Optimizations of Bottom-Up Eval-

uation with Non-Ground Terms
(Extended Abstract)

S. Sudarshan

AT&T Bell Labs,

600 Mountain Ave,

Murray Hill, NJ 07974, U.S.A.

sudarsha@research.att.com

Raghu Ramakrishnan
Computer Sciences Department,
Univ. of Wisconsin,

Madison, WI 53706, U.S.A.

raghu@cs.wisc.edu
Abstract

Memoization, such as that performed by bottom-up evaluation, helps detect
loops, avoid repeated computation when subgoals are generated repeatedly,
and in conjunction with a fair search strategy, ensures that evaluation is
complete. Programs that generate non-ground facts (i.e., facts containing
universally quantified variables) and also need memoization are important in
several contexts. Current bottom-up evaluation techniques (and other mem-
oization techniques), are very inefficient for programs that generate facts
containing large non-ground terms.

We present an efficient bottom-up evaluation technique for programs
that generate non-ground facts. We show that bottom-up evaluation can
be implemented with a time cost that is within a loglog factor of (a model
of) Prolog evaluation, for all queries on definite clause programs; conversely,
there are programs where bottom-up evaluation is arbitrarily better than
Prolog. These results significantly extend earlier results comparing bottom-
up evaluation and top-down evaluation, An implementation of our technique
enables us to run some programs faster (asymptotically and practically) than
using either Prolog or unoptimized bottom-up evaluation.

1 Introduction

Programs that generate non-ground facts/data-structures (i.e., facts/terms
containing universally quantified variables) are of considerable importance,
and are widely used in Prolog. A common use is in difference-lists, which are
used to append (representations of) lists in constant time. Non-ground data-
structures are often used in programs, such programs as for parsing Definite

Clause Grammars (DCGs), that also benefit from memoization of facts. For
instance, chart parsing of DCGs is naturally supported using memoization,
and can be much more efficient than top-down parsing in some situations.
Meta-interpreters, partial evaluators, abstract interpreters and other such
programs often operate on data structures that contain variables. Memoing
of subgoals and their answers is very important for some of these programs
[23].

Bottom-up (i.e., forward chaining) evaluation using (variants of) Magic
rewriting [2, 9] is a way of implementing memoization. It is shown in [12] that
in the absence of non-ground facts, bottom-up evaluation using a variant of
Magic Templates rewriting (MTTR rewriting) [14] is as fast as Prolog up to
a data-independent constant factor (assuming that all answers have to be
generated, and intelligent backtracking optimization is not used).

However, the above result does not apply to programs that generate non-
ground facts. The major problem is that bottom-up evaluation performs
some unifications, which we call ‘answer-return’ unifications, that Prolog
does not perform. If not treated specially, these unifications can be costly in
the presence of large non-ground terms in facts, and the overhead of bottom-
up evaluation is no longer within a constant factor of Prolog. Even if a given
program generates only ground answers (to all subgoals), it may generate
non-ground subgoals; correspondingly, non-ground query facts would be gen-
erated if either Magic Templates or MTTR rewriting is used.

The problems described above (or equivalent ones) also occur with other
memoization techniques such as Extension Tables [4], or OLDT resolution
[19].

In this extended abstract we present an efficient bottom-up query evalu-
ation mechanism, Opt-NGBU query evaluation, for programs that generate
non-ground facts. This technique is a combination of an extended rewriting
technique, MGU MTTR rewriting (Section 3), and an optimized Semi-Naive
evaluation technique, Opt-NG-SN evaluation, which stands for Optimized
NonGround Semi-Naive evaluation (Section 5). The technique maintains
extra information with query and answer facts in order to speed up ‘answer-
return’ unifications, and incorporates several other optimizations as well.

We show that given a program and a query, if Prolog evaluation of the
query on a database takes time ¢, then Opt-NGBU query evaluation on the
given database, without subsumption-checking, takes time O(t - loglogt).
(The comparison does not take the size of the program into account, but does
account for the size of the database. We also assume that all answers to the
query are required, and some optimizations such as intelligent backtracking
are not used.)

The above result provides an upper bound on how much worse bottom-
up evaluation can be compared to Prolog. Conversely, Opt-NGBU evalua-
tion can be much faster than Prolog evaluation if redundant computation

!The adornment prepass of Magic Templates rewriting can be used to avoid the gener-
ation of non-ground query facts, but carries the cost of computing irrelevant facts.

is avoided through subsumption-checks; the time complexity of evaluation
may be significantly better, and infinite loops may be avoided. Checking
whether a goal or an answer is already memoed can be expensive, and the
cost must be balanced against the cost of recomputation. However, even
without subsumption-checking, Opt-NGBU evaluation is complete for defi-
nite clause programs, while avoiding the repeated computation in iterative
deepening (a technique used to make Prolog evaluation complete; see, e.g.
7).

Our evaluation optimizations have been implemented in the CORAL
deductive database system, and we present performance numbers that show
the benefits of our optimizations. Our optimizations enable the use of Magic
Templates with Right Recursion [14], which creates programs that generate
non-ground facts (Section 7).

1.1 A Motivating Example
We now consider an example that illustrates the main issues involved in our
optimization techniques.

Example 1.1 A difference list (see e.g. [7]) is a non-ground data-structure
that permits the append operation to be done in constant time in Prolog.?
An example of a difference list is dlist([1,2,3|X], X) (the second occurrence
of the variable X (logically) gives constant time access to the end of the
list). Let us consider what happens if we use difference lists with bottom-up
evaluation. Suppose we have the following rules, as part of a larger program:

R1 :paths(L1,L2,L): — dappend(L1,L2,L).
R2 : dappend(dlist(X,Y),dlist(Y, V), dlist(X,V)).

Rule R2 above specifies how to append two difference lists.

Bottom-up evaluation (without Magic rewriting) essentially performs for-
ward chaining on the set of rules and facts given, and generates all facts that
can be inferred using the given facts and the rules in the program. Given a
query, it enumerates all answers, but computes facts irrelevant to the query.
The Magic Templates transformation [9] rewrites the rules in the program by
adding ‘filters’ corresponding to subqueries, and adds rules to the program
that specify how (further) subqueries are generated from a given (sub) query;
only facts ‘relevant’ to the query are generated by the rewritten program.
The Magic Templates rewriting of the above program, is shown below:

R1": paths(L1,L2,L): — query(paths(L1, L2, 1)),
dappend(L1,L2,1L).
QR1.1: query(dappend(L1, L2, L)) —query(paths(L1, L2, L))
R2": dappend(dlist(X,Y),dlist(Y,V),dlist(X, V)) : —
query(dappend(dlist(X,Y),dlist(Y, V), dlist(X,V))).

?Difference list append has a side effect of modifying the first of the lists to be appended,
but the modification is undone on backtracking.

Rule R1’ is the same as the original rule, except that an extra literal
has been added so that a paths(...) fact is generated only if there is a
corresponding query(paths(...)) fact. Rule R2' is similarly generated from
rule R2. Rule Q R1.1 is generated from the first (and only) literal in the body
of rule R1, and specifies how a subquery is generated on dappend given a
query on paths.

Given a query ?paths(dlist([1,2,3,4,5|X], X),dlist([6,7,8]Y],Y),A4), a
fact

query(paths(dlist([1,2,3,4,5|X], X), dlist([6,7,8|Y],Y), A))
is added to the program. Bottom-up evaluation of the above rewritten pro-
gram, with the above query fact generates the following facts (the name of
the rule used is specified in brackets)

query(dappend(dlist(]1,2,3,4,5|X], X),dlist([6,7,8|Y],Y),A)) [QR1.1]

dappend(dlist([1,2,3,4,5|X], X), dlist([6,7,8]Y],Y),

dlist([1,2,3,4,5,6,7,8|7],7))) [R2']
paths(dlist([1,2,3,4,5|X], X),dlist([6,7,8|Y],Y),
dlist([1,2,3,4,5,6,7,8|7],7))) [R1']
We note that when using rule R2’, unification binds variable X from the fact
query(dappend(...)) above to dlist([6,7,8|Y],Y).

The first cause for inefficiency in bottom-up evaluation in the presence
of non-ground facts is that we cannot directly use the difference lists stored
in the fact

query(dappend(dlist([1,2,3,4,5|X], X), dlist([6,7,8|Y],Y), A))

when making an inference using rule R2'. If we do so, the variable X will
get bound to dlist([6,7,8]Y],Y), and the fact cannot then be used to make
further derivations. Prolog evaluation performs destructive updates of vari-
able bindings, which it undoes on backtracking; such an approach does not
work when facts are memoed since subgoals and their answers could be used
in multiple places, and there is no backtracking. One could copy facts before
using them, but the copying could increase the time complexity significantly.
We use a term-representation based on ‘persistent-versioning’ to greatly re-
duce the cost of copying (Section 4).

The second cause for inefliciency is less obvious, and is present with Magic
Templates rewriting as well as with its variants (MTTR rewriting [14], and
Alexander Templates [16]). The unifications in the first two derivations in
the evaluation shown above have corresponding unifications in a Prolog eval-
uation. But there are no unifications in a Prolog evaluation corresponding
to the unifications in the third derivation — the derivation corresponds to a
step in the Prolog evaluation where a rule invocation succeeds and returns
to the point where the subgoal was generated; no unification occurs at this
stage in a Prolog evaluation. We call a unification step where an answer to
a subgoal is unified with a rule body as an “answer-return unification” step.

Consider the answer-return unification in the evaluation above. In the
answer-return unification performed using rule R1’ above, there are two facts
that contain (potentially) large difference lists. The two lists corresponding

to L1 (as well as the two lists corresponding to L2) are unified in the course
of the derivation. The unifications (as well as the renaming done prior to
unification) have a time cost linear in the size of the lists. On the other hand,
if we use Prolog, this unification step is absent, and assuming that occur
checks are not performed, the entire cost of answering a query on dappend
using Prolog is a just a constant. As another example, if we used the well-
known list append program with non-ground lists, the cost of appending two
non-ground lists of length n using unoptimized bottom-up evaluation would
be O(n?) as opposed to O(n) using Prolog,.

In the case of ground facts, there are effective term representation tech-
niques that can reduce the cost of the extra unifications to O(1) (see [12]).
In Section 5 we discuss how to tackle the above problem in the case where
facts may be non-ground. O

2 Basics

We assume some familiarity with bottom-up evaluation, and refer the reader
to [1] for a survey of the area. We also assume some familiarity with Semi-
Naive evaluation and Supplementary Magic Templates rewriting [2, 9]. To
make our discussion and analysis simpler, we assume that all non-equality
literals in rules of the program have as arguments only distinct free variables.
This can be achieved by a straightforward preprocessing transformation,
without any increase in the time complexity of either Prolog evaluation or

bottom-up evaluation.®> We assume that equality is a base predicate with a
single fact “= (X, X)”.

3 MGU Magic and MGU MTTR Rewriting
A full description of MGU Magic and MGU MTTR rewriting may be found
n [17], but we provide an intuitive description here.

We described the intuition behind Magic Templates rewriting in Exam-

ple 1.1. As another example, the Magic Templates rewriting of the rule
R1: p(X):—q(X),r(X)is

query(q(X)) : — query(p(X)).

query(r(X)): — query(p(X)), ¢(X).

p(X) P = query(p(X)), ¢(X), r(X).
The first rule defines what query is generated on ¢ given a query on p. The
second rule defines what query is generated on r (the second literal in the
rule body) given a query on p and an answer fact for ¢.

Supplementary Magic Templates [2, 9] can be viewed as a way of elimi-

nating the common subexpressions in the above rules. The Supplementary
Magic Templates rewriting of rule R1 is as follows:

supio(X) 1 — query(p(X)).
query(q(X)) : — supy o(X).

We assume that the size of the program is fixed. Thus, although the above transfor-
mation can defeat rule indexing techniques used by Prolog, the loss of speed is by at most
a constant factor.

supy1(X) 1= supyo(X),¢(X).
query(r(X)): — supy 1(X).
p(X) i — supy (X)), r(X).

But Supplementary Magic Templates rewriting actually has a deeper sig-
nificance than just common subexpression elimination. Consider a Prolog
evaluation of the original rule. At any stage in the evaluation when control
is at the rule, the rule variables have some bindings. The variable bindings
stored in tuples for sup; ¢ correspond to rule variable bindings at points in a
Prolog evaluation the rule is initially invoked and the query has been unified
with the rule head. The variable bindings in tuples for sup; ; correspond to
rule variable bindings at points where an answer has just been returned for
the first literal (¢(X)) in the rule body. In general the bindings in tuples for
sup; ; correspond to rule variable bindings at points where an answer has
just been returned for the jth literal in the rule.

Our rewriting technique, MGU Magic rewriting, may be viewed as an
extension of Supplementary Magic Templates rewriting to introduce a goal-
wdentifier field into query, answer and supplementary facts. A goal-identifier
is an integer identifier that uniquely identifies a subgoal. The goal-identifiers
help avoid certain unnecessary inferences made using subsumed facts (that,
in particular, are not made by Prolog evaluation) (see [17]), and they provide
an efficient mechanism for indexing facts similar to that used in QSQR [21].

Goal-identifiers are generated using a ‘meta-predicate’ goal.id(goal, id).
If goal_id is used with subsumption checking, subgoals are mapped one-to-one
to identifiers (modulo renaming) by calls on goal.id(goal, id). If subsumption
checking is not used, calls on goal_id(goal,id) return a new identifier on each
call.

The evaluation of an MGU Magic rewritten program generates facts of
the form query(p(t),id). Such a fact denotes that there is a subgoal ?p(%),
and ¢d is a goal-identifier of ?p(f} (the symbol p appears both as a predicate
and a functor, but the notation is not higher order). The MGU Magic
rewritten program also generates facts of the form answer(id, p(@)). Such a
fact says that p(@) is an answer to a subgoal on p that has a goal-identifier
id. (There is an extra rule in the rewritten program to generate answers of
the form ¢(@) for the initial query ?¢(f) on the program.)

Example 3.1 We use the program from Example 1.1 as our running exam-
ple, and illustrate MGU Magic rewriting using it.
The preprocessed form of the program is as follows:

paths(L1, L2, 1) : — dappend(L1,L2,L)..
dappend(V1,V2,V3): = V1 =dlist(X,Y),V2 = dlist(Y,V),
V3 = dlist(X,V).

The MGU Magic rewriting of the preprocessed program is shown below
(we have left out the rules generating query facts from the initial query on

the program, and we have unfolded several rules in the rewritten program
to get rule R4, in order to keep the presentation concise). In the rewritten
program below, rules R1, R2, and R3 are generated from the first rule of
the preprocessed program, and rule R4 is generated from the second rule of
the preprocessed program.

R1:supyo(H1d, L1, L2, L, ID): —query(paths(L1, L2, L), HId),
goal_id(dappend(L1,L2,L),1D).

R2 : query(dappend(L1,L2,L),ID) : —supy o(H1d, L1, L2, L,ID).

R3 :answer(HId, paths(L1, L2, L)) : —supyo(HId,L1,L2,L,1D),
answer(ID,dappend(L1, L2, L)).

R4 s answer(HId, dappend(V1,V2,V3)): —
query(dappend(V1,V2,V3), HId),V1 = dlist(X,Y),
V2 = dlist(Y, V), V3 = dlist(X, V).

We can also add rules to the program to select out answers to the ini-
tial query on the program. The rules are straightforward, and to keep the
discussion simple, we omit them. O

A fact of the form sup; ;(hid, ¥, id1) represents an instance of R; such that
R; is being used to solve a query with identifier hid, @ stores the bindings of
rule variables after a successful solution up to the jth literal, and id1 is the
identifier of the query generated on the j+ 1th literal. MGU Magic rewriting
generates programs where each rule has at most two literals in the body.

MGU MTTR rewriting extends the Magic Templates with Right Re-
cursion rewriting of Ross [14], in exactly the same fashion as MGU Magic

rewriting extends Supplementary Magic Templates rewriting. Details may
be found in [17].

Example 3.2 We now show (a high level view of) the bottom-up evalua-
tion of the rewritten program generated in Example 3.1 from our running
example. Suppose we are given a query
Tpaths(dlist([a,b| X], X), dlist([c|Y],Y), P)
and suppose that its goal-id is 0. A ‘seed’ query fact
query(paths(dlist([a,b| X], X), dlist([c|Y],Y), P),0)
is added to the rewritten program before it is evaluated bottom-up. Suppose
also that the goal-id of
Ydappend(dlist([a,b| X], X),dlist([¢|Y],Y), P)
is 1. Then the bottom-up evaluation of the MGU Magic rewritten program
generates the following sequence of facts:
supy (0, dlist([a, b| X], X),dlist([c|Y],Y), P, 1), using rule R1,
query(dappend(dlist(la,b| X], X), dlist([c|Y],Y), P),1), using rule R2,
answer(1, dappend(dlist([a,b, c|Y],[c|Y]), dlist([c|Y],Y),
dlist([a,b,c|Y],Y))), using rule R4, and
answer(0, paths(dappend(dlist([a,b,c|Y],[c|Y]), dlist([¢|Y],Y),
dlist([a,b,c|Y],Y)))), using rule R3. o

4 Representation of Terms and Facts

A binding environment (bindenv) stores bindings for variables. A variable in
a bindenv b may be free, or may be bound to a structure s’ (which is possibly
an atomic value). Variables within s’ are also interpreted in b.* We represent
a fact as a pair (structure,bindenv). The following is a representation of

the fact g(f(4,4),X):
(W Y)Y = X, Z =4 W — f(Z,7)})

Given a fact f, f.structure denotes the structure of f, and f.bindenv
denotes the bindenv of f. Thus f = (f.structure, f.bindenv). We use the
notation (s,e), where s is a term, to denote s interpreted in bindenv e.
We say that terms (sl,el) = (s2,e2) if both represent exactly the same
term. During evaluation, the same fact may be generated with different
representations. We call each such representation of a fact an occurrence of
the fact.

Binding environments are implemented using “fully persistent versions
of data structures” [6, 5]. When applied to bindenvs represented as arrays,
a fully persistent versioning scheme permits us to carry out the following
operations efficiently:

1. Create a new child version of an existing bindenv (which itself may
have been created as a child version of another bindenv, and so on).
The child version has the same bindings as the parent version when it
is created, but any changes made to the child version will not affect
the parent version.

2. Add a new variable to a version of a bindenv.

3. Lookup and/or change the binding of a variable in a version of a
bindenv.

Operation (1) can be done in constant time, and operations (2) and (3) can
be done in time O(min(loglogm,logn)), where m is the total number of
versions of bindenvs that have been created and n is the number of versions
of the variable that have been modified [5]. For brevity, we use the notation

V (defined below).

Definition 4.1 (V) Consider an evaluation of a program. Let {V},V5,...}
be the variables used in the evaluation. Let n; denote the number of versions
of V; that are modified in the evaluation, and let m denote the total number
of versions of bindenvs that are created in the evaluation. Then V denotes
max;(min(loglogm,logn;)). O

We have implemented a simpler scheme due to D.H.D. Warren ([22], cited
in [8]) which has an access cost of log n (where n is the number of variables
in the bindenv) in the CORAL deductive database system [11]. The scheme
was proposed for implementing OR-parallel Prolog.

*We do not allow bindings in bindenvs of stored facts to refer to other bindenvs, since
we do not know how to create versions of facts efficiently using such a representation.

5 How to Apply a Rule

The basic operation in bottom-up evaluation is the application of a rule to
produce new facts. In this section we present an algorithm to apply a rule,
with several optimizations to handle non-ground facts more efficiently. The
rule application procedure described here is used with Semi-Naive evaluation.
We assume that the rules to be evaluated are those generated by MGU Magic
or MGU MTTR rewriting.

Procedure Apply_Rule is shown below. It essentially performs a left to
right nested loops join.> Note that due to our rewriting, rules have either
one or two body literals. We describe informally some of the procedures
that it uses; details are presented in [17]. An important point to note in
Apply_Rule is the creation of versions of bindenvs to ensure that unification
operations do not affect any stored facts.

Procedure ApplyRule(R).
Let R be: p(i): —q1(t1)[, ¢2(t2)]. /* [] denotes an optional argument */
1. Fetch facts for ¢1.
For each fetched fact (strl, envl) do the following:
1.1 Create a new version envl’ of envl. Unify (strl, envl’) with ql(t_{).
1.2. If the unification succeeds, Then
1.2.1. If ¢2 is not the goal_id predicate, Then
a. Fetch ¢2 facts that unify with the instantiated q2(t;).
b. For each fetched fact (str2, env2)
Execute Smart_Unify (R, {(strl, envl), (str2, env2), (R, renv')).
If Smart_Unify succeeds, Insert_Head_Fact((R, r_env’))
1.2.2. Else
Rename_and_Reunify(R, (strl, envl), (R',r_env'))
If ¢2 is the goal_id predicate, evaluate it.
/* Else the rule has only one literal */
Insert_Head_Fact((R',r_env')).
end Apply_Rule.

Consider the case of rules with two body literals (with neither having
goal_id as predicate). Due to our rewriting, such rules must have a supple-
mentary literal and an answer literal in the body. For such rules, Apply_Rule
fetches facts for the two literals, and calls Smart_Unify with the two facts.
Smart_Unify unifies versions of the two fetched facts with their respective
body literals, and returns as its last argument a (possibly renamed) instan-
tiated version R’ of the rule R, with a bindenv r_env’. We omit details of
Smart_Unify for lack of space, but give some intuition below.

®Our Semi-Naive rewriting ensures that the left-most literal in the join is either a &
literal or a base literal.

Smart_Unify calls a procedure Return_Unify to handle rules that involve
answer-return unification; we discuss this procedure in more detail later.
For rule applications that do not involve answer-return unification, or if the
optimizations used in Return_Unify do not apply, Smart_Unify ensures that
variables in the query/supplementary fact are not renamed; variables in the
rule and in the answer fact are renamed instead, and the bindenv of the
head fact is a version child of the bindenv of the query/supplementary fact.
Thereby, bindenvs are inherited in such a manner that the bindenv of an
answer fact is a descendant of the bindenv of the query fact that resulted in
its generation.

For all other rules, procedure Rename_and_Reunify is called. It renames
the rule, unifies it with a version of the fact for the first body literal, and re-
turns the result as its last argument. In either case, Insert_Head_Fact inserts
the derived fact into the appropriate relation, after performing subsumption-
checking if required; again, we omit details.

5.1 Context Identifiers and Return-Unification

We now describe our optimization of answer-return unification. The goal is
to reduce the cost of answer-return unifications by keeping extra information
with facts. We start by describing the intuition behind the optimization,
then present some details, and finally present an example.

Our evaluation algorithm propagates (versions of) bindenvs of facts, as
well as parts of their structure, through derivations. The idea is as follows.
Consider a subgoal (q.structure,q.bindenv). The subgoal is used in rules,
to generate further subgoals and answers. As descendant versions of its
bindenv are created, and used in rules, variables corresponding to those
in the subgoal get bound. Finally if an answer fact to the subgoal ¢ gets
generated using a descendant bindenv env’ of ¢.bindenv, we can show that
the variables that occur in ¢ have been bound in env’ in much the same
way that variables in a subgoal are bound during Prolog evaluation (our rule
evaluation mechanism ensures it by the way in which bindenvs are inherited,
and fact structures created). This knowledge can then be used to optimize
answer-return unification. We discuss the optimized unification step in more
detail shortly.

The difference from Prolog is that while Prolog solves each occurrence of a
subgoal separately, bottom-up evaluation may eliminate duplicate/subsumed
facts and hence some answers that were generated for one subgoal occurrence
may have to be used where other occurrences of the same subgoal were gen-
erated. (If a given query is generated from more than one supplementary
fact, all but one occurrence of the query may be deleted by duplicate elim-
ination.) But in such a case the structure and bindenv of an answer may
not have been inherited from a subgoal for which the answer is used, and
one cannot optimize answer return unification using knowledge about the
bindenv.

The discussion above was in terms of answers to subgoals. However, in

bottom-up evaluation using MGU Magic rewriting, answer return unification
actually occurs when a supplementary fact and an answer fact are unified
with a rule. The supplementary fact stores rule variable bindings from the
point when the query was generated, and the query itself is generated using
the supplementary fact.

To find if the optimized answer-return unification step is applicable, we
need to keep track of what fact occurrences are generated from what other
fact occurrences, and how the bindenvs are inherited. In order to do so, with
each supplementary fact we store a field cont_id (“context identifier”). With
all facts, we store a field par_id (“parent context identifier”). These two fields
hold identifiers that help keep track of how bindenvs were inherited from a
supplementary fact; the idea is that if the cont_id field of a supplementary
fact matches the par_id field of an answer fact, answer-return unification
optimization is applicable. The cont_id and the par_id values do not affect
subsumption checking.

We now present an intuitive description of how the cont_td and par_id
values are generated and propagated. We generate a new cont_id for each
supplementary fact. The query fact generated from the supplementary fact
inherits a version of the bindenv of the supplementary fact, as well the
cont_id value of the supplementary fact in its par_id field. (In case last-
call optimization is used on a literal, the par_id field of the query fact is
set to the par_id field of the supplementary fact since answers will not be
generated for the query fact.) A supplementary fact is generated either from
a query fact occurrence or from a supplementary fact for the previous body
literal. In either case, it inherits both a version of the bindenv and the value
of the par_id field from the fact it is generated from. An answer fact is
generated from a supplementary fact, and inherits a version of its bindenv,
and its par_id value. Thus, versions of bindenvs are propagated through
derivations, and the cont_td and par_id fields are used to keep track of links
between the bindenvs of supplementary facts and the bindenvs of answer
facts. We say that an answer fact is generated from a supplementary fact if
the cont_id value of the supplementary fact is the same as the par_id value
of the answer fact.

Now we get back to how answer-return unification is actually achieved.
The details are shown in Procedure Return_Unify, which first tests for the
applicability of the optimization, and returns failure if it is not applicable.
The intuition is as follows. If (a descendant of) a query fact bindenv has
been inherited by the answer fact and variables in it bound appropriately at
each step in the chain of inheritance, replacing the bindenv of the query fact
by the bindenv of the answer fact has the same effect as applying the (most
general) unifier of the query and the answer facts to the query. In the actual
derivation we use the supplementary fact instead of the query fact (the query
fact bindenv is a version of the supplementary fact bindenv). Return_Unify
need only replace the supplementary fact bindenv by the answer fact bindenv
to carry out unification. However, we show a more general version that works

even when the adornment optimization of Magic rewriting [2] has been used.

Procedure Return_Unify (R, s, a, (R, r_env'))

/* Ris arule, sis a supplementary fact, and @ an answer fact.*/

1. If s.cont_id # a.par_id Then return failure.

2. Set r_env’ = new version of a.bindenv.

3. Let R’ be a renamed version of R with variable names starting from after the
highest numbered variable in r_env’. Add all variables in R’ to r_env’.

4. Bind each variable in the supplementary literal of (R/, r_env’) to the
corresponding argument of s.structure.®

5. Bind each variable in the answer literal of (R, r_env’) to the corresponding
argument of a.structure.”

6. Update_Context_lds(R/, r_env’,s).

7. Return success.

end Return_Unify

We show [17] that the unifier computed by Return_Unify is a most general
unifier of the supplementary and answer facts with the rule body. Most
importantly, it executes in O(V) time, which is quite small.

5.2 An Example

Example 5.1 We use the bottom-up evaluation shown in Example 3.2 to
illustrate the effect of our optimization technique. Figure 1 shows physical
details of the evaluation of the rewritten program, described at a high level
in Example 3.2. We use the following notation. The par_id of each fact is
shown following the fact, and for supplementary facts, the cont_id is shown
following the par_id.

The figure should be read as a sequence of derivations, from top to bot-
tom. The bindenvs are shown as tables, and under each variable we either
have a blank (the variable is not bound), a value for its binding, or a pointer
to its binding. We use the pointers to emphasize that structures are shared
between facts used in a derivation and the derived fact, and are not copied
unnecessarily. In the figure, several facts point to one bindenv — this nota-
tion should be interpreted as each fact having its own version of the bindenv
(but with the same bindings), and is done only to keep the figure concise.

The main points to note are the following. The initial query fact is
assumed to have a par_id value of 0. When using rules R1, variables L1,
L2 and L are added to the bindenv, with L1 bound to the first dlist, L2 to
the second, and L to P. The derived fact is given a new cont_td value 1,

SEach argument of the supplementary literal is a distinct variable. Hence the concept
of having for each variable in the supplementary literal a “corresponding argument” in the
fact (Step 4 of Return_Unify) is well-defined.

"The concept of “corresponding argument” is well-defined for Step 5. Such a literal is
of the form answer(I1D, q()?)), where X is a tuple of distinct variables, due to the prepro-
cessing. All facts used with the literal are of the form answer(id, ¢(@)). The arguments
“corresponding” to the variables in X are the arguments of ¢(d@) in the above fact.

Iteration Rule Fact Derived

., P), 0):0

o query(paths(, , P), 0):0 =——m____ XY P
< —
dlist([a]b|X],X) dlist([c]Y],Y)

N—d<— | X Y PLLL2L
1 R1 sup_1.0(0,', /P, 1):0:1 P /
|
//

-
HE

2 R2 query(() :
dappend(* , 7, P)

3 R4 answer(1, dappend(), /, P)):
\/ X Y PL1L2L
dlist(), Y) | -

/] \

4 R3 answer (O, paths (,):0 —

Figure 1: Evaluation of Program That Uses dappend

and the bindenv of the query fact is inherited by the derived fact. When
using rule R2 the variables in the query are not bound further, the bindenv
is inherited by the derived fact, and the derived fact has a par_td of 1. As an
optimization, we project out variables from the bindenv that do not appear
(directly or indirectly) in the derived fact, and hence the bindenv is not
changed further. Next, when using rule R4, the variables I and P in the
bindenv get bound to the result of dappending the two lists. It is important
to note that this corresponds to the variable P in the initial query getting
bound in Prolog evaluation of the query. (The variable X also gets bound in
this step, as it does in Prolog evaluation.) The derived answer fact inherits
the par_id of 1 from the supplementary fact used in its derivation, and it
inherits the bindenv from the query fact used in the derivation.

Due to the above bindings, the bindenv of the answer fact generated using
R4 is such that if the supplementary fact generated by R1 is interpreted
in the bindenv, the variable P is bound to the result of dappending the
two given lists (and X is bound correctly as well). Hence, when using the
derived fact in rule R3, return unification should be applicable, and this is
indeed the case — the par_d of the answer fact is equal to the cont_id of the
supplementary fact (both are 1). Since Return_Unify succeeds, no renaming
is required, and unification takes O(V) time.

Overall, the time cost of the evaluation shown is O(V), regardless of the
sizes of the difference lists, ignoring the cost of setting up the initial query
and printing the answer. (As in Prolog, no occur checks are performed.)
The answer-return unification step would take time proportional to the sizes
of the difference lists, if our optimizations were not used. O

5.3 Correctness and Cost of Apply_Rule
We call a version of Semi-Naive evaluation that uses procedure Apply_Rule
to perform rule application as Opt-NG-SN evaluation. We call the query

evaluation technique that first rewrites the program and query using MGU
MTTR rewriting, and then evaluates it using Opt-NG-SN evaluation as Opt-
NGBU evaluation.

Theorem 5.1 Let P be a program and () a query on the program. Let
PMGU-T pe the program generated from P and Q by either MGU Magic or
MGU MTTR rewriting. Then Opt-NG-SN evaluation of PMEU-T s such
that (1) Every fact generated as an answer for Q) is an answer to (), and (2)
Every answer to () is subsumed by the set of answers generated. O

We index supplementary and answer facts using hash-indices on the goal-
id fields. This technique is essentially the same as the one used in QSQR [21],
and provides constant time insertion, and constant time lookup per retrieved
fact. Occur checks are not necessary for soundness in Return_Unify, since
the rule literals have distinct variables that are not present in the facts. It
is straightforward to show that Return_Unify runs in O(V) time. Further,
we show (in [17]) that in the absence of subsumption checking, every call to
Return_Unify succeeds. Hence answer-return unification can always be done
efficiently.

In the general case, subsumption-checking is a costly operation, and we
are not aware of efficient subsumption-checking techniques for the case of
arbitrary non-ground facts. For ground facts, subsumption is the same as
equality, and hash-consing [15] can be used to perform equality checking in
constant time in many cases. Approximate forms of subsumption checking
can often be done efficiently, and often suffice in practise.

Checking for subsumption avoids recomputation, and can prevent the
computation from entering into an infinite loop. But if subsumption check-
ing is done on goals, answer-return unification optimization will apply to
only one use of each answer fact. The cost of checking for subsumption, and
of renaming and unifying answer facts when answer-return unification opti-
mization fails, has to be carefully balanced against the benefits of avoided
recomputation.

6 A Comparison With Prolog*

For our comparison of Prolog with bottom-up evaluation, we use a model
of Prolog evaluation that incorporates last-call optimization. The model is
quite straightforward, and corresponds closely to the intuitive ‘procedural’
model of Prolog evaluation, augmented with last-call optimization. We call
the model of evaluation as Prolog* evaluation, The detailed model may be
found in [17].

We make the following simplifying assumption: Given term occurrences
a, al and b, if @ = al, (i.e., they represent the same term) then the time
taken to unify a and b is the same as the time taken to unify al and b. We
also assume that bottom-up evaluation as well as Prolog* evaluation use the
same indexing technique for base relations.

| Operation | Bot. Up (No Opt.) | Prolog | Opt-NGBU |

Unification

Answer-return | O(size of terms) O(1) o)

Other O(size of terms) O(size of terms) O(V- size of terms)
Indexing

Answer-return O(Zf,EF size(f;)) | O(1) O(1)

Other O(Zf,EF size(f)) O(Zf,EF size(f)) O(Zf,EF size(f))

Table 1: Bottom-Up Evaluation using MGU MTTR rewriting vs. Prolog

Table 1 summarizes a comparison between various costs in bottom-up
evaluation of an MGU MTTR rewritten program and Prolog evaluation. In
the table, size(f;) denotes the size of f;, and F denotes the set of all facts
that are derived.

Theorem 6.1 Let P be a program, and () a query. Given any database,
suppose the cost of Prolog® evaluation of Q ist units of time.® Opt-NGBU
evaluation without subsumption-checking evaluates the query on the given
database in time O(t -loglogt). (The size of the program is not taken into
account in this time complexity measure.) O

The proof of this theorem is presented in [17], where we also discuss how
we can relax the assumption that the size of the program is a constant. We
remind the reader that our analysis ignores constant costs, and the effect of
factors such as virtual memory, and assumes that all answers are generated,
and no intelligent backtracking is used.

Although bottom-up evaluation may be a bit slower if no subsumption-
checking is done, it still has the benefit of being sound and complete unlike
Prolog, and does not repeat computation in the manner of iterative deepen-
ing. The biggest benefit of our optimizations is for programs that generate
non-ground facts, but where some of the facts generated are ground, and sub-
sumption checking is both necessary and cheap for these facts. We present
one such program in Example 7.2. For such programs Opt-NGBU combines
the best features of Prolog evaluation and bottom-up evaluation.

The question of how bottom-up and top-down methods compare is con-
sidered important, and has been under investigation by several researchers
[20, 3, 9, 16]. Our result carries the comparison of top-down and bottom-up
methods farther than earlier results in three important ways: (a) it extends
the class of programs considered from safe Datalog to full logic programs,
(b) it compares bottom-up evaluation with a sophisticated model of Pro-
log evaluation, which incorporates last-call optimization, and (c) it takes all
time costs into account (earlier results with the exception of [20] ignored
the cost of unification, and only compared the number of operations such as
inferences performed). Since we remove all these restrictions, we believe our
work represents a major advance on earlier work.

8Where each action of Prolog* evaluation takes at least unit time.

7 Discussion

The evaluation technique we described can be extended and optimized in
several different ways. In the case of range-restricted programs, where no
non-ground facts are generated, bindenvs need not be stored explicitly, and V
reduces to O(1). We have implemented our optimization techniques (except

for MGU MTTR rewriting) on the CORAL deductive database system [11],
and we present some preliminary performance figures.

Example 7.1 Consider the well-known program to append lists, with a
query involving non-ground lists. The following table presents the relative
time costs of three evaluation techniques, on lists of the specified lengths.
The number of distinct variables in the list is shown in parentheses.

Dataset Unopt. | MGU Magic + | MGU MTTR +

Opt. NGBU Opt. NGBU
Length 25 (3 vars) 31 19 .08
Length 50 (3 vars) 0.98 .35 15
Length 100 (3 vars) 3.85 .67 .30
Length 100 (25 vars) 3.87 .69 .30
Length 100 (ground) 44 .55 .30

Even for ground lists, optimized evaluation with MGU Magic rewriting
is not much slower than unoptimized evaluation, while optimized evaluation
using MGU MTTR rewriting (which generates non-ground facts) is actually
the fastest of the three. For non-ground lists, the cost of optimized evaluation
grows linearly with the size of the lists, while for evaluation without our
optimizations the cost grows roughly quadratically. O

Example 7.2 We ran two variants of a shortest path program [18] on the
CORAL system. Prolog evaluation is inapplicable since it loops if there
are cyclic paths. The shortest path program is best evaluated bottom-up
(see [18]), and subsumption checking on subgoals is, in general, necessary
for termination. Since subgoals for this program are ground, subsumption
checking can be performed efficiently. For lack of space, we omit details of
the program — details may be found in [17]. Both variants of the program
used the query ?shortest_path(X,Y). The first used a difference list repre-
sentation, and the second used an ordinary list representation, but used cons
rather than append. The second variation generated only ground facts, but
generated path lists in reverse order (generating them in the correct order
would be costly since append takes time linear in the length of its first argu-
ment). The ground program ran in 0.6 seconds on a sample dataset, while
the non-ground program ran in 0.8 seconds. Thus the loss of speed due to
the non-ground data-structure is reasonably small (33%), while providing
the benefit of printing out paths in the correct order. O

7.1 Related Work

There have been several studies ([9, 16, 20, 3, 12]) that have compared
bottom-up and top-down evaluation in terms of the number of facts com-
puted, number of inferences made, and time taken. Section 6 discussed how

our results subsumes the earlier ones. Pereira [8] describes an implemen-
tation of parsers for unification based grammar formalisms, using “virtual
copy memory” (i.e., versioned memory). There seems to be no equivalent to
answer-return unification in the context of [8].

The optimizations described in this paper work at the level of rule appli-
cation, and are essentially independent of the control strategy used during
evaluation such as those described in [10, 18]).% They can be applied to other
memoing evaluation schemes such as QSQR [21] and Alexander [13, 16]. Per-
sistent versioning can be used with Extension Tables [4], or OLDT resolution
[19]. Our optimization of answer-return unification is not useful in the con-
text of Extension Tables. However, with Extension Tables variables in rules
would have to be versioned. In Opt-NGBU evaluation, we can avoid ver-
sioning rule variables in most cases, and for programs that (with adornment)
generate only ground facts and queries, all bindenvs are empty, and have no
versioning costs.

OR-parallel Prolog implementations share some of the problems bottom-
up evaluation faces. However, the problems of subsumption checking and
answer-return unification are not present in OR-parallel Prolog. Further,
optimizations that try to avoid using bindenvs in facts are important for
bottom-up evaluation although not for OR-parallel Prolog.

8 Conclusion

The results in this paper are significant in two ways. First, they provide
an efficient memoization technique for definite clause programs that gener-
ate non-ground facts. We believe the techniques can be extended to other
interesting domains such as bottom-up evaluation of constraint programs.
Second, they extend our understanding of the similarities between top-down
and bottom-up further than previous results, which considered only pro-
grams that generated only ground facts.

Acknowledgements

This work was done while the first author was at the University of Wisconsin,
Madison. This work was supported by a David and Lucile Packard Foundation
Fellowship, a Presidential Young Investigator Award, with matching grants from
Digital Equipment Corporation, Tandem and Xerox, and NSF grant TRI-9011563.

References

[1] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. In Procs. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 16-52, May 1986.

[2] C. Beeri and R. Ramakrishnan. On the power of Magic. In Procs. of the ACM
Symp. on Principles of Database Systems, pages 269-283, Mar. 1987.

?Some of these techniques modify Magic rewriting in minor ways. Corresponding
changes may need to be made in our optimization technique.

[3]

F. Bry. Query evaluation in recursive databases: Bottom-up and top-down
reconciled. TEFFE Transactions on Knowledge and Data Engineering, 5:289—
312, 1990.

S. W. Dietrich. Extension tables: Memo relations in logic programming. In
Proes. of the Symposium on Logic Programmang, pages 264-272, 1987.

P. F. Dietz. Fully persistent arrays. In Workshop on Algorithms and Data
Structures, pages 67-74, 1989. (Appeared as LNCS 382).

J. R. Driscoll, N. Sarnak, D. Sleator, and R. E. Tarjan. Making data structures
persistent. In Fighteenth Annual ACM Symp. on Theory of Computing, 1986.

R. A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

F. Pereira. A structure-sharing representation for unification-based grammar
formalisms. In Procs. of the 23rd Annual Meeting of the Association for Com-
putational Linguistics, pages 137-143, 1985.

R. Ramakrishnan. Magic Templates: A spellbinding approach to logic pro-
grams. In Procs. of the International Conference on Logic Programming, pages
140-159, August 1988.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in
bottom-up evaluation. In Joint Int’l Conf. and Symp. on Logic Programming,
1992.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL: Control, Rela-
tions and Logic. In Procs. of the Int’l Conf. on Very Large Databases, 1992.
R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In
Proes. of the International Logic Programming Symposium, 1991.

J. Rohmer, R. Lescoeur, and J. M. Kerisit. The Alexander method — a tech-
nique for the processing of recursive axioms in deductive database queries. New
Generation Computing, 4:522-528, 1986.

K. Ross. Modular acyclicity and tail recursion in logic programs. In Procs. of
the ACM Symposium on Principles of Database Systems, 1991.

M. Sassa and E. Goto. A hashing method for fast set operations. Information
Processing Letters, 5(4):31-34, June 1976.

H. Seki. On the power of Alexander templates. In Procs. of the ACM Sympo-
stum on Principles of Database Systems, pages 150-159, 1989.

S. Sudarshan. Optimezing Bottom-Up Evaluation for Deductive Databases. PhD
thesis, University of Wisconsin, Madison, Aug. 1992.

S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in deductive
databases. In Procs. of the Int’l Conf. on Very Large Databases, Sept. 1991.
H. Tamaki and T. Sato. OLD resolution with tabulation. In Procs. of the Third
International Conference on Logic Programming, pages 84-98, 1986. (Lecture
Notes in Computer Science 225, Springer-Verlag).

J. D. Ullman. Bottom-up beats top-down for Datalog. In Procs. of the Eighth
ACM Symp. on Principles of Database Systems, pages 140-149, March 1989.
L. Vieille. Recursive query processing: The power of logic. Theoretical Com-
puter Science, pages 1-53, 1989.

D. H. D. Warren. Logarithmic access arrays for prolog. Unpublished program,
1983.

D. S. Warren. Memoing for logic programs. Communications of the ACM,
35(3), Mar. 1992.

