Cost-Based Optimization for Magic: Algebra and Implementation

Praveen Seshadri
Univ. of Wisconsin, Madison Univ. of Cadlifornia, Berkeley
praveen@cs.wisc.edu jmh@cs.berkeley.edu
Raghu Ramakrishnan

Univ. of Wisconsin, Madison
raghu@cs.wisc.edu

AT& T Research

Abstract

Magic sets rewriting is a well-known optimization heuristic for
complex decision-support queries. There can be many variants
of this rewriting even for a single query, which differ greatly in
execution performance. We propose cost-based techniques for
selecting an efficient variant from the many choices.

Our first contribution isapractical schemethat modelsmagic sets
rewriting asaspecial join method that can be added to any cost-based
query optimizer. We derive cost formulas that allow an optimizer to
choose the best variant of the rewriting and to decide whether it is
beneficial. The order of complexity of the optimization process is
preserved by limiting the search space in areasonable manner. We
have implemented this techniquein IBM’s DB2 C/S V2 database
system. Our performance measurements demonstrate that the cost-
based magic optimization technique performswell, and that without
it, several poor decisions could be made.

Our second contributionisaformal algebraic model of magic sets
rewriting, based on an extension of the multiset relational algebra,
which cleanly defines the search space and can be used in a rule-
based optimizer. Weintroduce the multiset 6-semijoin operator, and
derive equivalence rules involving this operator. We demonstrate
that magic sets rewriting for non-recursive SQL queries can be
modeled as a sequential composition of these equivalencerules.

1 Introduction

Current relationa database systems process complex SQL
queries involving views, table expressions and subqueries
with aggregate functions. Such queries are becoming
increasingly important in decision support applications
(see, eg., the TPC-D benchmark [TPCD94]). The
magic sets rewriting technique (see, eg., [BMSUS86,
RLK86, BR91, MFPR90, SS94]) has been proposed as a
heuristic query transformation to optimize such queries, and
can result in dramatic improvements in query execution

*This work was performed while the author was at the University of
Wisconsin, Madison.

fThis work was performed while the author was at AT&T Bell
Laboratories, Murray Hill.

Joseph M. Hellerstein®

Divesh Srivastava

divesh@research.att.com

435

Hamid Pirahesh
IBM Almaden Research Ctr.
pirahesh@al maden.ibm.com

T. Y. Cliff Leung
IBM Santa Teresa L ab.
cleung@almaden.ibm.com

S. Sudarshanf
11T, Bombay

sudarsha@cse.iith.ernet.in

Peter J. Stuckey
Univ. of Melbourne
pjs@cs.mu.oz.au

performance [MFPRO0]. There can be many possible
variants of this rewriting even for a single query, based
upon the decisions made with respect to binding propagation.
Some of these variants can actually degrade performance.
Prior to thiswork, there has been no demonstrated al gorithm
to efficiently choose a variant in a cost-based manner. This
paper removes an important obstacl e to the incorporation of
magic sets rewriting into commercia database systems.

This paper explores two approaches to the problem. The
first approach is based on modeling magic sets rewriting as
a join method, and has been implemented in the DB2 C/S
V2 database system. The second approach presents a model
of magic sets rewriting based on algebraic transformations.
Thetwo approaches are complementary, and together explore
the practical and theoretica issues involved.

The goal of theimplementation isto develop an agorithm
that takes into account the constraints and requirements of
a full-function DBMS. Magic sets rewriting is modeled as
a specia join method that can be added to any existing
cost-based query optimizer. Cost formulas are derived
that alow the optimizer to choose the best variant of
the rewriting and determine whether it is beneficia. An
exhaustive search of al variants considerably increases the
complexity of query optimization. To preserve the order of
complexity of the optimization process, reasonable limits
are applied on the search space. A performance study
based on the implementation in DB2 C/S V2 demonstrates
the low additional optimization overhead, and the stability
of the agorithm as it makes cost-based choices that
result in significant improvements in query execution time.
Importantly, the results demonstrate that a cost-based
algorithm is required for magic sets rewriting (algorithms
that are based on heuristicsvary intheir relative performance
as the data statistics and costs change), and that the proposed
cost-based algorithm works well.

The algebraic approach to magic sets rewriting is based
on equivalence rules, involving the ¢-semijoin operator, on
the multiset relational algebra. The agebraic approach
defines the search space cleanly, and can be used (possibly in
conjunction with heuristics to restrict the search space) in a
rule-based optimizer. We present a representative collection
of equivalence rules, and show how these rules model magic
sets rewriting for non-recursive SQL queries.

We initially motivate the problem with an example.

View Definition
CREATE VIEW DepAvgSa AS
(SELECT E.did, AVG(E.sal) AS avgsal FROM Emp E
GROUPBY E.did);

Main Query Block
SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did AND E.age < 30
AND D.budget > 100,000 AND E.sal > V.avgsa

Figure 1: Origina Query
2 Motivation

The SQL query in Figure 1 finds every young employee
in a big department whose sadary is higher than the
average sdary in that department. The query involves a
relational view DepAvgSa that derives the average salary
in each department, and a join between the Emp, Dept and
DepAvgSal relations. Magic sets rewriting exploits the fact
that the average departmental salary need not be computed
for every department; it need only be computed for those
departments that are big and have young employees. If
there are few such departments, it is probably desirable to
apply magic sets rewriting.! The rewritten query is shown
in Figure 2. The PartiaResult view represents the partia
computation in the main query block at the stage where the
Emp and Dept tables aready have been joined together, but
the view DepAvgSal has yet to bejoined to them. From this
PartialResult table, a duplicate-free Filter view is created,
which isaset of al those departments for which the average
salary needs to be computed. This filter set is now used
to limit the computation in the original view.? The view
is modified by the inclusion of an equi-join with the filter
set (thereby limiting the computation in the view to the
departments of interest). Finally in the main query block of
Figure 2, the modified view isjoined with the Partial Result
table to produce the answer.

2.1 Rewriting Choices

In the rewritten query shown, the filter set contains all
departments which are big and have young employees. This
isthemost restrictivefilter set possible. A lessrestrictivefilter
set can be used instead. Thefilter set can contain al the big
departments, or al the departments with young employees.
In each of these cases, the rewritten querieswill be different
from that shown in Figure 2, but will have a similar overall
structure, and return the same answers. While these options
may resultin more computationinsidetheview, they could be
cheaper overall (because the Partial Result table or the Filter
tableis cheaper to compute). In general, thereare many ways
inwhich thefilter set could be created, each corresponding to
some subset of the tablesin the FROM clause that resultsin
the Partial Result relation. If every department isbig and has
young employees, rewritten queries provide no improvement
over the origina query, and may even be more expensive

1While there have been many flavors of magic sets rewriting proposed,
the most practical onein the RDBMS context is the supplementary magic
sets rewriting used in this paper.

2|n the literature, the filter set and the Partial Result have been called the
“magic” set and the “ supplementary” respectively.

436

View Definitions
CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did FROM Emp E, Dept D
WHERE E.did = D.did AND E.age < 30 AND
D.budget > 100,000)
CREATE VIEW Filter AS
(SELECT DISTINCT Pdid FROM PartialResult P);
CREATE VIEW LimitedDepAvgSal AS
(SELECT F.did, AVG(E.sal) as avgsal FROM Filter F, Emp E
WHERE E.did = F.did
GROUPBY F.did);

Main Query Block
SELECT Peid, Psa FROM PartialResult P, LimitedDepAvgSal V
WHERE Pdid = V.did AND Psal > V.avgsal

Figure2: Magic Sets Rewriting

to execute. Finally, when there are multiple join attributes,
a decision needs to be made if dl the join attributes will
contribute to the filter set, or whether only some of the
attributes will be used. However, in the vast majority of
gueries, there is exactly one join attribute, so this is not
usualy an important issue.

The specific combination of choices made with respect
to computing the filter set has been caled the “sideways
information passing strategy” (SIPS), so named because the
filter set passes the join attributes “ sideways’ into the view
definition. One specific SIPS results in the best execution
plan for a query. However, this depends on the tables and
predicates involved in the query, and the characteristics of
the execution environment. No practical solution currently
existsfor choosing the SIPSin acost-based manner. Instead,
existing systems that perform magic sets rewriting have
chosen one of two approaches:

e Use magic sets rewriting with a default SIPS (typicaly
“|eft-to-right”) and allow the user to specify a different
SIPS or disable magic sets rewriting. This approach is
used in CORAL [RSSS94].

Independently optimizethe query withand without magic
sets rewriting and choose the cheaper plan. For magic
sets rewriting, choose a SIPS based on some heuristic.
This approach is used in Starburst [MP94]. The SIPS
chosen “corresponds’ to the join order that arises from
optimizing the origina query without magic rewriting.
No cost-based justification has been presented for this
heuristic, nor is there any guarantee that a good plan
is chosen. In fact, we show in Section 6 that this
heuristic can make some poor choices. However, since
the origina query is aso independently optimized, one
can ensure that performanceis not degraded dueto magic
sets rewriting.

2.2 A Cost-Based Solution

This paper presents a cost-based solution to the problem of
choosing an appropriate SIPS. We implemented our solution
in the DB2 C/S V2 database system (which is based on the
Starburst system [HCL +90]) which has support for magic sets

QUERY Magic Not Required
=——p| FRONT et OPTIMIZER o o o o o o o o o = EXECUTION
END
|
_— b
Magic Required | 1
(oond SPSchosn))_ | MACIC & I~ OPTIMIZER — — —

Figure 3: Optimization Architecture

rewriting as a query-to-query transformation. The system
architecture used is shown in Figure 3. The user's query
is fed directly into the cost-based query optimizer, which
decides whether or not to perform magic rewriting. While
the optimizer explores the space of possible join orders and
methods, it also explores the space of possible options for
magic sets rewriting. If the decision is that no rewriting is
needed, the optimizer generates an execution plan as usua
and sends it on to the execution engine. On the other hand,
if the optimizer decides that magic rewriting is needed, it
also chooses one specific SIPS for the rewriting, which
guides the application of the magic sets transformation.
Once the query is rewritten, it has to be optimized again
to generate an execution plan. The Starburst solution
discussed above [MP94] was thefirst to suggest the two-pass
architecture, and we use the same idea since we would like
to avoid major changes to the existing system components.
An alternative approach, which we discuss in Section 7, is
to implement magic rewriting via algebraic transformations
(instead of as an SQL-to-SQL rewriting).

3 Magic Setsand Join Optimization

In this section, we describe how the magic sets rewriting
choices can be explored as part of the join optimization phase
of aquery optimizer.

3.1 Primer on Join Optimization

A query optimizer determines an efficient order in which
to execute the joins of N relations, and the actual join
method to use for each join. Since joins are associative
and commutetive, there is a large space of O((2(N —
)I/(N — 1)!) possible join orders [GHK92]. Since
this is a prohibitively large space to explore for even
a smal vaue of N, most practica join optimization
algorithms[SAC+79, IK84, KBZ86] explore limited regions
of it. All the algorithms have one common festure: at each
step, they consider various two-way joins, and for each join,
they consider the cost of applying various join methods.

3.2 Join Ordering and SIPS

We now explain the correspondence between magic sets
rewriting andjoin ordering. Let usconsider theorigina query
of Figure 1. Six possible choices of join order for joining
Emp E, Dept D, and DepAvgSa V are shown pictorialy
in Figure 4; sdlection predicates have been omitted for
CONCi seness.

First consider plans 1 and 2; thejoin of E and D isused as
the outer relation in the final join with the view V (whichis
shaded in thefigure, sinceit isthe operator of interest). How
does this relate to magic sets rewriting? In the example of
Figure2, thejoin of E and D isused asthe Partial Result table

437

Z§V(Z§V(Z<}EJ<}DZ§EZ§D
E D D E D V E (AR, D V E
(€0 @) (©) 4) ®) (6)

p< : Filter-Join Considered < : Filter-Join Not Considered

Figure 4. Some Possible Join Orders

from which the magic set for view V is materiadized. There
is a correspondence between the composite outer relation
in the join plan and the PartiadlResult table used in the
magic rewriting. Therefore, plans 1 and 2 “correspond”
to this particular variant of magic sets rewriting. Similarly,
plan 3 “corresponds’ to a magic sets rewriting which uses
only the Dept relation D as the PartialResult table. Plan
4 “corresponds’ to a rewriting which uses only the Emp
relation E as the PartialResult table. Finaly, plans 5 and 6
“correspond” to the origina query (i.e. magic sets rewriting
is not performed).

We exploit this correspondence to expl ore the exponential
space of choices of the SIPS for magic sets rewriting. We
propose to piggy-back the exploration of the magic sets
rewriting choices onto join optimization by modeling magic
rewriting as ajoin method, thereby permitting our approach
to be incorporated into any cost-based join optimization
algorithmwithout major modificationsto the optimizer code.
The primary change to the optimizer is the addition of
one new join method and this affects the complexity of
optimization by only a constant factor.

3.3 Magic SetsRewriting asa Join Method
We define the Filter-join of relations R and S as follows:

Definition 3.1 (R Filter-Join §) R is cdled the outer
relation and Siscalled theinner relationin the Filter-join. A
(duplicate-free) superset of values of the join attribute of R
iscreated, and isused as afilter to restrict the tuples of Sthat
areaccessed. Therestricted relation of Stuplesisthen joined
with relation R (using any other available join agorithm). O

This join method is similar to the well-known semi-
join [BGW+81] operation, and in fact, this similarity is
exploited in Section 7 when modeling magic sets using a
@-semijoin operator. The important distinction is that semi-
joins have usually been applied to stored relations, while
magic sets rewriting works on views.

Assume that a query optimizer augmented to consider
the Filter-join as a join method is invoked on a join query
involving N relations. At some intermediate stage, it
evaluates the cost of a particular join. The outer relationisa
composite relation of theform (Rq M Ry X - - - X R(k_l)),
and the inner is a single relation Ry, for which magic sets
rewriting can be applied (i.e,, R isaview). The smalest
filter set would result from the (duplicate-free) projection of
the entire composite outer relation. Lessrestrictivefilter sets
could be created by using thejoin of any subset of thetables
in the composite outer relation as the PartialResult. Once
some specific choice of the Partial Result is made, the filter
set itself can be represented exactly, or in a lossy fashion

(i.e, some superset of the filter set can be used instead) by
omitting some join attributes.

There are many different choicesfor the Partial Result, and
for thefilter set. Asweshowedintheexampleof Figure2, the
filter set isused torestrict theinner relation by adding it tothe
FROM clause of theinner query block. Even after choosing
some Partia Result and some filter set, the modified version
of theinner relational view (LimitedDepAvgSal in Figure 2)
needs to be planned. Clearly, if these choices are explored
for every possiblejoininvolving R, astheinner relaion, we
will have explored all possible SIPS combinations. However,
we are unwilling to compromise on optimizer complexity for
the sake of optimizing magic sets rewriting. This implies
that if we propose to explore the possible choices for each
Filter-join, it must be done in constant time. Therefore, our
next task isto limit the search space to some tractable size.

3.4 Limitingthe Search Space

The space of options for one particular Filter-join is large
because of three reasons:

1. There are many possible choices for the PartialResult .
In generd, if there are k-1 relations joined to form the
compositeouter relation, any of the2(* ~ — 1 non-empty
subsets of them could be used as the Partial Result .

2. Givenaparticular PartialResult , there are many possible
choices for the filter set. In generd, if there are m join
attributes, any of the 27" — 1 non-empty subsets of them
could be used as the filter set. Further, there could be
several implementations of thefilter set (for example, as
arelation or as a Bloom filter).

3. Given a particular filter set, there is a large space of
possible plans for the inner relationa view modified by
the addition of thefilter set.

Points(1) and (2) giverisetothefull range of SIPSdiscussed
in [BR91]. We adopt two well-known and widely used
optimizer techniques when faced with huge search spaces:
(&) We apply heurigtic limitations on the search space for
Filter-joins. Hopefully, most of the search space omitted due
to the heuristicsis not of interest. (b) We make assumptions
that allow us to use reasonably accurate cost “ guess-timates”
for parts of the search space, instead of actually exploring
those parts and computing more accurate estimates.

Heuristic 1: The PartialResult must be the complete outer
relation.

Heuristic 2: Some small and constant number of filter set
implementationswill be considered.

Therefore, the choices for the Partia Result and the filter set
can be madein constant time. Finally, we make thefollowing
assumption, which will be justified in the next section.

Assumption 1: The cost and result cardinality of the Filter-
join can be estimated in constant time.

3Another way of introducing lossinessis by using a Bloom filter [Blo70]
to implement the filter set.

JoinCostp Cost of performing the joins
required to generate Partial Result P.
ProductionCostp | Cost of materializing PartialResult P.
ProjCostyp Cost of projecting P to generate
thefilter set F.
FilterCostr, Cost of generating Ry, and
restricting it using the filter set F.
FinalJoinCost Cost of performing the final join
of the outer relation and and R /.

Table 1. Cost Components of a Filter-Join

If assumption 1 holds, then thereis no change in the order of
complexity of join optimization, athough Filter-joinisbeing
considered as an option. For each particular join considered,
the Filter-join method examines only one PartialResult, a
small constant number of filter setsand determinesthe cost of
theFilter-joinin constant time. Theentirequery isoptimized,
and the cheapest complete planisexamined. If it containsno
Filter-join, then magic sets rewriting should not be applied;
otherwise it should be applied using the SIPS specified by
the composite outer relation of the Filter-join.

4 Cost and Cardinality Estimation

We now derive a formula to capture the costs of the Filter-
join method. Note that this cost formula must be evaluated
in constant time. Assume that the Filter-join whose cost is
being estimated has (121 M Ry M - - - M R _1) asthe outer
relation and relation Ry as the inner relation. Because of
the limits imposed on the search space, the Partia Result is
simply the outer relation. The join evaluation cost may
be broken up into the components shown in Table 1 and
explained below. The tota cost of the Filter-joinis the sum
of these cost components.

JoinCostp + ProductionCostp + ProjCostp +
FilterCostg, + FinalJoinCost

JoinCostp: Thisisthe cost of the outer relation, which is
already computed as part of the optimization algorithm.

ProductionCostp. P needs to be materialized because
it is used both in the generation of the filter set, and
also in the top-level join. The cost of materidizing the
Partial Result is a simplefunction of the cardinality of P.
Sincethiscardinality isknown (i.e., aready estimated by
the optimizer), thematerialization cost may be computed.
Instead of creating atemporary relation, P could also be
recomputed. The cost of recomputation of P isthe same
as JoinCost p. Whichever cost islower (materialization
or recomputation) is chosen as ProductionCostp.

ProjCostp: The cost of performing a (duplicate-free)
projection of P to generate filter set /' depends on the
cardinality of P. It also can depend on physical properties
of the plan for P (for example, whether P is sorted or
not) and whether the projection can be combined with
the generation of P. The optimizer has al the necessary
information to make an estimate of the ProjCost p.

FlilterCostg, . This is the cost of generating the filtered
version of Ry usingthefilter set /' (letthefiltered relation

becaled R;/). Themethod for computingthe cost of R/
anditscardindity isleft for discussion at theend of these
definitions.

FinalJoinCost: Thisiseasy to compute. The cardinality
of the outer relation is known. The cardindity of the
filtered inner relation has just been computed. The cost
formulas of other available join methods can be applied
to determine the cheapest way to execute thefinal join.

Note that all (except one) of these cost components can be
computed in constant time using well-known cost formulas
that existing cost-based optimizers aready implement.
The next section shows how the cost of the filtered R;
relation(F'ilterCostg,) and its cardinality can be estimated
in constant time.

4.1 Estimating FlilterCostpg,

In order to model magic sets rewriting as a Filter-join and
obtain an estimate of its cost, we do not need to explicitly
plan the modified inner view. We only need to estimate
the cardinality of the modified view and the cost of the
best plan to generate it. The actua plan is not needed at
this stage, because the optimization architecture presented
in Section 2.2 requires a second pass through the optimizer
after magic rewritingisperformed. The extent of thefiltering
effect of the filter set (i.e., its selectivity) depends on its
cardinality. Whileitisdifficult to estimate the cardinality of
projections accurately [LNSS93], existing optimizersdo use
some assumptionsto estimate projection cardinality [Yao77].

What isneeded isaparameterized planfor therestriction of
Ry, whose parameter isthefilter set. Further, we would like
to be able to generate the parameterized plan just once. Each
specific plan is obtained by instantiating the parameterized
plan with a specific filter set. The plan instance would
providethe cost aswell asthe cardinality of theresult. While
parameterized query opti mization has been thetopi c of recent
research [INSS92], the results are too preliminary to apply
to our problem. We need a concrete technique to deal with
parameterization in our specific context. A trivia solutionis
to performanested invocation of the query optimizer for each
plan instantiation. However, the time for each instantiation
needs to be asmall constant, and since R, can be a complex
expression involving severd joins, thisisnot feasible.

We observethat the cardinality of thefiltered inner relation
Ry!isafunction of only the selectivity of thefilter set (which
is known), and does not depend on the filter set’s physical
size or implementation. Once the cardinality of R/ has
been computed for afew values of the selectivity of F, aline
can be fitted to them, thereby defining the R/ cardindity
functionfor al filter sets. In our implementation, in fact, we
chose to compute exactly two points and perform a straight
line interpolation. The chosen points had selectivities of O
(where theresult cardinality isobviously 0) and 1 (wherethe
result cardinality isthat of the unmodified view Ry).

Estimating the cost of R/ is more complicated, because
join cost functions may be non-linear especidly at size
boundaries when a relation no longer fits in the memory
availablefor someoperation. Therefore, asimplestraight line
approximation method may not be accurate. Oneapproachis
to identify afew equivalence classes based on the size of the
magic set (for example, “smaller than buffer” and “larger than

439

buffer”) and to use a straight line approximation within each
class. We should notethat in practice, filter sets are typicaly
small, because they contain a (duplicate-freg) projection of
only the join column. A simple straight line approximation
may therefore perform adequately; in fact, our prototype
implementation used exactly thistechnique.

4.2 Space Complexity of Optimization

It should be evident why space complexity isnhot an issuein
this work. The optimization in the main query block now
has to try an extra join method for every join considered.
However, it does not require that any extra plans be stored.
Therefore, thereisno changetotheorder of space complexity
due to considering an extra join method. With respect to the
“parameterized” planning of the complex view, our approach
is to optimize the filtered version of the complex view for
a small constant number of equivalence classes. Therefore,
this causes no changein the order of space complexity ether.

4.3 How did the Complexity Disappear?

Whilethereare an exponential number of possiblerewritings,
we managed to combine the search for the best plan into
one invocation of the optimizer to find the best SIPS and
another invocation after the rewriting to optimize the query
rewritten based on that SIPS. It is important to understand
how the original complexity disappeared; thereisno“magic”
involved! Section 3.4 imposed certain limits on the search
space explored. For instance, based on our example in
Section 2, the cost of the following magic rewriting choice
will not be estimated: Dept isused as the Partial Result table,
and thefiltered version of theview LimitedDepAvgSal isfirst
joined with Emp before being joined with Dept. The other
technique used was to make a “good estimate” of the cost of
the parameterized plans, rather than computethem explicitly.
While our estimates are admittedly approximate, they arefar
superior to no estimate at al (whichisthe current state of the
art with respect to algorithmslike magic sets). In anutshell,
we claimthat using these techniquesisvery likely toimprove
the results of today’s query optimizers. An implementation
in the DB2 C/S V2 database system provides the empirical
evidence to back up thisclaim.

5 Implementationin DB2 C/SV2

An implementation of the a gorithm presented in the earlier
sectionsisneeded to answer thefollowing questions: (1) How
feasible is it to incorporate such an agorithm into a rea
database system? (2) Does the agorithm really find good
plans (i.e., does it perform as expected)?

5.1 Feasibility

We prototyped the proposed cost-based optimization in
an IBM internad version of the DB2 C/S V2 database
system. While the query optimizer does support various
search strategies, we focused on the strategy that uses the
well-known left-deep dynamic programming optimization
algorithm. By choosing a full-fledged database system, we
were forced to face al the practical constraints that exist
in a re DBMS. One of us worked on DB2 C/S V2 to
prototypetheoptimi zation al gorithmfor magic setsrewriting.
Despitebeinginitially unfamiliar withthe optimizer code, the
modifications as well as performance measurements were

completed within 3 months. While changes were required
in many parts of the optimizer, the actual number of lines of
C++ code added was well under 1000. We believe that this
validates the feasibility of adding the Filter-join method to
existing optimizers.

5.2 Performance

We studied the performance of our a gorithmusing controlled
experiments described in detail in the next section. The
primary conclusion is that the results firmly support our
expectations. Cost-based optimization prevents magic sets
rewriting from being chosen when it should not, and chooses
one of the best variants when magic sets rewriting should be
chosen. Further, these positive results are obtained without
changing the order of complexity of optimization.

5.3 Practical Experience

We discovered that magic sets rewriting acts as a “stress-
test” for the query optimizer. This is because it uses com-
mon subexpressions, duplicate-free projections, temporary
relations and other features which are usualy used only in
complex decision support queries. Therefore, while cost es-
timation for magic sets rewriting is certainly reasonable at
alogica levd, it is important that the optimizer correctly
model the constructsthat the rewriting uses.

6 Performance Measurement

The objectives of our performance study were (1) To show
that various SIPS choices exist for magic rewriting, and that
no particular SIPS choice is optimal across al queries and
execution environments. (2) To show that cost-based magic
optimization makes a choice that is close to optimal with
different queries and with different execution environments.
(3) To show that the additional overhead due to cost-based
magic optimization does not affect the order of complexity
of the optimization process.

Unfortunately, there is no “standard” benchmark to
evaluate a technique like magic sets rewriting. Instead, we
had to devise an experimental methodology for this purpose.
The experiments we chose had to be relatively ssimple to
understand and explain. Further, we had to be able to
explore the various dimensions of magic sets rewriting in
a comprehensibly small number of experiments. The next
section describes our attempt at devising such amethodol ogy.

6.1 Experimental Methodology

The TPC benchmark D is an industry-wide standard
benchmark for complex queries [TPCD94]. There are two
gueries in the benchmark to which magic sets rewriting can
be applied (Query 2 and Query 17). We were interested in
Query 2 because it has alarge number of variantsfor magic
rewriting (it involvesthe join of many relations), whereas the
other candidate (Query 17) has only one possible variant.

In the first experiment, TPC-D Query 2 is the starting
point. Selection predicates in the outer query-block were
gradualy varied by either removing them, modifying them
to be less sdlective, or replacing them with less selective
predicates. The effect of this is that the query answer
cardinality gradually increased. However, the actual tables
inthe query were not changed, so that the same SIPS choices
were dways available. As the predicates change, different

440

SIPS choi cesbecome optimal and sometimesit isbetter not to
perform magic rewriting a all. The query answer cardinaity
iscrudely related to the possiblefiltering effect due to magic
sets; consequently we expect that magi ¢ setsrewriting should
have greater benefits when the answer cardindlity is smaller.
The optimizer enhanced with cost-based magic optimization
should always choose the right SIPS for al queries.

We repeated the entire experiment after modifying the
initial query used as the starting point (by changing the
contentsof theinner query block). Therefore, wewereableto
explore the effects on avariety of queriesin acontrolled and
understandable manner. We also repeated the experiment
after dropping some of the indexes used in the original
plans; thisrepresents a change in the execution environment.
Therefore, the execution costs of various portions of the
gueries change. Cost-based magic optimization should be
able to detect this, and make the right decision in the new
environment.

Theexperimentswererunon an |IBM RS/6000 workstation
connected to two disks. A 100MB TPC-D database (i.e. with
scale factor of 0.1 as defined by the TPC-D standard) was
generated with all appropriateindexes available. The graphs
of the results plot the variationsin the queries on the X-axis,
ordered by increasing answer size. The primary performance
metric used isquery execution time. Notethat the graphsfor
execution time use a logarithmic scale, so seemingly small
differences are really quite significant. We aso measure
guery compilation time to demonstrate the overhead paid for
the extrawork in the optimizer. All times reported have been
uniformly scaled by afudge factor.

6.2 AlgorithmsCompared

In our experiments, we compared the following agorithms:
no magic sets rewriting (nomag), cost-based optimization
based on Filter-joins (magopt), and some of the possible
“hand-chosen” pre-determined variants of magic sets rewrit-
ing (magl, mag2, mag3, mag4, mags). The pre-determined
variants represent some reasonable SIPS choices. For each
guery, the magopt agorithm should choose the best SIPSin
a cost-based manner, or choose to not perform the rewriting.

Recall from Section 2.1 that there was aheuristic approach
originally proposed in Starburst [MP94]. This approach
first optimizes queries without any knowledge of magic
sets rewriting, and derives the SIPS from the resulting join
order. The drawback in this approach is that nowherein the
estimation arethetrue costs of magic rewriting computed. By
examining the plans generated by the optimizer when magic
rewriting was disabled (nomag), we were able to manually
reconstruct how the Starburst approach would perform. We
cal thisalgorithm shmag.

6.3 Overall Results

The graph in Figure 5 showsthe overall performance results.
The Filter-join based optimization of magic sets rewriting
(i.emagopt) can grestly improve execution performance
when compared to nomag. This happens when the answer
size is small, because the filter set is small and reasonably
selective. This limits the computation in the complex view,
and hence reduces the execution time. However, as thefilter
set gets larger, its advantages slowly diminish while its cost
increases, sothat at thelast pointinthegraph (size 11986), the

nomag ——
magopt -+
100 sbmag = 4
=]
Q@
[
(&
(2]
w
=
H
=
>
x [T S o
0.1
44 44 62 236 1275 11986
incr answer size -->
Figure5: Overal Comparison
magl ——
mag2 —+——
100 ¢ mag3 e
mag4 -x
3 . mags -=--
2 <
(&
(2]
w 10 ¥
=
H
=
>
o 1%
0.1
44 44 62 236 1275 11986

incr answer size -->

Figure 6: Magic Sets Rewriting Choices

algorithm chooses not to perform magic sets rewriting. This
explains why the last point is the same for both nomag and
magopt. The sbmag algorithm performs well for the larger
queries, but performs poorly for the smallest two queries.
In order to understand the performance of sbmag, consider
the fact that the complex view is trested by the optimizer
as a temporary relation without indexes. When the other
joins in the query are very selective and the other relations
are indexed, the cheapest plan often places the view at the
beginning of the join order. Based on such plans, sbmag
decides not to invoke magic sets. However, these are exactly
the queries for which magic is expected to be most useful!

The fourth query (size 236) in the first graph presents
an interesting issue for discussion. We notice that the
performance of magopt isslightly worsethan that of nomag.
Obviously, theoptimizer expected thechosen magicrewriting
for magopt to perform better than nomag. This shows
that the optimizer's estimate of costs does differ from the
actual cost due to inaccurate statistics and/or assumptions.
Algorithms like cost-based magic optimization that build
on top of these errors may occasionaly show sub-optimal
performance.

6.4 Fixed SIPS Choices

The graph in Figure 6 shows the performance of various
fixed choices of SIPS for magic sets rewriting. The existing
state of the art requires the database user to pick one such
choice for each query. As the graph shows, the best choice

441

5
45 |

44
35
3 b \\\
25 |

2L
1t e
05 |

0

CMPL_TIME scaled

236 1275 11986
incr answer size -->

44 44 62

Figure 7: Total Compile Time

differs dramatically from query to query, though the only
real difference between the queriesisin the predicates on the
underlyingtables. Comparing thefirst and the second graphs,
itisevident that magopt findscloseto the best choicefor each
guery, thereby forming the lower envelope of the available
options. Thisisthe single most important performanceresult
presented inthispaper, and demonstrates both the motivation
for our work, and the success of our approach.

6.5 Compilation Time Results

The graph in Figure 7 shows the total compilation (rewriting
+ optimization) time due to the use of magopt and nomag.
This time includes the second pass through the optimizer
when magic sets rewriting is chosen (note that this is a
linear scale, not a logarithmic scale). For the smaller
queries, magic sets rewriting is chosen, and therefore the
compilationtimefor magopt isapproximately twicethetime
for nomag. We view thisas an acceptable overhead, because
in decision support queries, the compilation time is usualy
small compared to the execution time.

For the largest query, magic sets rewriting is not chosen,
and so there is no second pass through the optimizer. As
the graph shows, there is very little overhead for having
considered the option of using magic. This is important
in those cases where the optimization overhead may be
significant. The graph in Figure 8 shows this more clearly;
it plots the time used during the first pass of the optimizer,
when Filter-joins are being considered by magopt. While
magopt considers moreplans, becauseit al so considers plans
involving aFilter-join, thetimetakentodo soisnot very large.
This performance result validates our claim that cost-based
magic optimization does not alter the order of complexity of
guery optimization.

6.6 Experimental Variations

In separateexperiments, wechanged thecomplex view sothat
it was more expensive, and repeated the entire experimental
variation of the outer query block. A couple of variations
of the query execution environment (dropping some indexes)
were also tried. The results are very similar to those shown,
and changed only in the absolute numbers but not in their
relative positions. Due to space constraints, we have not
shown graphs of theresults. In al the experiments, magopt
made close to the best optimization choices. Based on this
study, we observe that the Filter-join based optimization

OPT1_TIME g2

2.5
nomag ——
magopt -+
2%
=]
<@
]
(2] 15
w
=
'_I
— 1r
=
o
(@]
05 ¢
0 L L L L L
44 44 62 236 1275 11986

incr answer size -->

Figure 8: Initial Optimizer Overhead

techniqueisstable; itssuccessisnot dependent onthe specific
nature of the complex view, the nature of the query block in
which the view is used, nor the existence of indexes.

7 The#-Semijoin Algebra

I'n our implementation, we expl ored the optionsfor magic sets
rewriting by “piggybacking” them onto existing mechanisms
in the optimizer. If the system were based on an algebraic
rule-based optimizer, such as Volcano [GM93], another
approach isto extend the query algebrato model magic setsas
well. In this section, we present such an algebraic extension
that hel psto characterize the exact space of possible options.
The algebraic equival enceslead to query transformationsthat
can be applied in acost-based manner, possibly using the cost
estimation techniques aready presented, or using a more
elaborate exploration of the search space.

7.1 Notation

We use the symbols R (with or without subscripts) to
denote relations, ¢ (with or without subscripts) to denote
predicates, £ (with or without subscripts) to denoterelational
expressions, attrs() to denotethe attributes of the result of
F, and a to denote atuple of attributes. In keeping with SQL
semantics, we treat relations as multisets of tuples, and use
the multiset version of relational agebra[DGK82].

We assume familiarity with the algebra, and only describe
the grouping/aggregation operator and the multiset 6-
semijoin operator. We use a grouping/aggregation operator
7F 7, where g denotes the groupby attributesand f denotes
the aggregate operations performed on the groups defined
by the groupby attributes. (This notation is borrowed
from [EN94, KIu82], and isrequired to deal with SQL-style

grouping and aggregation.)

Definition 7.1 (Multiset #-Semijoin) The multiset version
of the 6-semijoin operator, ><y, is defined asfollows. Given
relations Ry and Ry,

def
(R1D<y R2) = 0aier, 0ty (F1)

where 0(t,) denotes the predicate 6 with attributes of R,
replaced by their valuesfrom tuplet,. O

The definition of #-semijoin preserves the multiset seman-
tics, i.e,, for each tuple present in the result, the multiplicity

442

is exactly the same as in R;. For example, if the relation
R1(A, B) isthemultiset of tuples{(1, 2), (1,2),(1,4)},and
Ry(C, D) is{(3,5),(3,6),(3,7)}, then Ry P<p>p Ry =
(12,12} o

In the multiset relational algebra, §-semijoin is a derived
operator, and can be expressed using the ¢-join, projection
(7) and duplicate eimination (&) operators as follows:*

(R1D><g R2) = (R1Myar (6(Tattrs(ry) (1 Mg R2))))

where My, denotes natural join. The intuition is that the
EXPression m,1,s(ry) (Fl1 Mg R2) contains al the tuplesin
thed-semijoin, but possibly withincorrect multiplicities. The
duplicate elimination followed by the natura joinis used to
recover the desired multiplicity.

Some of the ¢-semijoin equivalence rules we describe
make use of functional dependencies present in relations;
we denote the functional dependencies present in a relation
R by FD(R). In addition, the equivaence rules aso
make use of functional dependencies implied by predicates
(such as #-join or #-semijoin predicates). For example,
the predicate = y x y implies the functional dependency
{y} — x, and thepredicate # = y+ = impliesthe functiona
dependencies {y, z} — x, {z,y} — z,and {x, z} — y. We
use the notation F'D(6) to denote the set of al functiona
dependenciesimplied by predicate 4.

7.2 Transformation Rulesfor 6-Semijoin

Optimizing SQL queries by making use of @-semijoins
involves specifying equivalence rules involving ¢-semijoins,
and other operators of the extended multiset relational
adgebra Given a collection of equivaence rules, a
transformational optimizer, like Volcano [GM93], can be
used to enumerate and compactly represent thelogical search
space. Cost formulas for the operators in the algebra are
used to compute cost estimates and choose the optimal way
of evaluating the query.

We discuss some of the more interesting transformations
involving the §-semijoin and #-join operators below; others
are presented in [SSS95]. Algebraic transformations may
require a renaming step, for example when changing the
structure of the expressions. Like other work in the area, our
equivalence rulesignore the renaming step, for simplicity of
exposition; details of renaming can be worked out easily.

Introduction of #-Semijoin: Relational algebra expres-
sions generated directly from SQL queries typically do not
contain the #-semijoin operator.> Weillustratebel ow how the
@-semijoin operator can be introduced into expressions with
joins,; similar equivalence rules can be derived for outerjoins,
intersections and differences.

El Mg Ez = El Mg (Ez D><qg E]_)

The intuition here is that the result of the expression F1 Xy
FE, only makes use of tuples of £ that join with tuples
of £ on the predicate . Hence, first selecting the subset

4In the set version of relational algebra, #-semijoin can be more simply
expressed as (R1 P<g R2) = 7asers(ry)(F1 Mo Rz). This equivalence
doesnot hold in the multiset version of relational algebra.

5Thetranslationfrom SQL to relational algebrapresentedin [CG85] uses
6-semijoins only to handle HAVING clauses.

of the tuples of F» that join with F1 on @, using the -
semijoin operator, prior to performing thejoinwith £, would
preserve equivalence. Note that common subexpressions are
introduced as a result of this step.

Pushing #-Semijoin through Join: We present below a
transformation rule that describes how to push 6-semijoins
through joins.

(E]_ [><|91 Ez) l><92 Eg = (E]_ [><|91 Eé) l><92 Eg

where Eé = E2 l><91/\92 (E]_ Nprue Eg)

This transformation allows both E'3 and E'; to be used to
restrict the tuples computed for £%. Although as stated the
transformation uses a cross-product, it isuseful if some part
of 8, uses only attributes from F; and E'3 — that part of
6, can be used in a succeeding step to convert the cross-
product to a 6-join. The intuition behind the correctness of
the transformation rule is that only those tuplest, € F» are
required for which thereexist tuplest; € £y andtz € E5for
which 61(t1, t2) istrueand 0,(t1, t2, t3) iStrue.

Pushing #-Semijoin through Aggregation: Thefollowing
transformation rule describes how to push @-semijoins
through grouping and aggregation.

g_ff_(El) >y By = g_ff_(E]_ D><g Ez)

where ¢ involves only the attributesin g and attrs(E>).

Theintuition hereisthat if thesemijoin predicated involves
only the attributesin ¢ and attrs(E3), for each group of £y,
either all thetupleswill be selected by (E1 ><4 E5), or none
will. Thetupleintheresult of the F operator generated from
each group will correspondingly be selected or not.

When ¢ involvesresultsof the aggregation, the §-semijoin
operator cannot be pushed through aggregation in general.
In some cases involving min and maz, itispossibleto push
the 0-semijoin operator through ;7 ; see [SSS95].

Simplification: Some of the #-semijoin transformations
can generate expressions where some predi cates are checked
more than once; for example, in the right hand side of
the transformation above that introduces the ¢-semijoin, the
predicate ¢ is checked twice. The repeated checks are
necessary in general, but in some specia cases the repeated
checks are redundant, and the expressions can be simplified
by removing them. Thefollowingtransformation can beused
to eliminate repeated checks, when it is applicable.

F1 Mg no,n0, (B2 5<o,p0,00, F1) =
E1 Moo, (E2P<gno,n8, E1)

where attrs(E») functionally determine all the attributesin
62, under FD(61) U F D(Ey).

Note that it is safe to use a subset of the functional
dependencies in performing this transformation, so a
complete mechanism for deducing functional dependencies
isnot essential.

443

Eliminating 6-Semijoin: Intuitively, a #-semijoin can be
rewritten as a join followed by a projection if the join
predicate along with the functional dependencies of theright
operand of the #-semijoin guaranteethat each tupleof theleft
operand is selected by at most one tuple of the right operand.
This intuition is formally captured by the transformation
shown below:

E1><(g, g=jtattrs(ED)))A8, B2 =
Tastrs(By) (F1 M By y=g(attrs(B))A8: £2)

where E».y is a superkey of Es, and g{attrs(E1)) is a
function of attributes of £ that returns a tuple of values
with the same arity as F>.y.

We have presented a representative sample of the
equiva ence rulesinvolvingthe 6-semijoin operator. A larger
collection of equivalence rulesis presented in [SSS95].

7.3 Cost Modé for #-Semijoin

The 6-semijoin operation R; <<y R, can be efficiently
implemented using minor changes to join techniques such
as hash joinsand index joins. One implementation treats the
left operand R, of the #-semijoin as the “outer” relation in
the join technique. For each tuplein the outer relation Rj,
instead of joining it with each matching tuple in the inner
relation Ry, the tuple in R; can be returned as soon as a
match isfound. Sort-merge joinscan similarly be adapted to
implement d-semijoinsif thejoin predicateis an equijoin.

An dternative is to treat the right operand R, of the 8-
semijoin as the “outer” relation in the join technique. For
each tupleinthe outer relation Ry, al matching tuplesin the
inner relation Ry arereturned. If atuplein Ry isdready inthe
result as a conseguence of matching adifferent R, tuple, itis
not added to the result; an efficient implementation requires
an index on theresult of the #-semijoin, ingeneral. When the
#-semijoin predicate involves an equijoin with a superkey of
Ry, it is guaranteed that atuplein R; matches at most one
tuplein R»; noindex ontheresult of the#-semijoinisrequired
in thiscase.

The cost formulas for the different join techniques are
easi |y modified to derive cost formulasfor the different ways
of implementing the #-semijoin operator. We omit details.
The costing phase of a transformational optimizer, such as
Volcano, uses cost formulas for the operators in the algebra
to compute cost estimates for the different ways of evaluating
the query.

Since the #-semijoin operator is a derived operator (it
can be expressed using #-join, projection and duplicate
elimination), it can a so beimplemented using algorithmsfor
these operators. However, implementing it thusisinefficient.

7.4 Applicationsof §-Semijoin Equivalence Rules
Rewriting using #-semijoin equivalence rulesis particularly
useful for complex queries that use views that cannot be
expanded out into ajoin. Examplesinclude:

e Queries using views that are defined using aggregation.
Such a query was presented in Section 2.

¢ Queries using viewsthat use SELECT DISTINCT in the
view definition. Such viewscan be expanded outinsome,
but not all, cases.

e Queries with outerjoins. Views used as arguments of
outerjoins cannot be expanded out. Since outerjoins are
not associative, they cannot be reordered.

A distinct advantage of rule-based optimizersisthat it iseasy
to specify the transformationsfor a variety of operations. In
fact, the set of transformation rules we present in [SSS95]
are able to push #-semijoins into the views in dl the above
mentioned examples.

If theentireset of §-semijoin equivalenceruleswere added
to an exhaustive optimizer, the search space could increase
greatly. The above classes of queries represent the most
useful classes of applications of the #-semijoin equivaence
rules, and suggest the following very useful heuristic:

The ¢-semijoin operator should be introduced only
when dealing with aggregation, duplicate elimination
and outerjoin operations.

An equivalence rule for aggregation was presented earlier,
while others are described in [SSS95].

7.5 @-Semijoin and Constraint Magic Rewriting

Magic rewritings [BR91, MP94, SS94] optimize database
gueries by defining a set of auxiliary magic (or filter)
relations, that are used asfiltersto restrict computation of the
guery. Constraint Magic rewriting [SS94] isthemost genera
of these rewritings, and we present a derived transformation
rule that captures the key intuition of Constraint Magic
rewriting for a single join. Applying this transformation
rule repeatedly on a sequence of joins has an effect similar
to Constraint Magic rewriting, for asingle block SQL query.
Finally we indicate a heuristic for applying the method to
SQL queries that use view relations in addition to database
relations; the heuristic simulates the behavior of Constraint
Magic rewriting (withfull left-to-right SIPS) on such queries.

CM Transformation Step Using #-Semijoin: Thefollow-
ing transformation rule captures the basic step of Constraint
Magic rewriting [SS94]:

(E1 My, Ep) D<g,nps I' = (] Mg, E5) D<g,pp; I’

where 6, involves only the attributes in attrs(F) U
attrs(E1),p and £} and F are defined bel ow:

Ei =L l><92 F
By = EaP<gine, (E7 Mo, F)

We refer to the above transformation as the Constraint
Magic Transformation (CMT) Sep. The CMT step can be
derived from simpler equivalence rules; detailsare presented
in[SSS95].

CMT Step and Constraint Magic Rewriting: The ex-
pressions defining £ and % in the CMT step capture the
essence of Constraint Magic rewriting. The intuition is as
follows. Suppose wehave aset of bindings /' on theresult of
ajoinof relations #1 and . In Constraint Magic rewriting

6Notethat thisapplicability condition canalwaysbesatisfied by choosing
6 to be True.

of thisjoin, the “filter” relation (also called the “magic” re-
lation) F isfirst used to restrict computation of F; to tuples
relevant to /. Then, the set of £; tuplesthus restricted are
used along with the filter relation F' to restrict computation
of F,. Thisgrategy isexactly captured inthe CMT step.

More formally, the connection can be established as
follows. Consider aview defined as:

vV Vgef (E]_ Mg, Ez)
with afilter relation I, and a parametrized predicate 6, A 63
wheref, involvesonly theattributesinattrs(F)Uattrs(Ey).
(This is the same as the LHS of the CMT step.) The
Supplementary Constraint Magic rewriting first defines
supplementary (or Partial Result) relation S; below:”

S1 VY g, EY
where E7 is the result of supplementary Constraint Magic
rewritingof £ withthefilter relation /' and the parametrized
predicate 0,.2 View V is then replaced by view V'’ defined
bel ow:

Vdef
V' = S1 Mg, n84 Eé/

where EY is the result of the supplementary Constraint
Magic rewriting on E5, with the filter relation 53, and the
parametrized predicate 8, A 3.

Note the close correspondence between £ (in CMT)
and £ (in Constraint Magic), between the right operand
of the #-semijoin in the definition of £} (in CMT) and
S1 (in Constraint Magic), and between £} and EY. The
main difference between the Constraint Magic rewriting and
the CMT step on a single join is that Constraint Magic
rewriting uses é-joins rather than ¢-semijoins. Although
the final expression using #-semijoin is more complex than
thedefinition of V' generated by Constraint Magic rewriting,
the added complexity is required to preserve the multiset
semantics.

CM Transformation of an SQL Block Using §-Semijoin:
The agebraic expression V' generated by transforming a
single block SQL query is of the form:

V. Tpﬁ(gﬁfa}(' - (Ry Moy o) ... Mg,y Rn))

Given afilter relation " on V, denoted by V' ><,, F,
the following sequence of transformations can be applied to
V B<y, F'. Firgt, identify the strongest subset of +, denoted
by ¢,,, that can be pushed through the groupby/aggregation
operator. |If the original query did not use GROUPBY, ¢,
isthe same as ». Then, <, F' can be pushed inside the
proj ection operator, and the groupby/aggregati on operator, to
obtain:

Tpﬁ(gﬁfa}((~ . (R]_ [><|91 Rz) e [><|9n_1 Rn) l><¢n F))

Finally, the CMT step can be repeatedly applied on the
expression

7Assuming that E7 is chosen as the first relation in the sideways
information passing (SIP) order.

8Actually, the projection of £ on the relevant attributes is used in
Constraint Magic rewriting, but we use F' itself for simplicity of exposition.
The projection can be introduced after carrying out the CMT step.

((.. (R]_ Mg, Rz) oM Rn) <, F)

as described below. First define S;, i > 1 asfollows:

S1 o Ry
def :
Si+l = (SZ' My, Ri+l)al >1

Also, let v;,i < n denote the strongest subset of ;.1 that
uses only attributes of 7' and S;, and ~;,¢ < n denote
the rest of ;1. The first application of the CMT step
transforms (S,_1 My, , R,) P<y, F to (S,_; Mg, ,
R,) D<y, F, whee S/, _; = (Sp_1 P<y,, F) and
R;z =R, <G 1 AYn1 (F My, _y ;z—l)'

Now, consider S/, _,; the §-semijoin can be pushed into
the definition of S,,_1 in exactly the same manner as above.
Thus the CMT step is applied on each S;,n > ¢ > 2.
Note that there are two occurrences of S, _,, i.e, it is
a common subexpression of two expressions. By using
labeled expressions we can avoid the cost of optimizing and
evaluating the expression twice. Using labeled expressions
is very important to avoid an exponentia blow up as we go
down from S, to 5.

CM Transformation of SQL Queries With Views: We
start from an SQL query block, and perform the 6-semijoin
transformation of the block as described above. This
block may contain uses of view relations, and after the
transformation the use of arelation R; may have a semijoin
of theform R; B<{g, F;, or R; ><g, (F My, _, S/ ;). Let
F; denote the entire semijoin expression involving R;. If
R; isaview relation, a specialized version R; of the view
definition of R;, with the semijoin pushed into it, can be
created recursively using the #-semijoin transformation of
the SQL block defining ;. Finaly, if al of 3; can be pushed
intotheview definitionof R;, then F; isreplaced by R}, else
only R; in F; isreplaced by R;.

The relationship between the CMT step and Constraint
Magic rewriting discussed earlier for asinglejoinalso carries
over tothecaseof views, andto queriesdefined usingmultiple
views.

We have thus shown that, for SQL queries, the effect of
Constraint Magic rewriting isobtained asaspecial case of the
f-semijoin transformations, in particular by using the CMT
step. If we explore the full space of equivalent expressions,
Constraint Magic rewriting will be examined as an option,
and the cheapest expression in the search space will be
chosen.

7.6 Discussion

Several commercia database systems use uniquetuple-idsas
implicit attributes in order to distinguish between multiple
occurrences of a tuple. They carry out transformations of
SQL queries that could affect the multiset semantics of the
query (such as replacing nested subqueries by joins), and
use unique tuple-ids to get the correct multiset semantics,
if required, as follows. The tuple-ids of relations in the
FROM clause (i.e, those that contribute to the multiset
semantics) are selected aong with other attributes in the
SELECT clause, and duplicate elimination is performed on
the resultant relation. Finally the tuple-id attributes are
projected away to get the desired multiset result.

445

This approach has the benefit of using joinsin place of 6-
semijoins, alowing more join reorderings to be explored.
However, it has severa drawbacks. Firdt, it cannot be
used in association with grouping/aggregation. Second, the
optimizer hasto keep track of thetuple-ids across operations
and perform duplicate dimination. Our approach of using
the #-semijoin operator is cleaner sinceit can uniformly deal
with SQL queries that have multiset semantics, as well as
gueries that have set semantics. Our approach aso avoids
the costs of explicit duplicate elimination and of maintaining
and dealing with unique tuple-ids.

8 Related Work

Magic sets rewriting was originally used in the area of
recursive query processing i n deductive databases[BM SU86,
RLK86]. The impact of different choices of SIPS has been
discussed in[BR91], and theideaof using approximationsof
the magic set has been explored in [Sag90, SS88]. We should
notethat thispaper deal swith non-recursive SQL queriesthat
are supported by al commercia relational database systems.
Magic sets has been shown to be applicableto non-recursive
SQL queries [MFPR90], and has been implemented in the
Starburst database system [MP94].

Cost-based optimization techniques similar to those
for magic sets may aso be applied to complex SQL
queriesinvolving correlation (using the magic decorrelation
transformation [SPL96]), and expensive functions[Hel 95].

The research on semijoins in distributed databases
(e.g., [BGW+81, LMH+85]) assumed that relations were
simplestored relations, and therefore the costs of performing
the semijoins could be easily computed. Further, issues
like the choice of SIPS were not considered, usualy
because communication costs were assumed to outweigh
local processing costs (consequently, the chosen semijoin
was aways as restrictive as possible). Instead, optimization
focused on the correct order in which to execute the
semijoins [BGW+81]. System R* [LMH+85], on the
other hand, assumed that local processing costs outweigh
communication costs; consequently, semijoins were not
considered during optimization.

Theliterature on heterogeneous databases has not yet dealt
with issues like remote views in a complex query. However,
such issues are becoming increasingly important, and our
work should be applicableto thisdomain as well.

9 Conclusions

This paper makes two major contributions. First, it proposes
a practical solution for integrating the magic sets rewriting
algorithm into a cost-based optimization framework. The
solution ensures that the rewriting is applied in an effective
manner, and only when it is beneficid. The implementation
of the optimization technique in DB2 C/S V2 demonstrates
the feasibility of the proposed solution. Further, the
performance results validate the claim that magic rewriting
can beeffectively optimizedin acost-based manner for awide
range of queries without significant optimization overhead.
The second contribution is the formalization of these ideas
by introducing the multiset 6-semijoin a gebraic operator. A
representative collection of algebraic equivaencesinvolving
this operator have been presented, which can be used to

model magic rewriting. The agebraic characterization
cleanly defines the entire space of evaluation options.
Further, the transformation rules can be used by a rule-
based optimizer to optimize complex queriesin a cost-based
fashion. While these contributionswere originally the result
of two independent research efforts, they are complementary
in nature. Together, they address the theory and practice of
applying the magic setsrewriting optimization in acost-based
manner.

Acknowledgements

Praveen, Joey, Raghu, Hamid and Cliff acknowledge the
contributions of John McPherson, Guy Lohman, Besau
Shekita, Dave Simmen, Lori Strain, Monica Urata, and
Surendra Verma at IBM Almaden, Navin Kabra and Jignesh
Petel at University of Wisconsin, and Inderpal Mumick for the
original magic rewriting code. Divesh, Peter and Sudarshan
would like to thank Brian Hart for discussions that lead
them to start thinking of how Constraint Magic rewriting
might be implemented using generalizations of semijoins,
Bill McKennafor discussionsregarding cost-based algebraic
optimizers and feedback on the paper, and Tim Griffin for
discussions about bag operators.

Praveen Seshadri was supported by an IBM Graduate
Student Fellowship. Raghu Ramakrishnan was supported
by a David and Lucile Packard Foundation Fellowship in
Science and Engineering, a Presidential Young | nvestigator
Award, with matching grants from Digital Equipment
Corporation, Tandem and Xerox, and NSF grant IRI-
9011563. Joseph Hellerstein was supported by NSF grant
IRI-9157357.

References

[BGW+81] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve
and J. B. Rothnie. Query processing in a system for distributed
databases (SDD-1) ACM Transactions on Database Systems,
6(4):602-625, 1981.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv and J. D. Ullman.
Magic sets and other strange waysto executelogic programs. In
Proceedings of the ACM Symposium on Principles of Database
Systems, 1-15, 1986.

[BR91] C. Beeri and R. Ramakrishnan. On the power of Magic.
Journal of Logic Programming, 10(3& 4):255-300, 1991.

[Blo70] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422-426,
1970.

[CG85] S. Ceri and G. Gottlob. Translating SQL into relational al-
gebra: Optimization, semantics, and equivalence of SQL queries.
IEEE Transactions on Software Engineering, 11(4):324-345,
1985.

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An extended
relational algebra with control over duplicate elimination. In
Proceedings of the ACM Symposium on Principles of Database
Systems, 1982.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of database
systems. Benjamin/Cummings Publishers, 2nd edition, 1994.

[GHK92] S. Ganguly, W. Hasan and R. Krishnamurthy. Query

optimization for parallel execution. In Proceedings of ACM

GMOD International Conference on Management of Data,
1992.

[GM93] G. Graefe and W. J. McKenna. The Volcano optimizer
enerator. Extensibility and efficient search. In Proceedings of
the IEEE International Conferenceon Data Engineering, 1993.

446

[HCL+90] L. Haas, W. Chang, G. M. Lohman, J. McPherson,
P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey,
and E. Shekita. Starburst mid-flight: As the dust clears. |[EEE
Transactionson Knowledgeand Data Engineering, March 1990.

[Hel95] J. M. Hellerstein. Optimization and execution techniques
for queries with expensive methods Ph.D. Thesis, University of
Wisconsin, August 1995.

[IK84] T. Ibaraki and T. Kameda. Optimal nesting for computing
N-relational joins. In ACM Transactions on Database Systems,
9(3):482-502, 1984.

[INSS92] Y. loannidis, R. Ng, K. Shimand T. K. Sellis. Parametric
qu optimization. In Proceedings of the International
Conferenceon Very Large Databases (VLDB), 103-114, 1992.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimiza-
tion of nonrecursive queries. In Proceedingsof the Inter national
Conferenceon Very Large Databases (VLDB), 128-137, 1986.

[KIu82] A. Klug. Equivalence of relational algebra and relational
calculusqu Ianguages having aggregatefunctions. Journal of
the ACM, 28?3):699— 17,1982.

[LMH+85] G. M. Lohman, C. Mohan, L. M. Haas, D. Daniels,
B. G. Lindsay, P. G. Selinger and P. F. Wilms. Query processing
in R*. In Query Processing in Database Systems, (W. Kim,
1DQSSS. Reiner, and D. S. Batory, eds.), Springer-Verlag, 3047,

[LNSS93] R. J. Lipton, J. F. Naughton, D. A. Schneider and
S. adri. Efficient sampling strategies for relational database
operations. Theoretical Computer Science, 116:195-226, 1993.

[MEPR90] I. S. Mumick, S. Finkelstein, H. Pirahesh, and
R. Ramakrishnan. Magic is relevant. In Proceedings of ACM
SIGMOD |International Conference on Management of Data,
1990.

[MP94] I. S. Mumick and H. Pirahesh. Implementation of magic-
sets in a relational database system. In Proceedings of ACM
SIGMOD |International Conference on Management of Data,
1994.

[RLKS86] J. Rohmer, R. Lescoeur,and J. M. Kerisit. The Alexander
method: A technique for the processing of recursive axiomsin
deduig\é% databases. In New Generation Computing, 4(3):273—
285, .

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan and
P. adri. The CORAL deductive system. The VLDB Journal,
Special Issue on Prototypes of Deductive Database Systems,
1994,

[SAC+79] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational database
management system. In Proceedings of ACM S GMOD
International Conferenceon Management of Data, 23—34, 1979.

[Sag90] Y. Sagiv. Is there anything better than magic? In
Proceedings of the North American Conference on Logic
Programming, 235-254, 1990.

[SPL96] P.Seshadri, H. Pirahesh,and T. Y. C. Leung. Decorrelatin
comPIex queries. In Proceedings of the Twelfth Internation
Conterenceon Data Engineering, 1996.

[SS88] S. Sippu and E. Soisalon-Soinen. An optimization straI?y
for recursive queries in logic databases. In Proceedings of the
Fourth International Conference on Data Engineering, 1988.

[SS94] P. J. Stuckey and S. Sudarshan. Compiling query
constraints. In Proceedingsof the ACM Symposiumon Principles
of Database Systems, 1994.

[SSS95] D. Srivastava, P. J. Stuckey and S. Sudarshan. The magic
of theta-semijoins. AT&T Bell Laboratories Technical Report,
1995.

[TPCD94] TPC benchmark group. TPC-D Draft, December 1994.
Information Paradigm. Suite 7, 115 North Wahsatch Avenue,
Colorado Springs, CO 80903.

[Yao77] S. B. Yao. Approximating the number of accesses
in database organizations. Communications of the ACM,
20(4):260-261, 1977.

