
Exploiting Asynchronous IO using the Asynchronous

Iterator Model

Suresh Iyengar ∗ S. Sudarshan Santosh Kumar † Raja Agrawal ‡

supartha@microsoft.com sudarsha@cse.iitb.ac.in santosh@guruji.com raja.agrawal@sap.com

IIT Bombay
India

Abstract

Asynchronous IO (AIO) allows a process to continue
to do other work while an IO operation initiated ear-
lier completes. AIO allows a large number of random
IO operations to be issued at once, allowing the disk
subsystem to order access to data on disk, reducing av-
erage seek times considerably, as well as allowing much
better utilization of disks in a multi-disk RAID envi-
ronments where reads can be done in parallel across
disks.

In this paper we address the issue of how to extend
a database query execution engine to exploit asyn-
chronous IO. To best exploit AIO, we propose a new it-
erator model called the Asynchronous Iterator Model,
where a getnext() call on an operator can return a sta-
tus LATER instead of blocking on an IO, permitting
other actions to be initiated while an IO is pending.
We show how to modify the implementation of Index
Nested Loop (INL) join by issuing asynchronous re-
quests to a batch of tuple ids. We have prototyped the
asynchronous iterator model for INL joins on the Post-
greSQL database system, and present performance re-
sults that clearly indicate the benefits to be had from
exploiting AIO.

1 Introduction

The traditional approach to IO processing, namely
synchronous IO, blocks the process issuing an IO op-
eration until the operation has completed. As a result,
for many queries that require multiple random IO op-
erations, the CPU is idle most of the time waiting for
IO operations to complete; and in environments with

∗ Currently with Microsoft IDC, Hyderabad
† Currently with Guruji.com
‡ Currently with SAP

International Conference on Management of Data
COMAD 2008, Mumbai, India, December 17–19, 2008

multiple disks, all but one of the disks would corre-
spondingly be idle. Current versions of operating sys-
tems however support asynchronous IO, which allows
a process to continue to do other work while an IO
operation initiated earlier completes. Asynchronous
IO (AIO) allows overlap of CPU and IO processing; it
can also allow a large number of IO operations to be
issued at once, allowing the disk subsystem to order
access to data on disk, reducing seek times consider-
ably. Such an approach allows much higher utilization
of resources, and is particularly important in multi-
disk RAID environments where reads can be done in
parallel across disks.

As noted by Graefe [4], asynchronous IO can be par-
ticularly useful for indexed nested loops join. Indexed
nested loops joins are particularly useful in situations
where only a few tuples of the inner relation are ac-
cessed either because only a small number of tuples
are present in the outer relation (after selections are
applied), or because only a small number of tuples are
fetched from the query result. The latter situation is
common when results are presented to a user, who only
browses through a few results. A similar observation
was made earlier in the context of dependent joins by
Goldman and Widom [2], and for index lookups by
Raman et al. [8].

In this paper we address the issue of how to extend
a database execution engine to exploit asynchronous
IO. Our contributions are as follows:

1. We extend the iterator model, which is widely
used for implementing relational operations, to
better exploit AIO. Specifically, in a situation
where a getnext() operation would block waiting
for an IO to complete, we allow the operation to
return a special status LATER, indicating that it
is waiting for an IO operation to complete. Thus,
even if a part of the plan tree is blocked on an
IO, another part of the tree can continue to make
progress. The overall plan tree will never block
unless all subparts are blocked.

2. We extend the Indexed Nested Loops implementa-
tion to support asynchronous IO. The implemen-
tation reads multiple outer tuples, accesses the
index to find matching inner tupleids, and issues
asynchronous IO operations on these matching in-
ner tupleids. In contrast, a conventional imple-
mentation would block on inner tuple accesses for
each outer tuple fetched.

3. We have implemented our model in the Post-
greSQL system. Our implementation is well in-
tegrated with existing operations, allowing asyn-
chronous INL to execute as part of a query plan,
even if other parts of the query plan cannot han-
dle the asynchronous iterator model (i.e. do not
recognize the return status LATER).

4. We present a performance study that shows the
benefits of asynchronous IO based on our model,
using data and some queries from the TPC-H
benchmark.

Our proposed asynchronous iterator model can also
be applied in the context of asynchronous execution
of Web service invocations. In situations where a Web
service is invoked multiple times, and possibly multiple
Web services must be accessed to process a request,
asynchronous access can reduce latency greatly. We
believe our model shows promise in this area, which is
becoming increasingly important.

The rest of the paper is organized as follows. Sec-
tion 2 describes related work. We discuss the asyn-
chronous IO interface in Section 3. We present the
Asynchronous Iterator Model in Section 4. Section 5
describes Asynchronous Index Nested Loop Join in de-
tail. Section 6 briefly outlines how other operations
can benefit from asynchronous IO. Section 7 describes
how the PostgreSQL system was modified to support
asynchronous IO. Section 8 describes an experimental
evaluation of the benefits of asynchronous IO as imple-
mented in PostgreSQL. Section 9 concludes the paper
and outlines future work.

2 Related Work

Asynchronous IO is certainly not a new idea, but only
recently have operating system kernels such as the
Linux kernel, started supporting AIO. There has been
very little published literature on the topic of exploit-
ing AIO in databases. Graefe [4] describes a general-
ized spool iterator operator, which prefetches multiple
outer tuples into a buffer, and issues AIO on corre-
sponding inner tuples. In a query plan, the spool it-
erator operator is introduced as a child of an indexed
nested loops join operation. The indexed nested loops
operation is not modified, and continues to issue syn-
chronous IO operations; the AIO performed earlier ba-
sically prefetches data, which reduces the probability
of the synchronous IO blocking, and allows the disk

subsystem to optimize fetching of data. The buffer
can be refilled when it is empty (batch mode), or each
time a record is removed from the buffer on completion
of an asynchronous request (sliding window mode).
Graefe also mentions that Microsoft SQL Server and
IBM DB2 keep a fixed set of unresolved IO requests
and IO is started concurrently for all these elements.
Graefe [4] does not provide any experimental results.
In contrast to the results in [4], our asynchronous iter-
ator model allows entire subplans to be non-blocking.

Oracle also uses asynchronous IO, which is a de-
fault setting if the OS provides AIO capabilities [5]
[6]. AIO is also used in Microsoft SQL Server and DB2
[7]. There is not much documentation publicly avail-
able on how these systems exploit AIO, and whatever
documentation is available does not describe whether
or how AIO is used in query processing (although there
is mention of use of AIO for writing log records).

Asynchronous iteration for evaluating queries that
combine database and web data is described by Gold-
man and Widom [2]. Their implementation focuses on
dependent joins, which are conceptually similar to in-
dexed nested loops joins, but can access external/web
data. In their asynchronous implementation of a de-
pendent join, the join returns a place holder tuple
even before the equivalent of index fetch completes. A
parent operator, called ReqSync, captures these place
holder tuples, and only when matching index fetch re-
sults are found are these passed on to a parent oper-
ator. They discuss issues in optimal placement of the
ReqSync operator. However,

1. They only report results for the case where the
dependent join issues web queries, not disk IO,
although their techniques are conceptually appli-
cable even for disk IO. Their implementation is on
an academic prototype database. In contrast, we
report results on disk IO, on a modified version of
a widely used database system, PostgreSQL.

2. Our asynchronous model supports the ability
to not block, by returning a LATER status.
Using this feature, we can make all operators
non-blocking, allowing a single thread to asyn-
chronously run different parts of a query plan even
if there are intervening operators that would be
blocking in their model. Their model does not
support this feature.

Work on the Eddies framework for query process-
ing [1] is also related. In this framework, the most
closely work is that of Raman et al. [8], who describe
an asynchronous approach to index lookup, modeled
on [2], but tailored to the Eddies framework. The Ed-
dies framework was designed to handle arbitrary de-
lays in accessing data over a network, allowing process-
ing to proceed as much as possible with data available
at any point in time. Asynchronous index access fits

API function Description

aio read Request an AIO read operation

aio error Check the status of an AIO re-
quest

aio return Get the return status of a com-
pleted AIO request

aio write Request an asynchronous write
operation

aio suspend Suspend calling process until AIO
request/s have completed/failed

aio cancel Cancel an AIO request

lio listio Initiate a list of AIO operations

Table 1: AIO basic functions

into this model naturally. However, the query pro-
cessing model of Eddies is rather different from nor-
mal database query processing, and as far as we are
aware is not in production use. In contrast, our work
is based on the iterator model for query processing,
which is used in all database systems we are aware of.

3 Asynchronous IO Interface

Asynchronous IO is a standard feature of Linux 2.6
and later kernels, and includes functions to initiate an
IO operation (for read or write), to check AIO status,
and to cancel a request. The functions are listed in
Table 1.

The function aio read is similar to conventional
read operation, except that it returns immediately af-
ter issuing a request to AIO library. The function
aio error can be used to keep track of an IO request in
a polling loop. The function lio listio allows a single
call to initiate multiple AIO requests. This involves
only one context-switch to the kernel mode for initi-
ating AIO for a number of blocks at once, as against
one context-switch per block if we use aio read.

Since an asynchronous IO call returns immediately
after placing an IO request, a method is required for
signaling IO completion. There are in fact three main
notification models for handling asynchronous IO com-
pletion.

1. Signal-based handler: A signal is generated on
IO completion which calls a completion handler
function which continues the proceedings.

2. Callback using interrupts: When an IO is com-
plete, an interrupt is generated which calls a han-
dler function. One of the main problems associ-
ated with this approach (as also with the signal-
based approach), in addition to OS overheads, is
the concurrent access to shared data structures

1
while (t rue) {

Fetch next r e s u l t tup l e by c a l l i n g getNext
on rootnode o f query plan

6 I f return s t a tu s i s SUCCESS
proce s s tup l e e . g . d i sp l ay the tup l e

Else
I f return s t a tu s i s LATER
continue ;

11 Else i f return s t a tu s i s END OF INPUT
break ;

}

Figure 1: Execution loop for root node

such as IO queues by the main query process-
ing thread and the handler function. This makes
it necessary to protect the data structures using
semaphores or other mutual exclusion method.
These overheads together affect the performance
of this model in the context of asynchronous disk
IO, as shown by the results in our performance
study.

3. Polling: The requests are stored in a pending
queue, and the program polls the queue period-
ically to check for IO completion. This method
avoids the context switch and synchronization
overheads of the other methods. A potential dis-
advantage of this method is that it can waste
CPU cycles due to repeated polling. However our
experimental results show that polling performs
better than the interrupt-based function callback.
Details of how polling is integrated with the asyn-
chronous iterator model implementation are de-
scribed in Section 7.3.

4 Asynchronous Iterator Model

Query processing based on the iterator model is very
widely used in database system implementations. It-
erators implement a demand-driven pull model [3].
Whenever a node requires a tuple, it invokes the get-
next() function of it’s child node. Each child node
produces the next tuple in its output sequence every
time it is called. This tuple is returned to the parent
node. Bottom level nodes usually perform operations
such as sequential scans or index scans. Upper level
nodes are usually join nodes or other operator nodes
such as sort or aggregate.

The iterator model is inherently blocking. For ex-
ample, a join operator cannot return a tuple unless it
gets a tuple both from the outer and the inner relation
and the tuples satisfy the join predicate. Similarly a
sequential scan will not return any tuple until the block
containing the next tuple is in memory. Such blocking
is not desirable, since it does not allow other work to
go on in parallel when the IO operation is blocked.

typedef struct NestLoopState
2 {

.
NestLoopOuterTuple

n l oute rTup l e s [MAX NLOUTERSLOTS] ;
bool endOfOuter ;

7
struct queue ∗workqueue ; // outer s l o t s wi th

AIO i s sued fo r matching inners
struct queue ∗ f r e equeue ; // f r e e outer s l o t s

int numTids ;
12 struct a iocb ∗∗ areqs p [MAX INNER TIDS] ; //

For L i s t AIO

BufQueue pending req ; // pending I /O reque s t s

} NestLoopState ;

Figure 2: Additions to NestLoopState

To avoid the blocking problem, we extend the iter-
ator model to better support asynchronous IO. If an
operator is unable to generate any output with only
memory resident data, it can issue an AIO request
which will return immediately without blocking.

Our asynchronous iterator model extends the basic
iterator model by allowing a node to return a status
of LATER to the parent, instead of blocking waiting
for IO completion.. The implementation of each oper-
ator can decide what to do if it gets a LATER status
for one of its input. For example, an implementation
could perform other work, such as fetching data from
another input, while waiting for the asynchronous IO
to complete. Alternatively, an operator could simply
return a LATER status to its parent node, or it can
even just block, waiting for the child operator to pro-
vide a tuple.. The return status “LATER” can cascade
all the way to the root node of the query plan. When
the root node of a query plan receives a LATER re-
turn status, it can repeatedly try to get a tuple from
the relevant input, until it succeeds. The execution
loop for root node is shown in Figure 1.

We discuss the asynchronous extensions for the var-
ious relational operations in Sections 5 and 6. We also
note that our description as well as implementation is
based on PostgreSQL, although the ideas are applica-
ble to any database.

5 Asynchronous Index Nested Loops
Join

In this section, we discuss the additions we have made
to the state of INL nodes and asynchronous versions
of file and buffer operations. We also present the basic
framework for an asynchronous INL iterator.

5.1 State of an INL node

The original state of a nested loop join mainly consists
of left and right subplans and qualifier lists. We have

modified this state for our iterator model. Our main
objective is to operate on a a batch of tuples in each
iteration and issue list AIO requests for matching inner
tids. The additions we have made to the state are
illustrated in Figure 2.

• Each INL node maintains an array of outer tuples.
With each outer tuple, we maintain a queue of
matching inner TIDs.

• Those outer slots which are not used are main-
tained in the freequeue. The outer slots which
already have AIO issued for their matching inner
TIDS are maintained in the work queue.

• Each INL node also maintains the number of inner
tuples in numTids for which AIO is issued. This
number is decremented each time an inner tuple
AIO completes, and the tuple has been retrieved
and joined with the corresponding outer tuple.

• An array is maintained to collect requests for each
call to list AIO. Also, each INL node records all
its pending IO requests in a queue, to poll for
completion of AIO requests made from that node.
BufReq is a structure which holds a single pend-
ing AIO request; it contains the buffer address in
to which the data will be copied on IO comple-
tion; a set of such pending requests is stored in a
BufQueue structure, pending req, associated with
the INL node.

5.2 Asynchronous INL Iterator

We divide the INL iteration into two stages; the first
stage fetches tuples and issues AIO requests, while the
second stage checks for AIO completion, and joins the
returned tuples. We discuss these in detail below.

5.2.1 Fetching outer tuples and issuing AIO

requests

Figure 3 shows the first part of the asynchronous in-
dexed nested loops join code, which deals with fetching
outer tuples and issuing asynchronous IO requests for
inner tuples. We allow up to MAX INNER TIDS out-
standing inner tuple AIO requests. This logic takes
care of the case where an outer tuple matches a large
number of inner tuples. In our experiments, we set this
to maximum value of 200 requests made at a time. We
fetch an outer tuple and copy it into a free outer slot.
For each outer tuple, we fetch the tuple ids of match-
ing inner tuples from an index scan incrementing the
numTids counter each time. If an INL node receives a
LATER status when it tries to fetch an outer tuple, it
implies that we have no outer tuples to be processed
currently, and we skip the first part of iteration.

An important case to handle here is the case of
multi-level INL joins. Since, we return immediately
from an IO request, at the end of iteration we might

Tuple AsyncIndexNestLoopJoin (NestLoopState
s t a t e)

{

4 f e t ch ou t e rba t ch :
Sca l e BATCH SIZE by a f a c t o r o f 2 in each

i t e r a t i o n , s t a r t i n g from 1 , up to
MAX INNER TIDS

i f (node−>numTids <= BATCH SIZE && ! node−>

endOfOuter) {
while node−>numTids <= BATCH SIZE {

Dequeue an outer s l o t T from f r e e queue
9 s t a tu s = Fetch an outer tup l e and copy

in to T
i f s t a tu s i s LATER{

Enqueue T back in to f r e e queue
break ;

}
14 i f outer tup l e i s NULL

node−>endIfOuter=1 ;
for each inner tup l e t i d matching the

outer tup l e {
Place inner tup l e t i d in pending

inner I /O l i s t
increment node−>numTids

19 i f node−>numTids >= BATCH SIZE
break ; /∗ Restar t t h i s f o r loop

on next c a l l , s k i pp ing
e a r l i e r code ; code d e t a i l s
omit ted ∗/

}
Enqueue the outer tup l e s l o t in work

queue
I s su e asynchronous read reque s t on a l l

the inner tup l e t i d s in the l i s t
24 i f an outer tup l e doesn ’ t have any

matching inne r s
Reuse the s l o t

pe r f o rm jo in :
.

29 }

Figure 3: Asynchronous INL Iterator : First stage

not have any tuples to join. In this case, we set re-
sult status to LATER and return a NULL. When-
ever an INL node receives a LATER status from
its child, it stops fetching outer tuples and skips to
the second stage of the iteration. Also, when we
have BATCH SIZE number of inner tuple ids, we
skip to the second stage. Section 7.4 discusses how
BATCH SIZE is varied, up to a maximum value of
MAX INNER TIDS. If the status is SUCCESS with
result as NULL, it signals that no more tuples can be
fetched from that child node.

In our implementation since we have not made all
the operators asynchronous, we use a status parent-
canhandleLATER which indicates to the node that its
parent node can handle LATER status or not. If it
cannot handle LATER status, we do not pass a tuple
to it until we get an actual one. The parentcanhandle-
LATER status is set by the parent node for each of its
child node during initialization. Although currently
not implemented, Async INL and other asynchronous
operators must be able to return tuples in order when

required by a parent operator such as a merge join
which depends on tuples being produced in order.

Each matching inner TID is enqueued in the outer
tuple’s tid queue. We get the relation and page number
for each TID and issue an asynchronous buffer read
operation. This buffer read operation is discussed in
more detail in Section 7.2. This operation allocates
a buffer for the data to be read in and calls the File
Read function. In this function, we do not issue an
IO request, we just enqueue the request in node’s AIO
array and in the pending request queue of INL node.
Also, we dequeue the outerTuple slot from freequeue
and enqueue that in the workqueue. We issue a List
AIO operation for all these requests at the end of each
iteration. This involves only one context switch for a
batch of read requests as against one per conventional
read operation.

Also, we start the next iteration of fetching outer
tuples as soon as the number of inner tuples that have
been joined since the last fetch exceeds some fraction
of BATCH SIZE, rather than as soon as a single inner
tuple is joined. This reduces the number of List AIO
calls, and increases disk and CPU utilization. In our
experiments, we set this value to 10%.

5.2.2 Joining tuples and polling

Figure 4 shows the second part of the asynchronous in-
dexed nested loops join code, which deals with match-
ing returned tuples with pending requests. In the sec-
ond part of the iteration, we start processing the work
queue. For each outer tuple in the workqueue, we
have a queue of TIDs for which AIO requests have
been issued. For these TIDs we check whether the
IO request is complete. If the desired data is in the
buffer, then at this point we have an outer tuple and
an inner tuple to join. We join the tuples and out-
put the result. If we have joined all the matching in-
ner tuples for a given outer tuple, then we dequeue
that slot from the workqueue and enqueue it in free-
queue. Else we continue the loop, looking for com-
pleted AIO requests. As a heuristic to avoid spending
too much time in this check, we terminate the loop if
AIO has not completed for any of the first K tuples in
the queue; in our experiments, we set the value K to
10% of MAX INNER TIDS.

If there are no matching inner tuples in memory at
this point, we first check if there are any outer tuples
left either in the work queue, or to be retrieved from
the outer input; if not, the function signals end of input
(by setting tupStat to SUCCESS and returning a null
tuple).

Otherwise, there are still outer tuples to be pro-
cessed, but no results available to return currently, so
the return status is set to LATER and the result tuple
to NULL. Also, at this point, we poll for AIO comple-
tion for the requests enqueued in the node’s pending
queue. If any request is complete, then we tag that

1 pe r f o rm jo in :
for every outer tup l e in workqueue {

Check whether any o f i t s matching
inne r s pre sent in memory

i f pre sent {
Remove that matching inner from

pending inne r s l i s t
6 Perform j o i n with cor re spond ing

outer tuple , and add to
r e s u l t

/∗ Note : above s t ep checks
j o in q u a l i f i e r s as we l l as
o ther q u a l i f i e r s f o r

inner t u p l e s ∗/
decrement node−>numTids

}
}

11
i f we are done j o i n i n g a l l the inner

tup l e s o f a p a r t i c u l a r outer tuple ,
Dequeue that p a r t i c u l a r s l o t from

the work queue

i f no inner tup l e s were found {
16 I f the re are no va l i d outer tup l e s

and we have reached end o f
outer tup l e then {
Set tupStat to SUCCESS;
return NULL;

}
else {

21 Set tupStat=LATER
Po l l AIO on the r eque s t s

enqueued in node ’ s pending
r eque s t s queue ;

i f parent node can handle
LATER sta tu s

re turn NULL;
e l s e

26 goto pe r f o rm jo in ;
}

}
Return r e s u l t to the parent operator ,

one tup l e per c a l l
}

Figure 4: Asynchronous INL Iterator : Second stage

buffer as valid; the buffer will be used in subsequent
iterations. The LATER status can potentially propa-
gate upto the root.

6 Asynchronous Versions of Other Op-
erators

In this section, we briefly discuss the asynchronous
iterator support for various other operators.

• Sequential Scan: Sequential scan nodes are typ-
ically at the lowest level in the query plan tree.
The sequential scan operator fetches a block from
disk (or memory) and returns tuples one by one.
When all the tuples from the current block are
returned, a request for a new block is issued and
the operator waits till it gets the block from disk.
And the process of returning tuples starts.

The simplest asynchronous version of sequential

Tuple SeqScan (SeqScanState ∗ s eqscans ta te ,
Status ∗ r e t s t a t) {

Check for next tup l e with bu f f e r manager
5

i f (h i t) { // Found t up l e in main memory
∗ r e t s t a t = SUCCESS;
return tup l e ;

}
10 else {

I n i t i a t e an asynchronous f e t ch reque s t to
bu f f e r manager

∗ r e t s t a t = LATER;
return NULL;

}
15 }

Figure 5: Prototype for Asynchronous Sequential Scan
without Out-of-Order Fetch

scan does not block when a disk read is issued,
and instead returns LATER, allowing other parts
of the plan to proceed. We give the prototype
for asynchronous sequential scan without out-of-
order fetch in Figure 5.

In many cases, the order of tuples has no impor-
tance. Hence, scanning the blocks strictly sequen-
tially is not mandatory. A sequential scan fetches
blocks in the order in which they are stored. With
the increasing size of main memory, and corre-
spondingly database buffer sizes, it is quite likely
that many disk blocks that are required for a se-
quential scan are already present in buffer when
the scan is initiated. A normal scan would block
on the first access to a disk block that is not in the
buffer. The main idea behind an “out of order”
sequential scan is to look ahead in the scan, and
if any blocks that would be accessed later are in
the database buffer, tuples from those blocks can
be returned ahead of tuples from blocks that are
not currently in the buffer. Asynchronous IO op-
erations are issued for blocks that are not in the
buffer.

We note that operating systems as well as
database systems perform prefetching for sequen-
tial IO, hence asynchronous fetching can be ex-
pected to play a smaller role than out of order
processing. We do not present numbers here, but
some preliminary results showed that the gains
were insignificant in our context of disk IO. How-
ever, asynchronous sequential scan may be useful
for queries which can stop early (e.g. subqueries
within an exists clause), and in other contexts
such as distributed/web queries where some re-
sults may be in cache.

• Sort: Sort is an example of an operation that
does not permit out of order processing, and it
may appear that the asynchronous iterator model

Figure 6: Asynchronous Iteration with Sort/Merge

is not very useful in this case. However, consider
the example of a sort node with a sequential scan
operator as a child. If the sequential scan node
returns a LATER status, the sort node can re-
turn a LATER status to its parent node, and can
be reinvoked after some time to continue sorting.
Suppose this sort node is the left child of a merge
join as shown in Figure 6. If a merge join node
gets a LATER status from its left child, it could
decide to start or continue processing the right
child, and vice versa, instead of blocking. In this
way, we get a higher utilization of both CPU and
the disk, even though out-of-order processing is
not possible.

• Index Lookup: Asynchronous IO can be applied
for index lookups as well. The synchronous IO
times involved in processing large indexes can be
significant. Asynchronous IO can be used to fetch
index blocks into the memory and the index look-
up can return a LATER status if a block is not in
the memory after issuing an AIO read.

7 Implementing Asynchronous Opera-
tions in PostgreSQL

In this section, we discuss how we modified the Post-
greSQL database to support asynchronous versions of
operations like file read and buffer management. The
codebase we used was PostgreSQL 8.1.3.

7.1 File Read

The normal FileRead operation of PostgreSQL places
a read function call to read in the file contents. The
call read(file id,buffer,amount) is a blocking call and
the process waits for it to complete. We change this
read call to an asynchronous version and allow the
process to continue its processing. We simply replace
the blocking function as shown in Figure 7.

We issue a LIST AIO request at the end of each
iteration of fetch outerbatch of Async INL, for all the
new requests in the nodes AIO array.

a i o r eq = node ’ s AIO array
a ioreq−>a i o f i l d e s = f i l e d e s c r i p t o r ;
a ioreq−>a i o nbyt e s = amount ;

5 a ioreq−>a i o bu f = bu f f e r ;
a ioreq−>a i o o f f s e t = o f f s e t ;
a ioreq−>a i o l i o o p c od e = LIO READ;
Enqueue reque s t in node ’ s AIO array ;
EnQueue reque s t in node ’ s pending req queue ;

Figure 7: Asynchronous File Read

retVal = lio_listio(LIO_NOWAIT,
node->aioarray, total_Reqs, no handler);

7.2 Buffer Read

ReadBuffer returns a pinned buffer containing the re-
quested block of the requested relation. The Read-
Buffer function first checks if the requested buffer is
in the memory. If its found in the memory, only some
statistics need to be updated.

The ReadBuffer uses storage manager routines to
invoke FileRead function which is a blocking func-
tion. Since, we have changed this to a non-blocking
call and return early, we split the ReadBuffer func-
tion into two parts, ReadBufferInit which calls this
file read function and ReadBufferFinish which updates
the flags and statistics when the read has completed.
The corresponding functions at the storage manager
level are also made asynchronous by splitting them
into two functions, one which does the initialization
and one which completes the book-keeping once the
asynchronous operation is complete.

7.3 Polling for AIO Completion

Whenever we have no tuple to join in an INL node,
we poll for AIO completion. We pass the node’s pend-
ing request array as an argument. We use aio error
function to check the status of IO. This function re-
turns a 0 on IO completion. If an IO request is com-
pleted, we make the associated buffer valid by call-
ing the ReadBufferFinish function. Also, we dequeue
that IO request from node’s pending queue. From
our experiments, we observe that the polling model
performs better than the interrupt-based model. One
such query run in shown in Figure 8.1 In this graph,
as well as in other graphs in the performance study, we
show the time taken to output the ith tuple. As can
be seen from the figure, polling requires about 10%
less time compared to interrupts, at different numbers
of tuples fetched. We use the polling model for all our
experiments.

1myorders is the TPC-H orders relation stored sorted on
o custkey

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20000 40000 60000 80000 100000 120000 140000

T
im

e
in

 s
ec

on
ds

Number of tuples

Async INL with interrupt
Async INL with polling

Figure 8: select l orderkey from myorders,

lineitem where o orderkey=l orderkey ;

7.4 Start-up Effect

Since we operate on a batch of outer and inner tu-
ples in each iteration, Async INL looses time when
compared to (original) blocking INL for some initial
number of tuples, after which it starts winning. If the
initial batch size is very high, Async INL will take
a much longer time than INL to generate the first
few tuples. To mitigate this problem, we increase the
BATCH SIZE of inner tuples in a geometric manner.
In our implementation, we start from a batch size of 1
and multiply it by a factor of 2 each time till we reach
a maximum limit. The maximum limit is restricted
by the number of concurrent asynchronous IOs that
the system can support. Further, as we increase the
number of concurrent requests, the system overheads
appear to increase. Experimentally, we found that a
maximum batch size of 200 performs best.

7.5 Other Issues

An interesting issue we faced was that asynchronous
IO implementation uses threads, which violated an
assumption about stack contiguity made by the
check stack depth function, which is used within Post-
greSQL code to detect uncontrolled recursion. (Check-
ing for uncontrolled recursion is required since Post-
greSQL supports SQL functions, which can be recur-
sively defined, and are evaluated by recursively defined
code in PostgreSQL.) This function erroneously indi-
cated excessive recursion even in the absence of recur-
sion, and had to be disabled as a result. A thread-safe
implementation of this function is an area of future
work.

Currently asynchronous versions of INL and sequen-
tial scan (with potentially out-of-order delivery of tu-
ples) are used where ever the original plan had a syn-
chronous version of the operator. We need to check
the parent/ancestor operators to see if they depend on
any ordering provided by the synchronous version of

the operator, before using the asynchronous version of
the operator with out-of-order delivery. Modifying the
optimizer to choose the best plan taking asynchronous
versions of operators into account is another area of
future work.

8 Experimental Evaluation

In this section, we give a detailed performance study
of asynchronous iterator for INL joins. We have per-
formed our experiments with TPC-H database with
scale factors of 1 and 10 in three different setups listed
below.

1. Core 2 duo P4 with 1GB RAM and TPC-H - 1
GB database (single disk)

2. Core 2 duo P4 with 1GB RAM and TPC-H - 10
GB database (single disk)

3. Core 2 duo P4 with 3.2GB RAM and TPC-H - 10
GB database (4 disks / RAID 10)

Our experiments used PostgreSQL 8.1.3 as the code
base, and compared it with our modified version of
the same code base.

To ensure consistent results, before each query
evaluation, we force the Linux kernel to drop
the page cache, inode and dentry caches. On
Linux kernels from version 2.6.16 upwards, this
can be done by executing the command echo 3 >
/proc/sys/vm/drop caches, after executing the sync
command to flush dirty pages back to disk.

We give the performance benefits of Async INL
as compared to original INL, as well as compared to
merge join, for several different join queries. All graphs
have the number of tuples output as the X-axis, and
the time taken as Y-axis; a point on the graph at X = i

shows the time taken to output the ith tuple.
For some queries, INL is the default plan chosen

by the optimizer. For such queries, we provide tim-
ing numbers up to large enough number of tuples to
meaningfully compare the plans. For other queries,
we provide results up to the point at which merge join
becomes cheaper than Async INL; this is the mean-
ingful range for comparing Async INL with INL. For
the query runs, we increase the size of shared buffer
of PostgreSQL to 3900 (limited by the OS kernel) and
the size of work memory to 256MB given that main
memory is 1GB or more.

8.1 Experiments with TPC-H 1GB database

and 1 GB RAM

In this section, we present the queries performed with
TPC-H 1GB database and 1GB RAM.

We first consider a simple join of two relations,
orders and lineitem, with a selection condition on
l orderkey which selects 1 in 100 tuples from lineitem.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5000 10000 15000 20000 25000 30000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 9: Query 1a [TPC-H 1 GB / 1 GB RAM]

Query 1a: select l orderkey,l quantity from or-
ders,lineitem where o orderkey=l orderkey and
l orderkey%100=2 and l linestatus=’F’

Without the selection condition, merge join is the
clear choice, since both relations are clustered on the
join column. With the selection, only a small fraction
of lineitem tuples need to be fetched, and the Post-
greSQL optimizer chooses INL join for this query. As
we can see from Figure 9, which shows results to com-
pletion of the query, there is a gain of 54% after 29200
tuples for Async INL over INL and a gain of about
18% over merge join. The gain over merge join is
much higher at a smaller number of tuples.

The next query dropped the selection condition, but
replaced the orders relation in the above query with
an identical relation myorders, whose only difference
is that it is not sorted on o orderkey.

Query 1b: select l orderkey,l quantity from my-
orders, lineitem where o orderkey=l orderkey

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 10: Query 1b [TPC-H 1 GB / 1 GB RAM]

As we can see from Figure 10, Async INL shows
a gain of over 10% compared to INL after 1,000,000
tuples, while the benefit over merge join is nearly 20%
at this point. Since myorders relation is not clustered

on orderkey, each access to it involves a random IO.
Therefore the join of myorders and lineitem gives a
gain even without a selection condition. We do not
present results for the join of orders with lineitem,
since neither version of INL is a good choice for this
case even for a small number of tuples output.

The next query uses a three-way join of orders,
lineitem and customer, with a filter that selects 1 in
100 orders.

Query 2a: select l orderkey,l quantity from or-
ders,lineitem,customer where o orderkey=l orderkey
and o custkey=c custkey and l orderkey%100=2 and
l linestatus=’F’

As we can see from Figure 11, for this query Async

 0

 20

 40

 60

 80

 100

 120

 140

 0 5000 10000 15000 20000 25000 30000 35000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 11: Query 2a [TPC-H 1 GB / 1 GB RAM]

INL shows a gain of over 25% compared to INL and to
merge join after 7000 tuples. Merge join beats Async
INL after about 12000 tuples.

In the next query, we replace the orders relation
with myorders and remove the filter.

Query 2b: select l orderkey from myorders,
lineitem, customer where o orderkey=l orderkey
and o custkey=c custkey

As we can see from Figure 12, Async INL shows a
gain of over 6% compared to INL and to merge join
after 100000 tuples.

We next consider Query 12 of the TPC-H bench-
mark.

TPC-H Q12: select l shipmode,sum(...) from
orders,lineitem where o orderkey = l orderkey and
<several selection> group by l shipmode order by
l shipmode

This query uses aggregation, and has only 2 results.
On the PostgreSQL system, this query had INL in the
chosen plan. (Only one other query had INL as the
optimal plan, but it used subqueries which are not
currently handled in an asynchronous fashion in our
implementation, so we do not report results for that
query.) For this query, the asynchronous INL com-
pletes in 48 seconds as against 64.7 sec for the original
INL, giving a gain of over 25%.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 12: Query 2b [TPC-H 1 GB / 1 GB RAM]

 0

 100

 200

 300

 400

 500

 600

 0 50000 100000 150000 200000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 13: Query 1a [TPC-H 10 GB / 1 GB RAM]

8.2 Experiments with TPC-H 10GB database

and 1 GB RAM

In this section, we present the queries performed with
TPC-H 10GB database and 1GB RAM. Figure 13
shows the performance of Query 1a (which we saw ear-
lier) on the TPC-H 1 GB database, with 1 GB of RAM.
As we can see from the figure Async INL shows a gain
of nearly 50% over INL, and over 50% compared to
merge join, at 1,00,000 tuples.

Figure 14 shows the performance of Query 2a. As
we can see from the figure, Async INL shows a gain
of over 50% compared to both INL and merge join
at 30,000 tuples. For Query 2b, Figure 15 shows that
Async INL gives a gain of nearly 40% as compared to
INL and merge join after 65,000 tuples.

For TPC-H Q12 presented earlier, the asynchronous
iterator completes in 431 sec as against 687 sec for the
original giving a gain of 37%.

Comparing the results on the TPC-H 1GB database
with those on the TPC-H 10GB database, we see a few
patterns emerge. First, the number of tuples at which
merge join becomes cheaper than INL or Async INL is
significantly larger in the latter case, since much larger
relations need to be sorted for merge join. Second, the
time taken to output the ith tuple increases signifi-

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge

Figure 14: Query 2a [TPC-H 10 GB / 1 GB RAM]

 0

 200

 400

 600

 800

 1000

 1200

 0 20000 40000 60000 80000 100000 120000 140000 160000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge

Figure 15: Query 2b [TPC-H 10 GB / 1 GB RAM]

cantly in the latter case. Third, the relative benefit
of Async INL over INL also increases significantly in
the latter case. We believe the latter two patterns are
because less of each relation fits in the buffer, reducing
the probability of a random access finding the required
data in the buffer. As a result IO time would increase
significantly, and Async IO correspondingly gives more
benefits.

8.3 Experiments with TPC-H 10GB database

and 4-disks RAID-10 with 3.2 GB RAM

For our next set of experiments, we use a 4-disk RAID
10 for our experiments. In this configuration, data is
striped across two disks, which are mirrored on two
other disks. IO operations can be executed on either
of a mirrored pair of disks.

As we can see from Figure 16, for Query 1a we have
a gain of nearly 20% after about 300,000 tuples with
Async INL; in this case INL was chosen over merge
join by the PostgreSQL optimizer. Merge join was
uniformly worse than Async INL and INL up to com-
pletion of the query.

For Query 1b, as we can see from Figure 17, we have
a gain of about 50% after 80,000 tuples with Async
INL; after this point merge join becomes the best al-

 0

 50

 100

 150

 200

 250

 0 50000 100000 150000 200000 250000 300000 350000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 16: Query 1a [TPC-H 10GB / 3.2 GB RAM /
4-disks RAID10]

 0

 50

 100

 150

 200

 250

 300

 0 20000 40000 60000 80000 100000 120000 140000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 17: Query 1b [TPC-H 10GB / 3.2 GB RAM /
4-disks RAID10]

gorithm, but Async INL continues to beat INL by a
similar margin.

For Query 2a, Async INL shows a gain of nearly
30% compared to both INL and merge join at 125,000
tuples as shown in Figure 18; as for Query 1a, INL was
chosen over merge join by the PostgreSQL optimizer.

For Query 2b, as we can see from Figure 19, Async
INL shows a gain of nearly 55% compared to INL and
to merge join at 20,000 tuples.

For TPC-H Q12, presented earlier, the asyn-
chronous iterator completes in 147.6 sec as against
164.06 sec for the original giving a gain of 10%.

Query 4: select c name,l linenumber,l partkey,
l shipmode,s suppkey,s name from orders, lineitem,
customer, supplier where o orderkey=l orderkey and
o custkey=c custkey and l suppkey=s suppkey;

As we can see from Figure 20 , for this query the
asynchronous INL plan gets a gain of 27 % after
90,000 tuples compared to the original INL plan. Since
the selection clause has c name and s name, an index-
only plan is not applicable here. The merge join plan
for this query required a sort of very large relations,
and took nearly 50 minutes to generate even the first

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50000 100000 150000 200000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 18: Query 2a [TPC-H 10GB / 3.2 MB RAM/
4-disks RAID 10]

 0

 100

 200

 300

 400

 500

 600

 0 20000 40000 60000 80000 100000 120000 140000

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

merge join

Figure 19: Query 2b [TPC-H 10GB / 3.2 MB RAM/
4-disks RAID 10]

tuple; the 90,000th tuple also took about the same
time.

Comparing the results for queries on the configura-
tion with 1 GB of RAM and 1 disk, to the configuration
with 3.2 GB of RAM and RAID 10 with 4 disks, we
observe several interesting phenomena. First, across

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

T
im

e
in

 s
ec

on
ds

Number of tuples

async INL
original INL

Figure 20: Query 4 [TPC-H 10GB / 3.2GB RAM /
4-disks RAID 10]

all queries the time taken for INL, Async INL and
merge join all decrease considerably with the second
configuration. Second, the decrease in time taken is
much more for INL and Async INL, compared with
merge join. As a result, the number of tuples at which
merge join beats INL or Async INL increases sharply
in the second configuration. Third, the relative benefit
of Async INL as compared to INL in the two configu-
ration is not uniform across queries. Async INL always
beats INL by a significant margin, but the margin in-
creases on the second configuration for some queries,
while it decreases for others. We conjecture that this
effect may be due to the memory size being much
larger, resulting in many random IO operations find-
ing required data already in memory due to OS level
prefetching. Thus, even though a system with multi-
ple disks can be expected to benefit more from Async
INL, the observed relative benefit due to Async INL is
less in this configuration.

9 Conclusion and Future Work

Asynchronous IO overlaps computation and IO pro-
cessing of multiple IO requests and avoids the blocking
problem of regular IO. We propose an Asynchronous
Iterator Model which exploits asynchronous IO and
avoids the blocking problem. In this framework, a
node need not always return a tuple, it can return
a LATER status instead and we can proceed with the
CPU processing which does not depend on that IO re-
quest. We also present an Asynchronous Index Nested
Loop join based on this framework. We have evalu-
ated this model with number of queries based on the
TPC-H benchmark database, and demonstrated gains
of over 50 % for several queries in a (4 disk) RAID 10
setup.

There are several further opportunities for exploit-
ing asynchronous IO within a database system such as
PostgreSQL. For example, B-tree access is currently
blocking, although fetching of records is asynchronous.
Modifying B-tree code to support asynchronous IO is
an important task. Nested subplans currently result
in blocking of the parent operator. Supporting asyn-
chronous iteration at this level would be another area
of future work. Implementing asynchronous versions
of other operations, such as sort and merge join, is also
part of future work.

At a broader level, the asynchronous iterator model
can be useful in other settings. For example, systems
that consume web services in bulk can use the Asyn-
chronous Iterator Model to hide the latency inherent
in executing operations at a remote site, allowing much
higher throughput rates when accessing web services.
Similarly, data integration systems such as IBM Data
Joiner can benefit from asynchronous IO when fetch-
ing data from remote sites.

References

[1] R. Avnur and J. M. Hellerstein. Eddies: Continu-
ously adaptive query processing. In In SIGMOD,
pages 261–272, 2000.

[2] R. Goldman and J. Widom. Wsq/dsq: A practical
approach for combined querying of databases and
the web. In SIGMOD, pages 285–296, 2000.

[3] G. Graefe. Query evaluation techniques for large
databases. In ACM SIGMOD, Washington, D.C.,
May 1993.

[4] G. Graefe. Executing nested queries. In Database
Systems for Business, Technology and the Web,
University of Leipzig, Germany, Feb 2003.

[5] http://www.ixora.com.au/notes/
asynchronous_io.htm .

[6] http://www.oracle-base.com/articles/misc/
DirectAndAsynchronousIO.php .

[7] http://publib.boulder.ibm.com/infocenter/
db2luw/v8/index.jsp?topic=/com.ibm.db2.
udb.doc/core/c0011638.htm .

[8] V. Raman, V. Raman, and A. Deshpande. Using
state modules for adaptive query processing. In
ICDE, pages 353–364, 2003.

