
Cost-Based Optimization for Magic: Algebra and Implementation

Praveen Seshadri
Univ. of Wisconsin, Madison

praveen@cs.wisc.edu

Joseph M. Hellerstein�
Univ. of California, Berkeley

jmh@cs.berkeley.edu

Hamid Pirahesh
IBM Almaden Research Ctr.

pirahesh@almaden.ibm.com

T. Y. Cliff Leung
IBM Santa Teresa Lab.

cleung@almaden.ibm.com

Raghu Ramakrishnan
Univ. of Wisconsin, Madison

raghu@cs.wisc.edu

Divesh Srivastava
AT&T Research

divesh@research.att.com

Peter J. Stuckey
Univ. of Melbourne

pjs@cs.mu.oz.au

S. Sudarshany
IIT, Bombay

sudarsha@cse.iitb.ernet.in

Abstract
Magic sets rewriting is a well-known optimization heuristic for
complex decision-support queries. There can be many variants
of this rewriting even for a single query, which differ greatly in
execution performance. We propose cost-based techniques for
selecting an efficient variant from the many choices.

Our first contribution is a practical scheme that models magic sets
rewriting as a special join method that can be added to any cost-based
query optimizer. We derive cost formulas that allow an optimizer to
choose the best variant of the rewriting and to decide whether it is
beneficial. The order of complexity of the optimization process is
preserved by limiting the search space in a reasonable manner. We
have implemented this technique in IBM’s DB2 C/S V2 database
system. Our performance measurements demonstrate that the cost-
based magic optimization technique performs well, and that without
it, several poor decisions could be made.

Our second contribution is a formal algebraic model of magic sets
rewriting, based on an extension of the multiset relational algebra,
which cleanly defines the search space and can be used in a rule-
based optimizer. We introduce the multiset �-semijoin operator, and
derive equivalence rules involving this operator. We demonstrate
that magic sets rewriting for non-recursive SQL queries can be
modeled as a sequential composition of these equivalence rules.

1 Introduction
Current relational database systems process complex SQL
queries involving views, table expressions and subqueries
with aggregate functions. Such queries are becoming
increasingly important in decision support applications
(see, e.g., the TPC-D benchmark [TPCD94]). The
magic sets rewriting technique (see, e.g., [BMSU86,
RLK86, BR91, MFPR90, SS94]) has been proposed as a
heuristic query transformation to optimize such queries, and
can result in dramatic improvements in query execution�This work was performed while the author was at the University of
Wisconsin, Madison.yThis work was performed while the author was at AT&T Bell
Laboratories, Murray Hill.

performance [MFPR90]. There can be many possible
variants of this rewriting even for a single query, based
upon the decisions made with respect to binding propagation.
Some of these variants can actually degrade performance.
Prior to this work, there has been no demonstrated algorithm
to efficiently choose a variant in a cost-based manner. This
paper removes an important obstacle to the incorporation of
magic sets rewriting into commercial database systems.

This paper explores two approaches to the problem. The
first approach is based on modeling magic sets rewriting as
a join method, and has been implemented in the DB2 C/S
V2 database system. The second approach presents a model
of magic sets rewriting based on algebraic transformations.
The two approaches are complementary, and together explore
the practical and theoretical issues involved.

The goal of the implementation is to develop an algorithm
that takes into account the constraints and requirements of
a full-function DBMS. Magic sets rewriting is modeled as
a special join method that can be added to any existing
cost-based query optimizer. Cost formulas are derived
that allow the optimizer to choose the best variant of
the rewriting and determine whether it is beneficial. An
exhaustive search of all variants considerably increases the
complexity of query optimization. To preserve the order of
complexity of the optimization process, reasonable limits
are applied on the search space. A performance study
based on the implementation in DB2 C/S V2 demonstrates
the low additional optimization overhead, and the stability
of the algorithm as it makes cost-based choices that
result in significant improvements in query execution time.
Importantly, the results demonstrate that a cost-based
algorithm is required for magic sets rewriting (algorithms
that are based on heuristics vary in their relative performance
as the data statistics and costs change), and that the proposed
cost-based algorithm works well.

The algebraic approach to magic sets rewriting is based
on equivalence rules, involving the �-semijoin operator, on
the multiset relational algebra. The algebraic approach
defines the search space cleanly, and can be used (possibly in
conjunction with heuristics to restrict the search space) in a
rule-based optimizer. We present a representative collection
of equivalence rules, and show how these rules model magic
sets rewriting for non-recursive SQL queries.

We initially motivate the problem with an example.

435

View Definition
CREATE VIEW DepAvgSal AS

(SELECT E.did, AVG(E.sal) AS avgsal FROM Emp E
GROUPBY E.did);

Main Query Block
SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did AND E.age < 30

AND D.budget > 100,000 AND E.sal > V.avgsal

Figure 1: Original Query

2 Motivation
The SQL query in Figure 1 finds every young employee
in a big department whose salary is higher than the
average salary in that department. The query involves a
relational view DepAvgSal that derives the average salary
in each department, and a join between the Emp, Dept and
DepAvgSal relations. Magic sets rewriting exploits the fact
that the average departmental salary need not be computed
for every department; it need only be computed for those
departments that are big and have young employees. If
there are few such departments, it is probably desirable to
apply magic sets rewriting.1 The rewritten query is shown
in Figure 2. The PartialResult view represents the partial
computation in the main query block at the stage where the
Emp and Dept tables already have been joined together, but
the view DepAvgSal has yet to be joined to them. From this
PartialResult table, a duplicate-free Filter view is created,
which is a set of all those departments for which the average
salary needs to be computed. This filter set is now used
to limit the computation in the original view.2 The view
is modified by the inclusion of an equi-join with the filter
set (thereby limiting the computation in the view to the
departments of interest). Finally in the main query block of
Figure 2, the modified view is joined with the PartialResult
table to produce the answer.

2.1 Rewriting Choices
In the rewritten query shown, the filter set contains all
departments which are big and have young employees. This
is the most restrictive filter set possible. A less restrictive filter
set can be used instead. The filter set can contain all the big
departments, or all the departments with young employees.
In each of these cases, the rewritten queries will be different
from that shown in Figure 2, but will have a similar overall
structure, and return the same answers. While these options
may result in more computation inside the view, they could be
cheaper overall (because the PartialResult table or the Filter
table is cheaper to compute). In general, there are many ways
in which the filter set could be created, each corresponding to
some subset of the tables in the FROM clause that results in
the PartialResult relation. If every department is big and has
young employees, rewritten queries provide no improvement
over the original query, and may even be more expensive

1While there have been many flavors of magic sets rewriting proposed,
the most practical one in the RDBMS context is the supplementary magic
sets rewriting used in this paper.

2In the literature, the filter set and the PartialResult have been called the
“magic” set and the “supplementary” respectively.

View Definitions
CREATE VIEW PartialResult AS

(SELECT E.eid, E.sal, E.did FROM Emp E, Dept D
WHERE E.did = D.did AND E.age < 30 AND

D.budget > 100,000)
CREATE VIEW Filter AS

(SELECT DISTINCT P.did FROM PartialResult P);
CREATE VIEW LimitedDepAvgSal AS

(SELECT F.did, AVG(E.sal) as avgsal FROM Filter F, Emp E
WHERE E.did = F.did
GROUPBY F.did);

Main Query Block
SELECT P.eid, P.sal FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

Figure 2: Magic Sets Rewriting

to execute. Finally, when there are multiple join attributes,
a decision needs to be made if all the join attributes will
contribute to the filter set, or whether only some of the
attributes will be used. However, in the vast majority of
queries, there is exactly one join attribute, so this is not
usually an important issue.

The specific combination of choices made with respect
to computing the filter set has been called the “sideways
information passing strategy”(SIPS), so named because the
filter set passes the join attributes “sideways” into the view
definition. One specific SIPS results in the best execution
plan for a query. However, this depends on the tables and
predicates involved in the query, and the characteristics of
the execution environment. No practical solution currently
exists for choosing the SIPS in a cost-based manner. Instead,
existing systems that perform magic sets rewriting have
chosen one of two approaches:� Use magic sets rewriting with a default SIPS (typically

“left-to-right”) and allow the user to specify a different
SIPS or disable magic sets rewriting. This approach is
used in CORAL [RSSS94].� Independently optimize the query with and without magic
sets rewriting and choose the cheaper plan. For magic
sets rewriting, choose a SIPS based on some heuristic.
This approach is used in Starburst [MP94]. The SIPS
chosen “corresponds” to the join order that arises from
optimizing the original query without magic rewriting.
No cost-based justification has been presented for this
heuristic, nor is there any guarantee that a good plan
is chosen. In fact, we show in Section 6 that this
heuristic can make some poor choices. However, since
the original query is also independently optimized, one
can ensure that performance is not degraded due to magic
sets rewriting.

2.2 A Cost-Based Solution
This paper presents a cost-based solution to the problem of
choosing an appropriate SIPS. We implemented our solution
in the DB2 C/S V2 database system (which is based on the
Starburst system [HCL+90]) which has support for magic sets

436

FRONT
 END

OPTIMIZER

 MAGIC
REWRITING OPTIMIZER

EXECUTION
QUERY Magic Not Required

Magic Required
(good SIPS chosen)

Figure 3: Optimization Architecture

rewriting as a query-to-query transformation. The system
architecture used is shown in Figure 3. The user’s query
is fed directly into the cost-based query optimizer, which
decides whether or not to perform magic rewriting. While
the optimizer explores the space of possible join orders and
methods, it also explores the space of possible options for
magic sets rewriting. If the decision is that no rewriting is
needed, the optimizer generates an execution plan as usual
and sends it on to the execution engine. On the other hand,
if the optimizer decides that magic rewriting is needed, it
also chooses one specific SIPS for the rewriting, which
guides the application of the magic sets transformation.
Once the query is rewritten, it has to be optimized again
to generate an execution plan. The Starburst solution
discussed above [MP94] was the first to suggest the two-pass
architecture, and we use the same idea since we would like
to avoid major changes to the existing system components.
An alternative approach, which we discuss in Section 7, is
to implement magic rewriting via algebraic transformations
(instead of as an SQL-to-SQL rewriting).

3 Magic Sets and Join Optimization
In this section, we describe how the magic sets rewriting
choices can be explored as part of the join optimization phase
of a query optimizer.

3.1 Primer on Join Optimization
A query optimizer determines an efficient order in which
to execute the joins of N relations, and the actual join
method to use for each join. Since joins are associative
and commutative, there is a large space of O((2(N �
1))!=(N � 1)!) possible join orders [GHK92]. Since
this is a prohibitively large space to explore for even
a small value of N , most practical join optimization
algorithms [SAC+79, IK84, KBZ86] explore limited regions
of it. All the algorithms have one common feature: at each
step, they consider various two-way joins, and for each join,
they consider the cost of applying various join methods.

3.2 Join Ordering and SIPS
We now explain the correspondence between magic sets
rewriting and join ordering. Let us consider the original query
of Figure 1. Six possible choices of join order for joining
Emp E, Dept D, and DepAvgSal V are shown pictorially
in Figure 4; selection predicates have been omitted for
conciseness.

First consider plans 1 and 2; the join of E and D is used as
the outer relation in the final join with the view V (which is
shaded in the figure, since it is the operator of interest). How
does this relate to magic sets rewriting? In the example of
Figure 2, the join of E and D is used as the PartialResult table

(1) (2) (4) (5) (6)
E D

V V

D E D V

E

E V

D

V D

E

V E

D

: Filter−Join Not Considered: Filter−Join Considered

(3)

Figure 4: Some Possible Join Orders

from which the magic set for view V is materialized. There
is a correspondence between the composite outer relation
in the join plan and the PartialResult table used in the
magic rewriting. Therefore, plans 1 and 2 “correspond”
to this particular variant of magic sets rewriting. Similarly,
plan 3 “corresponds” to a magic sets rewriting which uses
only the Dept relation D as the PartialResult table. Plan
4 “corresponds” to a rewriting which uses only the Emp
relation E as the PartialResult table. Finally, plans 5 and 6
“correspond” to the original query (i.e. magic sets rewriting
is not performed).

We exploit this correspondence to explore the exponential
space of choices of the SIPS for magic sets rewriting. We
propose to piggy-back the exploration of the magic sets
rewriting choices onto join optimization by modeling magic
rewriting as a join method, thereby permitting our approach
to be incorporated into any cost-based join optimization
algorithm without major modifications to the optimizer code.
The primary change to the optimizer is the addition of
one new join method and this affects the complexity of
optimization by only a constant factor.

3.3 Magic Sets Rewriting as a Join Method
We define the Filter-join of relations R and S as follows:

Definition 3.1 (R Filter-Join S) R is called the outer
relation and S is called the inner relation in the Filter-join. A
(duplicate-free) superset of values of the join attribute of R
is created, and is used as a filter to restrict the tuples of S that
are accessed. The restricted relation of S tuples is then joined
with relation R (using any other available join algorithm). 2
This join method is similar to the well-known semi-
join [BGW+81] operation, and in fact, this similarity is
exploited in Section 7 when modeling magic sets using a�-semijoin operator. The important distinction is that semi-
joins have usually been applied to stored relations, while
magic sets rewriting works on views.

Assume that a query optimizer augmented to consider
the Filter-join as a join method is invoked on a join query
involving N relations. At some intermediate stage, it
evaluates the cost of a particular join. The outer relation is a
composite relation of the form (R1 1 R2 1 � � � 1 R(k�1)),
and the inner is a single relation Rk, for which magic sets
rewriting can be applied (i.e., Rk is a view). The smallest
filter set would result from the (duplicate-free) projection of
the entire composite outer relation. Less restrictive filter sets
could be created by using the join of any subset of the tables
in the composite outer relation as the PartialResult. Once
some specific choice of the PartialResult is made, the filter
set itself can be represented exactly, or in a lossy fashion

437

(i.e., some superset of the filter set can be used instead) by
omitting some join attributes.3

There are many different choices for the PartialResult, and
for the filter set. As we showed in the example of Figure 2, the
filter set is used to restrict the inner relation by adding it to the
FROM clause of the inner query block. Even after choosing
some PartialResult and some filter set, the modified version
of the inner relational view (LimitedDepAvgSal in Figure 2)
needs to be planned. Clearly, if these choices are explored
for every possible join involvingRk as the inner relation, we
will have explored all possible SIPS combinations. However,
we are unwilling to compromise on optimizer complexity for
the sake of optimizing magic sets rewriting. This implies
that if we propose to explore the possible choices for each
Filter-join, it must be done in constant time. Therefore, our
next task is to limit the search space to some tractable size.

3.4 Limiting the Search Space
The space of options for one particular Filter-join is large
because of three reasons:

1. There are many possible choices for the PartialResult .
In general, if there are k-1 relations joined to form the
composite outer relation, any of the 2(k�1)�1 non-empty
subsets of them could be used as the PartialResult .

2. Given a particular PartialResult , there are many possible
choices for the filter set. In general, if there are m join
attributes, any of the 2m � 1 non-empty subsets of them
could be used as the filter set. Further, there could be
several implementations of the filter set (for example, as
a relation or as a Bloom filter).

3. Given a particular filter set, there is a large space of
possible plans for the inner relational view modified by
the addition of the filter set.

Points (1) and (2) give rise to the full range of SIPS discussed
in [BR91]. We adopt two well-known and widely used
optimizer techniques when faced with huge search spaces:
(a) We apply heuristic limitations on the search space for
Filter-joins. Hopefully, most of the search space omitted due
to the heuristics is not of interest. (b) We make assumptions
that allow us to use reasonably accurate cost “guess-timates”
for parts of the search space, instead of actually exploring
those parts and computing more accurate estimates.

Heuristic 1: The PartialResult must be the complete outer
relation.

Heuristic 2: Some small and constant number of filter set
implementations will be considered.

Therefore, the choices for the PartialResult and the filter set
can be made in constant time. Finally, we make the following
assumption, which will be justified in the next section.

Assumption 1: The cost and result cardinality of the Filter-
join can be estimated in constant time.

3Another way of introducing lossiness is by using a Bloom filter [Blo70]
to implement the filter set.

JoinCostP Cost of performing the joins
required to generate PartialResult P.ProductionCostP Cost of materializing PartialResult P.ProjCostF Cost of projecting P to generate
the filter set F.FilterCostRk Cost of generating Rk and
restricting it using the filter set F.FinalJoinCost Cost of performing the final join
of the outer relation and and Rk 0.

Table 1: Cost Components of a Filter-Join

If assumption 1 holds, then there is no change in the order of
complexity of join optimization, although Filter-join is being
considered as an option. For each particular join considered,
the Filter-join method examines only one PartialResult, a
small constant number of filter sets and determines the cost of
the Filter-joinin constant time. The entire query is optimized,
and the cheapest complete plan is examined. If it contains no
Filter-join, then magic sets rewriting should not be applied;
otherwise it should be applied using the SIPS specified by
the composite outer relation of the Filter-join.

4 Cost and Cardinality Estimation
We now derive a formula to capture the costs of the Filter-
join method. Note that this cost formula must be evaluated
in constant time. Assume that the Filter-join whose cost is
being estimated has (R1 1 R2 1 � � � 1 R(k�1)) as the outer
relation and relation Rk as the inner relation. Because of
the limits imposed on the search space, the PartialResult is
simply the outer relation. The join evaluation cost may
be broken up into the components shown in Table 1 and
explained below. The total cost of the Filter-join is the sum
of these cost components.JoinCostP + ProductionCostP + ProjCostF +FilterCostRk + FinalJoinCostJoinCostP : This is the cost of the outer relation, which is

already computed as part of the optimization algorithm.ProductionCostP : P needs to be materialized because
it is used both in the generation of the filter set, and
also in the top-level join. The cost of materializing the
PartialResult is a simple function of the cardinality of P .
Since this cardinality is known (i.e., already estimated by
the optimizer), the materialization cost may be computed.
Instead of creating a temporary relation, P could also be
recomputed. The cost of recomputation of P is the same
as JoinCostP . Whichever cost is lower (materialization
or recomputation) is chosen as ProductionCostP .ProjCostF : The cost of performing a (duplicate-free)
projection of P to generate filter set F depends on the
cardinality ofP . It also can depend on physical properties
of the plan for P (for example, whether P is sorted or
not) and whether the projection can be combined with
the generation of P . The optimizer has all the necessary
information to make an estimate of the ProjCostF .FilterCostRk : This is the cost of generating the filtered
version ofRk using the filter set F (let the filtered relation

438

be calledRk0). The method for computing the cost ofRk0
and its cardinality is left for discussion at the end of these
definitions.FinalJoinCost: This is easy to compute. The cardinality
of the outer relation is known. The cardinality of the
filtered inner relation has just been computed. The cost
formulas of other available join methods can be applied
to determine the cheapest way to execute the final join.

Note that all (except one) of these cost components can be
computed in constant time using well-known cost formulas
that existing cost-based optimizers already implement.
The next section shows how the cost of the filtered Rk
relation(FilterCostRk) and its cardinality can be estimated
in constant time.

4.1 Estimating FilterCostRk
In order to model magic sets rewriting as a Filter-join and
obtain an estimate of its cost, we do not need to explicitly
plan the modified inner view. We only need to estimate
the cardinality of the modified view and the cost of the
best plan to generate it. The actual plan is not needed at
this stage, because the optimization architecture presented
in Section 2.2 requires a second pass through the optimizer
after magic rewriting is performed. The extent of the filtering
effect of the filter set (i.e., its selectivity) depends on its
cardinality. While it is difficult to estimate the cardinality of
projections accurately [LNSS93], existing optimizers do use
some assumptions to estimate projection cardinality [Yao77].

What is needed is a parameterized plan for the restriction ofRk, whose parameter is the filter set. Further, we would like
to be able to generate the parameterized plan just once. Each
specific plan is obtained by instantiating the parameterized
plan with a specific filter set. The plan instance would
provide the cost as well as the cardinality of the result. While
parameterized query optimizationhas been the topic of recent
research [INSS92], the results are too preliminary to apply
to our problem. We need a concrete technique to deal with
parameterization in our specific context. A trivial solution is
to perform a nested invocation of the query optimizer for each
plan instantiation. However, the time for each instantiation
needs to be a small constant, and since Rk can be a complex
expression involving several joins, this is not feasible.

We observe that the cardinality of the filtered inner relationRk0 is a function of only the selectivity of the filter set (which
is known), and does not depend on the filter set’s physical
size or implementation. Once the cardinality of Rk0 has
been computed for a few values of the selectivity of F, a line
can be fitted to them, thereby defining the Rk0 cardinality
function for all filter sets. In our implementation, in fact, we
chose to compute exactly two points and perform a straight
line interpolation. The chosen points had selectivities of 0
(where the result cardinality is obviously 0) and 1 (where the
result cardinality is that of the unmodified view Rk).

Estimating the cost of Rk0 is more complicated, because
join cost functions may be non-linear especially at size
boundaries when a relation no longer fits in the memory
available for some operation. Therefore, a simple straight line
approximation method may not be accurate. One approach is
to identify a few equivalence classes based on the size of the
magic set (for example, “smaller than buffer” and “larger than

buffer”) and to use a straight line approximation within each
class. We should note that in practice, filter sets are typically
small, because they contain a (duplicate-free) projection of
only the join column. A simple straight line approximation
may therefore perform adequately; in fact, our prototype
implementation used exactly this technique.

4.2 Space Complexity of Optimization
It should be evident why space complexity is not an issue in
this work. The optimization in the main query block now
has to try an extra join method for every join considered.
However, it does not require that any extra plans be stored.
Therefore, there is no change to the order of space complexity
due to considering an extra join method. With respect to the
“parameterized” planning of the complex view, our approach
is to optimize the filtered version of the complex view for
a small constant number of equivalence classes. Therefore,
this causes no change in the order of space complexity either.

4.3 How did the Complexity Disappear?
While there are an exponential number of possible rewritings,
we managed to combine the search for the best plan into
one invocation of the optimizer to find the best SIPS and
another invocation after the rewriting to optimize the query
rewritten based on that SIPS. It is important to understand
how the original complexity disappeared; there is no “magic”
involved! Section 3.4 imposed certain limits on the search
space explored. For instance, based on our example in
Section 2, the cost of the following magic rewriting choice
will not be estimated: Dept is used as the PartialResult table,
and the filtered version of the view LimitedDepAvgSal is first
joined with Emp before being joined with Dept. The other
technique used was to make a “good estimate” of the cost of
the parameterized plans, rather than compute them explicitly.
While our estimates are admittedly approximate, they are far
superior to no estimate at all (which is the current state of the
art with respect to algorithms like magic sets). In a nutshell,
we claim that using these techniques is very likely to improve
the results of today’s query optimizers. An implementation
in the DB2 C/S V2 database system provides the empirical
evidence to back up this claim.

5 Implementation in DB2 C/S V2
An implementation of the algorithm presented in the earlier
sections is needed to answer the following questions: (1) How
feasible is it to incorporate such an algorithm into a real
database system? (2) Does the algorithm really find good
plans (i.e., does it perform as expected)?

5.1 Feasibility
We prototyped the proposed cost-based optimization in
an IBM internal version of the DB2 C/S V2 database
system. While the query optimizer does support various
search strategies, we focused on the strategy that uses the
well-known left-deep dynamic programming optimization
algorithm. By choosing a full-fledged database system, we
were forced to face all the practical constraints that exist
in a real DBMS. One of us worked on DB2 C/S V2 to
prototype the optimization algorithm for magic sets rewriting.
Despite being initiallyunfamiliar with the optimizer code, the
modifications as well as performance measurements were

439

completed within 3 months. While changes were required
in many parts of the optimizer, the actual number of lines of
C++ code added was well under 1000. We believe that this
validates the feasibility of adding the Filter-join method to
existing optimizers.

5.2 Performance
We studied the performance of our algorithmusing controlled
experiments described in detail in the next section. The
primary conclusion is that the results firmly support our
expectations. Cost-based optimization prevents magic sets
rewriting from being chosen when it should not, and chooses
one of the best variants when magic sets rewriting should be
chosen. Further, these positive results are obtained without
changing the order of complexity of optimization.

5.3 Practical Experience
We discovered that magic sets rewriting acts as a “stress-
test” for the query optimizer. This is because it uses com-
mon subexpressions, duplicate-free projections, temporary
relations and other features which are usually used only in
complex decision support queries. Therefore, while cost es-
timation for magic sets rewriting is certainly reasonable at
a logical level, it is important that the optimizer correctly
model the constructs that the rewriting uses.

6 Performance Measurement
The objectives of our performance study were (1) To show
that various SIPS choices exist for magic rewriting, and that
no particular SIPS choice is optimal across all queries and
execution environments. (2) To show that cost-based magic
optimization makes a choice that is close to optimal with
different queries and with different execution environments.
(3) To show that the additional overhead due to cost-based
magic optimization does not affect the order of complexity
of the optimization process.

Unfortunately, there is no “standard” benchmark to
evaluate a technique like magic sets rewriting. Instead, we
had to devise an experimental methodology for this purpose.
The experiments we chose had to be relatively simple to
understand and explain. Further, we had to be able to
explore the various dimensions of magic sets rewriting in
a comprehensibly small number of experiments. The next
section describes our attempt at devising such a methodology.

6.1 Experimental Methodology
The TPC benchmark D is an industry-wide standard
benchmark for complex queries [TPCD94]. There are two
queries in the benchmark to which magic sets rewriting can
be applied (Query 2 and Query 17). We were interested in
Query 2 because it has a large number of variants for magic
rewriting (it involves the join of many relations), whereas the
other candidate (Query 17) has only one possible variant.

In the first experiment, TPC-D Query 2 is the starting
point. Selection predicates in the outer query-block were
gradually varied by either removing them, modifying them
to be less selective, or replacing them with less selective
predicates. The effect of this is that the query answer
cardinality gradually increased. However, the actual tables
in the query were not changed, so that the same SIPS choices
were always available. As the predicates change, different

SIPS choices become optimal and sometimes it is better not to
perform magic rewriting at all. The query answer cardinality
is crudely related to the possible filtering effect due to magic
sets; consequently we expect that magic sets rewriting should
have greater benefits when the answer cardinality is smaller.
The optimizer enhanced with cost-based magic optimization
should always choose the right SIPS for all queries.

We repeated the entire experiment after modifying the
initial query used as the starting point (by changing the
contents of the inner query block). Therefore, we were able to
explore the effects on a variety of queries in a controlled and
understandable manner. We also repeated the experiment
after dropping some of the indexes used in the original
plans; this represents a change in the execution environment.
Therefore, the execution costs of various portions of the
queries change. Cost-based magic optimization should be
able to detect this, and make the right decision in the new
environment.

The experiments were run on an IBM RS/6000 workstation
connected to two disks. A 100MB TPC-D database (i.e. with
scale factor of 0.1 as defined by the TPC-D standard) was
generated with all appropriate indexes available. The graphs
of the results plot the variations in the queries on the X-axis,
ordered by increasing answer size. The primary performance
metric used is query execution time. Note that the graphs for
execution time use a logarithmic scale, so seemingly small
differences are really quite significant. We also measure
query compilation time to demonstrate the overhead paid for
the extra work in the optimizer. All times reported have been
uniformly scaled by a fudge factor.

6.2 Algorithms Compared
In our experiments, we compared the following algorithms:
no magic sets rewriting (nomag), cost-based optimization
based on Filter-joins (magopt), and some of the possible
“hand-chosen” pre-determined variants of magic sets rewrit-
ing (mag1, mag2, mag3, mag4, mag5). The pre-determined
variants represent some reasonable SIPS choices. For each
query, the magopt algorithm should choose the best SIPS in
a cost-based manner, or choose to not perform the rewriting.

Recall from Section 2.1 that there was a heuristic approach
originally proposed in Starburst [MP94]. This approach
first optimizes queries without any knowledge of magic
sets rewriting, and derives the SIPS from the resulting join
order. The drawback in this approach is that nowhere in the
estimation are the true costs of magic rewriting computed. By
examining the plans generated by the optimizer when magic
rewriting was disabled (nomag), we were able to manually
reconstruct how the Starburst approach would perform. We
call this algorithm sbmag.

6.3 Overall Results
The graph in Figure 5 shows the overall performance results.
The Filter-join based optimization of magic sets rewriting
(i.e.magopt) can greatly improve execution performance
when compared to nomag. This happens when the answer
size is small, because the filter set is small and reasonably
selective. This limits the computation in the complex view,
and hence reduces the execution time. However, as the filter
set gets larger, its advantages slowly diminish while its cost
increases, so that at the last point in the graph (size 11986), the

440

0.1

1

10

100

44 44 62 236 1275 11986

R
U

N
_T

IM
E

sc
al

ed

incr answer size -->

nomag
magopt
sbmag

Figure 5: Overall Comparison

0.1

1

10

100

44 44 62 236 1275 11986

R
U

N
_T

IM
E

sc
al

ed

incr answer size -->

mag1
mag2
mag3
mag4
mag5

Figure 6: Magic Sets Rewriting Choices

algorithm chooses not to perform magic sets rewriting. This
explains why the last point is the same for both nomag and
magopt. The sbmag algorithm performs well for the larger
queries, but performs poorly for the smallest two queries.
In order to understand the performance of sbmag, consider
the fact that the complex view is treated by the optimizer
as a temporary relation without indexes. When the other
joins in the query are very selective and the other relations
are indexed, the cheapest plan often places the view at the
beginning of the join order. Based on such plans, sbmag
decides not to invoke magic sets. However, these are exactly
the queries for which magic is expected to be most useful!

The fourth query (size 236) in the first graph presents
an interesting issue for discussion. We notice that the
performance of magopt is slightly worse than that of nomag.
Obviously, the optimizer expected the chosen magic rewriting
for magopt to perform better than nomag. This shows
that the optimizer’s estimate of costs does differ from the
actual cost due to inaccurate statistics and/or assumptions.
Algorithms like cost-based magic optimization that build
on top of these errors may occasionally show sub-optimal
performance.

6.4 Fixed SIPS Choices

The graph in Figure 6 shows the performance of various
fixed choices of SIPS for magic sets rewriting. The existing
state of the art requires the database user to pick one such
choice for each query. As the graph shows, the best choice

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

44 44 62 236 1275 11986

C
M

PL
_T

IM
E

sc
al

ed

incr answer size -->

nomag
magopt

Figure 7: Total Compile Time

differs dramatically from query to query, though the only
real difference between the queries is in the predicates on the
underlying tables. Comparing the first and the second graphs,
it is evident that magopt finds close to the best choice for each
query, thereby forming the lower envelope of the available
options. This is the single most important performance result
presented in this paper, and demonstrates both the motivation
for our work, and the success of our approach.

6.5 Compilation Time Results
The graph in Figure 7 shows the total compilation (rewriting+ optimization) time due to the use of magopt and nomag.
This time includes the second pass through the optimizer
when magic sets rewriting is chosen (note that this is a
linear scale, not a logarithmic scale). For the smaller
queries, magic sets rewriting is chosen, and therefore the
compilation time for magopt is approximately twice the time
for nomag. We view this as an acceptable overhead, because
in decision support queries, the compilation time is usually
small compared to the execution time.

For the largest query, magic sets rewriting is not chosen,
and so there is no second pass through the optimizer. As
the graph shows, there is very little overhead for having
considered the option of using magic. This is important
in those cases where the optimization overhead may be
significant. The graph in Figure 8 shows this more clearly;
it plots the time used during the first pass of the optimizer,
when Filter-joins are being considered by magopt. While
magopt considers more plans, because it also considers plans
involving a Filter-join, the time taken to do so is not very large.
This performance result validates our claim that cost-based
magic optimization does not alter the order of complexity of
query optimization.

6.6 Experimental Variations
In separate experiments, we changed the complex view so that
it was more expensive, and repeated the entire experimental
variation of the outer query block. A couple of variations
of the query execution environment (dropping some indexes)
were also tried. The results are very similar to those shown,
and changed only in the absolute numbers but not in their
relative positions. Due to space constraints, we have not
shown graphs of the results. In all the experiments, magopt
made close to the best optimization choices. Based on this
study, we observe that the Filter-join based optimization

441

0

0.5

1

1.5

2

2.5

44 44 62 236 1275 11986

O
PT

1_
TI

M
E

sc
al

ed

incr answer size -->

OPT1_TIME q2

nomag
magopt

Figure 8: Initial Optimizer Overhead

technique is stable; its success is not dependent on the specific
nature of the complex view, the nature of the query block in
which the view is used, nor the existence of indexes.

7 The �-Semijoin Algebra
In our implementation,we explored the options for magic sets
rewriting by “piggybacking” them onto existing mechanisms
in the optimizer. If the system were based on an algebraic
rule-based optimizer, such as Volcano [GM93], another
approach is to extend the query algebra to model magic sets as
well. In this section, we present such an algebraic extension
that helps to characterize the exact space of possible options.
The algebraic equivalences lead to query transformations that
can be applied in a cost-based manner, possibly using the cost
estimation techniques already presented, or using a more
elaborate exploration of the search space.

7.1 Notation
We use the symbols R (with or without subscripts) to
denote relations, � (with or without subscripts) to denote
predicates,E (with or without subscripts) to denote relational
expressions, attrs(E) to denote the attributes of the result ofE, and ā to denote a tuple of attributes. In keeping with SQL
semantics, we treat relations as multisets of tuples, and use
the multiset version of relational algebra [DGK82].

We assume familiarity with the algebra, and only describe
the grouping/aggregation operator and the multiset �-
semijoin operator. We use a grouping/aggregation operatorḡFf̄ , where ḡ denotes the groupby attributes and f̄ denotes
the aggregate operations performed on the groups defined
by the groupby attributes. (This notation is borrowed
from [EN94, Klu82], and is required to deal with SQL-style
grouping and aggregation.)

Definition 7.1 (Multiset �-Semijoin) The multiset version
of the �-semijoin operator,><�, is defined as follows. Given
relations R1 and R2,(R1 ><� R2) def= �9t̄22R2;�(t̄2)(R1)
where �(t̄2) denotes the predicate � with attributes of R2
replaced by their values from tuple t̄2. 2

The definition of �-semijoin preserves the multiset seman-
tics, i.e., for each tuple present in the result, the multiplicity

is exactly the same as in R1. For example, if the relationR1(A;B) is the multiset of tuples f(1; 2); (1; 2); (1; 4)g, andR2(C;D) is f(3; 5); (3; 6); (3;7)g, then R1 ><C�B R2 =f(1; 2); (1; 2)g.
In the multiset relational algebra, �-semijoin is a derived

operator, and can be expressed using the �-join, projection
(�) and duplicate elimination (�) operators as follows:4(R1 ><� R2) � (R1 1Nat (�(�attrs(R1)(R1 1� R2))))
where 1Nat denotes natural join. The intuition is that the
expression �attrs(R1)(R1 1� R2) contains all the tuples in
the �-semijoin, but possibly with incorrect multiplicities. The
duplicate elimination followed by the natural join is used to
recover the desired multiplicity.

Some of the �-semijoin equivalence rules we describe
make use of functional dependencies present in relations;
we denote the functional dependencies present in a relationR by FD(R). In addition, the equivalence rules also
make use of functional dependencies implied by predicates
(such as �-join or �-semijoin predicates). For example,
the predicate x = y � y implies the functional dependencyfyg ! x, and the predicate x = y+ z implies the functional
dependencies fy; zg ! x, fx; yg ! z, and fx; zg ! y. We
use the notation FD(�) to denote the set of all functional
dependencies implied by predicate �.

7.2 Transformation Rules for �-Semijoin
Optimizing SQL queries by making use of �-semijoins
involves specifying equivalence rules involving �-semijoins,
and other operators of the extended multiset relational
algebra. Given a collection of equivalence rules, a
transformational optimizer, like Volcano [GM93], can be
used to enumerate and compactly represent the logical search
space. Cost formulas for the operators in the algebra are
used to compute cost estimates and choose the optimal way
of evaluating the query.

We discuss some of the more interesting transformations
involving the �-semijoin and �-join operators below; others
are presented in [SSS95]. Algebraic transformations may
require a renaming step, for example when changing the
structure of the expressions. Like other work in the area, our
equivalence rules ignore the renaming step, for simplicity of
exposition; details of renaming can be worked out easily.

Introduction of �-Semijoin: Relational algebra expres-
sions generated directly from SQL queries typically do not
contain the �-semijoin operator.5 We illustrate below how the�-semijoin operator can be introduced into expressions with
joins; similar equivalence rules can be derived for outerjoins,
intersections and differences.E1 1� E2 � E1 1� (E2 ><� E1)
The intuition here is that the result of the expression E1 1�E2 only makes use of tuples of E2 that join with tuples
of E1 on the predicate �. Hence, first selecting the subset

4In the set version of relational algebra, �-semijoin can be more simply
expressed as (R1 ><� R2) � �attrs(R1)(R1 1� R2). This equivalence
does not hold in the multiset version of relational algebra.

5The translation from SQL to relational algebra presented in [CG85] uses�-semijoins only to handle HAVING clauses.

442

of the tuples of E2 that join with E1 on �, using the �-
semijoin operator, prior to performing the join withE1, would
preserve equivalence. Note that common subexpressions are
introduced as a result of this step.

Pushing �-Semijoin through Join: We present below a
transformation rule that describes how to push �-semijoins
through joins.(E1 1�1 E2)><�2 E3 � (E1 1�1 E0

2)><�2 E3

where E0
2 = E2><�1^�2 (E1 1True E3).

This transformation allows both E3 and E1 to be used to
restrict the tuples computed for E0

2. Although as stated the
transformation uses a cross-product, it is useful if some part
of �2 uses only attributes from E1 and E3 — that part of�2 can be used in a succeeding step to convert the cross-
product to a �-join. The intuition behind the correctness of
the transformation rule is that only those tuples t̄2 2 E2 are
required for which there exist tuples t̄1 2 E1 and t̄3 2 E3 for
which �1(t̄1; t̄2) is true and �2(t̄1; t̄2; t̄3) is true.

Pushing �-Semijoin through Aggregation: The following
transformation rule describes how to push �-semijoins
through grouping and aggregation.ḡFf̄ (E1)><� E2 � ḡFf̄ (E1 ><� E2)
where � involves only the attributes in ḡ and attrs(E2).

The intuition here is that if the semijoinpredicate� involves
only the attributes in ḡ and attrs(E2), for each group of E1,
either all the tuples will be selected by (E1 ><� E2), or none
will. The tuple in the result of theF operator generated from
each group will correspondingly be selected or not.

When � involves results of the aggregation, the �-semijoin
operator cannot be pushed through aggregation in general.
In some cases involvingmin and max, it is possible to push
the �-semijoin operator through ḡFf̄ ; see [SSS95].

Simplification: Some of the �-semijoin transformations
can generate expressions where some predicates are checked
more than once; for example, in the right hand side of
the transformation above that introduces the �-semijoin, the
predicate � is checked twice. The repeated checks are
necessary in general, but in some special cases the repeated
checks are redundant, and the expressions can be simplified
by removing them. The followingtransformation can be used
to eliminate repeated checks, when it is applicable.E1 1�1^�2^�3 (E2 ><�1^�2^�4 E1) �E1 1�1^�3 (E2 ><�1^�2^�4 E1)
where attrs(E2) functionally determine all the attributes in�2, under FD(�1) [FD(E1).

Note that it is safe to use a subset of the functional
dependencies in performing this transformation, so a
complete mechanism for deducing functional dependencies
is not essential.

Eliminating �-Semijoin: Intuitively, a �-semijoin can be
rewritten as a join followed by a projection if the join
predicate along with the functional dependencies of the right
operand of the �-semijoin guarantee that each tuple of the left
operand is selected by at most one tuple of the right operand.
This intuition is formally captured by the transformation
shown below:E1 ><(E2:ȳ=ḡ(attrs(E1)))^�1 E2 ��attrs(E1)(E1 1(E2:ȳ=ḡ(attrs(E1)))^�1 E2)
where E2:ȳ is a superkey of E2, and ḡ(attrs(E1)) is a
function of attributes of E1 that returns a tuple of values
with the same arity as E2:ȳ.

We have presented a representative sample of the
equivalence rules involving the �-semijoin operator. A larger
collection of equivalence rules is presented in [SSS95].

7.3 Cost Model for �-Semijoin
The �-semijoin operation R1 ><� R2 can be efficiently
implemented using minor changes to join techniques such
as hash joins and index joins. One implementation treats the
left operand R1 of the �-semijoin as the “outer” relation in
the join technique. For each tuple in the outer relation R1,
instead of joining it with each matching tuple in the inner
relation R2, the tuple in R1 can be returned as soon as a
match is found. Sort-merge joins can similarly be adapted to
implement �-semijoins if the join predicate is an equijoin.

An alternative is to treat the right operand R2 of the �-
semijoin as the “outer” relation in the join technique. For
each tuple in the outer relationR2, all matching tuples in the
inner relationR1 are returned. If a tuple inR1 is already in the
result as a consequence of matching a different R2 tuple, it is
not added to the result; an efficient implementation requires
an index on the result of the �-semijoin, in general. When the�-semijoin predicate involves an equijoin with a superkey ofR2, it is guaranteed that a tuple in R1 matches at most one
tuple inR2; no index on the result of the�-semijoin is required
in this case.

The cost formulas for the different join techniques are
easily modified to derive cost formulas for the different ways
of implementing the �-semijoin operator. We omit details.
The costing phase of a transformational optimizer, such as
Volcano, uses cost formulas for the operators in the algebra
to compute cost estimates for the different ways of evaluating
the query.

Since the �-semijoin operator is a derived operator (it
can be expressed using �-join, projection and duplicate
elimination), it can also be implemented using algorithms for
these operators. However, implementing it thus is inefficient.

7.4 Applications of �-Semijoin Equivalence Rules
Rewriting using �-semijoin equivalence rules is particularly
useful for complex queries that use views that cannot be
expanded out into a join. Examples include:� Queries using views that are defined using aggregation.

Such a query was presented in Section 2.� Queries using views that use SELECT DISTINCT in the
view definition. Such views can be expanded out in some,
but not all, cases.

443

� Queries with outerjoins. Views used as arguments of
outerjoins cannot be expanded out. Since outerjoins are
not associative, they cannot be reordered.

A distinct advantage of rule-based optimizers is that it is easy
to specify the transformations for a variety of operations. In
fact, the set of transformation rules we present in [SSS95]
are able to push �-semijoins into the views in all the above
mentioned examples.

If the entire set of �-semijoin equivalence rules were added
to an exhaustive optimizer, the search space could increase
greatly. The above classes of queries represent the most
useful classes of applications of the �-semijoin equivalence
rules, and suggest the following very useful heuristic:

The �-semijoin operator should be introduced only
when dealing with aggregation, duplicate elimination
and outerjoin operations.

An equivalence rule for aggregation was presented earlier,
while others are described in [SSS95].

7.5 �-Semijoin and Constraint Magic Rewriting
Magic rewritings [BR91, MP94, SS94] optimize database
queries by defining a set of auxiliary magic (or filter)
relations, that are used as filters to restrict computation of the
query. Constraint Magic rewriting [SS94] is the most general
of these rewritings, and we present a derived transformation
rule that captures the key intuition of Constraint Magic
rewriting for a single join. Applying this transformation
rule repeatedly on a sequence of joins has an effect similar
to Constraint Magic rewriting, for a single block SQL query.
Finally we indicate a heuristic for applying the method to
SQL queries that use view relations in addition to database
relations; the heuristic simulates the behavior of Constraint
Magic rewriting (with full left-to-rightSIPS) on such queries.

CM Transformation Step Using �-Semijoin: The follow-
ing transformation rule captures the basic step of Constraint
Magic rewriting [SS94]:(E1 1�1 E2)><�2^�3 F � (E0

1 1�1 E0
2)><�2^�3 F

where �2 involves only the attributes in attrs(F) [attrs(E1),6 and E0
1 and E0

2 are defined below:E0
1 = E1 ><�2 FE0
2 = E2 ><�1^�3 (E0

1 1�2 F)
We refer to the above transformation as the Constraint
Magic Transformation (CMT) Step. The CMT step can be
derived from simpler equivalence rules; details are presented
in [SSS95].

CMT Step and Constraint Magic Rewriting: The ex-
pressions defining E0

1 and E0
2 in the CMT step capture the

essence of Constraint Magic rewriting. The intuition is as
follows. Suppose we have a set of bindingsF on the result of
a join of relations E1 and E2. In Constraint Magic rewriting

6Note that this applicability condition can alwaysbe satisfied by choosing�2 to be True.

of this join, the “filter” relation (also called the “magic” re-
lation) F is first used to restrict computation of E1 to tuples
relevant to F . Then, the set of E1 tuples thus restricted are
used along with the filter relation F to restrict computation
of E2. This strategy is exactly captured in the CMT step.

More formally, the connection can be established as
follows. Consider a view defined as:V Vdef= (E1 1�1 E2)
with a filter relation F , and a parametrized predicate �2 ^ �3
where �2 involves only the attributes inattrs(F)[attrs(E1).
(This is the same as the LHS of the CMT step.) The
Supplementary Constraint Magic rewriting first defines
supplementary (or PartialResult) relation S1 below:7S1

Vdef= F 1�2 E00
1

where E00
1 is the result of supplementary Constraint Magic

rewriting ofE1 with the filter relationF and the parametrized
predicate �2.8 View V is then replaced by view V 0 defined
below:V 0 Vdef= S1 1�1^�3 E00

2

where E00
2 is the result of the supplementary Constraint

Magic rewriting on E2, with the filter relation S1, and the
parametrized predicate �1 ^ �3.

Note the close correspondence between E0
1 (in CMT)

and E00
1 (in Constraint Magic), between the right operand

of the �-semijoin in the definition of E0
2 (in CMT) andS1 (in Constraint Magic), and between E0
2 and E00

2 . The
main difference between the Constraint Magic rewriting and
the CMT step on a single join is that Constraint Magic
rewriting uses �-joins rather than �-semijoins. Although
the final expression using �-semijoin is more complex than
the definition of V 0 generated by Constraint Magic rewriting,
the added complexity is required to preserve the multiset
semantics.

CM Transformation of an SQL Block Using �-Semijoin:
The algebraic expression V generated by transforming a
single block SQL query is of the form:V : �p̄a(ḡaFāf (: : : (R1 1�1 R2) : : : 1�n�1 Rn))

Given a filter relation F on V , denoted by V >< F ,
the following sequence of transformations can be applied toV >< F . First, identify the strongest subset of , denoted
by n, that can be pushed through the groupby/aggregation
operator. If the original query did not use GROUPBY, n
is the same as . Then, >< n F can be pushed inside the
projection operator, and the groupby/aggregationoperator, to
obtain:�p̄a(ḡaFāf ((: : : (R1 1�1 R2) : : : 1�n�1 Rn)>< n F))
Finally, the CMT step can be repeatedly applied on the
expression

7Assuming that E1 is chosen as the first relation in the sideways
information passing (SIP) order.

8Actually, the projection of F on the relevant attributes is used in
Constraint Magic rewriting, but we use F itself for simplicity of exposition.
The projection can be introduced after carrying out the CMT step.

444

((: : : (R1 1�1 R2) : : : 1�n�1 Rn)>< n F)
as described below. First define Si; i � 1 as follows:S1

def= R1Si+1
def= (Si 1�i Ri+1); i � 1

Also, let i; i < n denote the strongest subset of i+1 that
uses only attributes of F and Si, and i; i < n denote
the rest of i+1. The first application of the CMT step
transforms (Sn�1 1�n�1 Rn) >< n F to (S0n�1 1�n�1R0n) >< n F , where S0n�1 = (Sn�1 >< n�1 F) andR0n = Rn><�n�1^n�1 (F 1 n�1 S0n�1).

Now, consider S0n�1; the �-semijoin can be pushed into
the definition of Sn�1 in exactly the same manner as above.
Thus the CMT step is applied on each Si; n � i � 2.
Note that there are two occurrences of S0n�1, i.e., it is
a common subexpression of two expressions. By using
labeled expressions we can avoid the cost of optimizing and
evaluating the expression twice. Using labeled expressions
is very important to avoid an exponential blow up as we go
down from Sn to S1.

CM Transformation of SQL Queries With Views: We
start from an SQL query block, and perform the �-semijoin
transformation of the block as described above. This
block may contain uses of view relations, and after the
transformation the use of a relation Ri may have a semijoin
of the form Ri ><�i Fi, or Ri ><�i (F 1 n�1 S0n�1). LetEi denote the entire semijoin expression involving Ri. IfRi is a view relation, a specialized version R0i of the view
definition of Ri, with the semijoin pushed into it, can be
created recursively using the �-semijoin transformation of
the SQL block definingRi. Finally, if all of �i can be pushed
into the view definition ofRi, thenEi is replaced byR0i, else
onlyRi in Ei is replaced by R0i.

The relationship between the CMT step and Constraint
Magic rewriting discussed earlier for a single join also carries
over to the case of views, and to queries defined using multiple
views.

We have thus shown that, for SQL queries, the effect of
Constraint Magic rewriting is obtained as a special case of the�-semijoin transformations, in particular by using the CMT
step. If we explore the full space of equivalent expressions,
Constraint Magic rewriting will be examined as an option,
and the cheapest expression in the search space will be
chosen.

7.6 Discussion
Several commercial database systems use unique tuple-ids as
implicit attributes in order to distinguish between multiple
occurrences of a tuple. They carry out transformations of
SQL queries that could affect the multiset semantics of the
query (such as replacing nested subqueries by joins), and
use unique tuple-ids to get the correct multiset semantics,
if required, as follows. The tuple-ids of relations in the
FROM clause (i.e., those that contribute to the multiset
semantics) are selected along with other attributes in the
SELECT clause, and duplicate elimination is performed on
the resultant relation. Finally the tuple-id attributes are
projected away to get the desired multiset result.

This approach has the benefit of using joins in place of �-
semijoins, allowing more join reorderings to be explored.
However, it has several drawbacks. First, it cannot be
used in association with grouping/aggregation. Second, the
optimizer has to keep track of the tuple-ids across operations
and perform duplicate elimination. Our approach of using
the �-semijoin operator is cleaner since it can uniformly deal
with SQL queries that have multiset semantics, as well as
queries that have set semantics. Our approach also avoids
the costs of explicit duplicate elimination and of maintaining
and dealing with unique tuple-ids.

8 Related Work
Magic sets rewriting was originally used in the area of
recursive query processing in deductive databases [BMSU86,
RLK86]. The impact of different choices of SIPS has been
discussed in [BR91], and the idea of using approximations of
the magic set has been explored in [Sag90, SS88]. We should
note that this paper deals with non-recursive SQL queries that
are supported by all commercial relational database systems.
Magic sets has been shown to be applicable to non-recursive
SQL queries [MFPR90], and has been implemented in the
Starburst database system [MP94].

Cost-based optimization techniques similar to those
for magic sets may also be applied to complex SQL
queries involving correlation (using the magic decorrelation
transformation [SPL96]), and expensive functions [Hel95].

The research on semijoins in distributed databases
(e.g., [BGW+81, LMH+85]) assumed that relations were
simple stored relations, and therefore the costs of performing
the semijoins could be easily computed. Further, issues
like the choice of SIPS were not considered, usually
because communication costs were assumed to outweigh
local processing costs (consequently, the chosen semijoin
was always as restrictive as possible). Instead, optimization
focused on the correct order in which to execute the
semijoins [BGW+81]. System R* [LMH+85], on the
other hand, assumed that local processing costs outweigh
communication costs; consequently, semijoins were not
considered during optimization.

The literature on heterogeneous databases has not yet dealt
with issues like remote views in a complex query. However,
such issues are becoming increasingly important, and our
work should be applicable to this domain as well.

9 Conclusions
This paper makes two major contributions. First, it proposes
a practical solution for integrating the magic sets rewriting
algorithm into a cost-based optimization framework. The
solution ensures that the rewriting is applied in an effective
manner, and only when it is beneficial. The implementation
of the optimization technique in DB2 C/S V2 demonstrates
the feasibility of the proposed solution. Further, the
performance results validate the claim that magic rewriting
can be effectively optimized in a cost-based manner for a wide
range of queries without significant optimization overhead.
The second contribution is the formalization of these ideas
by introducing the multiset �-semijoin algebraic operator. A
representative collection of algebraic equivalences involving
this operator have been presented, which can be used to

445

model magic rewriting. The algebraic characterization
cleanly defines the entire space of evaluation options.
Further, the transformation rules can be used by a rule-
based optimizer to optimize complex queries in a cost-based
fashion. While these contributions were originally the result
of two independent research efforts, they are complementary
in nature. Together, they address the theory and practice of
applying the magic sets rewriting optimization in a cost-based
manner.

Acknowledgements
Praveen, Joey, Raghu, Hamid and Cliff acknowledge the
contributions of John McPherson, Guy Lohman, Beau
Shekita, Dave Simmen, Lori Strain, Monica Urata, and
Surendra Verma at IBM Almaden, Navin Kabra and Jignesh
Patel at University of Wisconsin, and Inderpal Mumick for the
original magic rewriting code. Divesh, Peter and Sudarshan
would like to thank Brian Hart for discussions that lead
them to start thinking of how Constraint Magic rewriting
might be implemented using generalizations of semijoins,
Bill McKenna for discussions regarding cost-based algebraic
optimizers and feedback on the paper, and Tim Griffin for
discussions about bag operators.

Praveen Seshadri was supported by an IBM Graduate
Student Fellowship. Raghu Ramakrishnan was supported
by a David and Lucile Packard Foundation Fellowship in
Science and Engineering, a Presidential Young Investigator
Award, with matching grants from Digital Equipment
Corporation, Tandem and Xerox, and NSF grant IRI-
9011563. Joseph Hellerstein was supported by NSF grant
IRI-9157357.

References
[BGW+81] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve

and J. B. Rothnie. Query processing in a system for distributed
databases (SDD-1) ACM Transactions on Database Systems,
6(4):602–625, 1981.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv and J. D. Ullman.
Magic sets and other strange ways to execute logic programs. In
Proceedings of the ACM Symposium on Principles of Database
Systems, 1–15, 1986.

[BR91] C. Beeri and R. Ramakrishnan. On the power of Magic.
Journal of Logic Programming, 10(3&4):255–300, 1991.

[Blo70] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[CG85] S. Ceri and G. Gottlob. Translating SQL into relational al-
gebra: Optimization, semantics, and equivalence of SQL queries.
IEEE Transactions on Software Engineering, 11(4):324–345,
1985.

[DGK82] U. Dayal, N. Goodman, and R. H. Katz. An extended
relational algebra with control over duplicate elimination. In
Proceedings of the ACM Symposium on Principles of Database
Systems, 1982.

[EN94] R. Elmasri and S. B. Navathe. Fundamentals of database
systems. Benjamin/Cummings Publishers, 2nd edition, 1994.

[GHK92] S. Ganguly, W. Hasan and R. Krishnamurthy. Query
optimization for parallel execution. In Proceedings of ACM
SIGMOD International Conference on Management of Data,
1992.

[GM93] G. Graefe and W. J. McKenna. The Volcano optimizer
generator: Extensibility and efficient search. In Proceedings of
the IEEE International Conference on Data Engineering, 1993.

[HCL+90] L. Haas, W. Chang, G. M. Lohman, J. McPherson,
P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey,
and E. Shekita. Starburst mid-flight: As the dust clears. IEEE
Transactionson Knowledge and Data Engineering, March 1990.

[Hel95] J. M. Hellerstein. Optimization and execution techniques
for queries with expensive methods Ph.D. Thesis, University of
Wisconsin, August 1995.

[IK84] T. Ibaraki and T. Kameda. Optimal nesting for computing
N-relational joins. In ACM Transactions on Database Systems,
9(3):482–502, 1984.

[INSS92] Y. Ioannidis, R. Ng, K. Shim and T. K. Sellis. Parametric
query optimization. In Proceedings of the International
Conference on Very Large Databases (VLDB), 103–114, 1992.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimiza-
tion of nonrecursive queries. In Proceedings of the International
Conference on Very Large Databases (VLDB), 128–137, 1986.

[Klu82] A. Klug. Equivalence of relational algebra and relational
calculus query languages having aggregate functions. Journal of
the ACM, 29(3):699–717, 1982.

[LMH+85] G. M. Lohman, C. Mohan, L. M. Haas, D. Daniels,
B. G. Lindsay, P. G. Selinger and P. F. Wilms. Query processing
in R*. In Query Processing in Database Systems, (W. Kim,
D. S. Reiner, and D. S. Batory, eds.), Springer-Verlag, 30–47,
1985.

[LNSS93] R. J. Lipton, J. F. Naughton, D. A. Schneider and
S. Seshadri. Efficient sampling strategies for relational database
operations. Theoretical Computer Science, 116:195–226, 1993.

[MFPR90] I. S. Mumick, S. Finkelstein, H. Pirahesh, and
R. Ramakrishnan. Magic is relevant. In Proceedings of ACM
SIGMOD International Conference on Management of Data,
1990.

[MP94] I. S. Mumick and H. Pirahesh. Implementation of magic-
sets in a relational database system. In Proceedings of ACM
SIGMOD International Conference on Management of Data,
1994.

[RLK86] J. Rohmer, R. Lescoeur, and J. M. Kerisit. The Alexander
method: A technique for the processing of recursive axioms in
deductive databases. In New Generation Computing, 4(3):273–
285, 1986.

[RSSS94] R. Ramakrishnan, D. Srivastava, S. Sudarshan and
P. Seshadri. The CORAL deductive system. The VLDB Journal,
Special Issue on Prototypes of Deductive Database Systems,
1994.

[SAC+79] P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie,
and T. Price. Access path selection in a relational database
management system. In Proceedings of ACM SIGMOD
International Conferenceon Managementof Data, 23–34, 1979.

[Sag90] Y. Sagiv. Is there anything better than magic? In
Proceedings of the North American Conference on Logic
Programming, 235–254, 1990.

[SPL96] P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Decorrelating
complex queries. In Proceedings of the Twelfth International
Conference on Data Engineering, 1996.

[SS88] S. Sippu and E. Soisalon-Soinen. An optimization strategy
for recursive queries in logic databases. In Proceedings of the
Fourth International Conference on Data Engineering, 1988.

[SS94] P. J. Stuckey and S. Sudarshan. Compiling query
constraints. In Proceedingsof the ACM Symposium on Principles
of Database Systems, 1994.

[SSS95] D. Srivastava, P. J. Stuckey and S. Sudarshan. The magic
of theta-semijoins. AT&T Bell Laboratories Technical Report,
1995.

[TPCD94] TPC benchmark group. TPC-D Draft, December 1994.
Information Paradigm. Suite 7, 115 North Wahsatch Avenue,
Colorado Springs, CO 80903.

[Yao77] S. B. Yao. Approximating the number of accesses
in database organizations. Communications of the ACM,
20(4):260–261, 1977.

446

