
Optimizations of Bottom-Up Eval-uation with Non-Ground Terms(Extended Abstract)S. SudarshanAT&T Bell Labs,600 Mountain Ave,Murray Hill, NJ 07974, U.S.A.sudarsha@research.att.comRaghu RamakrishnanComputer Sciences Department,Univ. of Wisconsin,Madison, WI 53706, U.S.A.raghu@cs.wisc.eduAbstractMemoization, such as that performed by bottom-up evaluation, helps detectloops, avoid repeated computation when subgoals are generated repeatedly,and in conjunction with a fair search strategy, ensures that evaluation iscomplete. Programs that generate non-ground facts (i.e., facts containinguniversally quanti�ed variables) and also need memoization are important inseveral contexts. Current bottom-up evaluation techniques (and other mem-oization techniques), are very ine�cient for programs that generate factscontaining large non-ground terms.We present an e�cient bottom-up evaluation technique for programsthat generate non-ground facts. We show that bottom-up evaluation canbe implemented with a time cost that is within a log log factor of (a modelof) Prolog evaluation, for all queries on de�nite clause programs; conversely,there are programs where bottom-up evaluation is arbitrarily better thanProlog. These results signi�cantly extend earlier results comparing bottom-up evaluation and top-down evaluation, An implementation of our techniqueenables us to run some programs faster (asymptotically and practically) thanusing either Prolog or unoptimized bottom-up evaluation.1 IntroductionPrograms that generate non-ground facts/data-structures (i.e., facts/termscontaining universally quanti�ed variables) are of considerable importance,and are widely used in Prolog. A common use is in di�erence-lists, which areused to append (representations of) lists in constant time. Non-ground data-structures are often used in programs, such programs as for parsing De�nite

Clause Grammars (DCGs), that also bene�t from memoization of facts. Forinstance, chart parsing of DCGs is naturally supported using memoization,and can be much more e�cient than top-down parsing in some situations.Meta-interpreters, partial evaluators, abstract interpreters and other suchprograms often operate on data structures that contain variables. Memoingof subgoals and their answers is very important for some of these programs[23].Bottom-up (i.e., forward chaining) evaluation using (variants of) Magicrewriting [2, 9] is a way of implementing memoization. It is shown in [12] thatin the absence of non-ground facts, bottom-up evaluation using a variant ofMagic Templates rewriting (MTTR rewriting) [14] is as fast as Prolog up toa data-independent constant factor (assuming that all answers have to begenerated, and intelligent backtracking optimization is not used).However, the above result does not apply to programs that generate non-ground facts. The major problem is that bottom-up evaluation performssome uni�cations, which we call `answer-return' uni�cations, that Prologdoes not perform. If not treated specially, these uni�cations can be costly inthe presence of large non-ground terms in facts, and the overhead of bottom-up evaluation is no longer within a constant factor of Prolog. Even if a givenprogram generates only ground answers (to all subgoals), it may generatenon-ground subgoals; correspondingly, non-ground query facts would be gen-erated if either Magic Templates or MTTR rewriting is used.1The problems described above (or equivalent ones) also occur with othermemoization techniques such as Extension Tables [4], or OLDT resolution[19].In this extended abstract we present an e�cient bottom-up query evalu-ation mechanism, Opt-NGBU query evaluation, for programs that generatenon-ground facts. This technique is a combination of an extended rewritingtechnique, MGU MTTR rewriting (Section 3), and an optimized Semi-Naiveevaluation technique, Opt-NG-SN evaluation, which stands for OptimizedNonGround Semi-Naive evaluation (Section 5). The technique maintainsextra information with query and answer facts in order to speed up `answer-return' uni�cations, and incorporates several other optimizations as well.We show that given a program and a query, if Prolog evaluation of thequery on a database takes time t, then Opt-NGBU query evaluation on thegiven database, without subsumption-checking, takes time O(t � log log t).(The comparison does not take the size of the program into account, but doesaccount for the size of the database. We also assume that all answers to thequery are required, and some optimizations such as intelligent backtrackingare not used.)The above result provides an upper bound on how much worse bottom-up evaluation can be compared to Prolog. Conversely, Opt-NGBU evalua-tion can be much faster than Prolog evaluation if redundant computation1The adornment prepass of Magic Templates rewriting can be used to avoid the gener-ation of non-ground query facts, but carries the cost of computing irrelevant facts.

is avoided through subsumption-checks; the time complexity of evaluationmay be signi�cantly better, and in�nite loops may be avoided. Checkingwhether a goal or an answer is already memoed can be expensive, and thecost must be balanced against the cost of recomputation. However, evenwithout subsumption-checking, Opt-NGBU evaluation is complete for de�-nite clause programs, while avoiding the repeated computation in iterativedeepening (a technique used to make Prolog evaluation complete; see, e.g.[7]).Our evaluation optimizations have been implemented in the CORALdeductive database system, and we present performance numbers that showthe bene�ts of our optimizations. Our optimizations enable the use of MagicTemplates with Right Recursion [14], which creates programs that generatenon-ground facts (Section 7).1.1 A Motivating ExampleWe now consider an example that illustrates the main issues involved in ouroptimization techniques.Example 1.1 A di�erence list (see e.g. [7]) is a non-ground data-structurethat permits the append operation to be done in constant time in Prolog.2An example of a di�erence list is dlist([1; 2; 3jX];X) (the second occurrenceof the variable X (logically) gives constant time access to the end of thelist). Let us consider what happens if we use di�erence lists with bottom-upevaluation. Suppose we have the following rules, as part of a larger program:R1 : paths(L1; L2; L) : � dappend(L1; L2; L):R2 : dappend(dlist(X; Y); dlist(Y; V); dlist(X; V)):Rule R2 above speci�es how to append two di�erence lists.Bottom-up evaluation (without Magic rewriting) essentially performs for-ward chaining on the set of rules and facts given, and generates all facts thatcan be inferred using the given facts and the rules in the program. Given aquery, it enumerates all answers, but computes facts irrelevant to the query.The Magic Templates transformation [9] rewrites the rules in the program byadding `�lters' corresponding to subqueries, and adds rules to the programthat specify how (further) subqueries are generated from a given (sub) query;only facts `relevant' to the query are generated by the rewritten program.The Magic Templates rewriting of the above program, is shown below:R10 : paths(L1; L2; L) : � query(paths(L1; L2; L));dappend(L1; L2; L):QR1:1 : query(dappend(L1; L2; L)) : �query(paths(L1; L2; L))R20 : dappend(dlist(X; Y); dlist(Y; V); dlist(X; V)) : �query(dappend(dlist(X; Y); dlist(Y; V); dlist(X; V))):2Di�erence list append has a side e�ect of modifying the �rst of the lists to be appended,but the modi�cation is undone on backtracking.

Rule R10 is the same as the original rule, except that an extra literalhas been added so that a paths(: : :) fact is generated only if there is acorresponding query(paths(: : :)) fact. Rule R20 is similarly generated fromrule R2. Rule QR1:1 is generated from the �rst (and only) literal in the bodyof rule R1, and speci�es how a subquery is generated on dappend given aquery on paths.Given a query ?paths(dlist([1; 2; 3; 4; 5jX];X); dlist([6; 7; 8jY]; Y); A), afact query(paths(dlist([1; 2; 3; 4; 5jX];X); dlist([6; 7; 8jY]; Y); A))is added to the program. Bottom-up evaluation of the above rewritten pro-gram, with the above query fact generates the following facts (the name ofthe rule used is speci�ed in brackets)query(dappend(dlist([1; 2; 3; 4; 5jX];X); dlist([6; 7; 8jY]; Y); A)) [QR1:1]dappend(dlist([1; 2; 3; 4; 5jX]; X); dlist([6; 7; 8jY]; Y);dlist([1; 2; 3; 4; 5; 6; 7; 8jZ]; Z))) [R20]paths(dlist([1; 2; 3; 4; 5jX];X); dlist([6; 7; 8jY]; Y);dlist([1; 2; 3; 4; 5; 6; 7; 8jZ]; Z))) [R10]We note that when using rule R20, uni�cation binds variable X from the factquery(dappend(: : :)) above to dlist([6; 7; 8jY]; Y).The �rst cause for ine�ciency in bottom-up evaluation in the presenceof non-ground facts is that we cannot directly use the di�erence lists storedin the factquery(dappend(dlist([1; 2; 3; 4; 5jX];X); dlist([6; 7; 8jY]; Y); A))when making an inference using rule R20. If we do so, the variable X willget bound to dlist([6; 7; 8jY]; Y), and the fact cannot then be used to makefurther derivations. Prolog evaluation performs destructive updates of vari-able bindings, which it undoes on backtracking; such an approach does notwork when facts are memoed since subgoals and their answers could be usedin multiple places, and there is no backtracking. One could copy facts beforeusing them, but the copying could increase the time complexity signi�cantly.We use a term-representation based on `persistent-versioning' to greatly re-duce the cost of copying (Section 4).The second cause for ine�ciency is less obvious, and is present with MagicTemplates rewriting as well as with its variants (MTTR rewriting [14], andAlexander Templates [16]). The uni�cations in the �rst two derivations inthe evaluation shown above have corresponding uni�cations in a Prolog eval-uation. But there are no uni�cations in a Prolog evaluation correspondingto the uni�cations in the third derivation | the derivation corresponds to astep in the Prolog evaluation where a rule invocation succeeds and returnsto the point where the subgoal was generated; no uni�cation occurs at thisstage in a Prolog evaluation. We call a uni�cation step where an answer toa subgoal is uni�ed with a rule body as an \answer-return uni�cation" step.Consider the answer-return uni�cation in the evaluation above. In theanswer-return uni�cation performed using rule R10 above, there are two factsthat contain (potentially) large di�erence lists. The two lists corresponding

to L1 (as well as the two lists corresponding to L2) are uni�ed in the courseof the derivation. The uni�cations (as well as the renaming done prior touni�cation) have a time cost linear in the size of the lists. On the other hand,if we use Prolog, this uni�cation step is absent, and assuming that occurchecks are not performed, the entire cost of answering a query on dappendusing Prolog is a just a constant. As another example, if we used the well-known list append program with non-ground lists, the cost of appending twonon-ground lists of length n using unoptimized bottom-up evaluation wouldbe O(n2) as opposed to O(n) using Prolog.In the case of ground facts, there are e�ective term representation tech-niques that can reduce the cost of the extra uni�cations to O(1) (see [12]).In Section 5 we discuss how to tackle the above problem in the case wherefacts may be non-ground. 22 BasicsWe assume some familiarity with bottom-up evaluation, and refer the readerto [1] for a survey of the area. We also assume some familiarity with Semi-Naive evaluation and Supplementary Magic Templates rewriting [2, 9]. Tomake our discussion and analysis simpler, we assume that all non-equalityliterals in rules of the program have as arguments only distinct free variables.This can be achieved by a straightforward preprocessing transformation,without any increase in the time complexity of either Prolog evaluation orbottom-up evaluation.3 We assume that equality is a base predicate with asingle fact \= (X;X)".3 MGU Magic and MGU MTTR RewritingA full description of MGU Magic and MGU MTTR rewriting may be foundin [17], but we provide an intuitive description here.We described the intuition behind Magic Templates rewriting in Exam-ple 1.1. As another example, the Magic Templates rewriting of the ruleR1 : p(X):�q(X); r(X) isquery(q(X)) : � query(p(X)):query(r(X)) : � query(p(X)); q(X):p(X) : � query(p(X)); q(X); r(X):The �rst rule de�nes what query is generated on q given a query on p. Thesecond rule de�nes what query is generated on r (the second literal in therule body) given a query on p and an answer fact for q.Supplementary Magic Templates [2, 9] can be viewed as a way of elimi-nating the common subexpressions in the above rules. The SupplementaryMagic Templates rewriting of rule R1 is as follows:sup1;0(X) : � query(p(X)):query(q(X)) : � sup1;0(X):3We assume that the size of the program is �xed. Thus, although the above transfor-mation can defeat rule indexing techniques used by Prolog, the loss of speed is by at mosta constant factor.

sup1;1(X) : � sup1;0(X); q(X):query(r(X)) : � sup1;1(X):p(X) : � sup1;1(X); r(X):But Supplementary Magic Templates rewriting actually has a deeper sig-ni�cance than just common subexpression elimination. Consider a Prologevaluation of the original rule. At any stage in the evaluation when controlis at the rule, the rule variables have some bindings. The variable bindingsstored in tuples for sup1;0 correspond to rule variable bindings at points in aProlog evaluation the rule is initially invoked and the query has been uni�edwith the rule head. The variable bindings in tuples for sup1;1 correspond torule variable bindings at points where an answer has just been returned forthe �rst literal (q(X)) in the rule body. In general the bindings in tuples forsupi;j correspond to rule variable bindings at points where an answer hasjust been returned for the jth literal in the rule.Our rewriting technique, MGU Magic rewriting, may be viewed as anextension of Supplementary Magic Templates rewriting to introduce a goal-identi�er �eld into query, answer and supplementary facts. A goal-identi�eris an integer identi�er that uniquely identi�es a subgoal. The goal-identi�ershelp avoid certain unnecessary inferences made using subsumed facts (that,in particular, are not made by Prolog evaluation) (see [17]), and they providean e�cient mechanism for indexing facts similar to that used in QSQR [21].Goal-identi�ers are generated using a `meta-predicate' goal id(goal; id).If goal id is used with subsumption checking, subgoals are mapped one-to-oneto identi�ers (modulo renaming) by calls on goal id(goal; id). If subsumptionchecking is not used, calls on goal id(goal; id) return a new identi�er on eachcall.The evaluation of an MGU Magic rewritten program generates facts ofthe form query(p(~t); id). Such a fact denotes that there is a subgoal ?p(~t),and id is a goal-identi�er of ?p(~t) (the symbol p appears both as a predicateand a functor, but the notation is not higher order). The MGU Magicrewritten program also generates facts of the form answer(id; p(~a)). Such afact says that p(~a) is an answer to a subgoal on p that has a goal-identi�erid. (There is an extra rule in the rewritten program to generate answers ofthe form q(~a) for the initial query ?q(~t) on the program.)Example 3.1 We use the program from Example 1.1 as our running exam-ple, and illustrate MGU Magic rewriting using it.The preprocessed form of the program is as follows:paths(L1; L2; L) : � dappend(L1; L2; L)::dappend(V 1; V 2; V 3) : � V 1 = dlist(X; Y); V 2 = dlist(Y; V);V 3 = dlist(X; V):The MGU Magic rewriting of the preprocessed program is shown below(we have left out the rules generating query facts from the initial query on

the program, and we have unfolded several rules in the rewritten programto get rule R4, in order to keep the presentation concise). In the rewrittenprogram below, rules R1, R2, and R3 are generated from the �rst rule ofthe preprocessed program, and rule R4 is generated from the second rule ofthe preprocessed program.R1 : sup1;0(HId; L1; L2; L; ID) : �query(paths(L1; L2; L);HId);goal id(dappend(L1; L2; L); ID):R2 : query(dappend(L1; L2; L); ID) : �sup1;0(HId; L1; L2; L; ID):R3 : answer(HId; paths(L1; L2; L)) : �sup1;0(HId; L1; L2; L; ID);answer(ID; dappend(L1; L2; L)):R4 : answer(HId; dappend(V 1; V 2; V 3)) : �query(dappend(V 1; V 2; V 3); HId); V 1 = dlist(X; Y);V 2 = dlist(Y; V); V 3 = dlist(X; V):We can also add rules to the program to select out answers to the ini-tial query on the program. The rules are straightforward, and to keep thediscussion simple, we omit them. 2A fact of the form supi;j(hid;~v; id1) represents an instance of Ri such thatRi is being used to solve a query with identi�er hid, ~v stores the bindings ofrule variables after a successful solution up to the jth literal, and id1 is theidenti�er of the query generated on the j+1th literal. MGUMagic rewritinggenerates programs where each rule has at most two literals in the body.MGU MTTR rewriting extends the Magic Templates with Right Re-cursion rewriting of Ross [14], in exactly the same fashion as MGU Magicrewriting extends Supplementary Magic Templates rewriting. Details maybe found in [17].Example 3.2 We now show (a high level view of) the bottom-up evalua-tion of the rewritten program generated in Example 3.1 from our runningexample. Suppose we are given a query?paths(dlist([a; bjX];X); dlist([cjY]; Y); P)and suppose that its goal-id is 0. A `seed' query factquery(paths(dlist([a; bjX];X); dlist([cjY]; Y); P); 0)is added to the rewritten program before it is evaluated bottom-up. Supposealso that the goal-id of?dappend(dlist([a; bjX];X); dlist([cjY]; Y); P)is 1. Then the bottom-up evaluation of the MGU Magic rewritten programgenerates the following sequence of facts:sup1;0(0; dlist([a; bjX];X); dlist([cjY]; Y); P; 1), using rule R1,query(dappend(dlist([a; bjX]; X); dlist([cjY]; Y); P); 1), using rule R2,answer(1; dappend(dlist([a; b; cjY]; [cjY]); dlist([cjY]; Y);dlist([a; b; cjY]; Y))), using rule R4, andanswer(0; paths(dappend(dlist([a; b; cjY]; [cjY]); dlist([cjY]; Y);dlist([a; b; cjY]; Y)))), using rule R3. 2

4 Representation of Terms and FactsA binding environment (bindenv) stores bindings for variables. A variable ina bindenv b may be free, or may be bound to a structure s0 (which is possiblyan atomic value). Variables within s0 are also interpreted in b.4 We representa fact as a pair hstructure; bindenvi. The following is a representation ofthe fact g(f(4; 4);X):hg(W;Y); fY ! X;Z ! 4;W ! f(Z; Z)giGiven a fact f , f:structure denotes the structure of f , and f:bindenvdenotes the bindenv of f . Thus f = hf:structure; f:bindenvi. We use thenotation hs; ei, where s is a term, to denote s interpreted in bindenv e.We say that terms hs1; e1i � hs2; e2i if both represent exactly the sameterm. During evaluation, the same fact may be generated with di�erentrepresentations. We call each such representation of a fact an occurrence ofthe fact.Binding environments are implemented using \fully persistent versionsof data structures" [6, 5]. When applied to bindenvs represented as arrays,a fully persistent versioning scheme permits us to carry out the followingoperations e�ciently:1. Create a new child version of an existing bindenv (which itself mayhave been created as a child version of another bindenv, and so on).The child version has the same bindings as the parent version when itis created, but any changes made to the child version will not a�ectthe parent version.2. Add a new variable to a version of a bindenv.3. Lookup and/or change the binding of a variable in a version of abindenv.Operation (1) can be done in constant time, and operations (2) and (3) canbe done in time O(min(log logm; logn)), where m is the total number ofversions of bindenvs that have been created and n is the number of versionsof the variable that have been modi�ed [5]. For brevity, we use the notationV (de�ned below).De�nition 4.1 (V) Consider an evaluation of a program. Let fV1; V2; : : :gbe the variables used in the evaluation. Let ni denote the number of versionsof Vi that are modi�ed in the evaluation, and let m denote the total numberof versions of bindenvs that are created in the evaluation. Then V denotesmaxi(min(log logm; logni)). 2We have implemented a simpler scheme due to D.H.D.Warren ([22], citedin [8]) which has an access cost of log n (where n is the number of variablesin the bindenv) in the CORAL deductive database system [11]. The schemewas proposed for implementing OR-parallel Prolog.4We do not allow bindings in bindenvs of stored facts to refer to other bindenvs, sincewe do not know how to create versions of facts e�ciently using such a representation.

5 How to Apply a RuleThe basic operation in bottom-up evaluation is the application of a rule toproduce new facts. In this section we present an algorithm to apply a rule,with several optimizations to handle non-ground facts more e�ciently. Therule application procedure described here is used with Semi-Naive evaluation.We assume that the rules to be evaluated are those generated by MGUMagicor MGU MTTR rewriting.Procedure Apply Rule is shown below. It essentially performs a left toright nested loops join.5 Note that due to our rewriting, rules have eitherone or two body literals. We describe informally some of the proceduresthat it uses; details are presented in [17]. An important point to note inApply Rule is the creation of versions of bindenvs to ensure that uni�cationoperations do not a�ect any stored facts.Procedure ApplyRule(R).Let R be: p(~t): �q1(~t1)[; q2(~t2)]: /* [] denotes an optional argument */1. Fetch facts for q1.For each fetched fact hstr1; env1i do the following:1.1 Create a new version env10 of env1. Unify hstr1; env10i with q1(~t1).1.2. If the uni�cation succeeds, Then1.2.1. If q2 is not the goal id predicate, Thena. Fetch q2 facts that unify with the instantiated q2(~t2).b. For each fetched fact hstr2; env2iExecute Smart Unify (R; hstr1; env1i; hstr2; env2i; hR0; r env0i).If Smart Unify succeeds, Insert Head Fact(hR0; r env0i)1.2.2. ElseRename and Reunify(R; hstr1; env1i; hR0; r env0i)If q2 is the goal id predicate, evaluate it./* Else the rule has only one literal */Insert Head Fact(hR0; r env0i).end Apply Rule.Consider the case of rules with two body literals (with neither havinggoal id as predicate). Due to our rewriting, such rules must have a supple-mentary literal and an answer literal in the body. For such rules, Apply Rulefetches facts for the two literals, and calls Smart Unify with the two facts.Smart Unify uni�es versions of the two fetched facts with their respectivebody literals, and returns as its last argument a (possibly renamed) instan-tiated version R0 of the rule R, with a bindenv r env0. We omit details ofSmart Unify for lack of space, but give some intuition below.5Our Semi-Naive rewriting ensures that the left-most literal in the join is either a �literal or a base literal.

Smart Unify calls a procedure Return Unify to handle rules that involveanswer-return uni�cation; we discuss this procedure in more detail later.For rule applications that do not involve answer-return uni�cation, or if theoptimizations used in Return Unify do not apply, Smart Unify ensures thatvariables in the query/supplementary fact are not renamed; variables in therule and in the answer fact are renamed instead, and the bindenv of thehead fact is a version child of the bindenv of the query/supplementary fact.Thereby, bindenvs are inherited in such a manner that the bindenv of ananswer fact is a descendant of the bindenv of the query fact that resulted inits generation.For all other rules, procedure Rename and Reunify is called. It renamesthe rule, uni�es it with a version of the fact for the �rst body literal, and re-turns the result as its last argument. In either case, Insert Head Fact insertsthe derived fact into the appropriate relation, after performing subsumption-checking if required; again, we omit details.5.1 Context Identi�ers and Return-Uni�cationWe now describe our optimization of answer-return uni�cation. The goal isto reduce the cost of answer-return uni�cations by keeping extra informationwith facts. We start by describing the intuition behind the optimization,then present some details, and �nally present an example.Our evaluation algorithm propagates (versions of) bindenvs of facts, aswell as parts of their structure, through derivations. The idea is as follows.Consider a subgoal hq:structure; q:bindenvi. The subgoal is used in rules,to generate further subgoals and answers. As descendant versions of itsbindenv are created, and used in rules, variables corresponding to thosein the subgoal get bound. Finally if an answer fact to the subgoal q getsgenerated using a descendant bindenv env0 of q:bindenv, we can show thatthe variables that occur in q have been bound in env0 in much the sameway that variables in a subgoal are bound during Prolog evaluation (our ruleevaluation mechanism ensures it by the way in which bindenvs are inherited,and fact structures created). This knowledge can then be used to optimizeanswer-return uni�cation. We discuss the optimized uni�cation step in moredetail shortly.The di�erence fromProlog is that while Prolog solves each occurrence of asubgoal separately, bottom-up evaluation may eliminate duplicate/subsumedfacts and hence some answers that were generated for one subgoal occurrencemay have to be used where other occurrences of the same subgoal were gen-erated. (If a given query is generated from more than one supplementaryfact, all but one occurrence of the query may be deleted by duplicate elim-ination.) But in such a case the structure and bindenv of an answer maynot have been inherited from a subgoal for which the answer is used, andone cannot optimize answer return uni�cation using knowledge about thebindenv.The discussion above was in terms of answers to subgoals. However, in

bottom-up evaluation using MGUMagic rewriting, answer return uni�cationactually occurs when a supplementary fact and an answer fact are uni�edwith a rule. The supplementary fact stores rule variable bindings from thepoint when the query was generated, and the query itself is generated usingthe supplementary fact.To �nd if the optimized answer-return uni�cation step is applicable, weneed to keep track of what fact occurrences are generated from what otherfact occurrences, and how the bindenvs are inherited. In order to do so, witheach supplementary fact we store a �eld cont id (\context identi�er"). Withall facts, we store a �eld par id (\parent context identi�er"). These two �eldshold identi�ers that help keep track of how bindenvs were inherited from asupplementary fact; the idea is that if the cont id �eld of a supplementaryfact matches the par id �eld of an answer fact, answer-return uni�cationoptimization is applicable. The cont id and the par id values do not a�ectsubsumption checking.We now present an intuitive description of how the cont id and par idvalues are generated and propagated. We generate a new cont id for eachsupplementary fact. The query fact generated from the supplementary factinherits a version of the bindenv of the supplementary fact, as well thecont id value of the supplementary fact in its par id �eld. (In case last-call optimization is used on a literal, the par id �eld of the query fact isset to the par id �eld of the supplementary fact since answers will not begenerated for the query fact.) A supplementary fact is generated either froma query fact occurrence or from a supplementary fact for the previous bodyliteral. In either case, it inherits both a version of the bindenv and the valueof the par id �eld from the fact it is generated from. An answer fact isgenerated from a supplementary fact, and inherits a version of its bindenv,and its par id value. Thus, versions of bindenvs are propagated throughderivations, and the cont id and par id �elds are used to keep track of linksbetween the bindenvs of supplementary facts and the bindenvs of answerfacts. We say that an answer fact is generated from a supplementary fact ifthe cont id value of the supplementary fact is the same as the par id valueof the answer fact.Now we get back to how answer-return uni�cation is actually achieved.The details are shown in Procedure Return Unify, which �rst tests for theapplicability of the optimization, and returns failure if it is not applicable.The intuition is as follows. If (a descendant of) a query fact bindenv hasbeen inherited by the answer fact and variables in it bound appropriately ateach step in the chain of inheritance, replacing the bindenv of the query factby the bindenv of the answer fact has the same e�ect as applying the (mostgeneral) uni�er of the query and the answer facts to the query. In the actualderivation we use the supplementary fact instead of the query fact (the queryfact bindenv is a version of the supplementary fact bindenv). Return Unifyneed only replace the supplementary fact bindenv by the answer fact bindenvto carry out uni�cation. However, we show a more general version that works

even when the adornment optimization of Magic rewriting [2] has been used.Procedure Return Unify (R; s; a; hR0; r env0i)/* R is a rule, s is a supplementary fact, and a an answer fact.*/1. If s:cont id 6= a:par id Then return failure.2. Set r env0 = new version of a:bindenv.3. Let R0 be a renamed version of R with variable names starting from after thehighest numbered variable in r env0. Add all variables in R0 to r env0.4. Bind each variable in the supplementary literal of hR0; r env0i to thecorresponding argument of s:structure.65. Bind each variable in the answer literal of hR0; r env0i to the correspondingargument of a:structure.76. Update Context Ids(R0; r env0; s).7. Return success.end Return UnifyWe show [17] that the uni�er computed by Return Unify is a most generaluni�er of the supplementary and answer facts with the rule body. Mostimportantly, it executes in O(V) time, which is quite small.5.2 An ExampleExample 5.1 We use the bottom-up evaluation shown in Example 3.2 toillustrate the e�ect of our optimization technique. Figure 1 shows physicaldetails of the evaluation of the rewritten program, described at a high levelin Example 3.2. We use the following notation. The par id of each fact isshown following the fact, and for supplementary facts, the cont id is shownfollowing the par id.The �gure should be read as a sequence of derivations, from top to bot-tom. The bindenvs are shown as tables, and under each variable we eitherhave a blank (the variable is not bound), a value for its binding, or a pointerto its binding. We use the pointers to emphasize that structures are sharedbetween facts used in a derivation and the derived fact, and are not copiedunnecessarily. In the �gure, several facts point to one bindenv | this nota-tion should be interpreted as each fact having its own version of the bindenv(but with the same bindings), and is done only to keep the �gure concise.The main points to note are the following. The initial query fact isassumed to have a par id value of 0. When using rules R1, variables L1,L2 and L are added to the bindenv, with L1 bound to the �rst dlist, L2 tothe second, and L to P . The derived fact is given a new cont id value 1,6Each argument of the supplementary literal is a distinct variable. Hence the conceptof having for each variable in the supplementary literal a \corresponding argument" in thefact (Step 4 of Return Unify) is well-de�ned.7The concept of \corresponding argument" is well-de�ned for Step 5. Such a literal isof the form answer(ID;q(~X)), where ~X is a tuple of distinct variables, due to the prepro-cessing. All facts used with the literal are of the form answer(id; q(~a)). The arguments\corresponding" to the variables in ~X are the arguments of q(~a) in the above fact.

Iteration Rule Fact Derived

dlist([a|b|X],X) dlist([c|Y],Y)

X Y P

X Y P L1 L2 L

0

1 R1

2 R2

X Y P L1 L2 L

dappend(, , P)

answer(1, dappend(, , P))3

R3

query(, 1) : 1

:1

sup_1_0(0, , , P, 1) : 0 : 1

4

R4

answer (0, paths (, ,)) : 0

dlist(, Y)

query(paths(, , P), 0) :0

Figure 1: Evaluation of Program That Uses dappendand the bindenv of the query fact is inherited by the derived fact. Whenusing rule R2 the variables in the query are not bound further, the bindenvis inherited by the derived fact, and the derived fact has a par id of 1. As anoptimization, we project out variables from the bindenv that do not appear(directly or indirectly) in the derived fact, and hence the bindenv is notchanged further. Next, when using rule R4, the variables L and P in thebindenv get bound to the result of dappending the two lists. It is importantto note that this corresponds to the variable P in the initial query gettingbound in Prolog evaluation of the query. (The variable X also gets bound inthis step, as it does in Prolog evaluation.) The derived answer fact inheritsthe par id of 1 from the supplementary fact used in its derivation, and itinherits the bindenv from the query fact used in the derivation.Due to the above bindings, the bindenv of the answer fact generated usingR4 is such that if the supplementary fact generated by R1 is interpretedin the bindenv, the variable P is bound to the result of dappending thetwo given lists (and X is bound correctly as well). Hence, when using thederived fact in rule R3, return uni�cation should be applicable, and this isindeed the case { the par id of the answer fact is equal to the cont id of thesupplementary fact (both are 1). Since Return Unify succeeds, no renamingis required, and uni�cation takes O(V) time.Overall, the time cost of the evaluation shown is O(V), regardless of thesizes of the di�erence lists, ignoring the cost of setting up the initial queryand printing the answer. (As in Prolog, no occur checks are performed.)The answer-return uni�cation step would take time proportional to the sizesof the di�erence lists, if our optimizations were not used. 25.3 Correctness and Cost of Apply RuleWe call a version of Semi-Naive evaluation that uses procedure Apply Ruleto perform rule application as Opt-NG-SN evaluation. We call the query

evaluation technique that �rst rewrites the program and query using MGUMTTR rewriting, and then evaluates it using Opt-NG-SN evaluation as Opt-NGBU evaluation.Theorem 5.1 Let P be a program and Q a query on the program. LetPMGU T be the program generated from P and Q by either MGU Magic orMGU MTTR rewriting. Then Opt-NG-SN evaluation of PMGU T is suchthat (1) Every fact generated as an answer for Q is an answer to Q, and (2)Every answer to Q is subsumed by the set of answers generated. 2We index supplementary and answer facts using hash-indices on the goal-id �elds. This technique is essentially the same as the one used in QSQR [21],and provides constant time insertion, and constant time lookup per retrievedfact. Occur checks are not necessary for soundness in Return Unify, sincethe rule literals have distinct variables that are not present in the facts. Itis straightforward to show that Return Unify runs in O(V) time. Further,we show (in [17]) that in the absence of subsumption checking, every call toReturn Unify succeeds. Hence answer-return uni�cation can always be donee�ciently.In the general case, subsumption-checking is a costly operation, and weare not aware of e�cient subsumption-checking techniques for the case ofarbitrary non-ground facts. For ground facts, subsumption is the same asequality, and hash-consing [15] can be used to perform equality checking inconstant time in many cases. Approximate forms of subsumption checkingcan often be done e�ciently, and often su�ce in practise.Checking for subsumption avoids recomputation, and can prevent thecomputation from entering into an in�nite loop. But if subsumption check-ing is done on goals, answer-return uni�cation optimization will apply toonly one use of each answer fact. The cost of checking for subsumption, andof renaming and unifying answer facts when answer-return uni�cation opti-mization fails, has to be carefully balanced against the bene�ts of avoidedrecomputation.6 A Comparison With Prolog�For our comparison of Prolog with bottom-up evaluation, we use a modelof Prolog evaluation that incorporates last-call optimization. The model isquite straightforward, and corresponds closely to the intuitive `procedural'model of Prolog evaluation, augmented with last-call optimization. We callthe model of evaluation as Prolog� evaluation, The detailed model may befound in [17].We make the following simplifying assumption: Given term occurrencesa, a1 and b, if a � a1, (i.e., they represent the same term) then the timetaken to unify a and b is the same as the time taken to unify a1 and b. Wealso assume that bottom-up evaluation as well as Prolog� evaluation use thesame indexing technique for base relations.

Operation Bot. Up (No Opt.) Prolog Opt-NGBUUni�cationAnswer-return O(size of terms) O(1) O(V)Other O(size of terms) O(size of terms) O(V� size of terms)IndexingAnswer-return O(Pfi2F size(fi)) O(1) O(1)Other O(Pfi2F size(fi)) O(Pfi2F size(fi)) O(Pfi2F size(fi))Table 1: Bottom-Up Evaluation using MGU MTTR rewriting vs. PrologTable 1 summarizes a comparison between various costs in bottom-upevaluation of an MGU MTTR rewritten program and Prolog evaluation. Inthe table, size(fi) denotes the size of fi, and F denotes the set of all factsthat are derived.Theorem 6.1 Let P be a program, and Q a query. Given any database,suppose the cost of Prolog� evaluation of Q is t units of time.8 Opt-NGBUevaluation without subsumption-checking evaluates the query on the givendatabase in time O(t � log log t). (The size of the program is not taken intoaccount in this time complexity measure.) 2The proof of this theorem is presented in [17], where we also discuss howwe can relax the assumption that the size of the program is a constant. Weremind the reader that our analysis ignores constant costs, and the e�ect offactors such as virtual memory, and assumes that all answers are generated,and no intelligent backtracking is used.Although bottom-up evaluation may be a bit slower if no subsumption-checking is done, it still has the bene�t of being sound and complete unlikeProlog, and does not repeat computation in the manner of iterative deepen-ing. The biggest bene�t of our optimizations is for programs that generatenon-ground facts, but where some of the facts generated are ground, and sub-sumption checking is both necessary and cheap for these facts. We presentone such program in Example 7.2. For such programs Opt-NGBU combinesthe best features of Prolog evaluation and bottom-up evaluation.The question of how bottom-up and top-down methods compare is con-sidered important, and has been under investigation by several researchers[20, 3, 9, 16]. Our result carries the comparison of top-down and bottom-upmethods farther than earlier results in three important ways: (a) it extendsthe class of programs considered from safe Datalog to full logic programs,(b) it compares bottom-up evaluation with a sophisticated model of Pro-log evaluation, which incorporates last-call optimization, and (c) it takes alltime costs into account (earlier results with the exception of [20] ignoredthe cost of uni�cation, and only compared the number of operations such asinferences performed). Since we remove all these restrictions, we believe ourwork represents a major advance on earlier work.8Where each action of Prolog� evaluation takes at least unit time.

7 DiscussionThe evaluation technique we described can be extended and optimized inseveral di�erent ways. In the case of range-restricted programs, where nonon-ground facts are generated, bindenvs need not be stored explicitly, and Vreduces to O(1). We have implemented our optimization techniques (exceptfor MGU MTTR rewriting) on the CORAL deductive database system [11],and we present some preliminary performance �gures.Example 7.1 Consider the well-known program to append lists, with aquery involving non-ground lists. The following table presents the relativetime costs of three evaluation techniques, on lists of the speci�ed lengths.The number of distinct variables in the list is shown in parentheses.Dataset Unopt. MGU Magic + MGU MTTR +Opt. NGBU Opt. NGBULength 25 (3 vars) .31 .19 .08Length 50 (3 vars) 0.98 .35 .15Length 100 (3 vars) 3.85 .67 .30Length 100 (25 vars) 3.87 .69 .30Length 100 (ground) .44 .55 .30Even for ground lists, optimized evaluation with MGU Magic rewritingis not much slower than unoptimized evaluation, while optimized evaluationusing MGU MTTR rewriting (which generates non-ground facts) is actuallythe fastest of the three. For non-ground lists, the cost of optimized evaluationgrows linearly with the size of the lists, while for evaluation without ouroptimizations the cost grows roughly quadratically. 2Example 7.2 We ran two variants of a shortest path program [18] on theCORAL system. Prolog evaluation is inapplicable since it loops if thereare cyclic paths. The shortest path program is best evaluated bottom-up(see [18]), and subsumption checking on subgoals is, in general, necessaryfor termination. Since subgoals for this program are ground, subsumptionchecking can be performed e�ciently. For lack of space, we omit details ofthe program | details may be found in [17]. Both variants of the programused the query ?shortest path(X; Y). The �rst used a di�erence list repre-sentation, and the second used an ordinary list representation, but used consrather than append. The second variation generated only ground facts, butgenerated path lists in reverse order (generating them in the correct orderwould be costly since append takes time linear in the length of its �rst argu-ment). The ground program ran in 0:6 seconds on a sample dataset, whilethe non-ground program ran in 0:8 seconds. Thus the loss of speed due tothe non-ground data-structure is reasonably small (33%), while providingthe bene�t of printing out paths in the correct order. 27.1 Related WorkThere have been several studies ([9, 16, 20, 3, 12]) that have comparedbottom-up and top-down evaluation in terms of the number of facts com-puted, number of inferences made, and time taken. Section 6 discussed how

our results subsumes the earlier ones. Pereira [8] describes an implemen-tation of parsers for uni�cation based grammar formalisms, using \virtualcopy memory" (i.e., versioned memory). There seems to be no equivalent toanswer-return uni�cation in the context of [8].The optimizations described in this paper work at the level of rule appli-cation, and are essentially independent of the control strategy used duringevaluation such as those described in [10, 18]).9 They can be applied to othermemoing evaluation schemes such as QSQR [21] and Alexander [13, 16]. Per-sistent versioning can be used with Extension Tables [4], or OLDT resolution[19]. Our optimization of answer-return uni�cation is not useful in the con-text of Extension Tables. However, with Extension Tables variables in ruleswould have to be versioned. In Opt-NGBU evaluation, we can avoid ver-sioning rule variables in most cases, and for programs that (with adornment)generate only ground facts and queries, all bindenvs are empty, and have noversioning costs.OR-parallel Prolog implementations share some of the problems bottom-up evaluation faces. However, the problems of subsumption checking andanswer-return uni�cation are not present in OR-parallel Prolog. Further,optimizations that try to avoid using bindenvs in facts are important forbottom-up evaluation although not for OR-parallel Prolog.8 ConclusionThe results in this paper are signi�cant in two ways. First, they providean e�cient memoization technique for de�nite clause programs that gener-ate non-ground facts. We believe the techniques can be extended to otherinteresting domains such as bottom-up evaluation of constraint programs.Second, they extend our understanding of the similarities between top-downand bottom-up further than previous results, which considered only pro-grams that generated only ground facts.AcknowledgementsThis work was done while the �rst author was at the University of Wisconsin,Madison. This work was supported by a David and Lucile Packard FoundationFellowship, a Presidential Young Investigator Award, with matching grants fromDigital Equipment Corporation, Tandem and Xerox, and NSF grant IRI-9011563.References[1] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursivequery processing strategies. In Procs. of the ACM SIGMOD Conf. on Man-agement of Data, pages 16{52, May 1986.[2] C. Beeri and R. Ramakrishnan. On the power of Magic. In Procs. of the ACMSymp. on Principles of Database Systems, pages 269{283, Mar. 1987.9Some of these techniques modify Magic rewriting in minor ways. Correspondingchanges may need to be made in our optimization technique.

[3] F. Bry. Query evaluation in recursive databases: Bottom-up and top-downreconciled. IEEE Transactions on Knowledge and Data Engineering, 5:289{312, 1990.[4] S. W. Dietrich. Extension tables: Memo relations in logic programming. InProcs. of the Symposium on Logic Programming, pages 264{272, 1987.[5] P. F. Dietz. Fully persistent arrays. In Workshop on Algorithms and DataStructures, pages 67{74, 1989. (Appeared as LNCS 382).[6] J. R. Driscoll, N. Sarnak, D. Sleator, and R. E. Tarjan. Making data structurespersistent. In Eighteenth Annual ACM Symp. on Theory of Computing, 1986.[7] R. A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.[8] F. Pereira. A structure-sharing representation for uni�cation-based grammarformalisms. In Procs. of the 23rd Annual Meeting of the Association for Com-putational Linguistics, pages 137{143, 1985.[9] R. Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-grams. In Procs. of the International Conference on Logic Programming, pages140{159, August 1988.[10] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search inbottom-up evaluation. In Joint Int'l Conf. and Symp. on Logic Programming,1992.[11] R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL: Control, Rela-tions and Logic. In Procs. of the Int'l Conf. on Very Large Databases, 1992.[12] R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. InProcs. of the International Logic Programming Symposium, 1991.[13] J. Rohmer, R. Lescoeur, and J. M. Kerisit. The Alexander method | a tech-nique for the processing of recursive axioms in deductive database queries. NewGeneration Computing, 4:522{528, 1986.[14] K. Ross. Modular acyclicity and tail recursion in logic programs. In Procs. ofthe ACM Symposium on Principles of Database Systems, 1991.[15] M. Sassa and E. Goto. A hashing method for fast set operations. InformationProcessing Letters, 5(4):31{34, June 1976.[16] H. Seki. On the power of Alexander templates. In Procs. of the ACM Sympo-sium on Principles of Database Systems, pages 150{159, 1989.[17] S. Sudarshan. Optimizing Bottom-Up Evaluation for Deductive Databases. PhDthesis, University of Wisconsin, Madison, Aug. 1992.[18] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in deductivedatabases. In Procs. of the Int'l Conf. on Very Large Databases, Sept. 1991.[19] H. Tamaki and T. Sato. OLD resolution with tabulation. In Procs. of the ThirdInternational Conference on Logic Programming, pages 84{98, 1986. (LectureNotes in Computer Science 225, Springer-Verlag).[20] J. D. Ullman. Bottom-up beats top-down for Datalog. In Procs. of the EighthACM Symp. on Principles of Database Systems, pages 140{149, March 1989.[21] L. Vieille. Recursive query processing: The power of logic. Theoretical Com-puter Science, pages 1{53, 1989.[22] D. H. D. Warren. Logarithmic access arrays for prolog. Unpublished program,1983.[23] D. S. Warren. Memoing for logic programs. Communications of the ACM,35(3), Mar. 1992.

