
Scheduling and Caching in Multi-Query Optimization

A. A. Diwan S. Sudarshan D. Thomas∗

Indian Insitute of Technology Bombay Stanford University

Abstract

Database systems frequently have to execute a batch of
related queries. Multi-query optimization exploits evalu-
ation plans that share common results. Current approaches
to multi-query optimization assume there is infinite disk
space, and very limited memory space. Pipelining was the
only option considered for avoiding expensive disk writes.
The availability of fairly large and inexpensive main mem-
ory motivates the need to make best use of available main
memory for caching shared results, and scheduling queries
in a manner that facilitates caching. Pipelining needs to be
exploited at the same time.

We look at the problem of multi-query optimization tak-
ing into account query scheduling, caching and pipelining.
We first prove that MQO with either just query scheduling
or just caching is NP-complete. We then provide the first
known algorithms for the most general MQO problem with
scheduling, caching and pipelining. After showing the con-
nections of this problem with other traditional scheduling
problems and graph theoretic problems we outline heuris-
tics for MQO with scheduling, caching and pipelining.

1 Introduction
Database systems are facing an ever increasing demand
for high performance. They are often required to execute
a batch of queries, which may contain several common
subexpressions. Traditionally, query optimizers like [4]
and [11] optimize queries one at a time and do not identify
any commonalities in queries, resulting in repeated compu-
tations. As observed in [12, 9] exploiting common results
can lead to significant performance gains. This is known as
multi-query optimization(MQO). There has been a signif-
icant amount of recent work on MQO. [10] demonstrates
the practical applicability of MQO based on efficient algo-
rithms for implementing a greedy heuristic.

The need for MQO has been expressed in several con-
texts in the recent past including mediators [14], view
maintenance [8], XML query optimization [13] and con-
tinuous query optimization [2].

Multi-query optimization exploits the possibility of
reusing (sharing) results of common subexpressions. Pre-
vious work assumed that unbounded space is available to
store results of common subexpressions. Typically shared
results are stored on disk, and disk space is plentiful; how-
ever, there are situations where not all shared intermediate

∗CONTACT Email Addresses: dilys@cs.stanford.edu, sudar-
sha@cse.iitb.ac.in, aad@cse.iitb.ac.in

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14–16, 2006
c©Computer Society of India, 2006

results fit on disk. More importantly, from a practical view-
point, the growing size of main-memory makes it possible
to cache many shared results in memory, avoiding the high
cost of reading from or writing to disk. The order of ex-
ecuting the queries and evaluating the subexpressions af-
fects the amount of space needed to keep the intermediate
expressions.

We first deal with the problem of finding the best order
of evaluation of expressions, which we call thescheduling
problem, and the problem of deciding when to admit (store)
a shared result in cache, and when to discard it, which we
call thecaching problem, to minimize evaluation cost under
cache space constraints.1

The following example motivates scheduling and cach-
ing in MQO.

Example 1 Suppose the set of queriesQ1, Q2, ..Qn needs
to be optimized and let the only common sub-expressions
be those betweenQi andQn/2+i, saySi, and assume the
size of allSi’s is equal toS. Multi-query optimization dis-
regarding cache space constraints would decide to cache
results of all the common subexpressions, instead of recom-
puting each twice (assuming the cost of storing and retriev-
ing from cache is lower than the cost of recomputation).
The cache requirement will thus benS/2. But a cache of
size2S is sufficient if the queries are evaluated in the order
Q1, Qn/2+1, Q2, Qn/2+2, . . ., Qn/2, Qn and each sub-
expressionSi is kept in cache only between the evaluations
of Qi andQn/2+i. 2

Gupta et al. [6] studied scheduling and caching in MQO,
and presented results on intractability of the caching prob-
lem, as well as approximation algorithms for special cases
of the caching problem. The problem of caching shared re-
sults was also addressed by Tan and Lu [15]; more details
are provided in Section 4.

It is also possible to execute multiple subexpressions
concurrently,pipelining the output of a shared subexpres-
sion to multiple uses of the expression. Dalvi et al. [3]
showed that not all ways of pipelining results to their uses
are realizable with limited buffer space, and outlined a class
of pipeline schedules called valid pipeline schedules that
can always be realized without any buffer space. They
also showed that the problem of finding the best pipeline
schedule is intractable, and provided greedy heuristics for
finding pipeline schedules. However, [3] does not consider
scheduling and caching.

To get the best plan for evaluating a batch of queries,
the query optimizer has to take into account scheduling,

1There is a dual problem of minimizing the cache space, given bounds
on execution time; we do not address that problem here, although the
complexity would be the same, and our algorithms can be extended to
handle this case.

caching and pipelining. No earlier work, to our knowledge,
has addressed this general version of the MQO problem.

2 Intractability Results
In this section we address the intractability of schedul-
ing, caching and pipelining decisions, given a plan with
common subexpressions (the plan could be for a batch of
queries, or for a single query with common subexpressions
internally). We consider each of the above aspects individ-
ually, and show that intractability is intrinsic to each aspect,
even with greatly simplifying assumptions.

Ibaraki and Kameda [7] proved the NP-completeness
of finding an optimal join order, while Chatterji et al. [1]
showed that getting a polylogarithmic approximation to
this problem is also NP-complete. These results prove the
intractability of finding an optimal query plan for a single
query, ignoring the issue of common subexpressions. Our
work complements these results.

2.1 Intractability of Scheduling

The problem of finding an ordering of the queries is an
important part of scheduling in multi-query optimization.
In this section, we show that this problem is strongly NP-
complete.

Each expression has a size and there is some benefit as-
sociated with caching it, while evaluating some bigger ex-
pression. We prove intractability even with the following
simplifying assumptions: all queries are the join of just
two relations, and the relations are of unit size, and with
unit cost of evaluation (i.e. reading from disk). The subex-
pressions are thus simply database relations, and the benefit
of caching them in memory is unit.

Formally, the simplified version of our problem is as fol-
lows. Letr1, r2, . . . , rm be a set of database relations and
let q1, q2, . . . , qn be a set of queries such that eachqi is a
join of two database relations. The size of eachri is 1 and
the total cache size available is2. The cost of reading any
ri from disk is1, as is the cost of evaluating a query. While
evaluating each query the constraint is that both the base
relations must be in cache. Find a permutation of thesen
queries such that the the computation cost of the entire set
is minimum.

Theorem 1 The problem of finding the best order among a
set of 2 relation join queries where all relations are of size
1, with cache size 2, is strongly NP-Complete.

PROOF: Without loss of generality we can assume that
(i 6= j) ⇒ ((ai, bi) 6= (aj , bj)). Now, no 2 of the queries
in the query set are identical and hence 2 adjacent queries
in the permutation can have at most 1 relation in common
and save a cost of 1. We will prove that the problem of
finding an optimal permutation is NP-complete by reducing
the problem of finding a Hamiltonian path in a cubic graph
2 which is known to be NP-complete, to it.

We show this by first considering the decision problem:
Does there exist an optimal permutation of queries such
that the cost saved isn−1, i.e. every two adjacent queries in
the permutation have a common relation. We first show that
this problem is equivalent to finding a dominating trail of a
graph and this in turn is equivalent to finding a Hamiltonian
path in a cubic subgraph.

2A cubic graph is a graph which has all vertices of degree 3.

For the given set of queries, define theunderlying graph
as a graph whose nodes are the various base relations that
occur in the queries, and two nodesri and rj are con-
nected if there is a query in the query set computing the
join of ri and rj . A dominating trail of a graph is a
trail (a walk through the vertices so that no edges are re-
peated; note however, vertices could be revisited) so that
all edges of the graph are incident on one of the vertices
of the trail. Now suppose there is a permutation such that
the cost saved isn − 1. This means for every pair of ad-
jacent queries one relation remains in cache and is com-
mon to both queries. That is, if the order of evaluation
is qi1, qi2,, qin then somerj1 is common to all queries
from qis0 to qis1 , rj2 is common to all queries fromqis1 to
qis2 , rj3 is common to all queries fromqis2 to qis3 , and so
on till rjm is common to all queries fromqi

s(m−1)
to qism

where1 = s0 < s1 < s2....... < sm = n. Now this
corresponds to the dominating trailrj1, rj2, ...rjm in the
underlying graph. So the problem of finding a dominating
trail is equivalent to the problem of finding a permutation
with cost saved =(n − 1).

Now to show that finding the dominating trail is NP-
complete we show a reduction from Hamiltonian path.

Consider any cubic graphG. Now obtain graphG′ from
G by adding a edge to each vertex ofG as shown in Fig-
ure 1.

Figure 1: Initial graphG and graphG′ with pendant edges
added

Now the problem of finding a Hamiltonian path inG
is the same as finding a dominating trail inG′. A domi-
nating trail in the graphG′ must dominate all edges in the
graph, including all the pendant edges, so the trail must go
through all the vertices in the original graphG. The degree
of each vertex ofG in G′ is 4, and one of the edges is a
pendant edge, which can come only at the beginning or at
the end of a trail. Hence the trail can be reduced to a path
through all vertices in the original graphG by removing
pendant vertices at each end of the trail if present, which is
a Hamiltonian path. ThusG has a Hamiltonian path iffG′

has a dominating trail.
Thus the problem of finding a Hamiltonian path on a cu-

bic graph, which is strongly NP-complete, can be reduced
to a special case of the problem of scheduling in MQO,
completing the proof. 2

The above result proves that the scheduling part of the
query scheduling and caching problem, by itself, is NP-
complete. We had made the trivializing assumptions that
size of each relation is 1 and the benefit (cost saved) of
saving an expression in cache is 1. We also trivialized the
general query structure by considering only joins of two
relations as queries. In spite of all these assumptions the
problem still turns out to be NP-complete.

Theorem 2 Scheduling, caching and pipelining for a fixed
query plan are all independently intractable. 2

Please refer to the extended version of the paper [16] for a
discussion of this result.

3 Generalized MQO Algorithms
In this section we provide exponential algorithms for a
generalized version of the multi-query optimization prob-
lem, taking into account scheduling, caching and pipelin-
ing. Our exposition is based on the Volcano representation
of query plans, outlined in [4] and [10]. Join order opti-
mization as in System R is a special case, and for this case
we give more precise bounds on time.

Given the input query, the Volcano optimization algo-
rithm first generates all possible semantic rewritings of the
input query. For example,(A 1 (B 1 C)) can be rewritten
usingjoin commutativityas(A 1 (C 1 B)). The Logical
Query DAG (LQDAG) is an AND-OR DAG representing
the space of all possible equivalent relational algebra ex-
pressions. The Physical Query DAG (PQDAG) is used to
completely specify the various algorithms available to eval-
uate a relational algebra expression (hash-join, merge-join
etc) and also the various physical properties that are satis-
fied.

A specific plan is a sub-graph of the PQDAG; plans
without sharing would be trees, whereas plans that share
subexpressions would themselves be DAGs; we use the
term planDAG to refer to a specific plan. Note that in
case of multi-query optimization we look upon the batch
of queries as a single Query DAG with a pseudo root hav-
ing as children the roots of the individual queries. Note also
that equivalent nodes (i.e., those representing the same ex-
pressions) are replaced by a single node that may be shared
by more than one query.

In the rest of the paper, for ease of exposition we frame
our descriptions in terms of the LQDAG; in reality our al-
gorithms would be applied on PQDAGs, and would work
correctly, in exactly the same manner.

3.1 MQO Algorithm with Scheduling, Caching and
Pipelining

We provide an exponential algorithm for multi-query opti-
mization in full generality (with scheduling, caching and
pipelining). For a query of sizen, we know the number of
distinct planDAGs (each of whose size is bounded by poly-
nomial in n) is exponential inn. Pipelining of arbitrary
subset of edges of a given planDAG may result in an infea-
sible pipelining plan (i.e. one that may take more than a
constant amount of buffer space). However, feasibility can
be tested in polynomial time by searching for C-cycles [3].

Finding the optimal scheduling and caching strategy for
a fixed set of pipelined edges in a fixed planDAG is reduced
to a minimum weight path problem as described below. By
applying this on all feasible pipelining plans, we can get
an optimal overall plan, taking pipelining, scheduling and
caching into account.

Figure 2 shows a fixed set of pipelined edges in a fixed
planDAG. Dotted edges are materialized, whereas solid
edges are pipelined.

We can partition the vertices in the DAG into equiva-
lence classes, such that any two vertices are in the same
equivalence class iff they are connected by a path of
pipelined edges (in the underlying undirected graph). In

E F

G H

C DBA

W X Y Z

W X

Y Z

E1

E2

Figure 2: Pipelining in MQO: The compressed graph.

the above example, A,B,E,G,H form one equivalence class
say E1 while C,D,F forms the other say E2. The other
vertices are in singleton partitions. Figure 2 also shows
a compressed graph where equivalence classes have been
replaced by single vertices.

All base relations are materialized and extra scan (read)
nodes are created for shared read optimization [3], i.e. for
pipelining a subset of the edges coming out of a expression,
while materializing the expression and reading from cache
for other uses.

As pipelining forces many operators to be executed con-
currently, an entire equivalence partition of vertices have to
be evaluated concurrently. The scheduling problem is re-
duced to a shortest path problem as before, but with states
as (Done,Cached) whereDone is a subset of equivalence
partitions described above andCachedis a subset of nodes
in the original uncompressed PlanDag, which are in the
subDAGs rooted at theDonenodes.

The edge transitions in the above graph, called schedule
graph, are of the following types:

1. Removal of node:
(Done,Cached∪{c}) → (Done,Cached) having cost
of removal of expression from cache which may be
zero. An example of such a transition for the DAG in
Figure 2 is(E1, {A, B, G, H}) → (E1, {B, G, H}).

2. Evaluation of a Component:
(Done, Cached) → (Done∪ {EquivComp}, Cached
∪{e1, e2, .., em}) where Cached includes all nodes
having edges going into the equivalence component
EquivCompand{e1, e2,, em} is a subset of nodes
in EquivComp. The cost of this edge is the cost of
pipelining and evaluation of all the intermediate ver-
tices of theEquivCompand the cost of writing oute1,
e2,... , em to the cache. Examples of such a transi-
tions for the DAG in Figure 2 include(φ, {A, B, F})

Algorithm 1 Procedure BestPipelinedScheduledMQO-
Plan(QueryExpressionE)

Create the LQDAG forE
bestplan=Null
bestcost=infinity
for all QueryPlanQ in the LQDAG do

for all SubsetE of pipelineable edges inQ do
Test if it is feasible to pipeline all edges in E
if feasiblethen

Develop the compressed graph by fusing the
equivalence vertices into one vertex
Develop the Schedule GraphG for this com-
pressed graph
cost= cost of shortest path from(φ, {Base-
relations}) to (HasRootNode, *) where
HasRootNode is any state containing the root
node.
/* Obtained by running Dijkstra’s shortest path
Algorithm on Schedule GraphG.*/
if cost< bestcostthen

bestcost=cost
bestPlan=(QueryPlanQ, Pipelined edgesE,
Schedule given by shortest path)

end if
end if

end for
end for

→ (E1, {A, B, E, G, H, F}) and (φ, {A, B, F}) →
(E1, {A, B, G, H, F}).

3. If cache is on disk then base relations can always
be assumed to be cached. If cache is only in mem-
ory, edges are present for reading base relations into
cache. If both disk and memory can be used as cache,
then states must be represented as (Cached, InMemo-
ryCache, InDiskCache) as explained previously.

Here is an example of a complete schedule correspond-
ing to the pipelining decision shown in Figure 2. Neglect-
ing W,X,Y,Z and assuming A,B,C,D have to be read in we
get (to get a smaller example):
(φ, φ) → (φ, {C}) → (φ, {C, D}) → ({E2}, {C, D, F})
→ ({E2}, {C, F})→ ({E2}, {F})→ ({E2}, {F, A})→
({E2}, {F, A, B}) → ({E1, E2}, {A, B, F, G, H})
→ ({E1, E2}, {A, B, G, H}) → ({E1, E2}, {A, G, H})
→ ({E1, E2}, {G, H})

An exponential algorithm for MQO taking into account
pipelining, scheduling and caching, is presented in Algo-
rithm 1.

Theorem 3 Multi-query optimization with scheduling,
caching and pipelining has an exponential algorithm.2

If we restrict to join orders only, with l join implementa-
tions, then the cost is bounded by the product of number of
plan alternatives,(4l)n ∗ n!, timesnn which is the maxi-
mum number of choices in pipelining edges,3 times the cost
of Dijkstra’s algorithm which is bounded by(3n)2, times
the cost of testing feasibility and evaluating cost, which

3Without shared read optimization we only have to select a subset of
edges and hence would get2

n, in place ofnn. But with shared read
optimization [3], which is essential for finding optimal plans, any subset
of edges from a node could be combined. A better bound can be got by
using Bell numbers B(n) or by Sterling numbers of the second kind [5].

is bounded byn2. The total cost is hence bounded by
(36ln)n ∗ (n + 2)!.

4 Related Work
For space reasons, please see extended report [16] for a
discussion of related work.

5 Heuristics
Please see [16] for heuristics for finding a good query or-
dering with negligible overhead.

References
[1] S. Chatterji, S. S. K. Evani, S. Ganguly, and M. D. Yemma-

nuru. On the complexity of approximate query optimization.
ACM Symp. Principles of Database Systems, 2002.

[2] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and eval-
uation of alternative selection placement strategies in opti-
mizing continuous queries.IEEE Intl. Conf. Data Engineer-
ing, 2002.

[3] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. S. . Pipelin-
ing in multiquery optimization.ACM Symp. Principles of
Database Systems, 2001.

[4] G. Graefe and W. J. McKenna. Extensibility and Search
Efficiency in the Volcano Optimizer Generator. InIEEE Intl.
Conf. Data Engineering, 1993.

[5] R. L. Graham, D. E. Knuth, and O. Patashnik.Concrete
Mathematics. Addison Wesley, 1995.

[6] A. Gupta, S. Sudarshan, and S. Viswanathan. Query
scheduling in multiquery optimization. InIDEAS, pages 11–
19, 2001.

[7] T. Ibaraki and T. Kameda. on the optimal nesting order
for computing n-relational joins. ACM Transactions on
Database Systems, 9(3):482–502, Sept. 1984.

[8] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Ma-
terialized view selection and maintenance using multi-query
optimization. InACM SIGMOD Intl. Conf. Management of
Data, 2001.

[9] A. Rosenthal and U. S. Chakravarthy. Anatomy of a mod-
ular multiple query optimizer. InIntl. Conf. Very Large
Databases, pages 230–239, 1988.

[10] P. Roy. MultiQuery Optimization and Applications.PhD
thesis, IIT Bombay, 2000.

[11] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lo-
rie, and T. Price. Access path selection in relational database
management system. InACM SIGMOD Intl. Conf. Manage-
ment of Data, 1979.

[12] T. K. Sellis. Multiple query optimization.ACM Transac-
tions on Database Systems, 13(1):23–52, Mar. 1988.

[13] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. De-
Witt, and J. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. InIntl.
Conf. Very Large Databases, 1999.

[14] S. N. Subramanian and S. Venkataraman. Cost based opti-
mization of decision support queries using transient views.
In ACM SIGMOD Intl. Conf. Management of Data, Seattle,
WA, 1998.

[15] K.-L. Tan and H. Lu. Workload scheduling for mul-
tiple query processing. Information Processing Letters,
55(5):251–257, 1995.

[16] D. Thomas. Scheduling in multiquery optimization. BTech
Report, IIT Bombay, 2002.

