the earlier mentioned techniques. Further, fairly com-
plex restrictions are imposed on the sip strategy used,
and the rewriting, even for the non-recursive case, is
more complicated.

10 Conclusion

We have introduced the notion of parametrized con-
straints, and developed techniques for pushing param-
etrized constraints into rules. Qur technique enables
query restrictions provided by constraints which hith-
erto could be made use of only in full constraint
logic programming systems, to be used in environments
which support only the constraint operations of test-
ing and assignment. Qur technique properly general-
izes Magic Sets rewriting, and is particularly impor-
tant in the database context where the query evalua-
tion mechanisms typically do not support non-ground
facts/constraints. Our technique is generic in the con-
straint domain, and we have illustrated its use in two
different constraint domains.
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or v < u where v is a variable, [ € R represents the
lower bound of variable v, and u € R represents the
upper bound of variable v. Note that there is at most
one constraint of each form for each v. The domain
is ordered by pairwise comparison, that is, for dy, d> €
VBounds di Cypoundgs do iff for each v > 5 € do there
exists v > [ € dy such that [y > [, and for each
v < us € dy there exists v < uy € dy such that u; < us.
The abstraction function avgeunds : ¢ Lin — VBounds
1s defined as follows:

aVBounds(e) =
{v>1] v €vars(0©),{ = glb(v,0) exists }
UWv <u | veEwvars(©),u = lub(v,O) exists }

The widening operation on the bounds description is
defined as follows

Cl Y VBounds 02 =
{v>h | (v>h)eCi,(v>bh)e Gyl < b} U
{v<u | (v<wu)e O, (v<u) € Co,u; > us}

Note that (Cl Y VBounds 02)
finiteness property holds. O

C (4 and hence the

Let us now consider an example of the use of the
VBounds description during evaluation. For the query
?path(a, Y, N), N > 2, after generating the fact query(
Ipath(b,1)) and then query(lpath(b,—1)) the widening
operation 1s applied on the instantiated PVBounds
descriptions, {N > 1}V vBounds { NV > —1} = {}, and it
removes the lower bound. This is achieved by replacing
both query facts with query(Ilpath(b,—o00)).? In effect
this removes the effect of the constraint rewriting for
node b. But note it does not prevent the possible
benefits on other paths (e.g. a — ¢ — f).

Given we use a widening operation to maintain
exactly one constraint query fact for each original magic
fact we can show the following result.

Theorem 7.2 Let P be a program and ¢ a query. If
Magic(P, Q) is finitely evaluable, then so is CMagic(P,
@) given we use a widening evaluation.

Note we can delay the use of widening until some arbi-
trary finite number of constraint query facts correspond-
ing to a single original magic fact have been generated,
and still maintain the above result. For non-recursive
programs, widening for the purpose of preventing infi-
nite chains is not required, but subsumption checking is

useful.

3In general we have to replace both query facts with a query
fact for a different annotation not including the widened away
parametric constraint. Usually, as in this case, the effect can be
achieved using the same annotation.
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8 Discussion

The algorithms of [SR93a] and [KS93] can be used
beneficially before applying our algorithm, since they
In addition to
directly pruning derivations, the constraints can be used

introduce more constraints into rules.

in constraint analysis to deduce tighter parametrized
constraints.

If a constraint has been pushed into a predicate
definition, it may no longer be necessary to test it where
the predicate is used. Techniques from [KS93] can be
used to remove redundant constraints after constraint
rewriting.

By treating predicates as constraints, our technique
can be used to generalize predicate pushdown optimiza-
tions (see, e.g., [UlI89]) that are used in database query
optimization.

9 Related Work

The most closely related work we are aware of all deal
with pushing constraints at compile time: Kemp et
al. [KRBMS89], Mumick et al. [MFPR90b, MP94],
Srivastava and Ramakrishnan [SR93a], Levy and Sa-
giv [LS92] and Kemp and Stuckey [KS93]. The tech-
niques of [KRBM89] and [MFPRI0b] propagate con-
straints purely syntactically, and do not make deduc-
tions using the constraints. The others make use of
semantic information about constraints. However, all
use only constraints that are fully specified at compile
time, and are thus static. Our technique on the other
hand uses parametrized constraints, which provide the
effect of pushing constraints dynamically at run time.
As a result, our technique can handle programs such as
the one in Example 1.1, unlike the earlier techniques.
Unlike [Ram88] and constraint logic programming im-
plementations, our technique performs constraint ma-
nipulation only at compile time, and thereby avoids the
cost of constraint manipulation at run time.

Among the earlier constraint propagation techniques,
We
borrow from [KS93] the idea of abstract interpretation
to determine query constraints. Unlike [SR93a, KS93],
we allow multiple adornments per predicate.

the one most closely related to ours is [KS93].

The idea of extending Magic Sets beyond equality
constraints is present in [MFPR90b, MP94]. However,
they allow only simple constraints, and, more impor-
tantly, no notion of parametrized constraints is devel-
oped. The adornments they use carry incomplete con-
straint information, and actual constraint information is
passed only via static rewriting, not dynamically via pa-
rameters. Thus they suffer from the same drawbacks as



answer_f(X, Y, D) — X = sydney, f*(X,Y,D),D >0, D < 10000.

f4X,Y,D) — query(f*($dx,$lp,%up)), X = $dx,$lp < $up,.
e(X,Y,D),D>0,D>$lp,D < Sup

f4X,Y,D) — query(f*($dx,$lp,%up)), X = $dx,$lp < $up,e(X,7,D1),D1 >0,

F(Z,Y,D2),D2>0,D = D1+ D2,D>$lp,D < $up.
query(f2($dz,$lpa2, Supa)) — query(f*($dx,$lp,Sup)), X = $dx,$lp < S$up,e(X,7,D1),D1 >0,
$dZ = Z,$ID2 = ma:zt(O,$lD — Dl),$uD2 = $uD — D1.

query(f?(sydney,0,10000)).

Figure 2: Constraint Magic Rewritten Form of Flights Program

are greater than 10000 away from the start node.
For such queries on such nodes, the constraint is
unsatisfiable, and the satisfiability check in the rule
Thus cities

that are at distance greater than 10000 from sydney

that generates query(f?(...)) facts fails.
are not explored further. In contrast, the rewritten
programs generated by the optimizations of [SR93a] and
the optimizations of [KS93], explore all paths of less
than 10000, from all cities that are connected to sydney.
CMagic(P, Q) is guaranteed to terminate, so long as all
edges have finite positive weights, and we start with a
finite bound. O

Adding extra constraints to a constraint program
that executes top down (without memoing) cannot
compromise its termination since new constraints only
serve to fail additional branchs of the derivation tree.
The new constraints are added in a manner that ensures
they are safe, hence:

Proposition 7.1 If each derivation in derivp ({Q, true))
is finite and safe then each derivation in
deritver(p,g)({CQuery(P, Q), true)) is finite and safe.

The above result does not hold true in general for
bottom-up execution. The rewriting introduces new
variables into query facts, and this can introduce more
opportunities for non-termination (beyond what magic

sets introduce in any case).

Example 7.2 (Non-Termination) Consider the fol-
lowing program and query.

lpath(X, Y, N) — N =1, edge(X, V).
lpath(X, Y, N) — edge(X, 7), lpath(Z, Y, N1),
N = N1+1, four(N)

with an edge relation containing the tuples (a,b),
(b,e), (¢, b), (e, d), (aye), (e,f), and four relation
containing tuples (1),(2),(3),(4).
a query Tlpath(a, Y, N),N > 2.

Suppose we had
Evaluation of the
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program using a top-down CLP system would loop,
due to the cycle between nodes b and ¢. Evaluation
of the Magic Set rewritten program using bottom-
up evaluation with a ground constraint solver would
terminate as the repeated subqueries would be detected.

The constraint adornment process using PVBounds
descriptions gives lpath(X,Y,N) : X = $dx,N >
$liy. The Constraint Magic rewritten program (after
redundancy removal) is given below.

Ipath(X, Y, N) —query(lpath(X ,$ly)), N = 1,
N > $ly, edge(X,Y).
Ipath(X, Y, N) —query(lpath(X ,$ly)), edge( X, 7),
lpath(Z, Y, N1),N = N1+1,N > Sly
query(lpath(a,2)).
query(lpath(Z,$ln1)) —query(lpath(X, $ly)),
$lve =Sy — 1, edge(X, 7).

A bottom-up evaluation of this program using
duplicate checking will not terminate since it generates
an infinite sequence of queries: query(lpath(a,?2)),
query(lpath(b, 1)), query(Ipath(c,0)),

query(lpath(b, —1)), query(lpath(c,—2)), and so on. O

To avoid this problem we use (at run-time) the con-
straint description VBounds (presented below) underly-
ing the PVBounds description used for adornment. Us-
ing the abstract operations defined below on VBounds
it 1s simple to maintain a single query fact per original
magic fact that subsumes all the query facts already
generated. Using the widening operation S/ vpoungs de-
fined below, infinite chains of query facts will not be
generated; if a new bound is tighter than the old bound,
the widening operator discards it, and if the new bound
1s weaker, both bounds are discarded.

Definition 7.1 (Bounds Description) The bounds
description (VBounds, @ vBounds, @ Lin) is defined as
follows. The description domain VBounds consists of
all finite sets of primitive constraints of the form v > [



RO : answer_f(X,Y,D) — f*(X,Y, D : sydney,0,10000).
R1:fYX,Y,D:$dx,8lp,%up) —X = 8dx,${p <S$up,e(X,Y,D),D>0,D>8lp,D < Sup
R2:fo(X,Y,D:$dy,SIp,$up) —X = $dx,$lp < S$up, e(X, Z, D1), D1> 0,
$dZ = Z, $ID2 = ma:z:(O, $ID — Dl), $UD2 = $uD — Dl,
F(Z,Y,D2:$dz,$lps, Sups), D2> 0,0 = D1+ D2, D > $ip, D < Sup.

Figure 1: Constraint Adorned Form of Flights Program

If we have a constraint solver that handles safe con-
straints (i.e. constraints which are tests or assignments
when reached) the adornment transformation can cause
a nonterminating top-down execution to become ter-
minating. Suppose for example the e relation is cycle
free except for edges from newark to newyork and vice
versa, but there is no path of length less than or equal
to 10000 from sydney to either newark or newyork. The
original program will run forever when it reaches the cy-
cle (assuming no memoing is performed). The adorned
program will never reach the cycle.

6 Constraint Magic Rewriting

One of the prime motivations for compiling constraints
in the manner we describe in this paper is to restrict
computation required in bottom-up evaluation of pro-
grams with constraints. This is because typically con-
straint solvers in bottom-up evaluation are only able to
deal with test and assignment constraints, since they
do not wish to involve non-ground atoms. If we apply
a Magic Sets transformation to the program CR(P, Q)
using a complete left-to-right sip strategy and a (magic)
adornment such that all parameters are & (bound) ar-
guments and all original arguments are f (free), then we
arrive at a range-restricted magic program where all the
constraints are tests or assignments when evaluated.

But there is some redundancy in this approach since
it adds extra arguments to the atoms, and in fact we are
only interested in the non-parameter arguments of the
answers and do not require they be connected to the
parameter descriptions which generated them. Hence
we define an extended Magic Templates rewriting which
takes a program P and query @) and produces a program
CMagic(P, Q) combining the effects of the Constraints
rewriting and Magic rewriting. Example 6.1 illustrates
how this separation is managed.

Example 6.1 (Constraint Magic Rewriting of Fli-
ghts Program) We continue with the adorned pro-

gram from Example 5.1. Given rule R2 Constraint

64

Magic rewriting replaces it by the rule

SR2:f%(X,Y,D) —query(f*($dx,$lp,Sup)),
X = $dy,Slp < $up, (X, Z, D1), D1 > 0,
F(Z,Y,D2),D2>0,D = D1+ D2,
D Z $ID,D S $uD.

which is restricted to generate a fact f(7) only if there
is a fact query(f®(3)) which specifies a constraint that
is satisfied by f2(3).

parameters are not required in adorned predicates, and

As noted earlier, the constraint

have been deleted in the above rule. The literals defining
the constraint parameters have also been dropped since
they are no longer used.

Further, the following rule is added to the rewritten
program in order to generate query facts for the literal
in the body of the above rule.

MR2.1 : query(f*($dz, $lpa, $upa)) —
query(f*($dx,$lp,%up)), X = $dx,
$lp < $up, e(X, 2, D1), D1 > 0,
$dZ = Z,$ID2 = ma:zt(O,$lD - Dl),
$UD2 = $uD — D1.

The above rules constitute the Constraint Magic
rewriting of a single rule from the original program.
The other rules from the original program are rewritten
as well to get the Constraint Magic rewritten program,
shown in Figure 2. O

7 Evaluation

We consider issues that arise in the evaluation of a
constraint rewritten programs. First we examine the

running example.

Example 7.1 (Evaluation of Flights Program)
Consider the Constraint Magic rewritten program CMa-
gic(P, Q) from Example 6.1. Semi-naive evaluation
[BR87a]) can be used to evaluate the
program. We omit details, but note that the bounds

(see, e.g.
arguments of the query(f°(...)) facts grow tighter
as paths are explored further, and the upper bound
becomes less than the lower bound for cities that



are simply computed as the tightest bounds, hence
$lp2 = maz(0,$lp — $D1).

Because the new adornment is the same (mod-
ulo renaming) as the original the analysis termi-
nates. prop_adorn also generates similar adornments for
e(X,Y,D) which may be used in database retrieval.
Although, for brevity, the above example does not illus-
trate it, in general multiple adornments are computed
for each atom. O

5 Constraint Adornment

The results of analyzing the query constraints of a
program P are parameterized constraints that hold of
all calls to each atom (for some suitable values of the
parameters). And guarantee that for each call to an
atom the values of the parameters are fixed before the
call is made. Constraint Rewriting modifies the program
to allow the parameterized constraints to be available
during execution, thus applying constraint information
earlier, in the case that the solver is restricted to only
solve ground constraints.

Constraint rewriting takes a program P and query
@ and produces a new program CR(P, Q) and query
CQuery(P, Q). Tt proceeds in three phases: first for
each rule for atom A extra arguments representing
the parameters of the parameterized constraint for A
are added to the head atom, and the parameterized
constraints are added to the rule body. Next for each
atom occurring in the body of a rule or in the query
@, extra arguments are added to the atom representing
its parameters and constraints are added to the rule to
calculate the parameter values. Finally the constraints
in each rule and the query are reordered so that by the
time they are reached they are either ground tests or
assignments.

The answers of the resulting program are guaranteed
to be equivalent to the answers of the original for the
query @) because the rewriting procedure has just added
redundant constraints. Formally,

Theorem 5.1 Let P be a range-restricted program.
Then,
0 € answersp({Q, true))
iff 6 € answerscr(p,g)({(CQuery(P, @), true)).

Example 5.1 (Constraint Adornment) Consider
the program P in Example 1.1 with query @ =
(7 — f(sydney, Y, D),0 < D, D < 10000). The Con-
straint Adornment rewriting propagates parametrized
query constraints into programs, and proceeds as fol-

lows. Constraint analysis, described in Example 4.2,
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determines the single parametrized query adornment
F(X,Y,D): X =8%dx A D > $lp A D < Sup for the
predicate f. Hence we generate an adorned predicate
f?%, where @ is defined as the above parametrized con-
straint. Here, $dx,${p and $up are the three parame-
ters to the constraint. The predicate has as arguments
the arguments of f, and the values of the parameters
$dx,$lp and $up.

We then create specialized forms of the two rules
defining f, which use the above constraint to prune their
derivations. Each primitive constraint is introduced
at the earliest point in the rule where enough of its
variables are bound that the values of all variables in
the constraint are fixed. In this process, in addition to
the given constraint and the constraints already in the
rule body, we also use primitive constraints that can
be derived. From constraint a, we deduce ${p < Sup
by projecting out variable D; it gets added at the
beginning of the rule. (The technique is from [KS93],
and details will be presented in the full paper.) Finally,
from the query on the program we introduce a new
predicate answer_f to compute answers to f that satisfy
constraint a with the particular values $dx = sydney,
$lp = 0 and $up = 10000. So CQuery(P,Q) =
(7 — answer_f(X, Y, D)). The rewritten rules are as

follows:

answer_f(X, Y, D) —f*(X,Y, D : sydney, 0,10000).

FUX,Y,D:$dx,%lp,%up) —X = $dx,${p < S$up,
e(X,Y,D),D>0,D>$lp, D < Sup.

FUX,Y,D:$dx,%lp,%up) —X = $dx,${p < S$up,
e(X,Z,D1),D1>0,f(Z, Y, D2),D2 >0,
DID1+D2,DZ$ID,D§$UD.

The analysis phase has derived constraints on the rule
body literals. Constraints on database predicates can be
used to perform indexing, but for brevity we ignore this.
The analysis phase in Example 4.2 determined that
the literal f(7, Y, D2) in the body of the second rule
defining f¢ also has the parametrized constraint ¢ on
it, and deduced the following expression for computing
the parameter values at run time:

$dZ = $Z, $ID2 = ma:l?(o, $ID—$D1), $UD2 = $UD—$D1

The equality constraints in this expression are added at
the earliest point in the rule body where they are safe.
Thus we get the program shown in Figure 1.

We have now obtained specialized rules for all
the adorned predicates that we generated, and the
adornment step now terminates. The resulting program

is CR(P, Q). O



The parametrized bounds descriptions do not involve
constants as described above, but can they be extended
to allow constants by merging them with VBounds
descriptions (Definition 7.1); we do not discuss details
for lack of space.

4.2 Adornment Analysis

We use “adornments” on predicates to represent (para-
metrized) constraints specified by queries on the pred-
A
query adornment is a pair in Atom x ACons. We
. p(Atom x ACons) —
p(Atom x ACons) that propagates query adornments.

icate. Let ACons be a constraint description.

define a function prop_adorn

It takes a set S of query adornments for predicates in
the program and deduces descriptions of query adorn-
ments that queries of the forms in S would generate
for the atoms in the bodies of the rules in the program
(assuming a left-to-right computation).

, B we let the notation
., B; and

Given a sequence By, ...
B;,1 < ¢ < m represent the sequence By, ..
let By represent the empty sequence,

prop_adorn(.5)
S =5U(Q, Cg) where @ is the initial query on the
program and Cg the query adornment
for each (A, C) € S
for each (A — 0 | By,...
fori =0tom—1
S = SU{(Bit1, Arestrict(vars(B;11), C,
0, vars(B;)))}

, Bm) € defnp(A,{})

return S

The crucial feature of the propagation function is
the function Arestrict. Arestrict(W, C,0, V') takes the
arguments: C is the abstract parameterized (calling)
constraint, # is the constraint appearing in the current
clause, and V are the variables that are fixed by the
time execution reaches this point, and computes an
the projection of the conjunction of ' and é onto
variables W as an abstract parameterized constraint
C’. That is, if © is a set of constraints and € o
© then Arestrict(W,C,0, V) « {§W9 NG| 8 €
O}

that 1t ensures that there is a deterministic function

The crucial additional property of Arestrict is

that takes the values for the parameters appearing in
C and values for the variables V and computes the
values of the parameters in C”. (The function which
computes parameter values is inserted into the rule in
the adornment rewriting phase.)

The least fixpoint of prop_adorn gives a set of
adornments such that each actual query (at run-time)
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falls within those described by this set. This can
be proved quite simply using the theory of abstract
interpretation. Formally, using the definition of top-

down operational semantics in Section 2,

Theorem 4.1 For each state (A : B,0)c in statesp(
(Q, true)), where o is a renaming, there exists (A, C') €

Ifp(prop-adorn) such that C' {ﬁwm(A)H}.

To finitely evaluate prop_adorn we must perform the
evaluation modulo renamings. Under this assumption
the least fixpoint of prop_adorn is guaranteed to be
finite if either the descriptions are finite for a finite set
of variables (as is the case for PVBounds), or if the
program is non-recursive. In the full paper we present
a more complicated version of prop_adorn which uses
widening operations to guarantee finite evaluation for
infinite domains that have widening operations, even if
the program is recursive.

Example 4.2 (Constraint Analysis) Consider the
program in Example 1.1. We use the parametrized
bounds description (Definition 4.3) in our analysis. The
query adornment for f(X,VY,D) is f(X,Y,D) : C
where C = (X =%dx A D <$up A D >$lp). The
only rule that generates new adornments for derived
(i.e., non-base) predicates is

F(X,Y,D)—e(X,Z,D1),D1>0,f(Z,Y,D2),
D2>0,D= D1+ D2

The adornment for the literal f(Z, Y, D2) is calculated
as C' = Arestrict(W,C,0,V), where § = (D1 >
0AD2>0 A D=Dl+D2), V=1{X,27 D1} and
W = {Z,Y,D2}. The resulting adornment (derived
as described below) is ¢/ = (7 = $dz N D2 <
Sups A D2 > $lpa) with the supporting deterministic
function $dz $7,%ups $up — $D1,8%(p>
maz(0,$lp —9$D1). (A § sign before a variable indicates
that the variable is bound.)

The adornment is computed as follows.

Fourier-
Motzkin elimination (see e.g. [Sch86]) is used to project
out the variables D, D1 and X from the constraint
D<$up AN D>8lp AN DI >0 A D2>0 A D=
DI+D2 N X=8%8X AN Z=%Z A D1=%D1 (which
is itself derived from the rule body constraints and the
constraints on the head predicate). Parametric variables
are just treated as ordinary variables in this process,
which is completely independent of the actual values the
parametric variables will take at run-time. The result
is(D2>0 A D2>8$lp—$D1 A D2 < $up —$D1),
which gives the form of the adornment C’. The values



an “abstraction function”. (Functions in the original
domain are also mapped to functions in the description
domain in such a way that the abstract functions are
‘correct’” w.r.t. the original function, and are discussed
in the full version of the paper.) More formally:

Definition 4.1 A description (D,«, E) consists of a
description domain (a complete lattice) (D,Cp), a data
domain (a complete lattice) (F,Cg), and a continuous
abstraction function o : £ — D.

We say that d € D a-approximates e, written d o e,
iff a(e) Cp d. When « is clear from the context we say
that d approximates e and write d o e. O

It 1s important that whether a given program is
terminating or not, an analysis of the program must
always terminate. If the description domain has an
infinite number of elements, and the given program is
recursive, there is a potential for an analysis to run
for ever. To avoid this problem, we use a “widening”

operation:

Definition 4.2 A widening operator [CoCT77] for a
description domain D is a function \yp : D x D — D
such that Yo,y € D both  Cp (¢ vp y) and
y Cp (z vp y) and (crucially) for each increasing
chain 2o Cp #; Cp ... the chain defined by 3, =
Toy .., Yis1 = Yi VD 2; contains only a finite number

of different elements. Note that by construction y; Cp
Yit1. O

In this paper, we are interested in analyzing con-
straints (on queries), and we use approximate descrip-
tions of constraints to perform analysis. We call descrip-
tions of sets of constraints constraint descriptions. As
a simple example, sets of linear arithmetic constraints
can be approximated by bounds constraints on indi-
vidual variables. For instance, the bounds constraint
X <B5AY > 0 approximates {X +YV <5AY >0,X =
4AY =3}. As another example, a set of linear arith-
metic constraints can be approximated by their convex
hull.

There are many possible approximations of a con-
straint domain; which one to use depends on the ‘ac-
curacy’ of description that is desired, on the cost of the
program analysis, and on the cost of program evalua-
tion based on the analysis. In particular, when ana-
lyzing non-recursive programs, we may be able to use
the given constraint domain itself, but when analyzing
recursive programs we typically want ‘coarser’ approxi-
mations in order to ensure termination of analysis.
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In this paper we use parametrized constraints instead
of actual constraints so that constants in query con-
straints can be provided at run time. Hence we use
parametrized constraint descriptions to perform pro-
gram analysis on parametrized query constraints. We
need constraint descriptions of the actual constraints
(as opposed to parametrized constraints) during evalu-
ation of the program which we discuss in a later section.

We give a formal definition of a particular parametri-
zed description, the ‘parametrized bounds description’
of the powerset of linear arithmetic constraints, p Lin,
below; the non-parametrized version of the description
(Section 7) is used during evaluation. In the following
definition, parameters $/ and $u represent bounds that
will be fixed only at runtime.

Definition 4.3 The parameterized bounds description
(PVBounds, a pvpounds, 9 Lin) is defined as follows.
The description domain PVBounds is the set of all
finite conjunctions of primitive constraints of the form
v > $l, v < $u, or v = $d, where v is a variable, $/,
is a parametric variable representing the lower bound
of variable v, $u, is a parametric variable representing
the upper bound of variable v and $d,, is a parametric
variable representing a definite value for v. The domain
is ordered by implication, that is, for dy, do € PVBounds
di CpyvBounds d2 iff di — d5. The abstraction function
aApvBounds -  Litn — PVBounds maps a set of linear
arithmetic constraints (representing their digjunction)
to 1ts best description.

APVBounds(©) =
N {v>8 | v € vars(©), glb(v,0) exists }
U{v < Suy | v € vars(0), lub(v, ©) exists }
U{v =8d, | v € vars(O©), v is fixed wrt each
6 €0}

where glb(v,©) is the greatest lower bound of v values
that are compatible with any linear constraint § € ©.
lub(v, ©) is defined similarly, and both can be computed
using Fourier-Motzkin elimination. The domain has
no infinite ascending chains and hence a widening

operation 1s unnecessary. O

Example 4.1 (Bounds Description) Let §; =
(“X>YAY>2AX>0AZ=2) and by = (7 =
INX <I10AY >22AY < 4) Then OfPVBounds({gl}) =
(X§$UX A XZ$IX A Y2$1y AN Z = $dy
apvBounds({02}) = (X < Sux A Y <Suy A Y
$lv N Z = $dz) and OfPVBounds({HLHZ}) = (X
Sux A Y2$1y A Z2$dz). (]

~—
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Magic Templates rewriting. Bottom-up evaluation of a
constraint-rewritten program has two phases:
Constraint Magic Templates The Magic rewriting
technique [BMSU86, BR87b, Ram88§] introduces query
predicates that carry the parameters of the query con-
straints deduced earlier. Constraint Magic Templates
(Section 6) is a version of Magic Templates rewriting
[Ram88] optimized to deal with constraint-adorned pro-
grams. We call programs generated by this rewriting
Constraint Magic programs.

Constraint Evaluation Constraint evaluation (Sec-
tion 7) is a version of Semi-Naive bottom-up evalua-
tion (see, e.g., [BR87a]), optimized to deal with Con-
straint Magic Templates rewritten programs. This stage
performs bottom-up evaluation of the Constraint Magic
rewritten program. For non-recursive programs, stan-
dard database view evaluation techniques can be used
instead, optionally optimized for evaluating Constraint
Magic rewritten programs.

Constraint evaluation of the Constraint Magic rewrit-
ten version of a program mimics a top-down evaluation
of the program, and has the following benefits over non-
memoing top-down evaluation: (a) evaluation is com-
plete (generates all answers in the limit), (b) evalua-
tion does not loop if cyclic subgoals are present, and (¢)
memoization of answers is performed, so computation
need not be repeated.

Example 3.1 (Ground Compilation of Query Con-
straints) We present a brief example to illustrate some
of the components of our technique. We use the domain
of equality constraints on structures in this example.
Suppose person is a collection of objects which have an
attribute age and an attribute addr which itself has an
attribute zipcode. The following rules selects adults in
target zipcodes to send mail to:

R1: mailto(X) — target_zips(7), adult(X
X.addr.zipcode = 7
— person(X), X.age > 21.

),

R2: adult(X)

Let the query on the program be Tmail_to(X), which
provides no constraints. The selection on zipcode
in the definition of R1 cannot be pushed into the
definition of adult by Magic Sets rewriting [BR87b]
X).

Magic Templates [Ram88] can push the constraint, but

since X is not fully ground before the literal adult(

requires the use of non-ground query facts in order to
do so.

Our technique deduces that the queries on adult(X)
have a parametrized constraint X .addr.zipcode = $1,
where the bindings for the parameter $1 can only be
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Hence it creates an adorned
It
then adds the parameter as an argument of adult®, and

deduced at run-time.
version adult® of adult specialized for the query.

introduces the parametrized constraint in the body of
the rule defining adult®. It gives the following adorned
program (where : is used to separate parameter values

from other arguments of adorned predicates):

RY : mail_to(X) — target_zips(Z), adult*(X : 7),
X.addr.zipcode = 7.

adult®(X : $1) —person(X),
X .addr.zipcode = $1, X .age > 21.

R2

We can see that the parametrized constraint on adult
in rule R1 has been pushed into rule R2’, making
it available for indexed retrieval of person and for
restricting the set of adult® facts generated.

The Constraint Magic rewriting of the adorned
program is as follows:

SR1:  mail_to(X) — target_zips(7),
adult®(X), X .addr.zipcode = 7
MR1.1: query(adult®(Z)) —target_zips(7).
SR2:  adult®(X) <« query(adult®($1)), person(X),
X .addr.zipcode = $1,

X.age > 21.

The constraint parameters are now part of the query
predicate, and are no longer part of the predicate adult®.

Bottom-up evaluation of the program generates only
ground facts, and yet has pushed the constraint on
zipcode into the rule defining adult®. This cannot be
achieved by Magic Sets or Magic Templates. We use the
example for pedagogical reasons — the program can be
optimized by, for example, the techniques of [KRBM89].
However, if the constraint involved a predicate that is
recursive with adult, or if the definition of adult involves
aggregation and cannot be unfolded into rule R1, earlier
techniques are not applicable. O

4 Constraint Analysis

In this section we present a program analysis technique
to deduce query constraint patterns.

4.1 Abstract Interpretation

Program analyses, such as groundedness analysis, or
in our case constraint analysis, are often performed
using abstract interpretation [CoCT7]. The idea is to
map elements of the domain on which the program
operates to elements in a description (or abstract)
domain which approximates the original domain, but
is more convenient for analysis. The mapping is called



set of constraints. A renaming is a bijective mapping
from Var to Var. We let Ren be the set of renamings,
and naturally extend renamings to mappings between
atoms, clauses, and constraints. Syntactic objects s and
s’ are said to be variants if there is a p € Ren such that
sp = s'. The definition of an atom A in program P
with respect to variables W, defnp(A, W), is the set of
variants? of clauses in P such that each variant has A
as a head and has variables disjoint from W — vars(A).
(The above definitions leads to an infinite set, in general,
which is finite modulo renaming.)

2.1 Top-Down Operational Semantics

We use the top-down operational semantics of a pro-
gram in order to prove correctness of our optimiza-
tion techniques. The top-down operational semantics
of a program is defined in terms of its “derivations”
which are reduction sequences of “states” where a state
consists of the current sequence of atoms and prim-
itive constraints, or “goal”, and the current answer
constraint. More formally, Goal = (Atom + Prim)=,
State = Goal x Cons.

A derivation of state s for program P is a sequence
of states sg — --- — s, where s = 55 and there 1s a
reduction from s; to s;41 where state (L : G,0) can be

reduced as follows:

1. If L € Prim and L A @ is satisfiable, it can be
reduced to (G, LA 0);

2. If L € Atom, it can be reduced to (B :: G,f) where
(L — B) € defap(L, vars(G) U vars(6)).

Note that
denotes concatenation of sequences.

A derivation is safe if for each state (L : G, 0) where L
1s a primitive constraint, L is safe wrt #. A derivation is

: denotes an infix cons operation and ::

successful if the last state in the derivation is of the form
(€,0), where ¢ is the empty goal. The constraint 19 is
an answer to state s if there is a successful derivation
from s to a final state with constraint . We denote the
set of answers to s for program P by answersp(s), the
derivations by derivp(s), and the set of states appearing
in derivations of s by statesp(s).

3 Overview Of The Optimization
Technique

We introduce the notion of parametrized constraints in

this paper. A parametrized constraint is a constraint

2Since we assumed that all constants are part of the con-
straints, and do not occur in literals, we need not consider unifi-
cation here.
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where parameters of the form $7 may be used as place
holders for constants whose value will be known at run-
time but is not known at compile time. The $i’s are re-
ferred to as parameters to the constraint. We sometimes
refer to parametrized constraints as constraint forms.
For example, X > $1 is a parametrized constraint, and
represents a constraints that at run-time will have the
form X > n where n is some constant value.

Given a program, and a query with a parametrized
constraint, our optimization technique analyzes the
program, deduces the form of constraint subqueries
needed to solve the given query, and generates a
program which has query constraints compiled in; we
call the rewriting technique Constraint Adornment, and
the generated program a constraint-adorned program.
The constraint-adorned program can be evaluated top-
down, for example using Prolog, or can be evaluated
bottom-up after performing a version of the Magic
Templates rewriting of [Ram88], modified to handle
constraint queries, which we call Constraint-Magic
rewriting.

The steps used to generate the constraint adorned
program are as follows.

Constraint Analysis: Constraint analysis (Section 4)
deduces the possible constraint forms on queries that are
generated by the program. For example, queries on a
predicate may have the constraint form X > $a, where
$a is a parameter dependent on the actual query. The
analysis may produce an approximation in case there
are too many different constraint forms generated by the
program. The approximation is safe in that for every
constraint form that could actually be generated, there
1s a less restrictive constraint form in the approximation;
a more restrictive query can be replaced by a less
restrictive query without affecting correctness.

Constraint Adornment In this step (Section 5), an
‘adorned’ form of the original program is generated,
with a specialized form of each original rule correspond-
ing to each constraint query form deduced above for the
head predicate of the rule. The parameters of the query
constraints are added as extra arguments of predicates,
and constraint checking code is compiled into the rules,
using the values provided by the parameter arguments
of the query. This stage can be viewed as an extension of
the adornment phase of Magic Sets rewriting [BR87b].

We now have to evaluate the constraint adorned
program. This can be done by evaluating the adorned
program top-down, using a constraint solver that need
only solve ground constraints. Alternatively, we can

evaluate the program using bottom-up evaluation with



queries.  Qur technique should provide similar
benefits, while providing a more powerful selection

pushing technique.

Path-selections in object-oriented database query
languages can be treated as constraints, and pushed
into programs using our technique. By treating
stored (base) relations as constraints, our techniques
can also be used to generalize predicate pushdown

optimizations (see, e.g., [UlI89]).

The query constraints that we consider are different
from integrity constraints in that they are not required
to hold of the relations; they merely specify constraints
on the answers that are required. However, our
techniques can be used beneficially as part of other
methods to check if integrity constraints are satisfied.
Conversely, integrity constraints can be used in our
optimization technique to improve the pushing of query
constraints.

We present an overview of our technique in Section 3,

and a comparison with related work in Section 9.

2 Preliminaries

A constraint domain A consists of a domain of values,
an alphabet of constant, function and (constraint)
relation symbols, and a fixed interpretation for each
of the defined symbols. A primitive constraint over a
constraint domain A is of the form r(#,...,t,) where
r is an n-ary relation symbol from A and 4, ..., 1, are
terms over A. A constraint over A is a conjunction
of primitive constraints over A. For example, the
constraint domain £ of linear arithmetic of inequalities
on the reals (e.g. [Sch86]) consist of the domain:
reals, the alphabet: of rational constants, functions
{+, —, x}, and relations {<, <,=,>,>}, and the usual
X < Y and
3Xx Z+ Y <2 are primitive constraints in this domain,
while (X < Y)A(3x Z+ Y < 2)is a constraint which

1s not primitive.

real interpretation of these symbols.

A wvaluation o is a mapping from variables to values
in A. We naturally extend valuations to map terms,
We extend the
fixed interpretation of A under the valuation ¢ in the

primitive constraints and constraints.

usual way. In particular a valuation o is said to satisfy
a constraint # if A |= 6o. For example, 6 > 5 A3 < 4
is satisfied in the reals, and the valuation {X /6, Y/3}
satisfies the constraint X > 5 A Y < 4.

A projection function, denoted Iy, &, where W =
{V,..

is a (possibly non-deterministic) function that returns

., Va} is a set of variables and 6 a constraint,
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a constraint ¢ such that A = (¢ — I Vi3I Va--- V,0).
In other words, the function projects out the variables
Vi..., V, from the constraint. The projection function
depends on the constraint domain, and we assume that
it 1s provided. For example, given a linear arithmetic
inequality constraint 7 > Y +1A X > Y AY > 4,
the variable Y can be projected out, using the well-
known Fourier-Motzkin elimination algorithm (see, e.g.,
[Sch86]), to get the constraint 7 > 5 A X > 4.

We define 559, the projection onto S of 8, where §
1s an expression as Elvam(e)\wm(s) f where function vars
takes a syntactic object and returns the set of (free)
variables occurring in it.

An atom is of the form p(zy,...,2,) where p is a

predicate symbol and 1,..., %, are distinct variables

(for simplicity).! A constraint program over a domain
A is a set of rules of the form H «— By, ..

H, the head, 1s an atom, and in the body each B; is an

., B, where

atom or primitive constraint over 4. Often we will be
interested in separating the constraint part of a rule,
) Bm
, B, are atoms, and € is the constraint.

in which case it will be written H «— 6 | By,...
where By, ...
The following is an example of a rule in a constraint
program:

goodpath(X, Y, C, L) — C < 500, L <4000,
path(X,Y,C, L)

A primitive constraint L is a test wrt to a constraint
¢ if @ implies each variable in I is fixed (i.e. for each
v € vars(L)
constraint ¢ = t i1s an assignment wrt 0 if & 1implies

¢ — (v = a) for some constant a). A

all variables in ¢ are fixed and z does not occur in 6.
A constraint L is safe wrt 0 if L is either a test or an
assignment wrt 6.

In this paper, we consider programs that generate
only ground answer facts and all of whose constraints
are safe wrt the bindings (equality constraints) provided
by atoms earlier in the rule. A rule is said to be range-
restricted iff every variable that appears in the rule also
appears in an atom in the body of the rule. For example,
the rule defining goodpath above is range-restricted. A
program is said to be range-restricted iff every rule in
the program is range-restricted. It is easy to show
that any fact derived by a range-restricted program
is ground. (We can weaken the range-restrictedness
(sufficient) condition for groundedness by instead using
an analysis such as [CDE91].)

Let Var be the set of variables, Atom the set of atoms,

Prim the set of primitive constraints, and Cons the

Yp(t1,...,tn) can be replaced by 3 = 1 A -+ Azp = I A

p(z1,...,0n).



involve parameters. We illustrate the limitations using
an example.

Example 1.1 (Flights Query) Consider the follow-
ing program that computes flights along with their dis-
tances, and a query that requests flights of distance less
than a specified value.

F(X,Y,D) — ¢(X,Y,D),D > 0.

F(X,Y,D) — e(X,Z,D1),D1>0,f(Z, Y, D2),
D2>0,D = D1+ D2

Query: ?-f(sydney, Y, D),0< D, D < 10000.

The predicate e is assumed to be defined in the database
and is also referred to as a base predicate.

Evaluation using the algorithms of [SR93a] or [KS93]
compute no paths of length greater than 10000, and
generate only ground facts and queries. However, if a
query asks for paths from node sydney of length less
than 10000, and we find that node rio is at a distance
6000 from sydney, we can actually ignore paths from
rio of length greater than 4000 (i.e., 10000 — 6000)
when answering the query. The above mentioned
query evaluation techniques are unable to deduce this,
although if the program were evaluated top-down with
a full constraint solver this restriction could be inferred.
O

In this paper, we present a program rewriting that
given a program generates rewritten programs that can
propagate query constraints, such as the above, while
generating only ground queries, and ground answers
provided the original program generates only ground
answers. In particular, on Example 1.1 our technique
is able to infer and use the tight restrictions on path
length, without using a full constraint solver at run-
time.

The contributions of this paper are as follows:

1. We introduce the notion of parametrized constraints
(Section 3).

straints where some of the constants are not speci-

Parametrized constraints are con-

fied, but are provided as parameters (at run time).
Parametrized constraints can be thought of as spec-
ifying constraint forms.

2. We present a program analysis technique to deduce
the forms of constraints in queries and subqueries
on a program (Section 4). The technique is based
on abstract interpretation, and is generic in that it
can be used with any constraint domain. Exact con-
straint analysis techniques such as [SR93a] can po-
tentially generate an infinite number of constraints
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on recursive programs; our analysis technique, like
that of [IKKS93], uses safe approximations to ensure
that only a finite number of query constraint forms
are generated.

. We present a program adornment technique which

rewrites the program rules to explicitly introduce
the parametrized query constraints deduced in the
analysis phase (Section 5). We call the resultant
The

analysis and adornment phase can be viewed as

program the constraint adorned program.

performing compilation on patterns of constraints
present in queries.

The constraint adorned program can be evaluated
using any evaluation technique (either top-down or
bottom-up) that handles ground constraints. This
i1s particularly important in the database context,
since most evaluation mechanisms do not handle
non-ground facts or constraints.

. We present Constraint Magic rewriting, which is

a version of the Magic Sets query optimization
technique [BR87b] tailored to deal with constraint
adorned programs (Section 6). The constraint
adornment and Constraint Magic rewriting together
can be viewed as a powerful generalization of the
Magic Sets idea of compiling query calling patterns
so as to push selections into rules/views (which may
be recursive). Magic Sets handles only equality
constraints in queries, whereas our technique 1is
applicable to any constraint domains, for example

linear arithmetic inequalities.

. We present an evaluation technique for Constraint

Magic rewritten programs (Section 7). The selec-
tions provided by the query constraints can enable
termination in cases where evaluation of the Magic
rewritten program would not have terminated. With
respect to a top-down non-memoing approach, we
show that our optimizations never introduce non-
termination. However, in general, it is possible for
a program that terminates when evaluated bottom-
up without using query constraints to generate an
infinite number of different constraint queries. Our
evaluation technique performs ‘widening’ on query
constraints, thereby guaranteeing termination when-
ever the evaluation of the Magic rewritten program
would have terminated.

. Our approach is applicable to non-recursive as well

as to recursive queries on databases. Mumick
[MFPR90a] demonstrate the evaluation
cost benefits of Magic rewriting for non-recursive

et al.
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Abstract

We present a general technique to push query constraints
(such as length < 1000) into database views and (constraint)
logic programs. We introduce the notion of parametrized
constraints, which help us push constraints with argu-
ment values that are known only at run time, and develop
techniques for pushing parametrized constraints into predi-
cate/view definitions. Our technique provides a way of com-
piling programs with constraint queries into programs with
parametrized constraints compiled in, and which can be ex-
ecuted on systems, such as database query evaluation sys-
tems, that do not handle full constraint solving. Thereby
our technique can push constraint selections that earlier
constraint query rewriting techniques could not. Our tech-
nique is independent of the actual constraint domain, and
we illustrate its use with equality constraints on structures
(which are useful in object-oriented query languages) and
linear arithmetic constraints.

1 Introduction

The area of constraint logic programming [JL87, KKR90]
has been receiving a lot of attention in recent times.
Such programs generate queries and answers that con-
tain constraints. There are many applications where
constraints are very useful, and that also require
database support. For instance, queries on flight
databases often have upper bound constraints on the
total cost of the flights and the number of hops on the
flight.

straints on the cost of the composite part. Constraint

Queries on parts hierarchies may specify con-

logic programming systems can derive constraints on
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subqueries from constraints on queries, and prune the
set of answers that are generated correspondingly. In
general, answers may also have constraints. Constraints
are typically expressed as expressions on the variables
in a query or answer; for example, a rule ¢(X): =X >
5, p(X) gives rise to a constraint query p(X): X > 5.

Query evaluation techniques developed for databases
(see, e.g. [KRB85, BR86]) cannot be directly extended
to handle constraints since they assume that all facts
are ground, i.e., do not contain variables, whereas con-
(Exten-
sions to handle non-ground facts have been proposed

straint facts and queries contain variables.

[Ram88, SRI3b], but few systems implement them cur-
rently, and efficiency is a concern [RS91, SR93b].)

We use the term program to refer to both database
view definitions and to constraint logic programs, since
Pro-
grams where answer facts do not contain any con-

our techniques are applicable to both domains.

straints, but where there are constraints (such as X < 0)
in rule bodies, are quite common. If such programs
are evaluated in a constraint logic programming sys-
tem, subgoals that are generated include constraints,
and the constraints are used to avoid generating answers
that will not be useful. This can provide very significant
time and space benefits, and can even allow for termina-
tion on programs where evaluation without query con-
straints would not terminate. On the other hand, sub-
goals for such programs include variables, hence cannot
be evaluated using standard database query evaluation
techniques.

An approach used in the past to avoid generating
non-ground constraint queries was to rewrite constraint
programs to push, as far as possible, constraints
into rules at compile time, and derive programs that
generate only ground queries. Such approaches were
presented in [KRBM89, MFPRO0b, SR93a, KS93].

However, these approaches are limited in their ability
to push constraints, and cannot handle constraints that



