
Graph Clustering for Keyword Search

Rose Catherine K.∗ S. Sudarshan

Indian Institute of Technology Bombay
rosecatherinek@gmail.com, sudarsha@cse.iitb.ac.in

Abstract

Keyword search on data represented as graphs, is re-
ceiving lot of attention in recent years. Initial versions
of keyword search systems assumed that the graph
is memory resident. However, there are applications
where the graph can be much larger than the avail-
able memory. This led to the development of search
algorithms which search on a smaller memory resident
summary graph (supernode graph), and fetch parts of
the original graph from the disk, only when required.
In this scenario, good clustering of nodes into supern-
odes, when constructing the summary graph, is a key
to efficient search.

In this paper, we address the issue of graph clustering
for keyword search, using a technique based on ran-
dom walks. We propose an algorithm, which we call
Modified Nibble clustering algorithm, that improves
upon the Nibble algorithm proposed earlier. We out-
line several policies that can improve its performance.
Then, we compare our algorithm with two graph clus-
tering algorithms proposed earlier, EBFS and kMetis.
Our performance metrics include edge compression,
keyword search performance, and the time and space
overheads for clustering. Our results show that Modi-
fied Nibble outperforms EBFS uniformly, and outper-
forms kMetis in some settings. Further, the memory
requirements of our algorithm are much lower than
that of kMetis, making it practical even with a very
large number of nodes, unlike kMetis.

1 Introduction

Keyword search on data represented as graphs, has
become a topic of great interest in recent years. It
can be attributed to the following two factors, to some
extent: graphs can represent all forms of data - struc-
tured, semi-structured, and unstructured, along with
relationships between its various entities. And, key-
word searching allows users to query the data, without

∗ Current affiliation: IBM IRL, Bangalore

15th International Conference on Management of Data
COMAD 2009, Mysore, India, December 9–12, 2009
c⃝Computer Society of India, 2009

knowing any particular query language, or the under-
lying schema used to format the data.

Initial algorithms for keyword search, such as
BANKS [3], assume that data is memory resident. But
there are applications where the data can be much
larger than the available memory. This led to the
development of external memory search algorithms,
such as Incremental Expanding Backward Search [7],
which searches on a smaller memory resident supern-
ode graph, to minimize IO. It fetches parts of the origi-
nal graph from memory, when required. The efficiency
of search in this case, can be improved by using a good
clustering of the graph nodes.

Graph clustering is the process of grouping graph
nodes, such that most edges are inside individual clus-
ters, and inter-cluster edges are comparatively few.
Clustering is an already well researched topic. Some
popular classes of clustering algorithms are geometric,
hierarchical and partitioning methods. However, not
all of them can be used for graph clustering. For graph
clustering, some of the popular algorithms are kMetis
[12], and EBFS (used in Incremental Expansion Search
algorithm [7]).

In this paper, we focus on clustering based on com-
munities. Below, we describe briefly the concept of
communities and the intuition for community based
clustering.

A community is a set of real-world entities that
form a closely knit group. Communities provide a
natural division of graph nodes into densely connected
subgroups [14]. Since nodes within a community are
closely knit together, a keyword search started from
one of its nodes, will remain within its boundary to a
large extent, thus localizing the search. In addition,
since inter-community connections are weak, the su-
pernode graph produced will be sparse, which in turn,
will restrict the spread of the search to a small fraction
of the entire graph. Also, since there is no reason why
communities must be of similar sizes, while clustering,
we don’t have to force equal partitioning of the nodes.

By dividing the data in accordance with the under-
lying community structure, and storing them in the
same or adjacent disk blocks, or in the same machine
if the data is distributed across machines, related data
can be retrieved together. This can enable external

memory or distributed keyword search to produce an-
swers in less time.

The contributions of this paper are as follows:

1. We propose an algorithm called Modified Nibble,
for graph clustering, using the technique of ran-
dom walks. Our algorithm improves upon a com-
munity based clustering algorithm proposed ear-
lier, called the Nibble algorithm [16], avoiding sev-
eral drawbacks of the Nibble algorithm which we
detail in Section 4.4.

2. We outline, in Section 5.3, several policies that
can improve the performance of our proposed al-
gorithm.

3. We compare Modified Nibble with two graph clus-
tering algorithms proposed earlier, EBFS and
kMetis. Our experimental results in Section 6
show that Modified Nibble is able to outper-
form EBFS consistently, and outperform kMetis
in some metrics. In particular, the memory re-
quirements of our algorithm are much lower than
that of kMetis, making it practical even with a
very large number of clusters, unlike kMetis. This
is particularly important for our target applica-
tion of keyword search on graphs, where the num-
ber of clusters can be of the order of tens or hun-
dreds of thousands.

2 Related work

There is a large amount of prior work on graph cluster-
ing, which can be broadly classified into methods based
on graph-partitioning and methods based on finding
communities.

The objective of graph partitioning methods is to
minimize the number of cut edges, while distributing
the nodes into partitions of roughly the same size. An
example is kMetis proposed in [12]. Partitioning algo-
rithms process the graph in a top-down fashion. The
graph is initially partitioned into two. Then, the pro-
cedure is repeated on these partitions for a fixed num-
ber of times, to obtain the required number of clusters.

In the paper [14], Newman and Girvan describe a
divisive hierarchical clustering algorithm for finding
communities, which uses a ‘betweenness’ measure to
identify the edges to be removed. Betweenness is a
measure which favors edges that lie between commu-
nities and disfavors those that lie inside communities.
After every removal, the betweenness measure has to
be recalculated since the betweenness values for the
remaining edges will no longer reflect the situation in
the new graph.

Duch and Arenas propose a divisive algorithm in
[9], to find the community structure in graphs by ex-
tremal optimization of modularity. Modularity is a
community goodness measure, computed as the differ-
ence between the number of in-cluster edges and the

expected value of that number in a random graph on
the same vertex set [8]. An improved version of this
algorithm is proposed in [17].

In [18], van Dongen describes Markov Cluster al-
gorithm (MCL) which finds clusters by simulating a
flow within the graph. It alternately strengthens the
flow where it is already strong, and weakens it where
it is weak. This is repeated until convergence, to get a
number of regions with strong internal flow (clusters),
separated by dry boundaries with no flow.

Bader et al. propose a clustering algorithm called
MCODE in [2], for molecular complex prediction. It
uses a vertex-weighing scheme based on the clustering
coefficient which measures the density of the neighbor-
hood of a vertex.

Spielman et al. [16] propose a partitioning algorithm
which uses random walks on graphs to find good clus-
ters. A modified version of the same is described in [1].
A detailed discussion of the key ideas of both these al-
gorithms is in Section 4.3.

There are many other algorithms that are used for
clustering, but which cannot be applied to the problem
at hand, namely graph clustering for keyword search.
K-means is a method that comes under the class of
geometric clustering methods, which optimizes a dis-
tance based measure, such as a monotone function of
the diameters or the radii of the clusters, and finds
clustering based on the geometry of points in some d-
dimensional space ([5]). Rastogi et al. [13] suggest a
graph compression method which exploits the similar-
ity of the link structure present in the graph to real-
ize space savings. The graph summary is similar to a
supernode graph, but has a slightly different seman-
tics for superedges. Each superedge represents edges
between all pair of nodes belonging to each of the su-
pernodes.

3 Clustering for finding communities

A community is a set of real-world entities that form
a closely knit group. As mentioned in [8], it is a way
to analyze and understand the information contained
in the huge amount of data available today.

Finding communities can be modeled as a graph
clustering problem, where vertices of the graph rep-
resent entities and edges denote relationships between
them. However, when clustering is done to discover
the community structure, no emphasis is given to cre-
ating clusters of similar sizes, though sometimes it is
appropriate to upper bound and/or lower bound the
cluster size. In addition to that, since communities
provide a natural partitioning of the graph, the users
are not required to input the number of clusters in the
graph, beforehand.

3.1 Quantifying the goodness of community
structure using conductance

Almost always, the underlying community structure
of a given graph is not known ahead of time. In the
absence of this information, we require a quantity that
can measure the goodness of the clustering produced
by an algorithm. We use the conductance of clusters
(defined below), for this purpose.

Graph conductance (as given in [1]), also known as
the normalized cut metric, is defined as follows:

Let G = (V,E) be a graph. Now, define the follow-
ing:

• d(v) is the degree of vertex v.

• For S ⊆ V , V ol(S) =
∑

v∈S d(v)

• Let S̄ = V − S. Then, S defines a cut and (S, S̄)
defines a partition of G.

• The cutset is given by ∂(S) = {{u, v} | {u, v} ∈
E, u ∈ S, v /∈ S}. The cutsize is denoted by
|∂(S)|.

Then, the conductance of the set S is defined as:

Φ(S) =
|∂(S)|

min(V ol(S), V ol(S̄))
(1)

4 Finding communities using random
walks on graphs

A random walk is a graph traversal technique, which
starts from the designated startNode. At each step of
the walk, the node explored next is one of the neigh-
bors of the current node, chosen randomly with equal
probability. Since this method of traversal doesn’t
distinguish between nodes already explored and those
that are yet untouched, the walk may pass through
some nodes multiple number of times.

4.1 Probability distribution of a walk

In many applications, instead of performing discrete
random walks, it is more interesting to find out the
probability of a random walk of k steps which started
at a particular startNode, touching a particular node
([6]). In this scenario, the nodes of the graph have a
quantity called nodeProbability associated with them,
which gives the probability of the walk under consider-
ation to be at that particular node, at the instant/step
of inspection.

In the initialization step prior to the walk,
nodeProbability of the startNode is set to 1 and prob-
abilities of the rest are set to 0. During the walk,
at each step, each node which has a non-zero value
for its nodeProbability will divide its current value,
equally between its neighbors - this is called spread-
ing of probabilities. Nodes with non-zero values for

nodeProbability are said to be active. If a node re-
ceives activation from multiple neighbors, they are ac-
cumulated. At any step of the walk, all nodes have
non-negative probabilities and they add up to 1. All
these conditions may not always be enforced, to suit
the problem at hand.

4.2 Rationale

The core idea of random-walk based clustering tech-
niques is that a walk started from a particular node
will remain within the cluster enclosing that node with
high probability, since the nodes within the cluster are
densely connected. Hence, if the probability distribu-
tion of nodes after a few steps of the walk is consid-
ered, they will be roughly in the order of their degree
of belongingness to the cluster under consideration.
As mentioned in [6], self-transitions in the walk allow
it to stay in place, and reinforce the importance of
the starting point by slowing diffusion to other nodes.
But as the walk gets longer, the identity of nodes in
the clusters blur together.

Figure 1: Example for clustering based on random
walks

Consider the toy example given in Figure 1, where
the nodeProbability of the nodes after a 3-step walk
from the startNode, is shown. It can be noted that,
the nodes within the cluster for the startNode have
high probabilities associated with them and as soon as
we cross the cluster, the probabilities drop suddenly,
thus revealing the boundary. This notion is used in
the algorithm for clustering using seed sets, proposed
by Andersen and Lang in [1].

The above example shows that, the probability dis-
tribution of the random walk gives a rough ranking of
the nodes of the graph. Hence, it is possible to find
the nodes of the cluster by considering the first k of
the top ranking nodes. But, this k cannot be fixed
beforehand. Here, the conductance measure comes to
our rescue.

In the example of Figure 1, the preferred cluster
(S) contains the first 7 top ranking nodes. It has 2
cut edges and its volume is 22. Conductance of this

cut is 0.09. Suppose that the seventh node, n1, is
not included. This corresponds to Cut1 in the figure.
It decreases the volume by 2 and increases the cut
size by 2, giving the conductance as 0.2. Similarly,
suppose that we include the next highest ranking node,
which is n2, also in the cluster (Cut2). It increases the
volume by 3 and the cut size changes to 3, giving the
conductance as 0.12. Thus, the preferred cluster has
the lowest conductance.

The above example illustrates how conductance
can be used to find the best cluster for a specified
startNode. This notion is used in the algorithm for
partitioning graphs using Nibble, proposed by Spiel-
man and Teng in [16], and the Modified Nibble algo-
rithm proposed by us in this paper.

4.3 Clustering using Nibble algorithm

Spielman and Teng [16] describe a nearly-linear time
algorithm, Partition, for computing crude partitions
of a graph, by approximating the distribution of ran-
dom walks on the graph. The main procedure of the
proposed clustering method is the Nibble algorithm,
which, given a start node, finds the cluster that en-
closes that node. The walk allows self-transition with
50 percent probability and otherwise, moves along one
of the randomly chosen edges incident on the vertex,
to its neighbor. To speed up the procedure, it employs
truncated random walks.

Nibble algorithm (outline):

input: Start node v, Graph G, Max Conductance θ0

1. Compute the bound on maxIterations, t0, and
threshold, ϵ.

2. Start spreading probabilities from v.
3. When the nodeProbability falls below ϵ, truncate

the walk by setting it to 0.
4. Sort the nodes in the decreasing order of their

degree normalized probabilities.
5. Check if a j exists such that:

• Conductance of the first j nodes in the sorted
order, is lesser than or equal to θ0

• The above group of nodes satisfy a set of
predefined requirements on its volume.

6. If a j was found, then return the first j nodes of
the sorted set, as the enclosing cluster of v.

7. Otherwise, do the next step of spreading proba-
bilities and repeat from Step 3.

Partition uses the Nibble procedure to nibble out
clusters from the graph, which it merges, till the vol-
ume of the merged set becomes a predetermined frac-
tion of the entire graph. At this point, the graph is
partitioned into two, with the merged set forming one
partition, and the remaining nodes forming the other.
To cluster the graph, this procedure is repeated for

a fixed number of times, on the partitions obtained.
Clustering using Nibble algorithm processes the graph
in a top-down fashion, which could make it difficult for
large graphs.

The clustering algorithm proposed by Andersen and
Lang in [1], uses the Nibble algorithm with minor mod-
ifications, to find the enclosing community for a ‘seed
set’ of nodes. But, the seed set was chosen manually
(after identifying the target cluster), which limits its
application, to cases where the communities present in
the graph are known beforehand.

4.4 Shortcomings of Nibble

Based on our implementation of the Nibble algorithm
and the experiments conducted on sample datasets, we
identified the following shortcomings of the algorithm.

1. Nibble was not able to find all clusters, for rea-
sonable values of conductance, even on moderate
sized graphs: If the conductance was increased,
the cluster-quality was badly affected. And if the
conductance was reduced, it pulled a large num-
ber of nodes into the cluster. We tried rectifying
the latter behavior, by bounding the maximum
size of the clusters. With this bound in place,
Nibble was not able to find all the clusters.

2. Specifying the conductance of the clusters, a pri-
ori, is difficult.

3. In step 5 of Nibble procedure, any value of j that
satisfies the conditions, is accepted. Due to this,
the algorithm might terminate early, as soon as
a cluster of user-specified conductance is found,
and may miss out better clusters existing in the
graph.

4. Size of the cluster is an important property which
the user may want to control to some extent. The
maximum allowable size may be constrained by
the size of external memory block or by the size
of the main memory of machines in a distributed
scenario. In Nibble, user has no way of regulating
the cluster size.

5. If unchecked, there is a high probability for the
random walk to spread over the entire graph, es-
pecially when there are hub nodes. This situation
is not desirable.

6. Testing for good community, which involves sort-
ing the nodes, is done after each step of spread-
ing of probabilities, and could lead to considerable
overheads when clustering large graphs.

5 Modified Nibble clustering algo-
rithm

Keeping in mind the ideas suggested by Spielman and
Teng in [16], and Andersen and Lang in [1], and based
on the shortcomings identified, we propose the Modi-
fied Nibble clustering algorithm, which is discussed in
this section.

Overall clustering algorithm
input: Graph G, maxClusterSize

(1) Set G′ = G. But, if co-citation heuristic P9
is used, set G′ to the remainder graph, after
removing hub nodes.

(2) Choose start node ns according to P1.
(3) Obtain cluster Cs = ModifiedNibble(ns, G

′)
(4) Set G′ = G′ − Cs, and save Cs.
(5) Repeat from step (2), until G′ is null.
(6) Compact the clusters obtained, using P8 pro-

cedure.

Figure 2: The overall clustering algorithm

The proposed method of clustering is composed of
3 procedures - the overall clustering algorithm (Figure
2), the Modified Nibble algorithm (Figure 4) and the
Modified FindBestCluster algorithm (Figure 3). Input
to the clustering algorithm consists of the graphG, and
a user-specified upper bound on the size of clusters,
maxClusterSize. The algorithm works on undirected
graphs; it can be applied to directed graphs by simply
ignoring edge directions.

The algorithm is parametrized by a number of pa-
rameter setting and policies, which are referred to as
P1, P2, and so on. These parameter settings and poli-
cies are described later, in Section 5.3.

5.1 Algorithm

The overall clustering (Figure 2) proceeds by identi-
fying and removing one cluster at a time, rather than
processing the entire graph at once. This could be
beneficial for clustering massive graphs.

The core of our clustering method is the Modified
Nibble procedure (Figure 4). It explores the locality of
the specified start node, by performing random walks
on the remainder graph (that is, the part of the graph
not yet assigned to any cluster). The spread of this
random walk is limited to the locality of the start node,
by constraining the maximum number of steps of the
walk and the maximum number of active nodes at any
time of the walk.

The maximum conductance of the clusters is not
a user-input, unlike for the original Nibble algorithm.
The Modified Nibble algorithm instead finds the best
cluster for the given start node. This is done by observ-
ing the fall in conductance of the current best cluster,
as the walk progresses. As long as the conductance
diminishes, it continues the walk. When the conduc-
tance value starts to increase, it stops and returns the
one with lowest conductance.

The Modified FindBestCluster procedure (Figure
3), is internally invoked by Modified Nibble, to find the
best available cluster out of the current active nodes.
This involves sorting of the nodes. Unlike in the case of
the original Nibble algorithm, sorting is invoked only

Modified FindBestCluster
input: set activeNodes, graph G′,
maxClusterSize

(1) normalize the nodeProbability of all nodes
in activeNodes, with their degree in G′

(2) sort the nodes in activeNodes set, in the
decreasing order of their degree-normalized
nodeProbability.

(3) define candidate clusters Cj to be the set of
nodes from 1 to j, in the sorted order, where
j = min(maxClusterSize, |activeNodes|).

(4) if abandoned node heuristic is set to P10(b),
then do the following:

• set each Cj to Cj ∪
{nc | nc is abandoned by Cj}

• if for any j, |Cj | exceeds maxCluster-
Size, discard Cj .

(5) for all remaining candidate clusters, compute
the conductance w.r.t G′.

(6) return that candidate, which has the smallest
conductance, out of all the remaining candi-
date clusters, as the best cluster.

Figure 3: Modified FindBestCluster algorithm

when a batch of random walk steps has been done;
thus the impact of sorting on the time required for the
clustering process is minimized. The size of the batch
is a parameter (P4).

Before delving into the details of parameters and
policies, we explain the working of the two main pro-
cedures, namely Modified Nibble and Modified Find-
BestCluster, using a simple example in the next sec-
tion.

5.2 Sample execution of Modified Nibble al-
gorithm

Consider the (very small) example graph in Figure 5,
with the start node as indicated. The cluster marked
as S is the cluster for this particular start node. In this
figure, we have performed one step of random walk,
and this forms Batch 1. The best cluster amongst
the current set of active nodes, is the one with all the
4 active nodes and its conductance is 0.33. Since, the
intuitive cluster S has not been found yet, we continue
with the spreading of probabilities.

Figure 6 shows the probability distribution after 3
steps (Batch 2). Here, the probability has spread be-
yond S. But, it can be observed that, amongst the
active nodes, those with largest nodeProbability be-
long to S.

To decide on the number of nodes in the sorted
order that should be taken as a cluster, we check the
conductance of each of the sets formed. Figure 6 shows
two cuts in the graph, in addition to S. Cut1 corre-

ModifiedNibble
input: start node ns, Graph G′, maxClusterSize

(1) initialization:

• set nodeProbability of ns to 1 and add
it to the activeNodes set.

• set maxSteps according to P5.
• calculate maxActiveNodeBound using P6.
• set totalSteps to 0.

(2) Batch i:
initialization:

• get term ti from the series chosen by P4.
• set batchSteps to (ti - totalSteps).
• but if ti exceeds maxSteps, set batch-
Steps to (maxSteps - totalSteps).

do for batchSteps number of times:

(a) spread from all nodes in activeNodes or
a single node, according to P2.

(b) the amount of spreading is determined by
spreadProbability as chosen in P3.

(c) update nodeProbability of all nodes,
with the probabilities accumulated from
their neighbors.

(d) update activeNodes set to contain all
nodes with positive values for their
nodeProbability.

(e) if number of active nodes are bounded,
check if maxActiveNodeBound has been
reached. If yes, then, according to the
choice of P7, do as below:

• P7(a) : stop this batch, and proceed
directly to step 3.

• P7(b) : continue this batch, but in
step 2(a) above, spreading is done to
only those nodes, which are already
in activeNodes.

(3) obtain cluster Ci = Modified
FindBestCluster(activeNodes, G′).

(4) find conductance of Ci w.r.t the current graph
G′, ΦG′(Ci).

• if ΦG′(Ci) ≥ ΦG′(Ci−1), set Cbest to
Ci−1, and go to step 6.

• else, set Cbest to Ci

(5) do the following and repeat from step 2 on-
wards (Batch i+1).

• if ti exceeds maxSteps, go to step 6.
• else, set totalSteps to ti.

(6) if abandoned node heuristic is set to P10(a),
set Cbest to Cbest ∪

{nc | nc is abandoned by Cbest}
(7) return Cbest as the best cluster of ns.

Figure 4: Modified Nibble algorithm

Figure 5: Probability distribution after 1 step

Figure 6: Probability distribution after 3 steps

sponds to the case where we choose the first 6 nodes
in the sorted order. Its conductance is 0.2. Cut2 cor-
responds to choosing the first 8 nodes, and its con-
ductance is 0.12. Choosing the first 7 nodes forms the
cluster S, whose conductance is 0.09. Here, S has the
lowest conductance and hence, is the best cluster for
Batch 2. Note that, conductance of the best cluster
has lowered when compared to Batch 1. But, at this
point, it is not possible to determine if S is the best,
over all clusters for the start node. Hence we continue
with the random walk.

Figure 7 shows the probability distribution after 5
steps of random walk (Batch 3). Here, the probability
has spread to a larger fraction of nodes in the graph.
But, note that, much of the probability is still within
S. In this figure, we consider two more cuts (in addi-
tion to the cuts that we inspected in Figure 6). Cut3
has the first 9 nodes in the sorted order, which includes
all the nodes in S and its conductance is 0.14. Cut4
has the 10th node added to Cut3, making its conduc-
tance 0.18. (In total, there are 17 cuts in this graph,
but for the ease of illustration, we are considering only
a few). Once again, S has the lowest conductance out
of all cuts. At this point, we stop and return S as the
cluster for the specified start node.

Figure 7: Probability distribution after 5 steps

An important observation in Figure 7 is that, at
the point when we finalize on the cluster for the start
node, there are nodes in the graph, that have not
been touched yet. This illustrates our intuition that,
it is possible to find clusters by inspecting only a local
neighborhood of the start node and without exploring
the entire graph.

5.3 Parameters and Policies

The key ideas of the proposed algorithm were demon-
strated in Section 5.2. But the detailed algorithm pre-
sented in Section 5.1 uses several parameters and poli-
cies which we discuss in this section.

P1. Start node: a node from the remainder graph,
from where exploring the graph will start. Two
choices are the node with the maximum degree,
the or node with the minimum degree, in the re-
mainder graph.

P2. Nodes spreading in each step: spreading of
probabilities in each step, can be done in the fol-
lowing ways:

(a) Spread from all active nodes.

(b) Only a single node spreads in each step, in
which case, it spreads only that probabil-
ity that it received and which has not been
spread yet.

P3. Self-transition probability of a ran-
dom walk is determined by the parameter,
spreadProbability. Lower values of the pa-
rameter tend to over-emphasize proximity to
the start node, while higher values can blur the
cluster boundary rapidly, by allowing a larger
fraction of probability to escape the boundary.
For most of the experiments, it was set to 0.5.

P4. Number of iterations in a Batch is chosen
from the APGP series, described below:

Arithmetic Plus Geometric Progression
(APGP): ith term of an APGP series, tapgpi =
(a+ id) + (a ri). The parameters a, d and r, can
be used to get fine-grained control over the differ-
ence between successive terms of the series.

P5. Upper bound on number of random walk
steps was chosen to be maxClusterSize, which
ensures that, all nodes of a cluster whose diameter
is maxClusterSize, are touched before spreading
of probabilities is discontinued.

P6. Upper bound on number of active nodes:
The walk, if left unchecked, can spread to the
entire graph. According to the intuition for
random walk based clustering (Section 4.2), it
is possible to extract a cluster by exploring
only a local neighborhood of the start node.
We restrict the size of this neighborhood to be
within maxActiveNodeBound, calculated as f ×
maxClusterSize.

P7. Behavior on maxActiveNodeBound: If the num-
ber of active nodes is restricted using P6, then,
when the number of active nodes reach the
maxActiveNodeBound, there are two options:

(a) Stop processing and output the best cluster
obtained so far.

(b) Continue with spreading, but propagate to
only those nodes that are already active, so
that no more new nodes get added to the
activeNodes set.

P8. Compaction procedure: Modified Nibble pro-
cedure may return clusters of sizes much smaller
than MaxClusterSize, thus increasing the num-
ber of supernodes in the summary graph. To
avoid this, multiple clusters can be bundled to-
gether. While experimenting with many com-
paction methods, which combined clusters that
had edges between them, it was observed that,
they made the supernode graph denser, which is
detrimental to the search algorithm. To strike a
balance between the number of supernodes and
the denseness of the supernode graph, we use the
following procedure:

Näıve compaction of tiny clusters: In this
compaction method, only tiny clusters which do
not have any cut edges are combined. Note that,
performing this compaction will not affect the
number of cut edges.

P9. Co-citation heuristic: Co-citation of articles
A1 and A2 is said to occur, when another article
C links to both A1 and A2. If all nodes co-cited
by a large number of articles are assigned to a
single cluster, all edges to them will be condensed
to a very few superedges, thus giving higher edge

compression. However, it was observed that, us-
ing this heuristic created a number of short-cut
paths in the supernode graph.

P10. Abandoned Node heuristics: In Nibble algo-
rithm (Section 4.3), the candidate clusters were
generated by considering the graph nodes only in
the order of their increasing probabilities. In ex-
periments conducted on sample datasets, it was
observed that, due to this, there were a large
number of nodes, which were separated from all
neighbors, in the clustering. We will refer to such
nodes as abandoned nodes. Presence of aban-
doned nodes hurt the search by faulting for many
more supernodes than necessary.

To eliminate abandoned nodes, following two
methods were tried out:

(a) Post-process: After each cluster is found,
check for abandoned nodes and add them to
the cluster.

(b) Abandoned node awareness: Prevent
abandoning of nodes right from the cre-
ation of candidate clusters, by adding all
abandoned nodes to the candidate clus-
ters. Candidates whose size goes beyond
maxClusterSize are discarded.

It is obvious that using P10(a) can increase the
size of the final cluster beyond maxClusterSize.
But, P10(b) will produce abandoned-node-free
clusters of size within the maxClusterSize pa-
rameter.

5.4 Final settings for Modified Nibble cluster-
ing

Table 1 specifies the parameter values and policy de-
cisions for the implementation of the Modified Nib-
ble clustering algorithm, that we used for comparison
purposes (Section 6). These choices were made after
a thorough evaluation of their effect on edge compres-
sion, time taken for clustering and keyword search per-
formance. A detailed analysis can be found in [11].

The time complexity of the Modified Nibble Algo-
rithm is linear in the number of nodes of the graph,
and polynomial in maxClusterSize, maxActiveNodes
and the highest degree of any node in the graph.

6 Comparison with other clustering al-
gorithms

In this section, we compare the implementation of
Modified Nibble clustering algorithm (ModNib for
short), with the parameter values and policy decisions
specified in Table 1, against alternative clustering al-
gorithms.

P1 : max degree
P2 : (a) - all active nodes
P3 : 0.5
P4 : APGP series with a = 2, d = 7, r = 1.5
P5 : maxClusterSize
P6 : f = 500
P7 : (a) - stop on maxActiveNodeBound
P8 : näıve compaction of tiny clusters
P9 : not used
P10 : (b) - abandoned node awareness

Table 1: Parameter values and policy decisions for
the implementation of Modified Nibble clustering al-
gorithm

6.1 Clustering algorithms compared

• Edge-weight prioritized breadth-first-search
(EBFS): It chooses an unassigned node as the
start-node, and performs a BFS from it, where
the neighboring nodes are explored in the order
of the weight of the edges connecting them. The
search is stopped when the number of explored
nodes reach the predefined maximum supernode
size. All the explored nodes form a cluster. The
process is repeated till all nodes are processed.
External memory keyword search in BANKS
currently uses EBFS clusters [7].

• kMetis: It is a k-way graph partitioning algo-
rithm, proposed by Karypis and Kumar in [12].
Firstly, it coarsens the graph, by collapsing edges
and grouping nodes, thus creating multiple ver-
sions of the input graph. Then, on the smallest
graph, it finds a good partition. This partition is
then projected back onto the original graph, by
refining at the intermediate levels.

6.2 Experimental setup

Following are the datasets that we used:

• Digital Bibliography Library Project database
(2003 version): dblp3 has 4 tables, viz. author,
cites, paper and writes. Each tuple is rep-
resented by a node, and foreign-key constraints,
by edges. This resulted in 1,771,381 nodes and
2,124,938 edges in the graph.

• English Wikipedia (2008 version): Nodes in the
Wikipedia graph represent articles, and edges rep-
resent hyperlinks between corresponding articles
(multiple links were ignored). Category pages
and redirects were removed while constructing the
graph. The Wikipedia graph has 2,648,581 nodes
and 39,864,569 edges.

Experiments on dblp3 were conducted on a machine
with two 3.00GHz Intel Pentium CPUs with a com-
bined RAM of 1.5 GB, running Ubuntu 9.04. Experi-
ments on Wikipedia were conducted on a blade of eight

2.50 GHz Intel Xeon CPUs, with a combined RAM of
8 GB, running Debian 4.0. The results presented for
performance experiments were taken on a cold cache.

6.3 Comparison metrics

The following metrics are used for comparison:

1. Edge compression
2. Connection query performance
3. Near query performance
4. Time and space requirements for clustering

6.4 Edge compression

Edge compression is the ratio of number of edges in the
original graph to that in the supernode graph. Node
compression can be defined in a similar way, but since
it is easier to obtain, we do not use it as a metric.
In this section we compare Modified Nibble clustering
algorithm with EBFS and kMetis, with respect to the
edge compression obtained on sample datasets.

Figure 8: Comparison of edge compression on dblp3
between ModNib and EBFS

Figure 8 compares the edge compression values ob-
tained by ModNib with EBFS, on the dblp3 dataset.
It is quite obvious from the figure that ModNib is able
to achieve better edge compression than EBFS.

Unlike EBFS, the input parameter of kMetis is
much different from that of ModNib. For kMetis, the
size of the clusters have to be controlled indirectly
through k, which is the number of required clusters.
This makes their comparison difficult. However, for
comparison purposes, we use clusterings whose maxi-
mum cluster size and number of clusters (and hence,
average cluster size) are comparable.

#clusters max
Cluster-
Size

edge
compres-
sion

ModNib 31,215 400 15.6
kMetis 30,000 335 9.616

Table 2: Comparison of edge compression on dblp3
between ModNib and kMetis

#clusters max
Cluster-
Size

edge
compres-
sion

ModNib 11,305 1,600 17.3
kMetis 3,000 1,096 15.7
kMetis 4,000 16,353 9.13

Table 3: Comparison of edge compression on wiki be-
tween ModNib and kMetis

From Table 2, it can be seen that the edge com-
pression obtained on dblp3 by ModNib is much higher
than that obtained by kMetis.

Table 3 gives the compression values on wiki, for
the two algorithms. For kMetis, observe that, when
the number of clusters (k) increases to 4000 from 3000,
the compression falls sharply. Also, it creates a cluster
of size 16,353 while the average cluster size is about
660, despite the claim that it partitions the graph into
clusters of roughly the same size. Comparing with
ModNib, we see that, it is able to get a compression
of 17.3, with 11,305 clusters.

For both dblp3 and wiki, we were unable to run
Metis for larger values of k than those reported in the
Tables 2 and 3. This is discussed in Section 6.7.

6.5 Connection query performance

A connection query is a keyword query, except that
the result returned is a sub-graph or a tree, which
shows how the keywords are connected in the origi-
nal graph. e.g. krishnamurthy parametric query
optimization. The algorithm used in our perfor-
mance measurements is the Incremental Expansion
Backward search algorithm described in [7]. The an-
swers obtained for different clusterings are the same,
regardless of the clustering algorithm. Also, a cache
manager was used to cache the expanded supernodes
read from the disk. The size of the cache was set to
the number of supernodes in the clustering, so that
the measurements are not affected by the cache re-
placement policy.

ModNib and EBFS clusterings used for perfor-
mance measurements have maxClusterSize set to 400.
For the kMetis clustering, k was set to 30,0001, which
gave a maximum cluster size of 335. The ModNib
clustering has 31,215 clusters, which makes the two
clusterings comparable.

Figures 9 and 10 show the number of cache misses
and the combined CPU and IO time respectively, for
answering a set of 20 sample connection queries, using

1For connection and near queries, the algorithm initially
searches on the supernode graph. It was observed that, if the
number of supernodes is small, the supernode graph is very
dense; as a result the search spreads to a very large fraction
of the graph, and produces a large number of answers in the
wrong order, both of which greatly increase the time to answer
a query. For the dblp3 graph a supernode graph with about
30,000 clusters gave the best results.

Figure 9: cache misses : connection query on dblp3

Figure 10: CPU + IO time (sec) : connection query on dblp3

ModNib, kMetis and EBFS clusters. From the figures,
it can be seen that, ModNib is out-performing EBFS
by a very large margin for most of the queries.

Comparing the performance of ModNib and kMetis,
we see that kMetis is performing well on some connec-
tion queries, while ModNib is outperforming kMetis
on others. At the same time, none of the clustering
algorithms, is a clear winner over the other. When the
clusterings are on par with each other, the difference
in performance could be attributed to the particular
queries under consideration, since, eventually, the per-
formance depends on the clusters in which the key-
word nodes appear. The sample queries used and the
detailed analysis of the results can be found in [11].

6.6 Near query performance

An example of a near query is ‘author (near data
mining)’. Here, author defines the type of answer
required by the user. data and mining are keywords
(which form the near set), to which the user wants
the author to be close to, in the graph. Intuitively,
if an author is close to multiple nodes containing the
specified keywords, that author would rank higher in
the result of the near query.

An algorithm for near query answering in memory-
resident graphs is given in [10]. A simple extension of
the same for external memory graphs is described in
[11]. We use the latter algorithm for comparing the
performance of ModNib, kMetis and EBFS clusters,
on a set of 20 sample near queries. Clusters used are
same as those used for connection query performance
measurements (described in Section 6.5). Similar to
connection queries, here too, the answers remain the

same, regardless of the clustering algorithm. A cache
manager was used in these experiments also, to cache
the expanded supernodes, with the size of the cache
set to the number of supernodes.

Comparison of near query performance between the
three algorithms, can be found in Figures 11 and 12.
From Figure 11, it can be seen that ModNib has the
lowest number of cache misses out of the three, with a
very large margin when compared to kMetis.

Figure 12 shows the combined CPU and IO time
taken for answering the sample queries, using the three
clustering algorithms. It is quite obvious that out
of the three algorithms, ModNib performs the best,
which in turn can be partially explained by the lower
number of cache misses (Figure 11). The sample
queries used and the detailed analysis of the results
can be found in [11].

6.7 Time and space required for clustering

The graphs of dblp3 and wiki are of sizes 132 MB and
1.9 GB, respectively (in our representation). Table 4
gives the time and space requirements of ModNib.

dataset time space
dblp3 ∼ 1.5 hrs 190 MB
wiki ∼ 1.5 days 2 GB

Table 4: Time and space requirements for ModNib

From Table 4, it is clear that the space requirements
of ModNib is very close to the size of the graph. Also,
it was found that the difference in time and space re-
quired for different maxClusterSize, is negligible.

Figure 11: cache misses : near queries on dblp3

Figure 12: CPU + IO time (sec) : near queries on dblp3

Figure 13: space required for Metis for different k on
dblp3

Figure 14: space required for Metis for different k on
wiki

The space requirement of kMetis for dblp3 and wiki
are plotted in Figures 13 and 14. It can be seen from
these figures that, the space required by kMetis, grows
almost linearly with k. But, the constants are quite
huge. For example, when k is 40,000 on dblp3, memory

required is 12.8 GB, which is about 96 times the size
of the graph. For dblp3, with k greater than 30,000,
kMetis couldn’t run on an 8 GB RAM machine.2

Memory requirements are even higher for kMetis on
the wiki dataset.

The time taken by kMetis, to cluster dblp3 is ap-
proximately 5 mins, and for wiki is 1.5 hrs. This re-
mained the trend, for varying values of k. Comparing
the time required by ModNib and kMetis, we observe
that our algorithm takes much more time than kMetis.
But, we also note that, almost always, clustering is
done offline. Thus, time may not always be an issue;
but space might be.

EBFS is a small modification of BFS, and EBFS
clustering takes only 7 seconds for clustering dblp3
(ignoring file write time); its space requirement is only
marginally more than the size of the graph.

Satuluri et al. [15] have conducted experiments on
various graphs, with the MCL algorithm. In the re-
sults given, a 75,877 node graph was clustered by MCL
in 1.2 hours, on a dual core machine with 2.4 GHz CPU
and 8 GB of RAM, while Modified Nibble can cluster
the dblp3 graph which is 20 times larger, in 1.5 hours,
with similar resources.

7 Conclusions and future work

In this paper, we considered the issue of graph cluster-
ing, using a technique for finding communities based
on random walks. We proposed an algorithm, called
Modified Nibble Clustering algorithm, which improves

2The memory requirement values in the plot were obtained
from the error messages.

upon the Nibble algorithm proposed earlier. Its perfor-
mance was enhanced using several policies, which were
also outlined. We then compared our algorithm with
two other graph clustering algorithms, viz. EBFS and
kMetis on several metrics. Our experimental evalua-
tion showed that Modified Nibble outperforms EBFS
uniformly, and outperforms kMetis in edge compres-
sion, in near query performance, and most importantly
on space required for clustering, where it is able to
handle large numbers of clusters in situations where
kMetis runs out of memory even on a moderate num-
ber of clusters.

We believe that it should be possible to bring down
the time taken by Modified Nibble clustering algo-
rithm, while maintaining the quality of the clustering,
by further tuning the heuristics; this is an important
area of future work. Also, currently, the algorithm
works on undirected graphs, and for directed graphs,
the directions are ignored. It will be interesting to
study the quality of clustering when the directions are
taken into account for a directed graph, and also, when
the edges have weights associated with them, which
may be asymmetric.

We have tested Modified Nibble on graphs with
around 2.6M nodes and 40M edges (Wikipedia link
graph). And we believe that it will be able to handle
larger graphs. Using the compression techniques such
as those described by Boldi and Vigna [4], graphs that
are much larger than Wikipedia, can be stored in main
memory. Since the additional memory requirements
of our algorithm is minimal, it should be possible to
cluster any graph that fits in memory. We are working
towards testing the performance of Modified Nibble on
such large graphs.

Massive graphs like the link graph of the world wide
web may have to be stored in a distributed fashion,
on multiple machines. Extending the Modified Nibble
algorithm to work in a distributed environment, nib-
bling multiple clusters in parallel, is a promising area
of future work.

References

[1] R. Andersen and K. J. Lang. Communities from
Seed Sets. Proceedings of the 15th international
conference on World Wide Web, pages 223–232,
2006.

[2] G. D. Bader and C. W. Hogue. An automated
method for finding molecular complexes in large
protein interaction networks. BMC Bioinformat-
ics, 2003.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe,
S. Chakrabarti, and S. Sudarshan. Key-
word Searching and Browsing in Databases using
BANKS. ICDE, 2002.

[4] P. Boldi and S. Vigna. The WebGraph framework
I: Compression techniques. Proc. of 13th Interna-

tional World Wide Web Conference, pages 595–
601, 2004.

[5] V. Capoyleas, G. Rote, and G. Woeginger. Geo-
metric Clusterings. Journal of Algorithms, 1990.

[6] N. Craswell and M. Szummer. Random Walks on
the Click Graph. SIGIR, 2007.

[7] B. B. Dalvi, M. Kshirsagar, and S. Sudar-
shan. Keyword Search on External Memory Data
Graphs. VLDB, 2008.

[8] H. N. Djidjev. A scalable multilevel algorithm for
graph clustering and community structure detec-
tion. In Workshop on Algorithms and Models for
the Web Graph, 2006.

[9] J. Duch and A. Arenas. Community detection
in complex networks using extremal optimization.
Physical Review E, 72:027104, 2005.

[10] V. Kacholia, S. Pandit, S. Chakrabarti, S. Su-
darshan, R. Desai, and H. Karambelkar. Bidirec-
tional Expansion For Keyword Search on Graph
Databases. VLDB, 2005.

[11] Rose Catherine K. Graph Clustering
for Keyword Search. MTech. Thesis, In-
dian Institute of Technology Bombay, 2009.
www.cse.iitb.ac.in/dbms/Pubs/MTech/rose.pdf

[12] G. Karypis and V. Kumar. Multilevel k-way Par-
titioning Scheme for Irregular Graphs. Journal
of Parallel and Distributed Computing 48, pages
96–129, 1998.

[13] S. Navlakha, R. Rastogi, and N. Shrivastava.
Graph Summarization with Bounded Error. SIG-
MOD, 2008.

[14] M. E. J. Newman and M. Girvan. Finding
and evaluating community structure in networks.
Phys. Rev. E, 69(2):026113, 2004.

[15] V. Satuluri and S. Parthasarathy. Scalable Graph
Clustering Using Stochastic Flows: Applications
to Community Discovery. KDD, 2009.

[16] D. A. Spielman and S.-H. Teng. Nearly-Linear
Time Algorithms for Graph Partitioning, Graph
Sparsification, and Solving Linear Systems. ACM
STOC-04, pages 81–90, 2004.

[17] P. Upadhyaya. Clustering Techniques for Graph
Representations of Data. Technical report, Indian
Institute of Technology Bombay, 2008.

[18] S. van Dongen. MCL - Graph Clustering by Flow
Simulation. Ph.D. Thesis, University of Utrecht,
2000.

