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Applications in which large amounts of data must be analyzed, and the analysis is too complex to be performedusing a less expressive language such as SQL, are likely to bene�t from the combination of features providedby CORAL. Examples of such applications include sequence queries, such as stock market analysis queries andDNA sequence analysis queries, and generalized transitive closure queries, such as bill-of-materials queries. Wediscuss several applications of CORAL in the paper.Queries written in a declarative language do not specify how they should be evaluated. Since the databaseon which the queries are evaluated may be quite large, e�cient execution of declarative queries is an importantrequirement of any deductive database system. We believe that no one evaluation technique is the best in allsituations. Hence CORAL supports a wide range of evaluation strategies and optimization techniques ([Ram88,NRSU89, RSS94, KRS90, RS91, RSS92a], for instance). CORAL automatically chooses an e�cient evaluationstrategy for each program but, given the rich set of constructs in the language, we believe that some userguidance is critical to e�ectively optimizing many sophisticated programs. Several optimization techniques maybe simultaneously applicable to the same program. Further, di�erent optimization and evaluation techniquesmay be ideal for di�erent parts of the program. A challenge faced by CORAL was how to e�ectively combinedi�erent optimization and evaluation techniques, and to provide users with the ability to choose, in a relativelyorthogonal manner, from the suite of optimizations supported by CORAL. The module structure, describedbelow, is the key to meeting this challenge.A CORAL program is a collection of modules, each of which can be separately compiled (into CORAL internaldata structures). Modules are the units of optimization and also the units of evaluation. Evaluation techniquescan be chosen on a per-module basis, and di�erent modules with di�erent evaluation techniques can interact ina transparent fashion; the evaluation of each module is independent of the techniques used to evaluate othermodules. In addition, the user can optionally specify high-level annotations at the level of each module, to guidequery optimization. The ability to mix and match di�erent evaluation strategies and optimization techniquesin di�erent modules greatly enhances the practical utility of the system, and reects well upon the modularityof the system. CORAL is more exible than other deductive database and logic programming systems in thisrespect. We consider the annotation-based approach to control, and some of the novel annotations supported,to be important contributions of the CORAL project.While declarative languages can provide considerable ease of expression, users may want to code parts oftheir applications in an imperative language for reasons of e�ciency, or for performing inherently imperativeactions such as updates or user interaction. Hence, an important goal of the CORAL e�ort was to integratethe deductive system with a general purpose programming language, with minimal impedance mismatch. SinceCORAL is implemented in C++ [Str91], this is the language with which CORAL has been interfaced. Users canprogram in a combination of declarative CORAL and C++, and the interface is bi-directional: (1) CORAL codecan be embedded within C++ code and, further, data in the database can be manipulated from C++ directly,using high-level abstractions provided by the CORAL interface. (2) Declarative CORAL code can use predicatesde�ned using C++ procedures.To provide e�cient support for novel applications, CORAL allows the user to create new C++ classes, andmanipulate objects of these classes in the declarative query language. New implementations of relations andindices can also be added easily. Thus the CORAL deductive system is extensible. Extensibility has proven veryuseful in several CORAL applications.The CORAL system utilizes the EXODUS client-server storage manager [CDRS86] to provide support fordisk-resident relations; however, it can run in a stand-alone mode, without EXODUS, if all data is in mainmemory. The CORAL architecture thus supports an environment where one or more clients use copies ofthe CORAL system to execute queries, accessing data from a shared EXODUS server. Since the client-serverinteraction (including concurrency control, bu�er management and recovery) is largely handled by EXODUS,much of the design e�ort has focussed on the architecture of the system at each client.The CORAL deductive system is available from the University of Wisconsin along with an extensive usermanual and a large suite of sample programs.2 The actual implementation includes all the features described in2CORAL is free software available by anonymous ftp from ftp.cs.wisc.edu.2



this paper, unless otherwise stated.The rest of this paper is structured as follows. In Section 2, we present the declarative features of CORAL;this is the primary focus of the system. We briey discuss the interactive environment of the CORAL system inSection 3, touching upon some interesting features like data organization capabilities, transaction facilities, anddebugging tools. In Sections 4{7, we discuss various aspects of the system implementation, from the CORALsystem architecture, down to the underlying representation of data in the system. Section 4 contains an overviewof the CORAL system architecture. Section 5 provides an overview of query evaluation and optimization.Section 6 covers the basic strategies used in evaluating a module, as well as several important re�nements. Thissection also addresses user guidance of query optimization via annotations. Section 7 explains the underlyingrepresentation of data used in CORAL. The CORAL/C++ interface and support for extensibility in CORALare discussed in Sections 8 and 9. In Section 10 we discuss the performance of the CORAL system using afew representative programs. In Section 11 we mention several applications that have been developed using theCORAL system, to illustrate the utility of deductive database systems in practice. We discuss related systemsin Section 12. Finally, we provide a retrospective discussion of the CORAL design and outline future researchdirections in Section 13.2 Declarative Language FeaturesWe describe the declarative language provided by CORAL, informallypresenting some concepts such as constants,variables, terms, facts and rules along the way. Formal de�nitions of these concepts may be found in logicprogramming texts such as [Llo87].2.1 Declarative Language: Syntax and SemanticsThe CORAL syntax is modeled largely after Prolog. Numbers, identi�ers beginning with lower-case letters andquoted strings are constants, and identi�ers that begin with an upper-case letter are variables.Consider a database with an employee relation having three attributes: name; department and salary, andthe following facts:employee(\John"; \Toys for Tots"; 35000):employee(\Joan"; \Toys for Tots"; 30000):The above facts can be interpreted as follows: The �rst fact indicates that \John" is an employee in the\Toys for Tots" department and has a salary of 35000. The second fact indicates that \Joan" works for thesame department and has a salary of 30000.Constants and variables constitute simple terms. In order to express structured data, complex terms arerequired. Complex terms are constructed using functors, i.e., uninterpreted function symbols as record con-structors. (Functors are represented using identi�ers beginning with a lower-case letter.) Such terms can bearbitrarily nested. The following fact illustrates the use of complex terms:address(\John"; residence(\Madison"; street add(\Oak Lane"; 3202); 53606)):This fact can be interpreted as follows: The residence of \John" is \3202 Oak Lane" in the city of \Madison",and has a zip of 53606. The function symbols residence and street add are used as record constructors.Rules in CORAL take the form:p(t): �p1(t1); : : : ; pn(tn):The semantics of CORAL rules is based on a declarative reading of the rules, unlike Prolog which has anoperational reading of the rules. Informally, a rule is to be read as an assertion that for all assignments of termsto the variables that appear in the rule, the head is true if each literal in the body is true. (In particular, a fact3



module listroutines.export append (bbf; bfb).append([ ]; L; L):append([H j T ]; L; [H j L1]) : � append(T; L; L1):end module. Figure 1: The Append Programis just a rule with an empty body.) A CORAL program is a collection of rules. (These rules may be organizedinto modules, as we discuss later.)It should be emphasized that a declarative language allows the programmer to express the meaning of aprogram, but o�ers no guarantee of execution strategy or order. This implies that declarative programs shouldnot use features (like updates) that have side-e�ects3 .In the deductive database literature, it is common to distinguish a set of facts as the EDB or extensionaldatabase, and to refer to the collection of rules as the IDB or the intensional database. The signi�cance ofthe distinction is that at compile time, only the IDB, and possibly meta-information about the EDB, such asschema and functional dependency information, are examined; the actual contents of the EDB are assumed tobe unavailable at compile time. Thus, the IDB is viewed as a program and the EDB as the input to the program.A principal attraction of the logic programming paradigm is that there is a natural meaning associated witha program. As we have seen, each fact and rule can be read as a statement of the form \if <something is true>then <something else is also true>". In the absence of rules with negation, set-generation and aggregation, themeaning of a program can be understood by reading each of the rules in the program in this manner, with thefurther understanding that the only true facts are those that are either part of the input EDB or that followfrom a repeated use of program rules. More formally, the semantics of CORAL programs is given by the least�xpoint (see Lloyd [Llo87], for example) of the program, with the EDB as the input to the program.CORAL goes much further towards supporting this simple semantics than logic programming languages likeProlog. For programs with only constants and variables as terms and without negation, set-grouping or aggre-gation, i.e. DATALOG programs, this simple semantics is guaranteed. (More precisely, the default evaluationstrategy is sound, complete and terminates for this class of programs.) It is possible that the set of relevant infer-ences is in�nite in the presence of terms with function symbols; in this case, termination cannot be guaranteed,but the evaluation is still sound4; evaluation is also complete if it terminates.In subsequent sections, we discuss more advanced features of the CORAL declarative language, such asnon-ground facts, negation, set-generation and aggregation.2.2 ModulesCORAL users can organize sets of rules and facts into modules. We introduce the syntax using a program toappend two lists, given in Figure 1. This program illustrates the notion of modules, and CORAL's support forcomplex objects such as lists.5Modules can export the predicates that they de�ne; a predicate exported from one module is visible to all othermodules. The export statements also de�ne what forms of external queries are permitted on the module (\b"denotes an argument that must be bound in the query, and \f" an argument that can be free). For example, one3CORAL however does o�er one evaluationmode called pipelining that o�ers an explicit guarantee of a �xed evaluation strategy,and thus permits a meaningful use of such features within a program. This is discussed in greater detail in Section 6.4The \occur check" has been omitted from the current implementation of CORAL, as in all Prolog systems, for reasons ofe�ciency. This compromises soundness for programs with non-ground terms and functors.5The notation for list terms follows Prolog. A list is written in the form [elem1; elem2; : : : ; elemn ]; [ ] denotes the empty list.Given an element e and a list l, [ejl] denotes the list obtained by adding e to the front of l. A list [HjT ] can be uni�ed with agiven non-empty list [elem1; elem2; : : : ; elemn ] by binding H to elem1, which is the head of the given list, and binding T to the list[elem2; : : : ; elemn ], which is the tail of the given list. The tail of a list of the form [elem1] is [ ].4



can ask the following queries on the listroutines module in Figure 1: ?append([1; 2]; [3; 4]; X), which correspondsto the bbf adornment, and ?append([1; 2]; X; [1;2; 3; 4]), which corresponds to the bfb adornment.2.3 Non-Ground FactsCORAL permits variables within facts. As an example, consider Figure 1. It is possible to query append asfollows:6Query: ?-append([1; 2; 3;4; X]; [Y; Z]; ANS):and get the answer (a fact with variables in it)ANS = [1; 2; 3; 4; X;Y; Z]:The meaning of a variable in a fact is that the fact is true for every possible replacement of each variable bya ground term. Thus a fact with a variable in it represents a possibly in�nite set of ground facts. Such factsare often useful in knowledge representation, natural language processing and could be particularly useful in adatabase that stores (and possibly manipulates) rules. Non-ground facts may also be useful to specify constraintfacts [Ram88, KKR90], although they are not supported currently in CORAL. Since CORAL allows non-groundfacts, rules are not required to be range-restricted7 . To the best of our knowledge, CORAL is the only deductivedatabase system, other than XSB [SSW93], to support non-ground facts.2.4 NegationCORAL supports a class of programs with negation that properly contains the class of non-oundering left-to-right modularly strati�ed programs ([Bry89, Ros90]). A program is non-oundering if all variables in anegative literal are ground before the literal is evaluated (in the left-to-right rule order). Intuitively, a modularlystrati�ed program is one in which the answers and sub-queries generated during program evaluation involve nocycles through negation. This class of programs properly includes the class of programs with locally strati�ednegation [Prz88]. For programs without negation, this semantics coincides with the least �xpoint semantics.The keyword \not" is used as a pre�x to indicate a negative body literal. For instance, given a predicateparent, we can test if a is not a parent of b by using \not parent(a; b)". Such a literal can be used in a query,or in the body of a rule.The following example from [Ros90] illustrates the use of modularly strati�ed negation in a program. Supposewe have a complex mechanism constructed out of a number of components that may themselves be constructedfrom smaller components. Let the component-of relationship be expressed in the relation part. A component isknown to be working either if it has been (successfully) tested or if it is constructed from smaller components,all of which are known to be working. This is expressed by the following program.working(X) : � tested(X):working(X) : � part(X;Y ); not has suspect part(X):has suspect part(X) : � part(X;Y ); not working(Y ):Note that the predicate working is de�ned negatively in terms of itself. However, the part relation is acyclic, andhence the working status of a component is de�ned negatively in terms of sub-components, but not negativelyin terms of itself. CORAL provides an evaluation mechanism called Ordered Search [RSS92a] that evaluatesprograms with left-to-right modularly strati�ed negation e�ciently. This is described further in Section 6.5.1.6The current CORAL implementation by default performs certain optimizations that assume the absence of non-ground facts.These optimizations do not a�ect this query. In general, if non-ground facts might be generated during the evaluation of a module,these optimizations should be disabled, adding an annotation \@non ground facts +." to the module.7A rule is range-restricted if every variable in the head of the rule also appears in the body. Non-ground facts in the databaseare actually a special case of non-range-restricted rules where the body is empty.5



2.5 Sets and MultisetsSets and multisets are allowed as values in CORAL. An example of a set is f1; 2; 3; f(a; b); ag, while f1; f(a); f(a)gis an example of a multiset. Sets and multisets can contain arbitrary values as elements. Since CORAL al-lows arbitrarily nested structures, the universe of discourse is an extended Herbrand universe which includessets [BNST91], as in LDL, and multisets, rather than the Herbrand universe which is standard in logic program-ming.There are two ways in which sets and multisets can be created using rules, namely, set-enumeration (f g) andset-grouping (<>); the syntax is borrowed from LDL [NT89], but there are some di�erences in semantics whichwe discuss later.The following fact illustrates the use of set-enumeration:children(john; fmary; peter; paulg):The following rule illustrates the use of set-grouping:p(X;< Y >) : � q(X;Y; Z):This rule uses facts for q to generate a multiset S of instantiations for the variables X;Y , and Z. For each valuex of X in this set it creates a fact p(x; �Y �X=xS), where �Y is a multiset projection (i.e., it does not do duplicateelimination). Thus, given facts q(1; 2; 3); q(1; 2;5) and q(1; 3; 4) the above rule derives the fact p(1; f2; 2; 3g).The use of the set-grouping construct in CORAL is similar to the grouping construct in LDL | however,set-grouping in CORAL is de�ned to construct a multiset, whereas it constructs a set in LDL. We can alwaysobtain a set from the multiset using the makeset operator. In fact, with the following rule, the evaluation isoptimized to create a set directly, rather than to �rst create a multiset and then perform duplicate eliminationto convert it to a set.p(X;makeset(< Y >)) : � q(X;Y; Z):In several programs, the number of copies of an element is important, and the support for multiset semanticspermits simple solutions. For example, to obtain the amount spent on employee salaries, the salary column canbe projected out and grouped to generate the multiset of salaries, and then summed up. The projection andgrouping in LDL yields a set of salaries, and if several employees have the same salary, the total amount spenton salaries is hard to compute.CORAL requires that the use of the set-grouping operator be left-to-right modularly-strati�ed (in the sameway as negation). This ensures that all derivable q facts with a given value x for X can be computed beforea fact p(x; ) is created. Without such a restriction, it is possible to write programs whose meaning is hard tode�ne, or whose evaluation would be ine�cient.8 The modularly strati�ed semantics [Ros90], although originallydescribed for negation, can be easily extended to set-generation.General matching or uni�cation of sets (where one or both of the sets can have variables) is not supportedin CORAL, unlike in LDL, which supports set-matching. The evaluation mechanism for set-matching in LDLgenerates a number of rules at compile time that is exponential in the size of the largest set-term in the programtext [STZ92]. The use of set-matching is limited in CORAL to avoid this problem. A set-term is restricted to beground (as in LDL) and to match either another (identical) ground set-term or a variable. We believe that most,if not all, uses of set matching can be implemented naturally using the suite of functions (such as member), thatCORAL provides on sets; we present an example in the next section.8LDL imposes the more stringent restriction that uses of grouping be strati�ed. We note that while EKS-V1 [VBKL90] does notsupport set-generation through grouping, it does support set-generation in conjunctionwith aggregate operations such as count; minand sum. Indeed, EKS-V1 allows recursion through uses of aggregation.6



module shortest path.export shortest path(bfff; ffff).shortest path(X;Y; P;C) : � s p length(X;Y;C); path(X;Y; P;C):s p length(X;Y;min(< C >)) : � path(X;Y; P;C):path(X;Y; P1; C1) : � path(X;Z; P;C); edge(Z; Y;EC);append([edge(Z; Y )]; P; P1); C1 = C + EC:path(X;Y; [edge(X;Y )]; C) : � edge(X;Y;C):end module. Figure 2: Program Shortest Path2.6 Operations on Sets and MultisetsCORAL provides several standard operations on sets and multisets as system-de�ned predicates. These includemember; union; intersection; difference;multisetunion; cardinality; subset, and makeset. For reasons of e�-ciency, most of these are restricted to testing, and will not permit generation | for example, the subset predicatecan be used to test if a given set is a subset of another but cannot be used to generate subsets of a set. Thepredicate member is an exception in that it can be used to generate the members of a given set.CORAL allows several aggregate operations to be used on sets and multisets: these include count;min;max;sum; product; average and any. Some of the aggregate operations can be combined directly with the set-generation operations for increased e�ciency. For instance, the evaluation of the following rule is optimizedto store only the maximum value during the evaluation of the rule, instead of generating a multiset and thenselecting the maximum value.maxgrade(Class;max(< Grade >)) : � student(S;Class); grade(S;Grade):This optimization is also performed for count; min; sum and product.The program in Figure 2 illustrates how to use aggregation to �nd shortest paths in a graph with weightededges. (The program as written is not e�cient, and may loop for ever on some data sets; in Section 6.6.3 wedescribe how annotations may be used to generate an e�cient version of the program.)The following example illustrates the use of member to generate the elements of a set.ok team(S) : � old team(S); count(S;C); C � 3;member(X;S);member(Y; S);member(Z; S); engineer(X); pilot(Y ); doctor(Z):Each tuple in old team consists of a set of people. An ok team tuple additionally must contain an engineer,a pilot and a doctor. Note that a team containing a single member who is an engineer, a pilot and a doctorwould qualify as an ok team. This program is a translation into CORAL of an LDL program from [STZ92];the semantics of the original LDL program required that a team contain at most three members. The literalscount(S;C); C � 3 in the body of the rule ensure this.3 Interactive System EnvironmentCORAL presents users with an interactive environment for program development and ad-hoc querying.9 Thisinterface resembles the interface provided by typical Prolog interpreters. A number of utility commands that ma-nipulate various system defaults that a�ect optimization and evaluation choices are available from this interface.We now describe some of these features.9CORAL can also be accessed via its interface with C++, as described in Section 8.7



3.1 Update FacilitiesThe CORAL system permits updates to base relations via imperative rules that can be evaluated at the commandprompt. (Files containing a sequence of imperative rules can also be consulted from the commandprompt.) Theserules can be of one of the following forms:� head := body: : assigns all qualifying tuples to head relation.� head + = body: : adds all qualifying tuples to head relation.� head � = body: : deletes all qualifying tuples from head relation.The syntax of the head and the body of the rules is the same as in declarative rules within modules.If the head predicate also appears in the body of the rule, and head facts corresponding to successful ruleinstantiations are immediately inserted/deleted, the result of the application of the imperative rule could becomeorder-dependent, which is undesirable. To avoid this problem, CORAL uses a delayed update semantics: thebody is fully evaluated, and (the multiset of) all head tuples from successful instantiations are inserted into, ordeleted from, the appropriate relation.CORAL supports transactions on disk-resident relations. Commands to initiate and terminate a transactioncan be invoked from the CORAL prompt; at any time, only one transaction can be active within a single CORALprocess.3.2 Data OrganizationIn CORAL, data is stored as tuples in relations. Relations themselves can be organized into named workspaces.A workspace is a collection of relations, which can be either EDB relations or relations corresponding to pred-icates exported by modules. A user can have several named workspaces, copy relations from one workspace toanother (or simply make a relation in one workspace visible from another without copying), update relations ina workspace, or run queries against a workspace. It is also possible to save a workspace as a text �le betweenexecutions. There is always a current workspace, and new workspaces can be created interactively. Data canbe loaded into the current workspace either by explicitly inserting facts into relations or by consulting text �lesthat hold the data (as in Prolog systems).Persistent relations exist in a special workspace and can be made visible to all other workspaces withoutcopying. When a workspace that refers to a persistent relation is saved, only the name of the persistent relation| and not its current set of tuples | is saved.3.3 Program DevelopmentSome basic facilities are provided for debugging programs. A trace facility is provided that does the following:(1) It lets the user know which rules are being evaluated, and (2) It prints out answers and sub-queries (ofspeci�ed predicates) as they are generated, to let the user know how the computation is proceeding.CORAL also provides some high-level pro�ling facilities. The unit of pro�ling is the uni�cation operation.Uni�cation of two atomic terms counts as one uni�cation, while, for example, uni�cation of f(X;Y ) and f(a; b)counts as three uni�cations, one at the outer level and two at the inner level. Pro�ling also lets the user knowabout the e�ciency of indexing, by keeping counts of the number of tuples that the indexing operation triedto unify, and the number that successfully uni�ed and were retrieved. In addition, other counts such as thenumber of successful applications of each rule, and the number of unsuccessful attempts at using a rule are alsomaintained. All this information put together gives users a fair idea of where their programs are spending themost time. 8
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programFigure 3: Architecture of the CORAL Deductive System3.4 Explaining Program ExecutionAn explanation tool has been implemented that provides graphical explanations of the executions of declarativeprograms. The basis of this tool is that one can understand the meaning of a program in terms of the set ofderivation trees of computed facts. Derivation trees can be \grown" and \pruned" dynamically on the screen,thereby providing a visual explanation of how facts were generated. The explanation mechanism can be enabledor disabled on a per-module basis. The explanation tool has been implemented as an application of the CORALsystem; see Section 11 for further details.We note that derivations are recorded in the exact form that they are carried out. Thus, if the user'sprogram was rewritten by the system optimizer, the recorded derivations reect the rewritten program, and itcan sometimes be hard to see the mapping between the original and rewritten programs. However, with thedefault rewriting (Supplementary Magic rewriting) used by the CORAL system the mapping between the originalprogram and the rewritten program is simple, and the user should be able to reason in terms of the originalprogram when presented with derivations of the rewritten program.4 Architecture of the CORAL SystemThe architecture of the CORAL deductive system is shown in Figure 3. CORAL is designed primarily as asingle-user database system, and can be used in a stand-alone mode; however, data can be shared with otherusers via the EXODUS storage manager. Persistent data is stored either in text �les, or using the EXODUSstorage manager [CDRS86], which has a client-server architecture. Each CORAL process can act as an EXODUSclient that accesses the common persistent data from the server. Multiple CORAL processes could interact byaccessing persistent data stored using the EXODUS storage manager. Transactions and concurrency control aresupported by the EXODUS storage manager, and thus by CORAL. However, within each CORAL process, alldata that is not managed by the EXODUS storage manager is strictly local to the process, and no transactionsare supported on such data.Data stored in text �les can be \consulted", at which point the data is converted into main-memory relations;indices can then be created. Data stored using the EXODUS storage manager is paged into EXODUS bu�ers ondemand, making use of the indexing and scan facilities of the storage manager. The design of the system doesnot require that this data be collected into main-memory CORAL structures before being used; as is usual indatabase systems, the data can be accessed purely out of pages in the EXODUS bu�er pool.9



The query processing system consists of two main parts | a query optimizer and a query evaluation system.Simple queries (selecting facts from a single relation or multiple joined relations, for instance) can be typed in atthe user interface. Such simple queries do not require rewriting transformations. Complex queries are typicallyde�ned in declarative \program modules" that export predicates (views) with associated \query forms" (i.e.,speci�cations of what kinds of queries, or selections, are allowed on the predicate). The query optimizer takes aprogrammodule and a query form as input, and generates a rewritten program that is optimized for the speci�edquery forms. In addition to performing source-to-source transformations10, the optimizer adds several controlannotations (to those, if any, speci�ed by the user). The rewritten program is stored as a text �le | which isuseful as a debugging aid for the user | and is also converted into an internal representation that is used by thequery evaluation system.The query evaluation system takes as input annotated declarative programs (in an internal representation),and database relations. The annotations in the declarative programs provide execution hints and directives.The query evaluation system interprets the internal form of the optimized program. We also developed a fullycompiled version of CORAL, in which a C++ program was generated from each user program. (This is similarto the approach taken by LDL [NT89, CGK+90].) We found that this approach took a signi�cantly longertime to compile programs, and the resulting gain in execution speed was minimal11. We have therefore focusedon the interpreted version; \compiling" a program to CORAL internal structures takes very little time, and iscomparable to Prolog systems. This makes CORAL very convenient for interactive program development.The query evaluation system has a well de�ned \get-next-tuple" interface with the data manager for access torelations. This interface is independent of how the relation is de�ned (as a base relation, declaratively throughrules, or through system-de�ned or user-de�ned C++ code), and is quite exible. In conjunction with themodular nature of the CORAL language, such a high-level interface is very useful, since it allows the di�erentmodules to be evaluated using di�erent strategies. It is important to stress that the \get-next-tuple" interface ismerely an abstraction provided to support modularity in the language, and does not a�ect the ability to performset-oriented computations.While fundamental decisions such as using a bottom-up �xpoint computation are motivated by the potentialfor set-oriented evaluation, it is important to note the current implementation does not exploit this potential fully.For example, although the interface to EXODUS does page-level I/O, index nested-loops join is used even fordisk-resident data; unless the index on the inner relation is a clustered index, performance may be poor. It wouldbe a relatively straightforward matter to add more e�cient external join methods such as blocked nested-loopsor sort-merge, and we are currently working on such extensions. Further, the lack of a traditional cost-basedquery optimizer (e.g., for choosing a good join order in each rule) is another major gap in the current system,and again, this can be remedied with some e�ort. (However, some di�cult issues remain little understood; forinstance, should the join order be determined afresh on each iteration? Derr [Der93] suggests some heuristics.)CORAL supports an interface to C++, and can be embedded in C++. C++ can be used to de�ne newrelations as well as manipulate relations computed using declarative CORAL rules. The CORAL/C++ interfaceis intended to be used for the development of large applications.5 Overview of Query Evaluation and OptimizationA number of query evaluation strategies have been developed for deductive databases, and each technique isparticularly e�cient for some programs, but may perform relatively poorly on others. Thus any system that istied to one evaluation strategy is bound to perform poorly on some programs. Indeed, this is also the case forrelational systems such as SQL. However, given the greater complexity of a language like CORAL, it is harderto design a system in which di�erent optimization techniques can be combined relatively orthogonally. Once thisis done, a cost estimation package can be used to determine a \good" optimized version of a program. CORAL10The query optimizer invokes several di�erent program rewriting �lters, which we discuss later.11We note that the compiled version did not exploit various opportunities for optimization that do not exist with the interpretedapproach. A more aggressive version of the compiler would probably be faster.10



addresses the �rst task to a large extent, but currently uses heuristics instead of a cost estimation package tomake choices of evaluation alternatives.It is our premise that in such a powerful language, completely automatic optimization can only be an ideal; theprogrammer must be able to provide hints or annotations and occasionally even override the system's decisionsin order to obtain good performance across a wide range of programs. Annotations control query evaluationand guide query optimization. Since they are expressed at a high level, they give the programmer the power tocontrol optimization and evaluation in a relatively abstract manner. A detailed description of the annotationsprovided by CORAL may be found in [RSSS93a]; we mention some of them when discussing the query evaluationtechniques.The CORAL programmer decides (on a per-module basis) whether to use one of two basic evaluation ap-proaches, namely pipelining or materialization, which are discussed in Section 6. Many other optimizations aredependent upon the choice of the basic evaluation mode. The optimizer generates annotations that govern manyrun-time actions, and, if materialization is chosen, does source-to-source rewriting of the user's program. Wediscuss these two major tasks of the optimizer below.5.1 Source-to-Source Rewriting TechniquesMaterialized evaluation in CORAL is essentially a �xpoint evaluation using a bottom-up iteration on the pro-gram rules. If this is done on the original program, selections in a query are not utilized. Several programtransformations have been proposed to \propagate" such selections, and many of these are implemented inCORAL.The desired selection pattern is speci�ed using a query form, where a \bound" argument indicates that anybinding in that argument position of the query is to be propagated. It is possible in fact that the query does notspecify a ground binding in a \bound" position (it may specify no value, or a term with variables). This simplyresults in non-ground \magic facts". Thus, by specifying that all arguments are bound, binding propagationsimilar to Prolog is achieved (i.e., all available bindings are propagated). By specifying that all arguments are\free", in contrast, bindings in the query are ignored, except for a �nal selection. Bindings in certain argumentscan be selectively propagated by choosing other query forms.The default rewriting technique is Supplementary Magic Templates ([BR87b, Ram88]; see also [RLK86,Sek89]). The rewriting can be tailored to propagate bindings across sub-queries in a rule body using di�erentbody literal orderings; CORAL uses a left-to-right ordering within the body of a rule by default. Other selection-propagating rewriting techniques supported in CORAL include Magic Templates [Ram88], Supplementary MagicWith GoalId Indexing [RS91], and Context Factoring [NRSU89, KRS90]. Supplementary Magic is a good choiceas a default, although each technique is superior to the rest on some programs. For example, the GoalId Indexingvariant is good for programs with many complex, especially non-ground, terms, and Context Factoring, whileonly applicable on some programs, is usually superior when applicable. The user can choose the rewriting to beapplied through annotations. If no selection is speci�ed, it may be appropriate to apply no rewriting, and theuser can specify this as well.CORAL also supports Existential Query Rewriting [RBK88], which seeks to propagate projections. This isapplied by default in conjunction with a selection-pushing rewriting. A discussion of the relative merits of theserewriting techniques is not possible here due to shortage of space.5.2 Decisions On Run-time AlternativesIn addition to choosing rewriting techniques for materialized evaluation, the optimizer makes a number of deci-sions that a�ect execution. The optimizer analyzes the (rewritten) program, and identi�es some evaluation andoptimization choices that appear appropriate.The default �xpoint evaluation strategy is called Basic Semi-Naive evaluation (BSN), but a variant, calledPredicate Semi-Naive evaluation (PSN) [RSS94], which is better for programs with many mutually recursivepredicates, is also available. With respect to semi-naive evaluation, the optimizer is responsible for: (1) join order11



selection, (2) index selection, (3) deciding what forms of subsumption checks to use, and (4) deciding whetherto re�ne the basic indexed nested-loops join with intelligent backtracking. The optimizer is also responsible fordeciding whether to use variations of the �xpoint evaluation such as Lazy Evaluation or Ordered Search. Wediscuss these issues in Section 6.6 Module Evaluation StrategiesThe evaluation of a declarative CORAL program is divided into a number of distinct sub-computations byexpressing the program as a collection of modules. Each module is a unit of compilation and its evaluationstrategies are independent of the rest of the program. Since di�erent modules may have widely varying evaluationstrategies, a relatively high-level interface is required for interaction between modules.Two basic evaluation approaches are supported, namelymaterialization and pipelining. Materialization storesfacts and looks them up to avoid recomputation. Several variants of materialized evaluation are supported: BasicSemi-Naive, Predicate Semi-Naive [RSS94], and Ordered Search [RSS92a]. Pipelining uses facts \on-the-y" anddoes not store them, at the potential cost of recomputation.This section presents the interface between modules and the run-time data structures used. The variousmodes of evaluation of a module, and the ways in which the evaluation can be controlled by annotations fromthe user are then discussed.6.1 Inter-Module CallsSuppose that p is a predicate that appears in the body of a rule of moduleM2 and is not de�ned in M2. Duringthe evaluation of M2, queries may be generated on p. If p is de�ned in module M1, then module M2 sets upan inter-module call on moduleM1 to solve the query. The interface to predicates exported by a module makesno assumptions about the evaluation of the module. Module M1 may contain only base predicates, or may haverules that are evaluated in any of several di�erent ways. The module may choose to cache answers betweencalls, or choose to recompute answers. All this is transparent to the calling module. Similarly, the evaluationof the called module M1 makes no assumptions about the evaluation of calling module M2. This orthogonalitypermits the free mixing of di�erent evaluation techniques in di�erent modules in CORAL and is central to howdi�erent executions in di�erent modules are combined cleanly.Inter-module calls are executed as follows: The calling module sets up a sub-query on the called module,and waits until the called module returns answers to the sub-query. The called module returns either no answerif the query has no answers, or returns one or more answers to the query. The called module may or may notreturn all answers immediately; repeated \get-next-tuple" calls must be used to get all answers to the call. Theabove interface is independent of the evaluation modes of the two modules involved. However, the order in whichanswers are returned on the initial call and on subsequent \get-next-tuple" requests depends on the evaluationmode of the called module.The rationale behind the particular interface described above is as follows: the calling module may requireonly one answer, or may use only one answer at a time, e.g., if the inter-module call was generated by a literalinvolved in a nested-loops join. Early returning of answers to the user via Lazy Evaluation is also supported bythis interface. The alternative interface of requiring all answers to be returned is less exible.6.2 Module and Rule Data StructuresThe compilation of a materialized module generates an internal module structure that consists of a list of struc-tures corresponding to the strongly connected components (SCCs) of the module.12 Each SCC structure consistsof semi-naive rule structures corresponding to semi-naive rewritten versions of the rules. These semi-naive rulestructures have �elds that specify the argument lists of each body literal, and the predicates they correspond to.12An SCC in a module is a maximal set of mutually recursive predicates.12
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Figure 4: Important Run-time Data StructuresEach semi-naive rule structure also contains evaluation order information, pre-computed backtrack points, andpre-computed o�sets into a table of relations. These structures are shown in Figure 4.O�sets into a table of relations are used, instead of actual pointers to relations, because an importantconsideration was to keep rule and module evaluation re-entrant. This property is essential to support multipleconcurrent invocations of the same module, as can happen with a cycle of inter-module invocations or LazyEvaluation (which is discussed in Section 6.3.1). Information that changes with each invocation cannot thereforebe stored with the rule structure. In particular, the actual relations involved change across invocations, and eachmodule invocation has an associated table of (pointers to) relations. The order of relations corresponding todi�erent predicates in this table can be determined, and the semi-naive rule structures refer to relations involvedin the rule by o�sets into this table.A module to be evaluated using pipelining is stored as a list of predicates de�ned in the module. Associatedwith each predicate is a list of rules de�ning it (in the order they occur in the module de�nition), each rule beingrepresented using structures like those used for semi-naive rules.An attempt is made to compute all possible information at compile time, and store it along with the rulestructures so as to make rule evaluation e�cient. In a manner similar to Prolog, CORAL maintains a trail ofvariable bindings when a rule is evaluated; this is used to undo variable bindings when the indexed nested-loopsjoin (or pipelining) considers the next tuple in any loop.6.3 MaterializationThe variants of materialization are all bottom-up �xpoint iteration methods, which repeatedly evaluate therules until a �xpoint is reached. In order to perform incremental evaluation of rules across multiple iterations,CORAL uses semi-naive evaluation [Bay85, Ban85, BR87a, RSS94]. This technique consists of a rule rewritingpart performed at compile time, which creates versions of rules with delta relations, and an evaluation part.(The delta relations contain changes to relations since the previous iteration.) The evaluation part evaluateseach rewritten rule once in each iteration, and performs some updates to the relations at the end of each iteration.An evaluation terminates when an iteration produces no new facts.The join order used in CORAL is currently left-to-right in the rule, with a simple reordering that moves deltarelations to the front of the join order. The reordering is done with the expectation that the delta relations have13



a smaller number of tuples than the other relations. However, hooks have been provided to specify other joinorders, and the optimizer can be modi�ed to �nd good join orders.The optimizer also analyzes the semi-naive rewritten rules and generates annotations to create any indicesthat may be useful during the evaluation phase.13 The basic join mechanism in CORAL is nested-loops withindexing, and this knowledge is used by the index generation algorithm. For each semi-naive rule, index generationproceeds left-to-right in the join order of rule evaluation, and creates argument-formor pattern-form indices basedon variables bound earlier in the join order, since these will act as selection arguments. For derived relations,these indices are created at module initialization time (run-time) and are destroyed, along with the relation,when module execution is completed. Indices can also be explicitly requested by a CORAL user.For declarative modules, CORAL materialized evaluation (with occur checks) is guaranteed to be sound, i.e.,if the system returns a fact as an answer to a query, that fact indeed follows from the semantics of the declarativeprogram.14 The evaluation is also \complete" in a limited sense | as long as the execution terminates, all answersto a query are actually generated. It is possible however, to write queries that do not terminate. It is desirableto add a compile time check, based on su�cient conditions,15 to determine if termination and completeness ofCORAL evaluation can be guaranteed for a given program, but the current implementation does not supportsuch a feature.6.3.1 Lazy EvaluationIn the traditional approach to bottom-up evaluation, all answers to a query are computed by iterating over rulesuntil a �xpoint is reached, and then returning all the answers. Lazy evaluation is the technique used by CORALto return answers at the end of every iteration, instead of just at the end of the computation. The advantagesof this approach are:� It is useful for users who would rather have a steady stream of answers than wait until the end of thecomputation and then receive a burst of answers.� It can be used in an interactive mode to look at the �rst few answers generated by a computation, andthen (possibly) abort the rest of the computation.A query on a relation has an iterator associated with it. Lazy evaluation is implemented by storing in theiterator the state of the computation at the end of an iteration of �xpoint evaluation, and returning to theiterator the answer tuples generated in that iteration. The iterator then iterates over the tuples returned, andwhen it has stepped through all the tuples, it reactivates the \frozen" computation, in order to get more answertuples. This reactivation results in the execution of one more iteration of the rules, and the whole process isrepeated until an iteration over the rules produces no new tuples.6.4 PipeliningPipelining in CORAL is similar to top-down evaluation like Prolog. The rule evaluation code for pipelining isdesigned to work in a co-routining fashion | when rule evaluation is invoked, using the get-next-tuple interface,an answer is generated (if there is one) and control is transferred back to the consumer of the answers (thecaller). When more answers are desired, control is transferred back to the (suspended) rule evaluation.At module invocation, the �rst rule in the list associated with the queried predicate is evaluated. This couldinvolve recursive calls on other rules within the module (which are also evaluated in a similar pipelined fashion).If the rule evaluation of the queried predicate succeeds, the state of the computation is frozen, and the generatedanswer is returned. A subsequent request for the next answer tuple results in the reactivation of the frozencomputation, and processing continues until the next answer is returned. At any stage, if a rule fails to produce13Index annotation generation also occurs for base relations used in pipelined modules, but at the level of the original rules.14However, for reasons of e�ciency, the current implementation does not perform occur checks by default.15Su�cient conditions are needed since checking for termination is undecidable in general.14



an answer, the next rule in the rule list for the head predicate is tried. When there are no more rules to try,the query on the predicate fails. When the topmost query fails, no further answers can be generated, and thepipelined module execution is terminated.An interesting aspect of pipelining in CORAL is the treatment of recursive predicates. A sub-query on arecursive predicate is solved by a recursive invocation of the same module, and each invocation pipelines thelocal results. The resulting computation is close to the evaluation strategy of a top-down implementation suchas Prolog (although CORAL does not currently support all the extra-logical features of Prolog). Of course,pipelined evaluation of recursive modules carries the risks of potential incompleteness, and should be used withcare.We note that our implementation of pipelining handles recursive calls; in this, it di�ers from the \pipelining"used in LDL. The latter is essentially indexed nested-loops join without materialization within a bottom-up�xpoint iteration. Our implementation of pipelining can however be improved upon; indeed, state-of-the-artProlog systems are much faster.There are some important points to note regarding pipelining. First, the implementation of pipelining, whichis a radically di�erent evaluation technique from bottom-up �xpoint evaluation, demonstrates the modularity ofthe CORAL implementation. Second, from a language point of view, it demonstrates that the module mechanismallows a user to e�ectively combine bottom-up and top-down evaluation techniques in a single program. (Indeed,our implementation of pipelining could be replaced by an interface to a Prolog system.) Third, pipeliningguarantees a particular evaluation strategy, and order of execution. While the program is no longer truly\declarative," programmers can exploit this guarantee and use predicates like updates that involve side-e�ects.Materialization and pipelining complement each other. If facts in a relation are used many times, the cost ofmaterialization (generating and storing facts) is outweighed by the savings in avoiding recomputation. Pipeliningavoids these overheads of storing facts, and if sub-queries are not generated multiple times it is cheaper thanmaterialization.6.5 Module Level Control ChoicesAt the level of the module, a number of choices exist with respect to the evaluation strategy for the module, andthe speci�c optimizations to be used. We have already seen the issue of materialization versus pipelining.6.5.1 Ordered SearchCORAL uses the Ordered Search evaluation mechanism to order the use of generated sub-queries in a program.The reader is referred to [RSS92a] for details. However, some of the features of Ordered Search are mentionedhere:1. It maintains information about dependencies between sub-queries, and can be used to evaluate a large classof programs with negation, set-grouping and aggregation.2. It provides an ordering to the computation by \hiding" sub-queries.When CORAL returns an answer to the user, the user has the option of terminating the computation,or having the system continue to �nd more answers. When a single answer to the query is all that isneeded, there may be many sub-queries that are still hidden when an answer to the query is found, andthe computation can terminate without ever using these sub-queries; thus a lot of redundant computationmay be avoided.In Ordered Search, sub-queries and answers to sub-queries are generated asynchronously, as in bottom-upevaluation of programs rewritten using Magic rewriting [BR87b, Ram88]. However, sub-queries are not madeavailable for use immediately| the order in which generated sub-queries are made available for use is somewhatsimilar to a top-down evaluation. This is achieved by maintaining a \context" which stores sub-queries in anordered fashion, and at each stage in the evaluation deciding which sub-query to make available for use next.15



Ordered Search provides an important evaluation strategy for programs with negation, set-grouping andaggregation, that are left-to-right modularly strati�ed. Without Ordered Search, evaluation proceeds by settingup inter-module calls whenever a sub-query that has to be completely solved is encountered. This results incomputation of such sub-queries proceeding independently, with no sharing of sub-computations. While thismight be desired in some situations, it could result in considerable repeated computation in general. OrderedSearch is used to evaluate left-to-right modularly strati�ed programs without inter-module calls; thus, sub-computations are shared, eliminating repeated derivations. Intuitively, all queries and answers are memoed,and enough dependency information between queries is maintained to ensure that any sub-query, for examplea negative sub-query, that must be fully evaluated before any of its answers are used in further derivations, isindeed fully evaluated.From an implementation perspective, in addition to maintaining the context, two changes have to be made.First, the rewriting phase, which must use a version of Magic in conjunction with Ordered Search �xpointevaluation, must be modi�ed to introduce \done" literals guarding negative literals and rules that have groupingand aggregation. Second, the evaluation must add a \magic" fact to the corresponding \done" predicate when(and only when) all answers to it have been generated. (The context mechanism is used to determine the pointat which a query is considered done.) These changes ensure that rules involving negation, for example, are notapplied until enough facts have been computed to reduce the negation to a set-di�erence operation.6.5.2 The Save Module FacilityThe module facility in CORAL provides several important advantages.1. By moving many rules out of a module into another module, the number of rules that are involved whenperforming an iteration on a module is reduced; this is particularly useful when computation in the \higher"module can proceed only after answers to sub-queries on the \lower" module have been returned.2. Predicates de�ned in an external module are treated just like base predicates by the semi-naive rewritingalgorithms| whenever there is a query (or set of queries) on such a predicate, a call to the module is made,and all the answers are evaluated. This has the bene�t of decreasing the number of semi-naive rewrittenrules considerably if many predicates can be treated as base predicates.3. In many cases, facts (other than answers to the query) computed during the evaluation of a module are bestdiscarded to save space (since bottom-up evaluation stores many facts, space is generally at a premium).Module calls provide a convenient unit for discarding intermediate answers. By default, CORAL doesprecisely this | it discards all intermediate facts and sub-queries computed by a module at the end of acall to the module.However, there are some cases where the �rst two bene�ts above are desired, but the third feature is not abene�t at all, but instead leads to a signi�cant amount of recomputation. This is especially so in cases wherethe same sub-query in a module is generated in many di�erent invocations of the module. In such cases, the usercan tell the CORAL system to maintain the state of the module (i.e., retain generated facts) in-between calls tothe module, and thereby avoid recomputation; we call this facility the save module facility.From an implementation viewpoint, the challenge is to ensure that no derivations are repeated across multiplecalls to the module. Ensuring this requires some subtle changes to the semi-naive technique. Essentially,materialized views are to be incrementally maintained via semi-naive evaluation under inserts.This requires signi�cant changes to semi-naive evaluation: rules de�ned only in terms of base predicatesmust only be used in the �rst invocation of the module, certain predicates that were treated as \base" in thesemi-naive rewriting because they appeared in lower SCCs must now be treated as derived predicates, and theupdating of relations using deltas has to be modi�ed to take into account tuples that were computed in previouscalls to the module. While the details are omitted here for lack of space, they can be found in [RSS93]. In theinterest of e�cient implementation, CORAL requires that if a module uses the save module feature, it should16



not be invoked recursively. (Note that the predicates de�ned in the module can be recursive; this does not causerecursive invocations of the module).6.6 Predicate Level ControlCORAL provides a variety of annotations at the level of individual predicates in a module. These annotationscould a�ect the set of answers returned to a query.6.6.1 Duplicate EliminationBy default, duplicate elimination is performed when inserting facts into a relation, so that a relation with onlyground tuples consists of a set of facts.16 An annotation tells the system not to perform duplicate checks for allpredicates in the module. This can also be done on a per-predicate basis. Further, a predicate in a program canbe declared to be a multiset, i.e., with as many copies of a tuple as there are derivations for it.17 CORAL thenguarantees that the number of copies of tuples in the answer to a query on the predicate is correct according tothe multiset semantics of the program [MPR90]. This semantics is supported by carrying out duplicate checksonly on the \magic" predicates if any version of the Magic Templates rewriting is used.6.6.2 Index AnnotationsCORAL allows for the speci�cation of two types of hash-based indices: (1) argument form indices, and (2) patternform indices. The �rst form is the traditional multi-attribute hash index on a subset of the arguments of arelation. The hash function chosen works well on ground terms; however, all terms that contain variables arehashed to a special value. The second form is more sophisticated, and allows the retrieval of precisely thosefacts that match a speci�ed pattern, where the pattern is a tuple of (possibly non-ground) terms. The \form"of the pattern must be speci�ed when constructing the index. Such indices are of great use when dealing withcomplex objects created using functors. For example, suppose a relation employee had two arguments, the �rsta name and the second a complex term address(Street; City). A pattern-form index can be used to e�cientlyretrieve employees named \John", who stay in \Madison", without knowing their street [RS91]. The followingannotation can be used to create a pattern-form index as above:@make index employee(Name; address(Street; City)) (Name;City).Pattern-form indices are implemented in CORAL using hash-indices, and are almost as fast as argument-formindices.A compile-time analysis of all rules is used to determine which indices need to be created for e�cient ruleevaluation. All such indices on in-memory relations are automatically created at run-time. However, indicesare not automatically created on disk-resident relations. In addition, the user is allowed to specify indices usingannotations within a module or using commands from the CORAL prompt.6.6.3 Aggregate SelectionsConsider the shortest path program in Figure 5. This di�ers from the program in Figure 2 in that it has anadditional annotation of the form:@aggregate selection path(X;Y; P;C) (X;Y ) min(C):To compute shortest paths between points, it su�ces to use only the shortest paths between pairs of points |path facts that do not correspond to shortest paths are irrelevant. CORAL therefore permits the user to specify16If facts contain variables, subsumption checking may be used, rather than just duplicate elimination. CORAL performs somesubsumption checking but, for e�ciency reasons, does not guarantee that relations are maintained as irredundant sets of facts[MR89].17On non-recursive queries, this semantics is consistent with SQL when duplicate checks are omitted.17



module shortest path.export shortest path(bfff; ffff).@aggregate selection path(X;Y; P;C) (X;Y ) min(C).shortest path(X;Y; P;C) : � s p length(X;Y;C); path(X;Y; P;C):s p length(X;Y;min(< C >)) : � path(X;Y; P;C):path(X;Y; P1; C1) : � path(X;Z; P;C); edge(Z; Y;EC);append([edge(Z; Y )]; P; P1); C1 = C + EC:path(X;Y; [edge(X;Y )]; C) : � edge(X;Y;C):end module. Figure 5: Program Shortest Pathan aggregate selection on the predicate path in the manner shown. The system then retains, for each X;Y pair,only the path facts with the lowest C value (among the currently known path facts). Without this aggregateselection, the program may run for ever, generating cyclic paths of increasing length; with it, the program isguaranteed to terminate. In the next section, we discuss how to further improve the e�ciency of this programusing additional annotations.6.6.4 Using Aggregate Selections to Express ChoiceCORAL's aggregate selection mechanism provides a version of the choice operator of LDL, but with a di�erentsemantics [RBSS90]. Consider again the shortest path program from Figure 5. If the user wishes to retain asingle path for each pair of nodes and each path cost, this can be speci�ed using the following annotation:@aggregate selection path(X;Y; P;C) (X;Y;C) any(P ):The annotation says that for each value of the triple X;Y;C, at most one fact path(X;Y; P;C) need beretained. If more than one fact path(X;Y; P;C) is generated by the program for any triple X;Y;C, the systemarbitrarily picks one of the facts to retain, and discards the rest.Using a combination of the above two aggregate selections on the shortest path program (in conjunction withthe default query evaluation technique using Magic rewriting), a single source query on the program runs in timeO(E � V ), where there are E edge facts, and V nodes in the graph.Unlike in LDL, the choice made is �nal | CORAL does not backtrack and try di�erent ways to make thechoice. We believe this semantics can be implemented more e�ciently in a bottom-up evaluation than the LDLsemantics. Giannotti et al. [GPSZ91] have investigated the connections between this \local" version of choiceand stable models, and Greco et al. [GZG92] have shown that it is useful in a variety of \greedy" algorithms.6.6.5 Controlling the Order of DeductionsThe use of facts computed during bottom-up evaluation can be prioritized.18 Consider the shortest path programfromFigure 5, which uses the predicate path(Source;Destination; Path list; Cost). For this program, it is betterto explore paths of lesser cost �rst. This can be achieved by using path facts of lesser cost in preference to pathfacts of greater cost. path facts of greater cost are \hidden" when they are derived, and each time a �xpoint isreached, the path facts of lowest cost are exposed. This continues until there are no more hidden facts.The user can specify that the evaluation prioritize the use of facts in this fashion, using an annotation of thefollowing form:@prioritize path(X;Y; P;C) min(C).18The prioritization of facts is relevant to the evaluation mechanism, and is not used to order the answers returned to the used.18



Prioritized relations in CORAL are implemented as priority queues. Evaluation with prioritized use of factsuses a simple extension of semi-naive evaluation, described in [SKGB87].Using facts in a prioritized fashion reduces the cost of evaluation of a single source shortest path problem froma worst case of O(E � V ) to O(E � log(V ))19 [SR91]. This illustrates the importance of aggregate selections andprioritizing the use of facts in a bottom-up evaluation. [SR91] describes a technique to generate such annotationsautomatically, but they could also be speci�ed by the user.6.7 Rule Level Control6.7.1 Intelligent BacktrackingBoth pipelining and materialization involve indexed nested-loops joins of relations. (For materialization, this islocal to the joins in a single rule; for pipelining, it is e�ectively global, and over the sequence of all rules in thecurrent execution path.) CORAL tries to perform intelligent backtracking (see, [CD85], for example) during ruleexecution in both cases.Get-�rst-failure (or, get-�rst) backtracking provides the ability to \jump back" over several levels of nestingif no matching facts are found for a predicate in an inner level of a nested-loops join. It is used when there is novalid instantiation of a body literal the \�rst" time the literal is reached. At this stage, control within the rulebacktracks to the last body literal that could generate new bindings for the literal that just failed. For example,consider the following rule with a left-to-right join order:p(X;Y ) : � q(X;Z); r(A; Y ); s(Z;B); t(A;B):If s(Z;B) fails the �rst time it is reached with a particular binding for Z, the \get-�rst backtrack point" isthe literal q(X;Z), because this is the last point at which new bindings can be generated for Z.Success backtracking provides the ability to \jump back" over several levels of nesting if an answer is generatedand the number of times an answer is generated is irrelevant | the idea is that the loops jumped over wouldonly produce more derivations of the same fact and not a new fact. When a rule execution is successful (i.e.,there are valid instantiations of all the literals in the body of a rule), a head fact is generated. At this point,the control within the rule backtracks to the last body literal that could generate new bindings for the headliteral. Consider the rule in the above example again. The \success-backtrack point" for this rule is the literalr(A; Y ), because s(Z;B) and t(A;B) cannot generate any bindings that will result in a new head fact. The logicfor success backtracking in CORAL takes advantage of aggregate selections that express choice. For example,an annotation:@aggregate selection p(X;Y ) (X) any(Y ):could be added, with the meaning that for a given X value, a value for Y is chosen from a p tuple with thegiven X value, and p tuples with other Y values can be discarded. Adding the annotation would change the\success-backtrack point" of the above-mentioned rule to q(X;Z).CORAL automatically performs \get-�rst-failure" backtracking and \success" backtracking, unless thereare non-ground facts. (By default, CORAL assumes that there are none; if it is possible that a programwill generate non-ground facts, the user should indicate this through an annotation.) The analysis used forintelligent backtracking breaks down in the presence of such non-ground facts, although it can be extended todetect argument positions that are guaranteed to be ground and to take advantage of such argument positions.Intelligent backtracking is implemented using an array of backtrack points, one for each body literal, and onesuccess backtrack point for each rule. Intelligent backtracking for pipelined evaluation is also done on a per-rulebasis, although there is the potential for doing it on a global basis. We note that LDL also implements a formof intelligent backtracking [CGK89].19Assuming that the edge costs are non-negative. 19
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materialized derived relationsFigure 6: The TupleIterator Structure6.7.2 Join OrdersCORAL uses a default left-to-right join order, except that for semi-naive rewritten rules the \delta" relation ismoved to the beginning of the join order. This is generally a good heuristic, especially when SupplementaryMagic rewriting has been used; in this case, moving the \delta" relation to the beginning of the join order doesnot introduce a cross-product. The user can override this default by specifying the join order on a per-rule oron a per-semi-naive-rewritten rule basis. However, this has not been implemented yet in CORAL.7 The Data ManagerThe data manager (DM) is responsible for maintaining and manipulating the data in relations. In discussingthe DM, we also discuss the representation of the various data types. While the representation of simple typesis straightforward, complex structural types and incomplete data present interesting challenges. The e�ciencywith which such data can be processed depends in large part on the manner in which it is represented in thesystem. This section therefore presents the data representation at a fairly detailed level.The CORAL system is implemented in C++, and all data types are de�ned as C++ classes. Extensibility isan important goal of the CORAL system. In particular, we view support for user-de�ned data types as important.In order to provide this support, CORAL provides the generic class Arg that is the root of all CORAL datatypes; speci�c types such as integers and strings are sub-classes of Arg. The class Arg de�nes a set of virtualmember functions20 such as equals, hash, and print, which must be de�ned for each derived class that is created.The class Tuple de�nes tuples of Args. An object of the class Relation is a collection of tuples. The classRelation has a number of virtual member functions de�ned on it. These include insert (Tuple*), delete (Tuple*),and an iterator interface that allows tuples to be fetched from the relation, one at a time.21 The iterator isimplemented using an object of a TupleIterator class that is used to store the state or position of a scan on therelation, and to allow multiple concurrent scans over the same relation. We show the structure of a TupleIteratorin Figure 6. The details of the �gure become meaningful as the description of the data structures proceeds.20In C++, a virtual member function in a class is one that can be rede�ned in derived sub-classes of the class, and further, whenthe member function is invoked on an object, the member function corresponding to the most speci�c class to which the objectbelongs is invoked.21This is analogous to the cursor notion in SQL. 20



7.1 Representation of TermsThe evaluation of rules in CORAL is based on the operation of uni�cation that generates bindings for variablesbased on patterns in the rule and the data. An important feature of the CORAL implementation of data typesis the support for unique identi�ers to make uni�cation of large terms very e�cient. Such support is critical fore�cient declarative program evaluation in the presence of large terms. In CORAL, each new type constructorcan de�ne how it generates unique identi�ers, independent of how other type constructors construct their uniqueidenti�ers (if any); because of this orthogonality, no further integration is needed to generate unique identi�ers forterms built using several di�erent kinds of type constructors. This is very important for supporting extensibilityand the creation of new user-de�ned data types. Speci�c issues on the construction of unique identi�ers forseveral system de�ned types are detailed later in this section.7.1.1 ConstantsConstants in CORAL can be of one of the primitive data types provided in the CORAL system, such as integers,doubles and strings. The current implementation restricts data that is stored using the EXODUS storagemanager to be limited to these primitive types. Such data is stored on disk in its machine representation, whilein memory, the data types are implemented as sub-classes of Arg. Extra information is kept with strings toprovide for e�cient equality checking.7.1.2 Functor TermsAn example of a term built from an uninterpreted function symbol, or functor, is f(X; 10; Y ). Such a termis represented by a record containing (1) the function symbol f , (2) an array of arguments, or pointers to thearguments, and (3) extra information to make uni�cation of such terms e�cient. Functor terms are importantfor representing structured information. For instance, lists (which are a special type of functor term) can beused to represent DNA sequences or stock quote sequences.The current implementation of CORAL uses hash-consing [Got74] to speed up uni�cation of functor terms.(LDL [CGK+90] also implements hash-consing.) Hash-consing assigns unique identi�ers to each (ground) functorterm, such that two (ground) functor terms unify if and only if their unique identi�ers are the same. We notethat such identi�ers cannot be assigned to functor terms that contain free variables.CORAL makes two modi�cations to the basic hash-consing scheme. First, it performs hash-consing in alazy fashion, avoiding computing the unique identi�ers if they are not used. Second, CORAL allows terms thatcontain variables, and therefore cannot be assigned unique identi�ers. Such terms are tagged after the �rstattempt to assign them unique identi�ers, and CORAL thereby avoids repeated attempts to compute uniqueidenti�ers for them.7.1.3 Variables and Non-Ground TermsVariables constitute a primitive type in CORAL, since CORAL allows facts (and not just rules) to containvariables; in this, CORAL di�ers from most other deductive database systems. The semantics of a variable ina fact is that the variable is universally quanti�ed in the fact. Although the basic representation of variablesis fairly simple, the representation is complicated by requirements of e�ciency when using non-ground facts inrules. We describe the problems briey.Suppose we want to make an inference using a rule. Variables in the rule may get bound in the course ofan inference. A naive scheme would replace every reference to the variable by its binding. It is more e�cienthowever to record variable bindings in a binding environment, at least during the course of an inference. Abinding environment (often referred to as a bindenv) is a structure that stores bindings for variables. Therefore,whenever a variable is accessed during an inference, a corresponding binding environment must be accessed to�nd if the variable has been bound. We show the representation of the term f(X; 10; Y ), where X is bound to25 and Y is bound to Z, and Z is bound to 50 in a separate bindenv, in Figure 7.21
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Figure 7: Representation of an Example TermThere is another complication to making inferences using facts that contain variables. The problem is thattwo facts (or a fact and the rule) may have variables of the same name, but the variables are independentlyuniversally quanti�ed. To make an inference, variables in facts have to be renamed to remove name conicts.Such a renaming could be expensive, and CORAL attempts to avoid renaming or postpone renaming as long aspossible. (In many cases, the renaming can be avoided altogether if it is postponed.) To postpone renaming,CORAL maintains a binding environment for each fact that contains a variable, as well as a binding environmentfor the rule.The top-down backtracking control strategy of Prolog permits optimizations whereby answers to sub-queriesneed not be renamed; such optimizations are not applicable to evaluation techniques, such as bottom-up eval-uation, that perform memoization of facts. Techniques for avoiding renaming and optimizing uni�cation inbottom-up evaluation, presented in [SR93], are implemented in CORAL.7.1.4 MultisetsCORAL allows multiset-terms (and, as a special case, set-terms). Multisets are represented using the samedata structures as relations, details of which are presented in Section 7.2. As with strings and functor terms,CORAL creates unique identi�ers for the uni�cation of multiset-terms; as with functor terms, this is done in alazy fashion.As noted earlier, the generation of unique identi�ers for multisets is completely orthogonal to the generationof unique identi�ers for functor terms, and complex terms built using both type constructors can be assignedunique identi�ers without any problems.7.2 Representation of Relations and Index StructuresRelations and indices are implemented as C++ classes that are sub-classes of Arg, and thus can be used just likeother terms. However we have chosen to discuss them separately since the interface between the query evaluationsystem and the data manager is particularly important when it involves relations and indices.22



7.2.1 RelationsCORAL currently supports in-memory hash-relations, as well as disk-resident relations (the latter by using theEXODUS storage manager [CDRS86]). Multiple indices can be created on relations, and can be added to existingrelations. The relation interface is designed to make the addition of new relation implementations (as sub-classesof the generic class Relation) relatively easy.CORAL relations (currently only the in-memory versions) support several features that are not providedby typical database systems. The �rst and most important extension is the ability to obtain marks22 into arelation, and distinguish between facts inserted after a mark was obtained and facts inserted before the markwas obtained. This feature is important for the implementation of all variants of semi-naive evaluation describedin Section 6.3. The implementation of this extension involves creating subsidiary relations, one correspondingto each interval between marks, and transparently providing the union of the subsidiary relations correspondingto the desired range of marks. A bene�t of this organization is that it does not interfere with the indexingmechanisms used for the relation (the indexing mechanisms are used on each subsidiary relation).CORAL can also \hide" facts in a relation and make them visible in a \prioritized" fashion. Such a featureis important for e�cient evaluation of some programs, as discussed in Section 6.6.5.7.2.2 Index StructuresHash-based indices for in-memory relations and B-tree indices for disk-resident relations are currently availablein the CORAL system. New index implementations can be created as sub-classes of the generic class Index andmay be added to any relation implementation. For instance, pattern-form indices were added using this interface.CORAL provides a uniform interface for the addition of any kind of index to a relation; tuples already in therelation are automatically added to the index. Scan operations on a relation may optionally specify an index tobe used for the scan.23 CORAL also has a mechanism for automatic selection of an index for a scan, in case anindex is not speci�ed.7.3 Persistent RelationsCORAL uses the EXODUS storage manager to support persistent (or, disk-resident) relations. The schemaof a CORAL disk-resident relation must be declared. For example, the schema of the employee relation (fromSection 2.1) can be declared as schema(employee(string; string; float)). In the current CORAL implementation,tuples in a disk-resident relation are restricted to have �elds of primitive types only. One way of allowing objectsof arbitrary classes in such tuples would be to require the classes to provide member functions for encoding objectsas bit-strings, and corresponding decoding functions. Future releases of CORAL may provide this facility.Indices can be maintained, and are implemented as B+ trees. Both base relations as well as derived relationscan be disk-resident. Derived relations that are materialized on disk during the evaluation of a query reside ona temporary disk volume so that they do not persist after the completion of the query. This is in contrast topersistent relations that reside on disk across query invocations and across invocations of CORAL.The transaction mechanism provided by EXODUS is used to provide transaction semantics for actions onpersistent relations. EXODUS uses a client-server architecture; CORAL is the client process, and maintainsbu�ers for persistent relations. If a requested tuple is not in the client bu�er pool, a request is forwarded to theEXODUS server and the page with the requested tuple is retrieved.As an artifact of the basic implementation decision to share constants instead of copying their values, there issome ine�cient copying of data that occurs while handling disk-resident data. We are in the process of modifying22A mark is a mechanism that makes it possible to recognize which tuples in the relation were added after the mark was obtained,and which tuples were already in the relation before the mark was taken. If a relation is conceptually viewed as a chain of tupleswith new tuples appended to the end of the chain, obtaining a mark corresponds to recording a pointer to the current end of thechain.23The current version of CORAL does not support scan predicates such as X < 10, but this feature will be supported in a futurerelease of CORAL. 23



the implementation, at least in the case of constants of primitive types like integers.8 Interface with C++The CORAL system has been integrated with C++ in order to support a combination of declarative andimperative programming styles. The CORAL system provides a collection of new C++ classes (relations, tuples,args and scan descriptors) and a suite of associated member functions. In addition, there is a construct to embedCORAL commands in C++ code. This extended C++ can be used in conjunction with the declarative languagefeatures of CORAL in two distinct ways:� Relations can be computed in a declarative style using declarative modules, and then manipulated inimperative fashion in extended C++ without breaking the relation abstraction.In this mode of usage, typically there is a main program written in C++ that calls upon CORAL forthe evaluation of some relations de�ned using CORAL modules. The main program is compiled (aftersome pre-processing) and executed from the operating system command prompt; the CORAL interactiveinterface is not used.� New predicates can be de�ned using extended C++. These predicates can be used in declarative CORALcode and are incrementally loaded from the CORAL interactive command interface. There are, however,some restrictions on the types of arguments that can be passed to the newly de�ned predicates.Thus, declarative CORAL code can call extended C++ code and vice-versa. The above two modes are furtherdiscussed in the following sections.8.1 CORAL Classes Visible to C++The C++ classes de�ned in the CORAL system that are visible to the C++ programmer include:Relation : This allows access to relations from C++. Relation values can be constructed through a series ofexplicit inserts and deletes, or through a call to a declarative CORAL module. The associated memberfunctions allow manipulation of relation values from C++ without breaking the relation abstraction.Tuple : A relation is a collection | set or multiset | of tuples.Arg : A tuple, in turn, is a list of args (i.e., arguments). A number of functions are provided to construct andtake apart arguments and argument lists.C ScanDesc : This abstraction supports relational scans in C++ code. A C ScanDesc object is essentially acursor over a relation.The following example illustrates several classes (Relation, C ScanDesc, Tuple and Arg) and functionswhich form part of the CORAL interface to C++:int sum_first_args(char* rel_name, int rel_arity){ Relation *rel = find_relation(rel_name, rel_arity);C_ScanDesc *scan = new C_ScanDesc(rel);Tuple *tuple; int sum = 0;/* Iterate over the tuples in the relation */for (tuple = scan->next_tuple(); !(scan->no_match()); tuple = scan->next_tuple()) {24



if (!is_int((*tuple)[0])) {error("non-integer first field !"); /* Print error message */exit 1;}sum += make_int((*tuple)[0]); /* Sum up the first argument of each fact */}return (sum);} This example uses functions like find relation and is int which are part of the interface speci�cation.The complete interface speci�cation is provided in the user manual [RSSS93a]. However, this simple programdemonstrates the fact that the C ScanDesc abstraction, along with the Relation, Tuple and Arg abstractions,gives the C++ programmer a convenient way of accessing data stored in CORAL relations. Scans can be set upin a totally identical fashion on both base and derived relations.24 A suite of routines is provided for convertingCORAL terms into C++ values and vice-versa.One restriction in the current interface is that a very limited abstraction of variables is presented to theuser. Variables can be used as selections for a query (say, via repeated variables) or in a scan, but variablescannot be returned as answers (i.e., the presence of non-ground terms is hidden at the interface). Presenting theabstraction of non-ground terms would require that binding environments be provided as a basic abstraction,and this would make the interface rather complex.8.2 Calling CORAL from C++Any sequence of commands that can be typed in at the CORAL interactive command interface can be embeddedin C++ code. However, the code must be bracketed by special delimiters. A �le containing C++ code withembedded CORAL code must �rst be passed through the CORAL pre-processor and then compiled. Thefollowing program illustrates how to call declarative CORAL from imperative C++:main(int argc, char**argv){ int i = 2; double j = 4.23;init_coral(argv[0]);for (i = 0; i < 3; i++) {\[grows(($int)$i, 1).fixed(2, ($double)$j).?grows(X,Y).?fixed(X,Y).\]}exit_coral();} During the execution of the above program, each time through the loop, the variable i which is passed to thedeclarative CORAL code takes on a new value, and hence new facts get added to the relation \grows" on eachiteration. The query ?grows(X,Y) prints out a set of answers on each iteration, and the set of answers increaseson successive iterations. Assuming duplicate elimination is performed, the relation \fixed" remains unchanged,as also the set of answers to the query ?fixed(X,Y).24Note that it is easy to materialize a derived relation, if desired, by using an imperative rule with \:=".25



8.3 De�ning New Predicates in C++As we have already seen, predicates exported from one CORAL module can be used freely in other modules.Sometimes, it may be desirable to de�ne a predicate using extended C++, rather than the declarative languagesupported within CORAL modules. A coral export statement is used to declare the arguments of the predicatebeing de�ned. The de�nition can use full extended C++. The source �le is pre-processed into a C++ �le, andcompiled to produce a .o �le. If this �le was consulted from the CORAL prompt, then it is incrementally loadedinto a newly allocated region in the data area of the executing CORAL system. It is also possible to directlyconsult a pre-processed .C �le or .o �le, and avoid repeating the pre-processing and compilation steps.Consider the following example of de�ning CORAL predicates using C++._coral_export double myfunc(double);double myfunc(double x){ return x*2 ;} The export statement de�nes a CORAL predicate myfunc based on the C++ function myfunc. The returnvalue of the C++ function myfunc is automatically mapped into the second argument of the CORAL predicatemyfunc. This predicate must be called with the �rst argument bound to a double; the second argument can befree or bound. If the second argument is bound, the computed value is compared with the given binding.The CORAL primitive types are the only types that can be used in a coral export declaration; user-de�nedtypes are not allowed. An alternative mechanism is available to de�ne more complex predicates using C++;details may be found in the CORAL manual [RSSS93a]. However, the export mechanism makes it very easy tode�ne simple predicates using C++.9 Extensibility in CORALThe implementation of the declarative language of CORAL is designed to be extensible. The user can de�nenew abstract data types, new relation implementations and new indexing methods, and use the query evaluationsystem with no (or in a few cases, minor) changes. The user's program will, of course, have to be compiled andlinked with the system code. CORAL assumes a set of standard operations on data types is available, and allabstract data types must provide these operations (as C++ virtual member functions).9.1 Extensibility of Data TypesThe type system in CORAL is designed to be extensible; the class mechanism and virtual member functionsprovided by C++ help make extensibility clean and local. \Locality" refers to the ability to extend the typesystem by adding new code, without modifying existing system code | the changes are thus local to the codethat is added. All abstract data types should have certain virtual member functions de�ned in their interface,and all system code that manipulates objects operates only via this interface. This ensures that the queryevaluation system does not need to be modi�ed or recompiled when a new abstract data type is de�ned. Therequired member functions include the member function equals which is used to check if two objects are equal,the member function print for printing the object, hash to return a hash value, and constructor and destructorfunctions. For a summary of the virtual member functions that constitute the abstract data type interface, see[RSS92b, RSSS93a]. The user can de�ne predicates (using C++) to manipulate (and possibly display in novelways) objects belonging to the abstract data types. These predicates must be registered with the system andcan then be accessed from CORAL; registration is accomplished by a single command.26



While the creation of new abstract data types in CORAL is quite straightforward, the de�nition of predicatesto manipulate the abstract data types is a little more complicated since the creator must have some knowledgeof the internal data representation in CORAL. Given this knowledge, de�ning a predicate is easy as well. Forexample, one of the authors implemented an array abstract data type along with a set of predicates to manipulateit, with about half a day's e�ort.259.2 Adding New Relation and Index ImplementationsCORAL currently supports relations organized as linked lists, relations organized as hash tables, relations de�nedby rules, and relations de�ned by C++ functions. The interface code to relations makes no assumptions aboutthe structure of relations, and is designed to make the task of adding new relation implementations easy. The\get-next-tuple" interface between the query evaluation system and a relation is the basis for adding new relationimplementations and index implementations in a clean fashion. The implementation of persistent relations usingEXODUS illustrates the utility of such extensibility (Section 7.3).10 Performance ResultsThe wide range of evaluation techniques available in CORAL and the ability to choose a combination easilyo�ers much greater exibility than is available in other systems. Here, we present some performance resultsthat underscore the value of this exibility by examining several programs and evaluating them using di�erentexecution alternatives in CORAL. For lack of space, we present only a few of the numbers that we generated,and just summarize our results here. We performed measurements on a lightly loaded Sparcstation 10/51, usingUnix user cpu times. The programs chosen represent \typical" building blocks used in deductive applications:computing transitive closure and bill-of-materials relationships, appending lists, aggregating over sequences, andsimple non-recursive rules that join several relations.The purpose of providing these performance numbers is to give a feel for the e�ciency of the system. Wehave not presented a comparison of CORAL with other systems. Such comparisons need to be carefully designedand are beyond the scope of this paper.Ancestor and Bill of MaterialsThe �rst program that we examined was the well known ancestor example. We used a tree with a depth of 3and a uniform fanout of 10 (having a total of 1110 edges), and a chain of length 160 as our data sets. The rootsof the data sets were used as the selections on the �rst argument for each of the queries; thereby all nodes werepresent in the answers. The timings are shown in Table 1, and they do not include printing times. We present�gures for three ways of writing the program (left-linear, right-linear and non-linear) in combination with twooptimization techniques (Supplementary Magic, which is used by default in CORAL, and Factoring, which isapplicable only to a certain class of programs and must be explicitly enabled).The factoring rewriting of all the above forms of the ancestor program results in a program similar to (butslightly simpler than) the left-linear Supplementary Magic version of the program; hence their timings are similar.The poor performance of the non-linear version of the program with Supplementary Magic rewriting indicatesthat thought must be given to e�ciency when writing declarative programs, unless the optimizer is su�cientlysmart.We also ran a bill-of-materials program, which computed all the basic parts needed to create an assembly,and summed up the total cost of the copies of each basic part required. We used a synthetic database of 100di�erent basic parts, and 15000 facts for the assemblies (each assembly consisting of three sub-assemblies/basicparts). A query on this database which resulted in all 100 basic parts being accessed ran in 12.36 seconds.25This is available as part of the CORAL system. The additional code involved is included and discussed in the CORAL usermanual [RSSS93a]. 27



Program Dataset Rewriting TimingLeft Linear Ancestor Tree1110 Supplementary Magic 0.50sFactoring 0.40sChain160 Supplementary Magic 0.09sFactoring 0.07sRight Linear Ancestor Tree1000 Supplementary Magic 1.65sFactoring 0.77sChain160 Supplementary Magic 4.88sFactoring 0.11sNon Linear Ancestor Tree1000 Supplementary Magic 4.00sFactoring 0.74sChain160 Supplementary Magic 149.25sFactoring 0.14sTable 1: Ancestor TimingsList Length Supp. Magic Last-Call Pipelined100 0.19s 0.13 0.03200 0.36s 0.27 0.06400 0.71s 0.53s 0.14sTable 2: Append TimingsAppending ListsThe second program that we examined was the standard program for appending two lists; the program was usedprimarily to demonstrate CORAL's support for complex data such as lists. We performed timing measurementsfor appending ground lists of di�erent sizes; three evaluation techniques were used | pipelining, materializationusing Supplementary Magic rewriting, and materialization using a version of Supplementary Magic rewritingwith last-call optimization [Ros91]. Factoring is not applicable for this program,The timings are shown in Table 2. As the data indicates, append runs in linear time on CORAL withall three evaluation techniques. What is interesting is that the rewritten program generated by the version ofSupplementary Magic with last-call optimization actually generates non-ground facts, even though the appendprogram itself does not generate non-ground facts on the queries we use. Without the non-ground fact relatedoptimizations [SR93, Sud92], the evaluation of the above rewritten program would have taken quadratic time.With the non-ground fact optimization, not only did the program run in linear time, but it ran faster than theversion of the program rewritten using Supplementary Magic rewriting. The version of Supplementary Magicwith last-call optimization has not yet been implemented in the CORAL system, but we hand-coded the programto demonstrate the bene�ts of the non-ground fact optimizations implemented in CORAL, and the bene�ts oflast-call optimization.The timings for the append program clearly indicate that pipelining is the best evaluation mechanism forappend; however, the exercise demonstrates that programs which need to be evaluated with materialization (forother reasons), can perform list operations with acceptable asymptotic bounds.Moving Average Over a SequenceThe third program we studied computed the N-day moving average over a daily sequence of stock quotes. Theaverage of the values of a sequence over a \window" of days prior to the current day are computed for eachday in the sequence. With Supplementary Magic, on a sequence of length 1000, CORAL took about 0.74sregardless of window size. This reects the fact that the optimized program essentially just scans the relation28



once, independent of the window size. Performance is linear in the size of the input sequence; e.g., CORAL takes1.55 seconds on a sequence of length 2000, and 3.37 seconds on a sequence of length 4000,Indexing and JoinsWe measured the time taken to build indices on relations. For in-memory relations, indices could be constructedvery e�ciently; for example, creating an index on the �rst two columns of a ternary relation with 15000 tuplestook just 0.24 seconds. This bears out our decision to construct indices on in-memory relations whenever theindices are required for evaluating a rule.To get a feel for the performance of low-level evaluation mechanisms, we performed a simple join of theform \parent(X,Y), parent(X,Z), parent(Z,W)," with the tree data set having 1110 edges used as the input. Wetimed two variants of the program, both of which had an empty relation as the fourth relation in the join, sono actual facts were generated (the cost of materializing facts dominates the other join costs). The �rst varianthad a relation with no arguments, and intelligent backtracking on �nding the relation was empty the �rst timeit was accessed would recognize that the rule would never generate any facts, and not perform the rest of thejoin. The time for detecting this was just around 0.05 seconds. The second variant was crafted to foil intelligentbacktracking. Since the fanout of the tree data set is 10, the literal placed after the three parent literals isreached about 100,000 times in a nested-loops join. This variant of the join took 1.25 seconds to execute.When the parent facts were stored in an EXODUS (persistent) relation, all the timings were approximately�ve times higher. This is primarily because of ine�ciencies in the interface between CORAL and EXODUS, andthe system is currently being modi�ed to reduce some of the unnecessary overheads in this interface.Based on our experience thus far, we can make a few observations: CORAL is not very e�cient in its low-levelimplementation. For example, it is nearly three times slower than LDL on the basic join program, about eightto ten times slower than XSB, and about twenty-�ve times slower than WAM-based Prolog implementations.We believe that the di�erence in speed between LDL and CORAL on the basic join program is due to thefact that LDL is compiled into C, whereas CORAL is interpreted. However, CORAL performs better thanLDL on many programs that are more complicated; we believe this is because, in general, CORAL has betterprogram transformation and evaluation techniques. XSB and WAM-based Prolog implementations have paida great deal of attention to low-level optimization techniques, such as uni�cation and memory-managementand this results in superior performance. However, these systems provide a �xed control strategy, and �xeddata types, unlike CORAL which has a number of di�erent control strategies and an extensible type system.We are currently studying how some of the WAM optimizations (see [AK91], for example) can be extended tosupport these CORAL features; This would require changes in, for example, internal representations of terms,memory management and code for rule evaluation. We believe that high-level optimizations in CORAL, suchas the program transformations and semi-naive �xpoint evaluation, would not be substantially a�ected by suchlow-level optimizations.11 ApplicationsIt is widely accepted that developing signi�cant applications currently represents the major challenge for de-ductive systems. We briey describe major CORAL applications that we are aware of. In addition, we havedeveloped and tested a large suite of programs; these are described in the user manual [RSSS93a]. The CORALsystem has been retrieved by over 200 sites and has been used in research projects as well as in courses atseveral universities. Some substantial research applications of CORAL, developed by others, were described inthe post-ILPS93 Workshop on Programming With Logic Databases [Ram93]. These include:Support for visual querying of graph data : The Hy+/GraphLog group at the University of Toronto isusing CORAL as a back-end for a system that allows users to pose queries through a visual interface [VW93].A rich class of natural queries over graphs (e.g., ight queries, and class library dependency queries) issupported, and queries are evaluated by translation into CORAL queries.29



Genome Sequence Analysis : A group at MIT's Genome Lab is considering the use of CORAL for maintain-ing and querying genome sequence data [GRS93]. They report that deductive databases are well-suited fortheir application since many of their queries are naturally recursive. They have used CORAL for posingsome queries on their data, and mention that CORAL's features and performance in terms of speed arevery good for their application.In addition, several CORAL applications have been developed at the University of Wisconsin, which we nowdescribe.11.1 Applications Developed at the University of WisconsinThe CORAL group has developed two substantial applications of CORAL.The �rst application is the Mimsy package [RRS93] for analyzing sequence data in the stock market domain.Mimsy allows users to write queries using a menu-driven pseudo-English language interface (with no knowledgeof CORAL). Mimsy queries are implemented by translating them into CORAL queries and passing them overa socket to a server executing CORAL. Data is stored in Unix �les in the compressed format used by CRSP26for distribution. The relations needed to answer a query are loaded into memory on demand. Answers can beviewed as relations or as graphs; in addition to CORAL, software such as Ghostview and IPL is used in Mimsy.An important feature of Mimsy is the special implementation of relations corresponding to stock histories| they are simply and e�ciently implemented as C++ arrays, and CORAL's extensibility is used to \register"this new relation type. Adding such \array relations" was quite easy27 and yielded a signi�cant performanceimprovement, underscoring the importance of extensibility. We have tested the package on �ve years worth ofdata on 100 stocks; over 20 years worth of data on about 1600 stocks is available. It is therefore very importantthat the data be stored in compressed form. Nonetheless, an interesting point is that for virtually all queriesof interest, all the data easily �ts into memory | to see why this is so, note that the data for each stock canbe represented in one double word, there are about 250 data items per stock per year, and that queries rarelyinvolve over 10 stocks. Since data for a query is loaded on demand, the performance of a query is determinedonly by the data that it touches, rather than by the total amount of available data.It is worth noting that many queries that Mimsy is designed to deal with are naturally recursive, and di�cultto express in SQL. For example: \Find the N-day moving average of IBM" and \Find the longest increasing runin GM in 1993." Further, even queries that are non-recursive are more e�ciently implemented than in a typicalSQL system due to the light-weight implementation of relations containing stock series data. An example of anon-recursive query is: \Find the 4-day average of IBM whenever the price of DEC is up more than 5 per cent."The Mimsy system is inspired by MIM [Log92, Lew92], which is a commercial package for analyzing stockmarket data. Mimsy has many of the features of MIM, which is a stand-alone package written in C, but Mimsy isnot as fast as MIM. Nonetheless, it o�ers good interactive performance for typical queries. An important featureof Mimsy, not available in MIM, is the extensibility that comes from having CORAL available underneath. Asophisticated user can easily add new built-ins or predicate de�nitions using the CORAL deductive language andmake these accessible to naive users from the pseudo-English language menu. This allows Mimsy to be customizedwith complex analysis strategies by individual users, which is a very desirable feature in an environment wheremany traders use sophisticated proprietary strategies for buying and selling securities.A second application is an explanation and debugging package for CORAL called Explain [ARR+93], which isitself implemented using CORAL. The implementation of Explain uses the C++ interface of CORAL extensively.However, the implementation of Explain does not utilize CORAL's deductive capabilities. Explain allows a userto browse through all derivation trees for facts generated during a CORAL run, using a graphical point-and-click interface. During a run, derivation fragments (rule instantiations) are generated and stored in a �le.Subsequently, the browsing component of Explain can be invoked and the saved fragments are loaded intoCORAL relations. The Explain commands to \grow" and \prune" derivation trees for \interesting" facts are26Center for Research in Security Prices, University of Chicago.27A graduate student who was moderately familiar with CORAL added and fully tested this code in under a week.30



implemented using these relations, and the implementation is greatly simpli�ed by leaving the management ofthese relations (including such concerns as indexing) to CORAL. Storing derivation fragments slows CORALexecution by a factor of about �ve, and loading in the saved relations can take tens of seconds for large dumps(some of our tests created over 60,000 fragments). Responses to browsing queries, once these relations are loaded,is very fast (much less than a second).Also at the University of Wisconsin, Madison, Tom Reps has used CORAL to implement algorithms forinterprocedural slicing, a technique for identifying program statements that can a�ect the value of a variable ata particular program point. An algorithm for slicing was reported in [HRB90], and implemented in about 5000lines of C in eight months. The programs to be analyzed by slicing were encoded as a set of facts (correspondingto edges in the program dependency graph) in CORAL, and the algorithm for slicing was implemented in justabout 100 lines of declarative CORAL code. A notable feature of the CORAL code was that complex recursiverules were frequently used, with the most common being variations of transitive closure. However, rules similarto the well-known same-generation rules (but more complex!) were also used; this is not surprising when oneconsiders the need to \match" procedure calls and returns. This application clearly shows the utility of adeclarative language capable of dealing with large numbers of facts; for example, one sample program of about700 lines had an encoding consisting of over 10000 base facts. The number of recursive semi-naive rules in thelargest recursive component was approximately 25, and tens of thousands of intermediate facts were generated.The application also brought out some limitations in the CORAL implementation. Memory management, joinordering and low-level rule implementation seem to be the main weaknesses, although a more careful evaluationremains to be done.12 Related SystemsA number of other deductive database systems have been developed in the past few years. These include (inalphabetical order) Aditi [VRK+91], ConceptBase [JS93], EKS-V1 [VBKL90], Glue-NAIL! [MUVG86, PDR91],LDL [NT89, CGK+90], LDL++ [AO93], LOLA [FSS91], Starburst SQL [MPR90] and XSB [SSW93]. There aremany similarities between CORAL and these systems. However, there are several important di�erences, andCORAL extends the above systems in the following ways:1. CORAL is extensible | new data and relation types and index implementations can be added withoutmodifying the rest of the system.2. CORAL supports a wide range of evaluation techniques, and gives the user considerable control over thechoice of techniques.3. CORAL supports a larger class of programs, including programs with non-ground facts and non-strati�edset-generation.EKS-V1 supports integrity constraint checking, hypothetical reasoning and provides some support for non-strati�ed aggregation [Lef91, Lef92]. ConceptBase supports several object-oriented features, integrity constraintchecking, and provides a one-way interface to C/Prolog, i.e., the imperative language can call ConceptBase,but not vice versa. LOLA supports integrity constraints, several join strategies, and some support for typeinformation. The host language of LOLA is Lisp, and it is linked to the TransBase relational database. Aditigives primary importance to disk-resident data and supports several join strategies.In CORAL, modules serve as the units of compilation, and several evaluation choices can be speci�ed ona per-module basis. Unlike Glue-NAIL! and LDL, where modules have only a compile-time meaning and norun-time meaning, modules in CORAL have important run-time semantics. Several run-time optimizations aredone at the module level. Modules with run-time semantics are also available in several production rule systems(for example, RDL1 [KdMS90]).LDL++ [AO93], a successor to LDL, has moved in the direction taken by CORAL in several respects. Itis interpreted, supports abstract data types, and uses a local semantics for choice (Carlo Zaniolo, personal31



communication). XSB [SSW93] is a system being developed at SUNY, Stony Brook. It supports several featuressimilar to CORAL, such as non-ground terms and modularly strati�ed negation. Program evaluation in XSBuses OLDTNF resolution, and has been implemented by modifying the WAM; this implementation performsbasic operations such as uni�cation very e�ciently.Unlike most logic programming systems, such as various implementations of Prolog, CORAL (like some ofthe other deductive database systems) supports declarative semantics for all positive Horn clause programs, andfor a large class of programs with negation and aggregation as well, and provides better indexing facilities andsupport for persistent data.13 Conclusions13.1 Retrospective on the CORAL DesignThe CORAL project is at a stage where one version of the system has been released in the public domain, andan enhanced version will soon be released. Looking back at the evolution of the system, the e�ects of severaldesign decisions are becoming increasingly evident. On the positive side, most of the decisions we made seem tohave paid o� with respect to simplicity and ease of e�cient implementation.Modules : The concept of modules in CORAL was in many ways the key to the successful implementation ofthe system. Given the ambitious goal of combining many evaluation strategies controlled by user hints inan orthogonal fashion, the module mechanism appears to have been the ideal approach.Annotations : It has been our experience in practice that often the discerning user is able to determine goodcontrol strategies that would be extremely di�cult, if not impossible, for a system to do automatically.Hence the strategy of allowing the users to express control choices was a convenient approach to solving anotherwise di�cult problem. It is important to emphasize that a good choice of default decisions is essentialin order to shield a naive user from the need to learn about annotations. As the system becomes moresophisticated in making intelligent optimization choices, the need for user-speci�ed annotations decreases.However, the ability to specify annotations when necessary is a valuable feature.In retrospect, annotations such as \aggregate selections" have proven to be extremely useful, whereas otherannotations such as \prioritize" have not been used much.Extensibility : The decision to design an extensible system seems to have helped greatly in keeping our codeclean and modular.System Architecture : The architecture concentrated on the design of a single-user database system, leavingissues like transaction management, concurrency control and recovery to be handled by the EXODUSstorage manager. Thus CORAL could build on facilities that were already available, and focus instead onthe subtleties of deductive databases and logic rules. The overall architecture was reasonably successful inbreaking the problem of query processing into relatively orthogonal tasks.On the negative side, some poor decisions were made, and some issues were not addressed adequately.Type Information : CORAL makes no e�ort to use type information in its processing. No type checking orinferencing is performed at compile-time, and errors due to type mismatches lead to subtle run-time errors.Typing is a desirable feature, especially if the language is to be used to develop large applications. This isone of the issues addressed by a proposed extension to CORAL [SRSS93].Memory Management : In an e�ort to make the system as e�cient as possible for main-memory operations,copying of data has largely been replaced by pointer sharing, even for primitive data types such as integers.While this does make evaluation more e�cient, it requires extensive memory management and garbagecollection. This is, in retrospect, the worst of our design decisions, and is currently being modi�ed. It hasimplications for both garbage collection and the interface to persistent data.32



Low-level Optimizations : The focus of the CORAL implementation was high-level optimizations such asrewriting algorithms and semi-naive evaluation. We have not attempted to fully optimize the basic opera-tions in evaluating a rule. In the main-memory case, optimizations such as those pioneered in the WarrenAbstract Machine (WAM) for Prolog systems could signi�cantly improve performance. For disk-residentdata, more e�cient join methods and cost-based query optimization would greatly improve the system.On the whole, however, CORAL has incorporated many features that are unique among deductive databasesystems.1. As an architectural feature, the importance assigned to modules both as compile-time and run-time unitsdistinguishes CORAL from other deductive database systems (as discussed in Section 12). The EXODUS-based architecture for persistent data and the C++ interface are also notable design decisions.2. From a language viewpoint, CORAL supports a wide range of features that set it apart from other lan-guages. In particular, the support for non-strati�ed negation and aggregation, non-ground facts, and themany control annotations make for a rich and powerful language.3. From an implementation viewpoint, many of the strategies that are supported by CORAL were developedin the course of the project. These include program evaluation strategies like Magic Templates, Factoring,Ordered Search and Predicate Semi-Naive evaluation, as well as optimization techniques to handle non-ground facts e�ciently, and techniques to implement Save Modules.13.2 Future DirectionsThere are a number of directions in which CORAL could be, and in some cases needs to be, extended. Thissection discusses some issues that appear to be important, and that will involve signi�cant e�ort. The issuesdiscussed initially are those that involve enhancing the power or the performance of existing features of CORAL.Some other desirable enhancements that require extensive changes to the system are mentioned later.� Further support of persistent data needs to be provided. Though CORAL uses the indexed nested-loopsjoin strategy as its default, there is no reason to stick with this approach, especially for joins of persistentrelations. The design of the system makes no assumption about individual join methods, and so persistentrelations should be joined by the most e�cient join method available. While the current system permitsthe storage of only primitive data types in EXODUS, this needs to be enhanced to allow the storage ofstructured data as well. This is an interesting direction of future research.� The management of memory is probably the biggest drawback of the �rst version of the system. Extensivecode modi�cation is required to copy constants instead of sharing them. This process is partially completedat the time of publication.� The interface with C++ needs to be enhanced with new abstractions that allow programmers greaterabilities to use the power of CORAL. In particular, a more powerful abstraction of variables needs to beprovided.� While performance measurements of a preliminary nature have been made, an extensive performanceevaluation of CORAL, both to evaluate various aspects of the system and to compare it with other systemsneeds to be performed.� At present, the system presents a command prompt interactive interface, in much the same manner asmost Prolog systems. There are many challenges with respect to user interfaces for declarative languagesystems that could be tackled in the CORAL context.33
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