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or v � u where v is a variable, l 2 < represents thelower bound of variable v , and u 2 < represents theupper bound of variable v . Note that there is at mostone constraint of each form for each v . The domainis ordered by pairwise comparison, that is, for d1; d2 2VBounds d1 vVBounds d2 i� for each v � l2 2 d2 thereexists v � l1 2 d1 such that l1 � l2, and for eachv � u2 2 d2 there exists v � u1 2 d1 such that u1 � u2.The abstraction function �VBounds : }Lin ! VBoundsis de�ned as follows:�VBounds(�) =fv � l j v 2 vars(�); l = glb(v ;�) exists g[fv � u j v 2 vars(�); u = lub(v ;�) exists gThe widening operation on the bounds description isde�ned as followsC15VBounds C2 =fv � l1 j (v � l1) 2 C1; (v � l2) 2 C2; l1 � l2g [fv � u1 j (v � u1) 2 C1; (v � u2) 2 C2; u1 � u2gNote that (C1 5VBounds C2) � C1 and hence the�niteness property holds. 2Let us now consider an example of the use of theVBounds description during evaluation. For the query?lpath(a;Y ;N );N � 2, after generating the fact query(lpath(b; 1)) and then query(lpath(b;�1)) the wideningoperation is applied on the instantiated PVBoundsdescriptions, fN � 1g5VBounds fN � �1g = fg, and itremoves the lower bound. This is achieved by replacingboth query facts with query(lpath(b;�1)).3 In e�ectthis removes the e�ect of the constraint rewriting fornode b. But note it does not prevent the possiblebene�ts on other paths (e.g. a ! e ! f ).Given we use a widening operation to maintainexactly one constraint query fact for each original magicfact we can show the following result.Theorem 7.2 Let P be a program and Q a query. IfMagic(P ;Q) is �nitely evaluable, then so is CMagic(P ;Q) given we use a widening evaluation.Note we can delay the use of widening until some arbi-trary �nite number of constraint query facts correspond-ing to a single original magic fact have been generated,and still maintain the above result. For non-recursiveprograms, widening for the purpose of preventing in�-nite chains is not required, but subsumption checking isuseful.3In general we have to replace both query facts with a queryfact for a di�erent annotation not including the widened awayparametric constraint. Usually, as in this case, the e�ect can beachieved using the same annotation.

8 DiscussionThe algorithms of [SR93a] and [KS93] can be usedbene�cially before applying our algorithm, since theyintroduce more constraints into rules. In addition todirectly pruning derivations, the constraints can be usedin constraint analysis to deduce tighter parametrizedconstraints.If a constraint has been pushed into a predicatede�nition, it may no longer be necessary to test it wherethe predicate is used. Techniques from [KS93] can beused to remove redundant constraints after constraintrewriting.By treating predicates as constraints, our techniquecan be used to generalize predicate pushdown optimiza-tions (see, e.g., [Ull89]) that are used in database queryoptimization.9 Related WorkThe most closely related work we are aware of all dealwith pushing constraints at compile time: Kemp etal. [KRBM89], Mumick et al. [MFPR90b, MP94],Srivastava and Ramakrishnan [SR93a], Levy and Sa-giv [LS92] and Kemp and Stuckey [KS93]. The tech-niques of [KRBM89] and [MFPR90b] propagate con-straints purely syntactically, and do not make deduc-tions using the constraints. The others make use ofsemantic information about constraints. However, alluse only constraints that are fully speci�ed at compiletime, and are thus static. Our technique on the otherhand uses parametrized constraints, which provide thee�ect of pushing constraints dynamically at run time.As a result, our technique can handle programs such asthe one in Example 1.1, unlike the earlier techniques.Unlike [Ram88] and constraint logic programming im-plementations, our technique performs constraint ma-nipulation only at compile time, and thereby avoids thecost of constraint manipulation at run time.Among the earlier constraint propagation techniques,the one most closely related to ours is [KS93]. Weborrow from [KS93] the idea of abstract interpretationto determine query constraints. Unlike [SR93a, KS93],we allow multiple adornments per predicate.The idea of extending Magic Sets beyond equalityconstraints is present in [MFPR90b, MP94]. However,they allow only simple constraints, and, more impor-tantly, no notion of parametrized constraints is devel-oped. The adornments they use carry incomplete con-straint information, and actual constraint information ispassed only via static rewriting, not dynamically via pa-rameters. Thus they su�er from the same drawbacks as66



answer f (X ;Y ;D)  X = sydney ; f a(X ;Y ;D);D � 0;D � 10000:f a(X ;Y ;D)  query(f a($dX ; $lD; $uD));X = $dX ; $lD � $uD ; :e(X ;Y ;D);D � 0;D � $lD ;D � $uDf a(X ;Y ;D)  query(f a($dX ; $lD; $uD));X = $dX ; $lD � $uD ; e(X ;Z ;D1);D1 � 0;f (Z ;Y ;D2);D2 � 0;D = D1 +D2;D � $lD ;D � $uD :query(f a($dZ ; $lD2; $uD2)) query(f a($dX ; $lD; $uD));X = $dX ; $lD � $uD ; e(X ;Z ;D1);D1 � 0;$dZ = Z ; $lD2 = max (0; $lD � D1); $uD2 = $uD � D1:query(f a(sydney ; 0; 10000)):Figure 2: Constraint Magic Rewritten Form of Flights Programare greater than 10000 away from the start node.For such queries on such nodes, the constraint isunsatis�able, and the satis�ability check in the rulethat generates query(f a (: : :)) facts fails. Thus citiesthat are at distance greater than 10000 from sydneyare not explored further. In contrast, the rewrittenprograms generated by the optimizations of [SR93a] andthe optimizations of [KS93], explore all paths of lessthan 10000, from all cities that are connected to sydney .CMagic(P ;Q) is guaranteed to terminate, so long as alledges have �nite positive weights, and we start with a�nite bound. 2Adding extra constraints to a constraint programthat executes top down (without memoing) cannotcompromise its termination since new constraints onlyserve to fail additional branchs of the derivation tree.The new constraints are added in a manner that ensuresthey are safe, hence:Proposition 7.1 If each derivation in derivP (hQ ; truei)is �nite and safe then each derivation inderivCR(P;Q)(hCQuery(P ;Q); truei) is �nite and safe.The above result does not hold true in general forbottom-up execution. The rewriting introduces newvariables into query facts, and this can introduce moreopportunities for non-termination (beyond what magicsets introduce in any case).Example 7.2 (Non-Termination) Consider the fol-lowing program and query.lpath(X ;Y ;N ) N = 1; edge(X ;Y ):lpath(X ;Y ;N ) edge(X ;Z ); lpath(Z ;Y ;N 1);N = N 1 + 1; four(N )with an edge relation containing the tuples (a; b);(b; c); (c; b); (c; d); (a; e), (e; f ), and four relationcontaining tuples (1); (2); (3); (4). Suppose we hada query ?lpath(a;Y ;N );N � 2. Evaluation of the

program using a top-down CLP system would loop,due to the cycle between nodes b and c. Evaluationof the Magic Set rewritten program using bottom-up evaluation with a ground constraint solver wouldterminate as the repeated subqueries would be detected.The constraint adornment process using PVBoundsdescriptions gives lpath(X ;Y ;N ) : X = $dX ;N �$lN . The Constraint Magic rewritten program (afterredundancy removal) is given below.lpath(X ;Y ;N )  query(lpath(X ; $lN ));N = 1;N � $lN ; edge(X ;Y ):lpath(X ;Y ;N )  query(lpath(X ; $lN )); edge(X ;Z );lpath(Z ;Y ;N 1);N = N 1 + 1;N � $lNquery(lpath(a; 2)):query(lpath(Z ; $lN1))  query(lpath(X ; $lN ));$lN1 = $lN � 1; edge(X ;Z ):A bottom-up evaluation of this program usingduplicate checking will not terminate since it generatesan in�nite sequence of queries: query(lpath(a; 2)),query(lpath(b; 1)), query(lpath(c; 0)),query(lpath(b;�1)), query(lpath(c;�2)), and so on. 2To avoid this problem we use (at run-time) the con-straint description VBounds (presented below) underly-ing the PVBounds description used for adornment. Us-ing the abstract operations de�ned below on VBoundsit is simple to maintain a single query fact per originalmagic fact that subsumes all the query facts alreadygenerated. Using the widening operation 5VBounds de-�ned below, in�nite chains of query facts will not begenerated; if a new bound is tighter than the old bound,the widening operator discards it, and if the new boundis weaker, both bounds are discarded.De�nition 7.1 (Bounds Description) The boundsdescription hVBounds; �VBounds ; }Lini is de�ned asfollows. The description domain VBounds consists ofall �nite sets of primitive constraints of the form v � l65



R0 : answer f (X ;Y ;D) f a (X ;Y ;D : sydney ; 0; 10000):R1 : f a(X ;Y ;D : $dX ; $lD; $uD)  X = $dX ; $lD � $uD ; e(X ;Y ;D);D � 0;D � $lD ;D � $uDR2 : f a(X ;Y ;D : $dX ; $lD; $uD)  X = $dX ; $lD � $uD ; e(X ;Z ;D1);D1� 0;$dZ = Z ; $lD2 = max (0; $lD �D1); $uD2 = $uD � D1;f (Z ;Y ;D2 : $dZ ; $lD2; $uD2);D2 � 0;D = D1 +D2;D � $lD ;D � $uD :Figure 1: Constraint Adorned Form of Flights ProgramIf we have a constraint solver that handles safe con-straints (i.e. constraints which are tests or assignmentswhen reached) the adornment transformation can causea nonterminating top-down execution to become ter-minating. Suppose for example the e relation is cyclefree except for edges from newark to newyork and viceversa, but there is no path of length less than or equalto 10000 from sydney to either newark or newyork . Theoriginal program will run forever when it reaches the cy-cle (assuming no memoing is performed). The adornedprogram will never reach the cycle.6 Constraint Magic RewritingOne of the prime motivations for compiling constraintsin the manner we describe in this paper is to restrictcomputation required in bottom-up evaluation of pro-grams with constraints. This is because typically con-straint solvers in bottom-up evaluation are only able todeal with test and assignment constraints, since theydo not wish to involve non-ground atoms. If we applya Magic Sets transformation to the program CR(P ;Q)using a complete left-to-right sip strategy and a (magic)adornment such that all parameters are b (bound) ar-guments and all original arguments are f (free), then wearrive at a range-restricted magic program where all theconstraints are tests or assignments when evaluated.But there is some redundancy in this approach sinceit adds extra arguments to the atoms, and in fact we areonly interested in the non-parameter arguments of theanswers and do not require they be connected to theparameter descriptions which generated them. Hencewe de�ne an extended Magic Templates rewriting whichtakes a programP and query Q and produces a programCMagic(P ;Q) combining the e�ects of the Constraintsrewriting and Magic rewriting. Example 6.1 illustrateshow this separation is managed.Example 6.1 (ConstraintMagic Rewriting of Fli-ghts Program) We continue with the adorned pro-gram from Example 5.1. Given rule R2 Constraint

Magic rewriting replaces it by the ruleSR2 : f a(X ;Y ;D)  query(f a($dX ; $lD; $uD));X = $dX ; $lD � $uD ; e(X ;Z ;D1);D1 � 0;f (Z ;Y ;D2);D2 � 0;D = D1 + D2;D � $lD;D � $uD :which is restricted to generate a fact f a(t) only if thereis a fact query(f a(s)) which speci�es a constraint thatis satis�ed by f a(s). As noted earlier, the constraintparameters are not required in adorned predicates, andhave been deleted in the above rule. The literals de�ningthe constraint parameters have also been dropped sincethey are no longer used.Further, the following rule is added to the rewrittenprogram in order to generate query facts for the literalin the body of the above rule.MR2:1 : query(f a($dZ ; $lD2; $uD2))  query(f a($dX ; $lD; $uD));X = $dX ;$lD � $uD ; e(X ;Z ;D1);D1 � 0;$dZ = Z ; $lD2 = max (0; $lD � D1);$uD2 = $uD �D1:The above rules constitute the Constraint Magicrewriting of a single rule from the original program.The other rules from the original program are rewrittenas well to get the Constraint Magic rewritten program,shown in Figure 2. 27 EvaluationWe consider issues that arise in the evaluation of aconstraint rewritten programs. First we examine therunning example.Example 7.1 (Evaluation of Flights Program)Consider the Constraint Magic rewritten programCMa-gic(P ;Q) from Example 6.1. Semi-naive evaluation(see, e.g. [BR87a]) can be used to evaluate theprogram. We omit details, but note that the boundsarguments of the query(f a(: : :)) facts grow tighteras paths are explored further, and the upper boundbecomes less than the lower bound for cities that64



are simply computed as the tightest bounds, hence$lD2 = max (0; $lD � $D1).Because the new adornment is the same (mod-ulo renaming) as the original the analysis termi-nates. prop adorn also generates similar adornments fore(X ;Y ;D) which may be used in database retrieval.Although, for brevity, the above example does not illus-trate it, in general multiple adornments are computedfor each atom. 25 Constraint AdornmentThe results of analyzing the query constraints of aprogram P are parameterized constraints that hold ofall calls to each atom (for some suitable values of theparameters). And guarantee that for each call to anatom the values of the parameters are �xed before thecall is made. Constraint Rewritingmodi�es the programto allow the parameterized constraints to be availableduring execution, thus applying constraint informationearlier, in the case that the solver is restricted to onlysolve ground constraints.Constraint rewriting takes a program P and queryQ and produces a new program CR(P ;Q) and queryCQuery(P ;Q). It proceeds in three phases: �rst foreach rule for atom A extra arguments representingthe parameters of the parameterized constraint for Aare added to the head atom, and the parameterizedconstraints are added to the rule body. Next for eachatom occurring in the body of a rule or in the queryQ , extra arguments are added to the atom representingits parameters and constraints are added to the rule tocalculate the parameter values. Finally the constraintsin each rule and the query are reordered so that by thetime they are reached they are either ground tests orassignments.The answers of the resulting program are guaranteedto be equivalent to the answers of the original for thequery Q because the rewriting procedure has just addedredundant constraints. Formally,Theorem 5.1 Let P be a range-restricted program.Then,� 2 answersP (hQ ; truei)i� � 2 answersCR(P;Q)(hCQuery(P ;Q); truei).Example 5.1 (Constraint Adornment) Considerthe program P in Example 1.1 with query Q =(? � f (sydney ;Y ;D); 0 � D ;D � 10000). The Con-straint Adornment rewriting propagates parametrizedquery constraints into programs, and proceeds as fol-lows. Constraint analysis, described in Example 4.2,

determines the single parametrized query adornmentf (X ;Y ;D) : X = $dX ^ D � $lD ^ D � $uD for thepredicate f . Hence we generate an adorned predicatef a , where a is de�ned as the above parametrized con-straint. Here, $dX ; $lD and $uD are the three parame-ters to the constraint. The predicate has as argumentsthe arguments of f , and the values of the parameters$dX ; $lD and $uD .We then create specialized forms of the two rulesde�ning f , which use the above constraint to prune theirderivations. Each primitive constraint is introducedat the earliest point in the rule where enough of itsvariables are bound that the values of all variables inthe constraint are �xed. In this process, in addition tothe given constraint and the constraints already in therule body, we also use primitive constraints that canbe derived. From constraint a, we deduce $lD � $uDby projecting out variable D ; it gets added at thebeginning of the rule. (The technique is from [KS93],and details will be presented in the full paper.) Finally,from the query on the program we introduce a newpredicate answer f to compute answers to f that satisfyconstraint a with the particular values $dX = sydney ,$lD = 0 and $uD = 10000. So CQuery(P ;Q) =(? � answer f (X ;Y ;D)). The rewritten rules are asfollows:answer f (X ;Y ;D)  f a(X ;Y ;D : sydney ; 0; 10000):f a(X ;Y ;D : $dX ; $lD; $uD)  X = $dX ; $lD � $uD ;e(X ;Y ;D);D � 0;D � $lD ;D � $uD :f a(X ;Y ;D : $dX ; $lD; $uD)  X = $dX ; $lD � $uD ;e(X ;Z ;D1);D1 � 0; f (Z ;Y ;D2);D2 � 0;D = D1 + D2;D � $lD;D � $uD :The analysis phase has derived constraints on the rulebody literals. Constraints on database predicates can beused to perform indexing, but for brevity we ignore this.The analysis phase in Example 4.2 determined thatthe literal f (Z ;Y ;D2) in the body of the second rulede�ning f a also has the parametrized constraint a onit, and deduced the following expression for computingthe parameter values at run time:$dZ = $Z ; $lD2 = max (0; $lD�$D1); $uD2 = $uD�$D1The equality constraints in this expression are added atthe earliest point in the rule body where they are safe.Thus we get the program shown in Figure 1.We have now obtained specialized rules for allthe adorned predicates that we generated, and theadornment step now terminates. The resulting programis CR(P ;Q). 263



The parametrized bounds descriptions do not involveconstants as described above, but can they be extendedto allow constants by merging them with VBoundsdescriptions (De�nition 7.1); we do not discuss detailsfor lack of space.4.2 Adornment AnalysisWe use \adornments" on predicates to represent (para-metrized) constraints speci�ed by queries on the pred-icate. Let ACons be a constraint description. Aquery adornment is a pair in Atom � ACons. Wede�ne a function prop adorn : }(Atom � ACons) !}(Atom � ACons) that propagates query adornments.It takes a set S of query adornments for predicates inthe program and deduces descriptions of query adorn-ments that queries of the forms in S would generatefor the atoms in the bodies of the rules in the program(assuming a left-to-right computation).Given a sequence B1; : : : ;Bm we let the notation~Bi ; 1 � i � m represent the sequence B1; : : : ;Bi andlet ~B0 represent the empty sequence,prop adorn(S )S = S [ (Q ;CQ) where Q is the initial query on theprogram and CQ the query adornmentfor each (A;C ) 2 Sfor each (A � j B1; : : : ;Bm) 2 defnP (A; fg)for i = 0 to m � 1S = S [ f(Bi+1;Arestrict(vars(Bi+1);C ;�; vars( ~Bi )))greturn SThe crucial feature of the propagation function isthe function Arestrict . Arestrict(W ;C ; �;V ) takes thearguments: C is the abstract parameterized (calling)constraint, � is the constraint appearing in the currentclause, and V are the variables that are �xed by thetime execution reaches this point, and computes anthe projection of the conjunction of C and � ontovariables W as an abstract parameterized constraintC 0. That is, if � is a set of constraints and C /� then Arestrict(W ;C ; �;V ) / f9W � ^ �0 j �0 2�g. The crucial additional property of Arestrict isthat it ensures that there is a deterministic functionthat takes the values for the parameters appearing inC and values for the variables V and computes thevalues of the parameters in C 0. (The function whichcomputes parameter values is inserted into the rule inthe adornment rewriting phase.)The least �xpoint of prop adorn gives a set ofadornments such that each actual query (at run-time)

falls within those described by this set. This canbe proved quite simply using the theory of abstractinterpretation. Formally, using the de�nition of top-down operational semantics in Section 2,Theorem 4.1 For each state hA : B ; �i� in statesP (hQ ; truei), where � is a renaming, there exists (A;C ) 2lfp(prop adorn) such that C / f9vars(A)�g.To �nitely evaluate prop adorn we must perform theevaluation modulo renamings. Under this assumptionthe least �xpoint of prop adorn is guaranteed to be�nite if either the descriptions are �nite for a �nite setof variables (as is the case for PVBounds), or if theprogram is non-recursive. In the full paper we presenta more complicated version of prop adorn which useswidening operations to guarantee �nite evaluation forin�nite domains that have widening operations, even ifthe program is recursive.Example 4.2 (Constraint Analysis) Consider theprogram in Example 1.1. We use the parametrizedbounds description (De�nition 4.3) in our analysis. Thequery adornment for f (X ;Y ;D) is f (X ;Y ;D) : Cwhere C � (X = $dX ^ D � $uD ^ D � $lD). Theonly rule that generates new adornments for derived(i.e., non-base) predicates isf (X ;Y ;D) e(X ;Z ;D1);D1 � 0; f (Z ;Y ;D2);D2 � 0;D = D1 + D2The adornment for the literal f (Z ;Y ;D2) is calculatedas C 0 = Arestrict(W ;C ; �;V ), where � � (D1 �0 ^ D2 � 0 ^ D = D1 + D2), V = fX ;Z ;D1g andW = fZ ;Y ;D2g. The resulting adornment (derivedas described below) is C 0 � (Z = $dZ ^ D2 �$uD2 ^ D2 � $lD2) with the supporting deterministicfunction $dZ = $Z ; $uD2 = $uD � $D1; $lD2 =max (0; $lD�$D1). (A $ sign before a variable indicatesthat the variable is bound.)The adornment is computed as follows. Fourier-Motzkin elimination (see e.g. [Sch86]) is used to projectout the variables D ;D1 and X from the constraintD � $uD ^ D � $lD ^ D1 � 0 ^ D2 � 0 ^ D =D1 + D2 ^ X = $X ^ Z = $Z ^ D1 = $D1 (whichis itself derived from the rule body constraints and theconstraints on the head predicate). Parametric variablesare just treated as ordinary variables in this process,which is completely independent of the actual values theparametric variables will take at run-time. The resultis (D2 � 0 ^ D2 � $lD � $D1 ^ D2 � $uD � $D1),which gives the form of the adornment C 0. The values62



an \abstraction function". (Functions in the originaldomain are also mapped to functions in the descriptiondomain in such a way that the abstract functions are`correct' w.r.t. the original function, and are discussedin the full version of the paper.) More formally:De�nition 4.1 A description hD ; �;E i consists of adescription domain (a complete lattice) (D ;vD), a datadomain (a complete lattice) (E ;vE ), and a continuousabstraction function � : E ! D .We say that d 2 D �-approximates e, written d /� e,i� �(e) vD d . When � is clear from the context we saythat d approximates e and write d / e. 2It is important that whether a given program isterminating or not, an analysis of the program mustalways terminate. If the description domain has anin�nite number of elements, and the given program isrecursive, there is a potential for an analysis to runfor ever. To avoid this problem, we use a \widening"operation:De�nition 4.2 A widening operator [CoC77] for adescription domain D is a function 5D : D � D ! Dsuch that 8 x ; y 2 D both x vD (x 5D y) andy vD (x 5D y) and (crucially) for each increasingchain x0 vD x1 vD : : : the chain de�ned by y0 =x0; : : : ; yi+1 = yi 5D xi contains only a �nite numberof di�erent elements. Note that by construction yi vDyi+1. 2In this paper, we are interested in analyzing con-straints (on queries), and we use approximate descrip-tions of constraints to perform analysis. We call descrip-tions of sets of constraints constraint descriptions. Asa simple example, sets of linear arithmetic constraintscan be approximated by bounds constraints on indi-vidual variables. For instance, the bounds constraintX < 5^Y > 0 approximates fX +Y < 5^Y > 0;X =4 ^ Y = 3g. As another example, a set of linear arith-metic constraints can be approximated by their convexhull.There are many possible approximations of a con-straint domain; which one to use depends on the `ac-curacy' of description that is desired, on the cost of theprogram analysis, and on the cost of program evalua-tion based on the analysis. In particular, when ana-lyzing non-recursive programs, we may be able to usethe given constraint domain itself, but when analyzingrecursive programs we typically want `coarser' approxi-mations in order to ensure termination of analysis.

In this paper we use parametrized constraints insteadof actual constraints so that constants in query con-straints can be provided at run time. Hence we useparametrized constraint descriptions to perform pro-gram analysis on parametrized query constraints. Weneed constraint descriptions of the actual constraints(as opposed to parametrized constraints) during evalu-ation of the program which we discuss in a later section.We give a formal de�nition of a particular parametri-zed description, the `parametrized bounds description'of the powerset of linear arithmetic constraints, }Lin,below; the non-parametrized version of the description(Section 7) is used during evaluation. In the followingde�nition, parameters $l and $u represent bounds thatwill be �xed only at runtime.De�nition 4.3 The parameterized bounds descriptionhPVBounds; �PVBounds ; }Lini is de�ned as follows.The description domain PVBounds is the set of all�nite conjunctions of primitive constraints of the formv � $lv , v � $uv or v = $dv where v is a variable, $lvis a parametric variable representing the lower boundof variable v , $uv is a parametric variable representingthe upper bound of variable v and $dv is a parametricvariable representing a de�nite value for v . The domainis ordered by implication, that is, for d1; d2 2 PVBoundsd1 vPVBounds d2 i� d1 ! d2. The abstraction function�PVBounds : } Lin ! PVBounds maps a set of lineararithmetic constraints (representing their disjunction)to its best description.�PVBounds(�) =V (fv � $lv j v 2 vars(�); glb(v ;�) exists g[fv � $uv j v 2 vars(�); lub(v ;�) exists g[fv = $dv j v 2 vars(�); v is �xed wrt each� 2 �g)where glb(v ;�) is the greatest lower bound of v valuesthat are compatible with any linear constraint � 2 �.lub(v ;�) is de�ned similarly, and both can be computedusing Fourier-Motzkin elimination. The domain hasno in�nite ascending chains and hence a wideningoperation is unnecessary. 2Example 4.1 (Bounds Description) Let �1 �(�X � Y ^ Y � 2 ^ X � 0 ^ Z = 2) and �2 � (Z =2^X � 10^Y � 2^Y � 4). Then �PVBounds(f�1g) =(X � $uX ^ X � $lX ^ Y � $lY ^ Z = $dZ ),�PVBounds(f�2g) = (X � $uX ^ Y � $uY ^ Y �$lY ^ Z = $dZ ) and �PVBounds(f�1; �2g) = (X �$uX ^ Y � $lY ^ Z = $dZ ). 261



Magic Templates rewriting. Bottom-up evaluation of aconstraint-rewritten program has two phases:Constraint Magic Templates The Magic rewritingtechnique [BMSU86, BR87b, Ram88] introduces querypredicates that carry the parameters of the query con-straints deduced earlier. Constraint Magic Templates(Section 6) is a version of Magic Templates rewriting[Ram88] optimized to deal with constraint-adorned pro-grams. We call programs generated by this rewritingConstraint Magic programs.Constraint Evaluation Constraint evaluation (Sec-tion 7) is a version of Semi-Naive bottom-up evalua-tion (see, e.g., [BR87a]), optimized to deal with Con-straint Magic Templates rewritten programs. This stageperforms bottom-up evaluation of the Constraint Magicrewritten program. For non-recursive programs, stan-dard database view evaluation techniques can be usedinstead, optionally optimized for evaluating ConstraintMagic rewritten programs.Constraint evaluation of the Constraint Magic rewrit-ten version of a program mimics a top-down evaluationof the program, and has the following bene�ts over non-memoing top-down evaluation: (a) evaluation is com-plete (generates all answers in the limit), (b) evalua-tion does not loop if cyclic subgoals are present, and (c)memoization of answers is performed, so computationneed not be repeated.Example 3.1 (GroundCompilationof Query Con-straints) We present a brief example to illustrate someof the components of our technique. We use the domainof equality constraints on structures in this example.Suppose person is a collection of objects which have anattribute age and an attribute addr which itself has anattribute zipcode. The following rules selects adults intarget zipcodes to send mail to:R1 : mail to(X ) target zips(Z ); adult(X );X :addr :zipcode = ZR2 : adult(X )  person(X );X :age > 21:Let the query on the program be ?mail to(X ), whichprovides no constraints. The selection on zipcodein the de�nition of R1 cannot be pushed into thede�nition of adult by Magic Sets rewriting [BR87b]since X is not fully ground before the literal adult(X ).Magic Templates [Ram88] can push the constraint, butrequires the use of non-ground query facts in order todo so.Our technique deduces that the queries on adult(X )have a parametrized constraint X :addr :zipcode = $1,where the bindings for the parameter $1 can only be

deduced at run-time. Hence it creates an adornedversion adulta of adult specialized for the query. Itthen adds the parameter as an argument of adulta , andintroduces the parametrized constraint in the body ofthe rule de�ning adulta . It gives the following adornedprogram (where : is used to separate parameter valuesfrom other arguments of adorned predicates):R10 : mail to(X ) target zips(Z ); adulta (X : Z );X :addr :zipcode = Z :R20 : adulta(X : $1)  person(X );X :addr :zipcode = $1;X :age > 21:We can see that the parametrized constraint on adultin rule R1 has been pushed into rule R2', makingit available for indexed retrieval of person and forrestricting the set of adulta facts generated.The Constraint Magic rewriting of the adornedprogram is as follows:SR1 : mail to(X ) target zips(Z );adulta(X );X :addr :zipcode = ZMR1:1 : query(adulta(Z ))  target zips(Z ):SR2 : adulta(X )  query(adulta($1)); person(X );X :addr :zipcode = $1;X :age > 21:The constraint parameters are now part of the querypredicate, and are no longer part of the predicate adulta .Bottom-up evaluation of the program generates onlyground facts, and yet has pushed the constraint onzipcode into the rule de�ning adulta . This cannot beachieved by Magic Sets or Magic Templates. We use theexample for pedagogical reasons { the program can beoptimized by, for example, the techniques of [KRBM89].However, if the constraint involved a predicate that isrecursive with adult , or if the de�nition of adult involvesaggregation and cannot be unfolded into rule R1, earliertechniques are not applicable. 24 Constraint AnalysisIn this section we present a program analysis techniqueto deduce query constraint patterns.4.1 Abstract InterpretationProgram analyses, such as groundedness analysis, orin our case constraint analysis, are often performedusing abstract interpretation [CoC77]. The idea is tomap elements of the domain on which the programoperates to elements in a description (or abstract)domain which approximates the original domain, butis more convenient for analysis. The mapping is called60



set of constraints. A renaming is a bijective mappingfrom Var to Var . We let Ren be the set of renamings,and naturally extend renamings to mappings betweenatoms, clauses, and constraints. Syntactic objects s ands0 are said to be variants if there is a � 2 Ren such thats� = s 0. The de�nition of an atom A in program Pwith respect to variables W , defnP (A;W ), is the set ofvariants2 of clauses in P such that each variant has Aas a head and has variables disjoint fromW � vars(A).(The above de�nitions leads to an in�nite set, in general,which is �nite modulo renaming.)2.1 Top-Down Operational SemanticsWe use the top-down operational semantics of a pro-gram in order to prove correctness of our optimiza-tion techniques. The top-down operational semanticsof a program is de�ned in terms of its \derivations"which are reduction sequences of \states" where a stateconsists of the current sequence of atoms and prim-itive constraints, or \goal", and the current answerconstraint. More formally, Goal = (Atom + Prim)�,State = Goal �Cons.A derivation of state s for program P is a sequenceof states s0 ! � � � ! sn where s = s0 and there is areduction from si to si+1 where state hL : G ; �i can bereduced as follows:1. If L 2 Prim and L ^ � is satis�able, it can bereduced to hG ;L^ �i;2. If L 2 Atom, it can be reduced to hB :: G ; �i where9(L B) 2 defnP (L; vars(G) [ vars(�)).Note that : denotes an in�x cons operation and ::denotes concatenation of sequences.A derivation is safe if for each state hL : G ; �i where Lis a primitive constraint, L is safe wrt �. A derivation issuccessful if the last state in the derivation is of the formh�; �i, where � is the empty goal. The constraint 9s� isan answer to state s if there is a successful derivationfrom s to a �nal state with constraint �. We denote theset of answers to s for program P by answersP (s), thederivations by derivP(s), and the set of states appearingin derivations of s by statesP (s).3 Overview Of The OptimizationTechniqueWe introduce the notion of parametrized constraints inthis paper. A parametrized constraint is a constraint2Since we assumed that all constants are part of the con-straints, and do not occur in literals, we need not consider uni�-cation here.

where parameters of the form $i may be used as placeholders for constants whose value will be known at run-time but is not known at compile time. The $i 's are re-ferred to as parameters to the constraint. We sometimesrefer to parametrized constraints as constraint forms.For example, X � $1 is a parametrized constraint, andrepresents a constraints that at run-time will have theform X � n where n is some constant value.Given a program, and a query with a parametrizedconstraint, our optimization technique analyzes theprogram, deduces the form of constraint subqueriesneeded to solve the given query, and generates aprogram which has query constraints compiled in; wecall the rewriting technique Constraint Adornment, andthe generated program a constraint-adorned program.The constraint-adorned program can be evaluated top-down, for example using Prolog, or can be evaluatedbottom-up after performing a version of the MagicTemplates rewriting of [Ram88], modi�ed to handleconstraint queries, which we call Constraint-Magicrewriting.The steps used to generate the constraint adornedprogram are as follows.Constraint Analysis: Constraint analysis (Section 4)deduces the possible constraint forms on queries that aregenerated by the program. For example, queries on apredicate may have the constraint form X � $a, where$a is a parameter dependent on the actual query. Theanalysis may produce an approximation in case thereare too many di�erent constraint forms generated by theprogram. The approximation is safe in that for everyconstraint form that could actually be generated, thereis a less restrictive constraint form in the approximation;a more restrictive query can be replaced by a lessrestrictive query without a�ecting correctness.Constraint Adornment In this step (Section 5), an`adorned' form of the original program is generated,with a specialized form of each original rule correspond-ing to each constraint query form deduced above for thehead predicate of the rule. The parameters of the queryconstraints are added as extra arguments of predicates,and constraint checking code is compiled into the rules,using the values provided by the parameter argumentsof the query. This stage can be viewed as an extension ofthe adornment phase of Magic Sets rewriting [BR87b].We now have to evaluate the constraint adornedprogram. This can be done by evaluating the adornedprogram top-down, using a constraint solver that needonly solve ground constraints. Alternatively, we canevaluate the program using bottom-up evaluation with59



queries. Our technique should provide similarbene�ts, while providing a more powerful selectionpushing technique.Path-selections in object-oriented database querylanguages can be treated as constraints, and pushedinto programs using our technique. By treatingstored (base) relations as constraints, our techniquescan also be used to generalize predicate pushdownoptimizations (see, e.g., [Ull89]).The query constraints that we consider are di�erentfrom integrity constraints in that they are not requiredto hold of the relations; they merely specify constraintson the answers that are required. However, ourtechniques can be used bene�cially as part of othermethods to check if integrity constraints are satis�ed.Conversely, integrity constraints can be used in ouroptimization technique to improve the pushing of queryconstraints.We present an overview of our technique in Section 3,and a comparison with related work in Section 9.2 PreliminariesA constraint domain A consists of a domain of values,an alphabet of constant, function and (constraint)relation symbols, and a �xed interpretation for eachof the de�ned symbols. A primitive constraint over aconstraint domain A is of the form r(t1; : : : ; tn) wherer is an n-ary relation symbol from A and t1; : : : ; tn areterms over A. A constraint over A is a conjunctionof primitive constraints over A. For example, theconstraint domain L of linear arithmetic of inequalitieson the reals (e.g. [Sch86]) consist of the domain:reals, the alphabet: of rational constants, functionsf+;�;�g, and relations f�; <;=;�; >g, and the usualreal interpretation of these symbols. X < Y and3�Z +Y � 2 are primitive constraints in this domain,while (X < Y )^ (3� Z +Y � 2) is a constraint whichis not primitive.A valuation � is a mapping from variables to valuesin A. We naturally extend valuations to map terms,primitive constraints and constraints. We extend the�xed interpretation of A under the valuation � in theusual way. In particular a valuation � is said to satisfya constraint � if A j= ��. For example, 6 > 5 ^ 3 < 4is satis�ed in the reals, and the valuation fX =6;Y=3gsatis�es the constraint X > 5 ^Y < 4.A projection function, denoted 9W �, where W =fV1; : : : ;Vng is a set of variables and � a constraint,is a (possibly non-deterministic) function that returns

a constraint � such that A j= (� $ 9V1 9V2 � � �Vn�).In other words, the function projects out the variablesV1 : : : ;Vn from the constraint. The projection functiondepends on the constraint domain, and we assume thatit is provided. For example, given a linear arithmeticinequality constraint Z � Y + 1 ^ X > Y ^ Y � 4,the variable Y can be projected out, using the well-known Fourier-Motzkin elimination algorithm (see, e.g.,[Sch86]), to get the constraint Z � 5 ^X > 4.We de�ne 9S �, the projection onto S of �, where Sis an expression as 9vars(�)nvars(S) � where function varstakes a syntactic object and returns the set of (free)variables occurring in it.An atom is of the form p(x1; : : : ; xn) where p is apredicate symbol and x1; : : : ; xn are distinct variables(for simplicity).1 A constraint program over a domainA is a set of rules of the form H  B1; : : : ;Bn whereH , the head, is an atom, and in the body each Bi is anatom or primitive constraint over A. Often we will beinterested in separating the constraint part of a rule,in which case it will be written H  � j B1; : : : ;Bmwhere B1; : : : ;Bm are atoms, and � is the constraint.The following is an example of a rule in a constraintprogram:goodpath(X ;Y ;C ;L) C < 500;L � 4000;path(X ;Y ;C ;L)A primitive constraint L is a test wrt to a constraint� if � implies each variable in L is �xed (i.e. for eachv 2 vars(L) � ! (v = a) for some constant a). Aconstraint x = t is an assignment wrt � if � impliesall variables in t are �xed and x does not occur in �.A constraint L is safe wrt � if L is either a test or anassignment wrt �.In this paper, we consider programs that generateonly ground answer facts and all of whose constraintsare safe wrt the bindings (equality constraints) providedby atoms earlier in the rule. A rule is said to be range-restricted i� every variable that appears in the rule alsoappears in an atom in the body of the rule. For example,the rule de�ning goodpath above is range-restricted. Aprogram is said to be range-restricted i� every rule inthe program is range-restricted. It is easy to showthat any fact derived by a range-restricted programis ground. (We can weaken the range-restrictedness(su�cient) condition for groundedness by instead usingan analysis such as [CDE91].)Let Var be the set of variables,Atom the set of atoms,Prim the set of primitive constraints, and Cons the1p(t1; : : : ; tn ) can be replaced by x1 = t1 ^ � � � ^ xn = tn ^p(x1 ; : : : ; xn ).58



involve parameters. We illustrate the limitations usingan example.Example 1.1 (Flights Query) Consider the follow-ing program that computes 
ights along with their dis-tances, and a query that requests 
ights of distance lessthan a speci�ed value.f (X ;Y ;D) e(X ;Y ;D);D � 0:f (X ;Y ;D) e(X ;Z ;D1);D1 � 0; f (Z ;Y ;D2);D2 � 0;D = D1 + D2Query: ?-f (sydney ;Y ;D); 0 � D ;D � 10000:The predicate e is assumed to be de�ned in the databaseand is also referred to as a base predicate.Evaluation using the algorithms of [SR93a] or [KS93]compute no paths of length greater than 10000, andgenerate only ground facts and queries. However, if aquery asks for paths from node sydney of length lessthan 10000, and we �nd that node rio is at a distance6000 from sydney , we can actually ignore paths fromrio of length greater than 4000 (i.e., 10000 � 6000)when answering the query. The above mentionedquery evaluation techniques are unable to deduce this,although if the program were evaluated top-down witha full constraint solver this restriction could be inferred.2 In this paper, we present a program rewriting thatgiven a program generates rewritten programs that canpropagate query constraints, such as the above, whilegenerating only ground queries, and ground answersprovided the original program generates only groundanswers. In particular, on Example 1.1 our techniqueis able to infer and use the tight restrictions on pathlength, without using a full constraint solver at run-time.The contributions of this paper are as follows:1. We introduce the notion of parametrized constraints(Section 3). Parametrized constraints are con-straints where some of the constants are not speci-�ed, but are provided as parameters (at run time).Parametrized constraints can be thought of as spec-ifying constraint forms.2. We present a program analysis technique to deducethe forms of constraints in queries and subquerieson a program (Section 4). The technique is basedon abstract interpretation, and is generic in that itcan be used with any constraint domain. Exact con-straint analysis techniques such as [SR93a] can po-tentially generate an in�nite number of constraints

on recursive programs; our analysis technique, likethat of [KS93], uses safe approximations to ensurethat only a �nite number of query constraint formsare generated.3. We present a program adornment technique whichrewrites the program rules to explicitly introducethe parametrized query constraints deduced in theanalysis phase (Section 5). We call the resultantprogram the constraint adorned program. Theanalysis and adornment phase can be viewed asperforming compilation on patterns of constraintspresent in queries.The constraint adorned program can be evaluatedusing any evaluation technique (either top-down orbottom-up) that handles ground constraints. Thisis particularly important in the database context,since most evaluation mechanisms do not handlenon-ground facts or constraints.4. We present Constraint Magic rewriting, which isa version of the Magic Sets query optimizationtechnique [BR87b] tailored to deal with constraintadorned programs (Section 6). The constraintadornment and Constraint Magic rewriting togethercan be viewed as a powerful generalization of theMagic Sets idea of compiling query calling patternsso as to push selections into rules/views (which maybe recursive). Magic Sets handles only equalityconstraints in queries, whereas our technique isapplicable to any constraint domains, for examplelinear arithmetic inequalities.5. We present an evaluation technique for ConstraintMagic rewritten programs (Section 7). The selec-tions provided by the query constraints can enabletermination in cases where evaluation of the Magicrewritten programwould not have terminated. Withrespect to a top-down non-memoing approach, weshow that our optimizations never introduce non-termination. However, in general, it is possible fora program that terminates when evaluated bottom-up without using query constraints to generate anin�nite number of di�erent constraint queries. Ourevaluation technique performs `widening' on queryconstraints, thereby guaranteeing termination when-ever the evaluation of the Magic rewritten programwould have terminated.6. Our approach is applicable to non-recursive as wellas to recursive queries on databases. Mumicket al. [MFPR90a] demonstrate the evaluationcost bene�ts of Magic rewriting for non-recursive57



Compiling Query Constraints(Extended Abstract)Peter J. Stuckey�Department of Computer Science,University of MelbourneParkville 3052, Australiapjs@cs.mu.oz.au S. SudarshanAT&T Bell Labs.Murray Hill, NJ 07974, U.S.A.sudarsha@research.att.comAbstractWe present a general technique to push query constraints(such as length � 1000) into database views and (constraint)logic programs. We introduce the notion of parametrizedconstraints, which help us push constraints with argu-ment values that are known only at run time, and developtechniques for pushing parametrized constraints into predi-cate/view de�nitions. Our technique provides a way of com-piling programs with constraint queries into programs withparametrized constraints compiled in, and which can be ex-ecuted on systems, such as database query evaluation sys-tems, that do not handle full constraint solving. Therebyour technique can push constraint selections that earlierconstraint query rewriting techniques could not. Our tech-nique is independent of the actual constraint domain, andwe illustrate its use with equality constraints on structures(which are useful in object-oriented query languages) andlinear arithmetic constraints.1 IntroductionThe area of constraint logic programming [JL87, KKR90]has been receiving a lot of attention in recent times.Such programs generate queries and answers that con-tain constraints. There are many applications whereconstraints are very useful, and that also requiredatabase support. For instance, queries on 
ightdatabases often have upper bound constraints on thetotal cost of the 
ights and the number of hops on the
ight. Queries on parts hierarchies may specify con-straints on the cost of the composite part. Constraintlogic programming systems can derive constraints on�Research partially supported by Centre for Intelligent Deci-sion Systems and ARC Grant A49130842In Proceedings of the Symp. on Principles ofDatabase Systems (PODS) 1994

subqueries from constraints on queries, and prune theset of answers that are generated correspondingly. Ingeneral, answers may also have constraints. Constraintsare typically expressed as expressions on the variablesin a query or answer; for example, a rule q(X ) : �X >5; p(X ) gives rise to a constraint query p(X ) : X > 5.Query evaluation techniques developed for databases(see, e.g. [KRB85, BR86]) cannot be directly extendedto handle constraints since they assume that all factsare ground, i.e., do not contain variables, whereas con-straint facts and queries contain variables. (Exten-sions to handle non-ground facts have been proposed[Ram88, SR93b], but few systems implement them cur-rently, and e�ciency is a concern [RS91, SR93b].)We use the term program to refer to both databaseview de�nitions and to constraint logic programs, sinceour techniques are applicable to both domains. Pro-grams where answer facts do not contain any con-straints, but where there are constraints (such as X � 0)in rule bodies, are quite common. If such programsare evaluated in a constraint logic programming sys-tem, subgoals that are generated include constraints,and the constraints are used to avoid generating answersthat will not be useful. This can provide very signi�canttime and space bene�ts, and can even allow for termina-tion on programs where evaluation without query con-straints would not terminate. On the other hand, sub-goals for such programs include variables, hence cannotbe evaluated using standard database query evaluationtechniques.An approach used in the past to avoid generatingnon-ground constraint queries was to rewrite constraintprograms to push, as far as possible, constraintsinto rules at compile time, and derive programs thatgenerate only ground queries. Such approaches werepresented in [KRBM89, MFPR90b, SR93a, KS93].However, these approaches are limited in their abilityto push constraints, and cannot handle constraints that56


