A>10

In the above case, finding the canonicalized edit distance

would show two differences: (i) the join condition and (ii) the

selection condition. However, if we replace s.A in the join

condition with s.B, in the student query, the queries would

become equivalent now. The student query is just one edit

away from a correct query, not 2 as the distance above implies.

b) Canonicalizations may increase the edit distance:
Consider the case where the correct query to be

SELECT DISTINCT id, name

FROM student INNER JOIN takes USING(id)

WHERE takes.semester=’Spring’

Suppose a student misses the selection condition; the

student should be penalized for one error. However, once

1631

canonicalization including redundant join elimination and

DISTINCT removal is done, the student query becomes

SELECT id, name FROM student

since the join with takes is redundant in the student query

and id is the primary key of the student relation making

DISTINCT redundant. Now the difference between student

and instructor query consists of differences in relations, join

operators and join conditions and the distinct operator as well.

The canonicalized edit distance is greater than if the query had

not been canonicalized. If we first edit the query to add the

selection condition, takes.semester=’Spring’ and then

canonicalize the query, the problem would not occur.

III. PARTIAL MARKING USING SEQUENCE OF EDITS

We now describe our techniques of partial marking based on

the lowest cost edit sequence. Our goal is to edit the student

query in order to make it equivalent to a correct query. The

minimum number of edits or more precisely the least cost edit

sequence gives us a measure of how far the student query was

from a correct query; partial marks can be awarded on the

basis of the cost of the edits.

An instructor can specify more than one correct query. The

techniques described in this section are used to evaluate the

student query and award partial marks against each correct

query provided by the instructor. The maximum of the partial

marks obtained is awarded to the student query.

A. Guided Edits

When editing a student query, potentially an infinite number

of edit options are possible. For example, any query predicate

can be added as an edit. However, only those edits that make

the edited query more similar to the correct query would be

useful. In order to narrow down the search space, we edit

student queries in a guided manner such that each edit may

reduce the difference between the student query and the correct

query. Hence, components of the correct query not present in

the student query are added to the student query, components

of the student query that are not present in the correct query

are removed and so on. We call these edits guided edits.

B. Finding Lowest Cost Edit Sequence

There are several possible guided edits for the student query.

After an edit is applied to Q to get Q’, there may be several

more guided edits possible on Q’. A sequence of edits on the

student query can make it equivalent to a correct query. Partial

marks can be awarded by deducting the sum of cost of edits

made on the student query.

Consider a graph whose nodes are all queries for the given

schema. For any query Q, edits of the query are also nodes

in the graph. Let these edited query be connected to query

Q with an edge whose weight is the edit cost. Queries that

are canonically equivalent, i.e. their canonical forms are same,

are connected by 0 cost edges. The sequence of edits that has

the least cumulative cost can now be determined based on

the shortest path in this graph from the student query node in

the graph to a correct query node. Partial marks can now be

awarded based on this shortest path. Since the weight of each

edge, which represents the cost of edit is non-negative, the

shortest possible path may be found using Dijkstra’s shortest

path algorithm. Hence, given a set of edits and using a given set

of canonicalizations, the shortest path in the graph, as defined

above, gives the edit sequence with the least cost. We call the

cost of the edits as the weighted edit sequence distance.
Theorem 1: In the space of edits considered by our system

and in the given space of canonicalization the edit sequence

with least cost from the student query to a query that is

canonically equivalent to a given correct query can be found

using a shortest path algorithm.

C. Shortest Path Algorithm and Greedy Heuristic
To compute the shortest path we take as input a correct query

CQ and a student query SQ. The totalMarks of the query is

computed as based on the number of components in the correct

query. We first check for equivalence between the student and

correct query using the canonicalization techniques described

above. If the queries are not equivalent, we generate edits of

SQ and store the edits in a set EQ. When generating edited

queries, we reduce the total marks for the edited query by the

corresponding edit cost as specified by the instructor.
We now check to see if the query with the highest remaining

marks CSQ (this corresponds to the query with the shortest

distance from the correct query) in EQ is equivalent to the

correct query or not. If the queries are equivalent we have

obtained the shortest path and we stop. If the queries are not

equivalent, we generate edits of CSQ and add it to EQ. We

discard any queries where the total remaining marks is less

than 0. The iteration stops when SQ is empty or when a query

equivalent to CQ is found. The fraction of marks awarded to

the student query is computed by dividing the remaining marks

for the edited query by totalMarks.
Since the shortest path algorithm considers multiple options

at each step, it can be very expensive for queries with a large

number of components. We propose, as an alternative, a greedy

approach that uses a cost-benefit model. When generating edits

of a student query, we consider all guided edits. We also

compute the canonicalized edit distance for each edited query

as described in Section II-C.
For each edit that is made to the student query, there is

some benefit due to the reduction in the canonicalized edit

distance. Each edit has a certain cost associated with it as

described above. We compute the cost-benefit as benefit – cost
and use it to pick the best edit for the next step. The remaining

queries in EQ are discarded. This helps us prune edits that may

not be beneficial; for e.g. removing an extra node from the

student query that may have been removed anyway because of

canonicalization later.
In practice, when evaluating student queries, we found out

greedy technique performs as well as the exhaustive approach

in terms of accuracy while taking much less time to run.

IV. EXPERIMENTAL RESULTS

The goal of our experimental evaluation is to find the fairness

of the partial marks given by our weighted edit sequence

1632

TABLE I
EVALUATION OF GRADING FAIRNESS

Q. SQ CQ CQ Matches Accuracy Matches Accuracy
No. Pairs Size Canon. Canon.(%) Edit Edit(%)
1 6 1 5 6 100 6 100
2 12 2 9-10 10 83 12 100
3 11 2 11-12 11 100 11 100
4 17 3 13-14 17 100 17 100
5 21 4 13-14 16 76 19 90
6 20 3 14-17 16 80 18 90
7 16 2 18 10 62 15 94
8 25 5 18-25 17 68 20 80
9 21 2 28 10 48 18 86
10 20 3 29 15 75 17 85
11 23 1 35 7 30 23 100
12 6 3 18-37 6 100 6 100
13 30 4 49 9 30 29 97

Total 228 - - 150 68 211 93

distance using the greedy heuristic. The student SQL queries

used in these experiments were taken from submissions in a

database course offered at IIT Bombay from 2015 to 2017. The

queries used a number of SQL features including subqueries,

outer joins, set operators and aggregates with grouping.

Partial marks for previous years were given using different

techniques such as canonicalization, manual grading by TA.

Also, we were not aware of the grading scheme used by

the TAs including which errors in the query were penalized

more relative to others. Most importantly, assigning partial

marks manually is very difficult, and grades given are only

approximate and not necessarily consistent. Hence making a

direct comparison between manual partial marking and partial

marks generated by our system is not desirable.

Instead, we judged the fairness of our techniques as follows.

For each assignment question, we created random pairs of

incorrect student queries. We provided these query pairs to

two volunteers (without giving them the partial marks awarded

using our techniques) and asked them to classify the query

pairs into one of the three buckets (a) The first query should

get more marks (b) The second query should get more marks

(c) Both queries should get almost the same marks although

they may have different errors. We then classified the query

pairs in the above 3 categories using the partial marks awarded

by query edits using the greedy heuristic. If the partial marks

differed by less than 10% we classified the query as being

almost equal. In Section II-D, we discussed why partial marks

awarded based on canonicalized edit distance would not be

fair. We also evaluated the effectiveness of partial marks by

using the canonicalized edit distance to test the fairness.

The result of the experiment is shown in Table I. The column

SQPairs shows the number of incorrect student query pairs

that we considered. CQ shows the number of correct queries

used to evaluate the student assignments. CQSize shows the

number of nodes present in the instructor query and gives some

measure of the complexity of the correct queries. Matches
Canon. indicates the number of student query pairs that were

added to the same bucket by our edit sequence based partial

marking as well as by the volunteers. Accuracy Canon. gives

the corresponding accuracy which is computed as Matched
Canon./SQPairs. Similarly, Matches Edit indicates the number

of student query pairs that were added to the same bucket

by our edit sequence based partial marking as well as by the

volunteers, and Accuracy Edit gives the accuracy.

While partial marking based on canonicalized edit distance

works well for simpler queries, it performs poorly for more

complex queries; the overall accuracy is 68%. Our edit based

partial marking system works much better and its overall

accuracy is 93%. In several cases, we found that a few edits

enabled other canonicalizations that made the edited query

equivalent to the correct query. Such edits appear to have

matched human intuition. For some cases, our canonicalization

techniques converted OUTER JOINs to INNER JOINs and

removed redundant relations from student queries thus not

penalizing their use. The volunteers considered the use of outer

joins/additional relations as significant errors. Hence there was

a difference in the buckets assigned by volunteers versus our

techniques; turning off some canonicalizations would be an

option to model human intuition on the degree of error.

We used our system to grade student queries in a database

course at IIT Bombay in Autumn 2018. We graded over 1800

student queries automatically, including awarding partial marks

to incorrect queries using our techniques. Anecdotally, very

few students contested their marks as compared to when they

were given partial marks manually.

V. CONCLUSION

The automated grading techniques that we have developed

hold great promise for easing the life of instructors, and for

helping students learn SQL. The source code binaries available

for download from https://www.cse.iitb.ac.in/infolab/xdata. Ar-

eas of future work include adding more canonicalization rules

like unnesting of subqueries and support for more SQL features

such as windowing, ranking and OLAP features. Another area

of future work is to cluster similar student queries together to

help instructors add appropriate correct answers.

Acknowledgments: We thank Bharath Radhakrishnan for the

initial implementation of the canonicalization code. We also

thank Ravishankar Karanam and Aarti Sharma for evaluating

student queries in the experiment.

REFERENCES

[1] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational
expressions. SIAM J. Comput., 8(2):218–246, 1979.

[2] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and S. Sudarshan.
Data generation for testing and grading SQL queries. VLDB J., 2015.

[3] B. Chandra, M. Joseph, B. Radhakrishnan, S. Acharya, and S. Sudarshan.
Partial marking for automated grading of SQL queries. PVLDB (Demo),
9(13):1541–1544, 2016.

[4] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An Automated
Prover for SQL. In CIDR, 2017.

[5] Y. E. Ioannidis and R. Ramakrishnan. Containment of conjunctive queries:
Beyond relations as sets. ACM TODS, 20(3):288–324, 1995.

[6] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions
with the union and difference operation. In VLDB, pages 535–548, 1978.

[7] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. P. Gupta, and D. Vira.
Generating test data for killing SQL mutants: A constraint-based approach.
In ICDE, 2011.

1633

