Versioning Algorithms for Improving Transaction Predictability in
Real-time Main-memory Databases

Rajeev Rastogi'
S. Seshadri!
Philip Bohannon!
Dennis Leinbaugh!
Avi Silberschatz!
S. Sudarshan?

1Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-0636

2Indian Institute of Technology
Computer Science and Engineering Dept.
Bombay, India

Abstract

We present a design for multi-version concurrency control and recovery in a main memory
database, and describe logical and physical versioning schemes that allow read-only transactions
to execute without obtaining data item locks or system latches. Our schemes enable a system to
provide the guarantee that updaters will never interfere with read-only transactions, and read-only
transactions will not be delayed (for the purpose of ensuring data consistency) as long as the op-
erating system provides them with sufficient cycles. Consequently, transaction executions become
more predictable — this partially alleviates a major problem in real-time database system (RTDBS)
scheduling, namely, significant unpredictability in transaction execution times. As a result, in addi-
tion to a transaction’s deadline, a more accurate estimate of its execution time can also be taken into
account, thus facilitating better scheduling decisions. Our contributions include several space saving
techniques for the main-memory implementation, including improved methods for logical aging of
data items and the introduction of physical aging for low-level structures. Some of these schemes
have been implemented on a widely-used software platform within Lucent, and the full scheme is
implemented in the Dali main-memory storage manager.

1 Introduction

Transactions, in a real-time database system (RTDBS), have completion deadlines associated with them.
The objective of the transaction processing component in such a system is to maximize the number of
transactions that complete before their deadlines while preserving database consistency [SZ88, Ram93].

RTDBSs are extensively deployed in a number of environments like telecommunications, program
stock trading, and command and control systems. Of these, telecommunications constitutes an impor-
tant application domain. In a telecommunication network, RTDBSs typically are either embedded in



network elements (e.g., switches, routers) and store call routing and forwarding tables, or are employed
in adjuncts to switches to perform functions like 800 number translation. The RTDBSs are frequently
consulted during call setup to allocate resources (e.g., trunks, switch ports) when a circuit is estab-
lished, and for mapping a dialed number to a destination number. As a consequence, since call setup
is required to complete in a few milliseconds, the read-only transactions that access the RTDBSs have
stringent response time requirements which are in the order of tens of microseconds.

In order to meet the strict deadlines associated with the above read-only transactions, the RTDBS
infrastructure must provide support for fast and predictable execution times for such transactions. As
pointed out in [Ram93], the two major obstacles to achieving this in conventional DBMSs are (1) disk
access latency incurred when accessing a disk-resident page, and (2) blocking due to lock conflicts —
this occurs when a transaction requests a lock held by a different transaction in a conflicting mode.
In this paper, we employ main-memory database (MMDB) technology and version-based concurrency
control mechanisms to overcome the above-mentioned challenges.

Unlike disk latency, which is variable and in the order of tens of milliseconds, main-memory accesses
are fast and measured in a few hundreds of nanoseconds. Thus, storing the entire database in main
memory can result in short and bounded transaction execution times. While disk-based databases
exhibit improved performance if the entire database can fit in the main-memory buffer cache, a MMDB
(e.g. [SGMI0, LSC92, JLR194, DKO™84]) improves performance further by dispensing with the buffer
manager, and tuning algorithms to the flat storage hierarchy and the reduced cost of indirection. Also,
MMDB schemes attempt to minimize space usage, of vital importance since main memory remains
about one hundred times as expensive as disk space. Since disk I/O in an MMDB is only needed for
persistence of the log, no disk activity is required on behalf of read-only transactions. As a result,
response times for read-only transactions are more predictable, making MMDBs highly suitable for a
large class of real-time applications in which the most time critical queries are read-only. However, as
mentioned earlier, a read-only transaction may still have to wait on locks held by an update transaction,
which may in turn be waiting on a different transaction, or on disk writes to the log. These waits become
a serious source of unpredictability for response times.

Multiversion concurrency control methods [MPL92, Had88, AS89, BG83, BC92a, IKK90, CFL*82]
prevent update transactions from conflicting with read-only transactions by providing the latter with a
consistent but somewhat out-of-date view of the database. In order to provide this view, multiple ver-
sions of recently updated data items are retained. Early multi-version schemes [Ree78] used timestamps
for readers and writers, but more recent multi-version locking schemes [CFL 82, AS89, BC92a, MPL92]
use timestamps with read-only transactions, allowing them to use old versions without locking, while
requiring updaters to perform locking. However, none of the above techniques guarantees complete
isolation of read-only transactions from update transactions in a system, since the access path to the
data could be modified by update transactions. Thus, read-only transactions must obtain latches
(semaphores) to ensure that they read physically consistent data.

Requiring read-only transactions to obtain latches could cause update transactions to interfere with
their execution. Furthermore, in a number of environments, application code is often linked directly
with database code, accessing the database directly through shared memory for speed. This introduces
the possibility that a process could fail while holding latches or locks, leading to long delays in any
transaction waiting on one of these latches or locks while the death of the first process is detected
and handled. By avoiding latches, read-only transactions will never encounter this delay. Finally, in
a main-memory database system, the use of latches imposes a substantial overhead [GL92] and, by
avoiding their use, significant performance gains can be obtained for read-only transactions.

In this paper, we present schemes that eliminate the need for both locking and latching by read-



only transactions without sacrificing recency, since read-only transactions see all committed updates
as of their start-times. Locks are eliminated by a novel implementation of logical versioning for main
memory, an area which has been well-studied for disk-databases. Our implementation reduces the
storage space overhead required to keep track of versions. Latches are eliminated by a mechanism we
call physical versioning [KL80], that is applied to the access paths to data items. Updates to these
access paths are not made in place — instead, the updates are made on a new copy of the node, called
a “physical version”. The new version of the node is linked into the access path using an atomic
word-write (an operation which is universally supported on standard architectures). This enables read-
only transactions to traverse data structures without acquiring latches. By freeing them from getting
any latches, the performance of read-only transactions is completely de-coupled from that of update
transactions, and becomes a simple function of available CPU resources, making it relatively easy to
guarantee the response times of these transactions.

There are numerous benefits to making an entire class of read-only transactions in a RTDBS
environment completely non-blocking. Since transaction executions become more predictable, their
running times can be estimated more accurately. Consequently, in addition to a transaction’s deadline,
a more accurate estimate of its execution time can also be taken into account when making scheduling
decisions. For instance, for a certain aborted transaction before it is re-executed, it may be possible
to conclude that it will not meet its deadline even if it had exclusive access to all the resources in
the system — as a result, the transaction can be discarded early, thus resulting in better utilization of
resources [Ram93]. Similarly, transactions with smaller execution times may be given a higher priority
than those with longer running times — this could result in a larger number of transactions meeting
their deadlines.

Since memory conservation is far more critical in a main-memory database, we have developed two
orthogonal techniques for garbage collecting unneeded versions, without affecting the recency of data
seen by read-only transactions. First, we present a novel technique for aging old versions of data items,
in which effort can be traded for memory utilization, allowing the database management system to
adapt to currently available memory. Second, we introduce our schemes for physical aging which allow
memory used for low-level data structures to be more quickly returned to system control.

We also describe techniques for performing transaction rollback and recovery from system crashes.
Our recovery schemes do not require the generation of physical undo log records, thereby reducing disk
I/O and overhead due to logging. Variants of the schemes presented in this paper are implemented in
Lucent’s 2NCP product’s database subsystem which performs a number of tasks, including 800 num-
ber translation, in the long distance telecommunications network. The main memory and versioning
architecture enable the 2NCP to meet the stringent time constraints of real-time transactions that are
executed during call setup. We have also implemented the complete schemes in the Dali main-memory
storage manager at Bell Laboratories [JLR*94].

The remainder of the paper is organized as follows. In sections 2 and 3, we provide an overview
of logical and physical versioning, respectively. We present the design of our logical version manager
in Section 4. In Section 5, we discuss related work, and in Section 6, we give our conclusions and
directions for future work.

2 Logical Versioning

The idea of maintaining multiple versions of an item was first proposed by [Ree78] and is known as
multi-versioning or just versioning. In this paper, we refer to this as logical versioning to differentiate
it from physical versioning, which is described further in Section 3. In this section, we describe the



basic structure of our multi-version locking scheme [CFL 82, AS89, BC92a, MPL92]. We also propose
a design for version management that takes advantage of the fact that data is resident in memory.

2.1 Overview

In a system that supports multi-versioning, transactions are classified as read-only transactions — those
that only read items, and update transactions — those that update or write some item, or simply want
access to the most current data. When an update transaction updates a data item, a new version of
that item is created. Update transactions follow the two-phase locking protocol by locking items they
read or write. When an update transaction 7', commits, it is assigned a timestamp denoted by tsn(T")
which is obtained by incrementing a global logical timestamp counter. As part of commit processing,
before any locks held by the transaction are released, the transaction stamps each version it has created
with tsn(7"). Thus, the versions of an item can be ordered according to their timestamps. A read-only
transaction is assigned a timestamp by reading (but not incrementing) the logical timestamp counter
when it starts. Subsequently, for each item, the read-only transaction reads the latest version whose
timestamp is less than or equal to its timestamp.

At startup, read-only transactions read the logical timestamp counter without any locking implying
that 1) the timestamp counter must be incremented by a transaction only after the stamping process
is complete and the transaction has committed and 2) the counter itself either fits in a word or is read
through a pointer ensuring that the non-locking read is atomic with respect to the update. Furthermore,
in order to prevent multiple updaters from interfering with each other, every updater must obtain an
X latch (ignored by read-only transactions) on the logical timestamp counter before accessing it during
commit processing. The latch is held until all the versions have been stamped and the counter has
been incremented.

A version that is no longer needed by any read-only transaction can be deleted and the space
reclaimed. This action is called aging that version. A version can be aged safely if no read-only
transaction exists which has a timestamp equal to or larger than that of the version in question, but
smaller than the next newer version of the item. Algorithms for aging are presented in Section 4.9.

2.2 Logical Versioning in Main Memory

We now discuss the design of a version manager for a main-memory database system. The basic
difference between a main-memory based design and a disk-based design is that the versions of an item
need not be physically clustered together for efficient access. This fact, as we will see shortly, allows
us to minimize the space overhead of versioning in a main-memory system.

In most disk-based schemes [BC92b, MPL92|, storage space for a certain number of versions is
pre-allocated on each page for efficient access which could result in under-utilization of storage space
(e.g., each item on a page has a single version). In our design, on the other hand, space for versions
is dynamically allocated as they are created. Furthermore, since a database could consist of millions
of “cold” items that have only one version, we eliminate the space overhead due to versioning which is
imposed on these items by not using any space inside a version for bookkeeping information. Instead,
we use an auxiliary data structure called a Version List Entry (VLE), shown in Figure 1, to maintain
the bookkeeping information and link the versions of an item together. An item that has only one
version is stored as is without a VLE. VLEs are dynamically allocated as subsequent versions of the
item are created, and for items with more than one version, a VLE exists to represent each version.

A VLE contains the timestamp of the transaction that created it, and a pointer to the version
itself. The VLEs of an item are linked together as a doubly linked list ordered by timestamp. Read-



Version List Entry

Timestamp

Version Pointer

Older Versions Newer Versions

of this Item of this ltem
—_— -
R -

Other Items Changed
—_ by this Transaction

_ =

Figure 1: Structure of a Version List Entry

only transactions traverse the VLE chain of an item in order to find the required version. Each VLE is
also on a list of versions created by the same transaction while the transaction is active; this facilitates
easy update of timestamps of versions created by the transaction when it commits. Also, when a
transaction aborts, the versions created by the transaction can be efficiently determined and deleted.

3 Physical Versioning

In this section, we describe physical versioning and discuss interactions between physical and logical
versioning.

3.1 Overview

Physical versioning is a technique that permits read-only transactions to access data structures without
getting any latches or locks, even while other update transactions are updating the data structure.
Physical versioning is based on atomic reads and writes of words, operations which are universally
supported on current generation architectures.

The main motivation for physical versioning comes from real-time systems in which read-only
transactions are time critical, and cannot afford unpredictable delays that may occur if they have to
wait for latches. Whereas logical versioning eliminates the need for read-only transaction to wait for
locks, physical versioning eliminates the need for read-only transactions to wait even on latches. With
physical versioning, the response time of a read-only transaction depends only on the number of CPU
cycles available to it, which helps make it’s finish time highly predictable.

To demonstrate the physical versioning idea, we first consider an access structure such as a singly
linked list or a tree, which has a single root. Assume that the sole pointer to the root is stored in a single
word and that updaters are serialized. Updaters then copy the entire data structure and make changes
on the copy. On completion, they update the pointer to the root; since the write is atomic, readers either
see the old version of the data structure or the completed new version of the data structure. Thus the
entire update to the data structure appears to be atomic to read-only transactions, even though they
have not obtained any latches or locks. Locking protocols are of course required to prevent updaters
from interfering with each other.

Once a data structure has been copied and the root pointer to the data structure has been overwrit-
ten by the new pointer, new read-only transactions cannot access the old data. However, there may be
existing read-only transactions that are accessing the old version of the data structure. Therefore, the



old version cannot be deleted immediately after the root pointer has been updated. Instead, it must
be deleted only after all read-only transactions that were accessing it are no longer accessing it.

The process of detecting that an old version of data is no longer being accessed, and actually
deleting it, is called physical aging. Physical aging is complementary to logical aging, and a different
set of techniques are used to implement it. Physical aging is best implemented by a separate process
which we refer to as the physical ager. We discuss physical aging in detail in Section 3.4.

3.2 Purely Physical Versioning

In this section, we show how data structures in the form of a tree lend themselves to efficient physical
versioning while allowing readers to see an operation-consistent state of the tree. In other words, the
operations are each performed atomically with respect to readers. This is a fairly important class of
data structure since B-trees, T-trees' and even hash tables with collision chains? fall in this category.
We assume nodes in the tree are fixed size entities and for every edge out of the node, a pointer to the
other node in the edge is stored within the node itself. The techniques in this section work irrespective
of whether the system is using logical versioning or not, hence the name purely physical versioning.

We define a component to be any connected set of nodes of the tree. Given an update operation,
the component affected by the operation is the set of nodes changed by the operation, plus any other
nodes which may be necessary to connect the changed nodes. The root of the component is defined in
the obvious way as the root of the smallest subtree that contains the component.

Let N be the root of the component affected by an operation. Then, physical versioning is performed
as follows:

1. First copy the component; let N’ be the copy of N. The data in each node in the copy is exactly
the same as the data in the corresponding nodes in the original tree, except that pointers to
nodes in the component now point to the new copies of the nodes.

2. Perform the update on the new copy of the component. This can create new nodes, and update
or delete existing nodes in the new copy of the component. However, no node in the original tree
(including the old copy of the component) is affected by the update.

3. Atomically update the pointer to N to point to N’ instead (if N is the root, the pointer to N is
the root pointer for the tree, otherwise it is from the parent of N).

The final atomic update of the original pointer to N to point to N’ exposes the update to read-only
transactions, and it is easy to see that read-only transactions do not see partial updates. The affected
component for many well known operations on B-trees, T-trees and hash tables can be easily defined.
For example, consider an insert into a B-tree, which attempts to insert a new entry into a leaf node
L. The insert can cause a split, which can propagate several levels up in the tree, say up to node I.
Then the affected component consists of the path from I to L. Copying this set of nodes and then
performing the update starting from the new copy of I will not affect the original copy of the tree.
Furthermore, by toggling the pointer to I in I’s parent, to the new copy of I, the entire split operation
can be made to execute atomically with respect to read-only transactions.

!T-trees are an index structure based on AVL trees [AHU74]. They were proposed in [LC86] as a storage efficient data
structure for main-memory databases.
2The main hash table can be treated as a single large tree node.



Figure 2: Temporary Inconsistency in a Doubly Linked List

3.3 Combining Physical and Logical Versioning

So far we have considered the data structure to be a tree. If the data structure is not a tree, purely
physical versioning cannot easily be applied. Common examples of such structures include doubly linked
lists, (for example, the VLE chain of Section 2), and B-trees whose leaf nodes are linked together. Also,
the affected component of an operation may be large, with many nodes that are not updated but have
to be included to make the component connected. For example, a delete operation on a T-tree may
have to update both a node and it’s in-order predecessor node in the tree, in which case the affected
component contains all nodes in the path between the nodes.

To handle the above problems, we relax the requirement that read-only transactions see an operation
consistent view of data. We only require that the data structure be consistent enough for traversal —
however, a read-only transaction may be exposed to a partially executed operation. This does not create
problems in a system which supports logical versioning since a read-only transaction is not interested
in any update that takes place after it begins. A read-only transaction, T, essentially executes against
a transaction consistent snapshot that existed as of some time before it began execution. We therefore
exploit logical versioning to weed out partial effects of updates executing concurrently with read-only
transactions. We will demonstrate this by considering an insert into a doubly linked list. Let us assume
that logical versioning provides some mechanism for detecting whether a given node in the doubly linked
list is to be read by a read-only transaction or not. N cannot be atomically linked into the list since
there are two pointers (N’s successor and predecessor) that have to be atomically updated. However,
N can be linked in by first making the successor of N’s predecessor N and then the predecessor of N’s
successor N, as show in Figure 2. Notice that the linked list can be traversed consistently at all points
of time except that the node N may be visible while traversing in one direction but not in the other.
Notice that regardless of the traversal, physical consistency is ensured, and a read-only transaction sees
every node that belongs to the consistent snapshot for it. It does not matter whether the read-only
transaction sees N or not since in any case the logical versioning mechanism would not let the read-only
transaction read N.



3.4 Physical Aging

The process of reclaiming space occupied by older copies of data that have been physically versioned
is called physical aging. The old versions of the data have to be preserved as long as a read-only
transaction can attempt to read the data (this is similar to logical aging). The crucial difference
between logical and physical aging is, however, in when a read-only transaction ceases to see some
data. We assume that each operation traverses an access structure afresh and pointers to nodes are
not cached across operations. Therefore, a piece of data that is visible to a read-only transaction can
not be logically aged for the duration of the reading transaction while a piece of data that is visible to
a read-only transaction during an operation cannot be physically aged for the duration of the reading
operation.

For example, the old version of an index node that is physically versioned after a read-only transac-
tion initiated an index lookup operation may be visible to the transaction until the lookup completes
and thus, cannot be aged until then. However, the old version can be aged once the lookup completes
since a subsequent index lookup operation performed by the same read-only transaction retraverses
the index (beginning with the most recent root node) and thus, does not see the old version of the
index node. Thus, the physical ager has to ensure before aging a node that no operation of a read-only
transaction began before the node was physically versioned.

We associate a physical timestamp with each read-only transaction (this is different from the times-
tamp assigned to the transaction by logical versioning). The physical timestamp is oo if the transaction
is not currently performing any operation. It is set to the value of a global physical timestamp counter
before starting an operation and reset to oo afterwards. An updater, after making an update that phys-
ically versions a piece of data and makes it unreachable for future read-only transactions increments
the global physical timestamp counter while holding a latch. The updater also adds the older version
into a physical ager’s list by appending to the list, an entry containing a pointer to the version being
aged and the value of physical timestamp counter when the version was aged (that is, after the older
version was unlinked and the physical timestamp counter was incremented). The physical ager then
can de-allocate the space for an older version once no transaction has a physical timestamp smaller
than the version’s physical timestamp.

The above scheme works reasonably well if operations are short. However, in the presence of long
index operations like an index scan, very old versions can remain in the system for a long time. The
reason for this is that treating an entire scan as a single operation could potentially result in long
delays in the aging of data. This problem can be alleviated by decomposing a scan into a number of
smaller operations as follows. The key idea is to force the scan to start at the top of the tree to find the
next node (retraverse the tree) occasionally if it is holding up the reclamation of old versions for a long
time. More specifically, with every scan, two bits are maintained — a retraverse bit and an in_progress
bit. The retraverse bit is used by the physical ager to force the scan to perform a retraversal of the
tree. The Next operation for a scan first sets the in_progress bit to 1 and checks to see if the retraverse
bit for it has been set to 1. If so, it discards it’s current state (cached from the previous Next call),
sets the retraverse bit to 0, obtains a new physical timestamp and retraverses the tree from the current
root node. Before returning, Next sets the in_progress bit to 0. In order to reclaim data held up by a
long running scan, the physical ager notes the current physical timestamp then sets the retraverse bit
for the scan to 1. It then waits until the retraverse bit or the in_progress bit for the scan becomes 0,
following which it frees data assuming the physical timestamp for the scan is the maximum of noted
timestamp and the scan’s current physical timestamp.

Note that, unlike logical versioning, physical versioning can take place on a per-access-structure



basis, decreasing contention on the global timestamp and speeding recovery of space.

4 Logical Version Manager

In this section, we describe in detail the design of a main-memory based logical version manager. Recall
from Section 2 that the versions of an item are doubly linked using VLEs, an auxiliary data structure
(see Figure 1). We will assume that inserts and deletes into these doubly linked lists are performed
using physical versioning as described in Section 3.3. This enables traversals and updates to the VLE
chain to be performed without obtaining any latches. Furthermore, versions of items that are no longer
needed (and the VLE entries that point to them) are placed on the physical ager’s list and aged in the
manner described in Section 3.4.

We assume for this presentation that each item has a primary key that uniquely identifies it. We will
also assume that all access to items is through index (primary or secondary) structures. In the case that
an item has a single version, an index entry for that item is a direct pointer to the version. If the item
has multiple versions, the index entry points directly to one of the VLEs. If more than one of an item’s
versions have the same key value, then the index entry points to the latest version with the key value
(see Figure 3). When we refer to the “version pointed to by the index entry” this is assumed to involve
an indirection if the entry actually points to a VLE. Note that the key value can be obtained from the
version that is being pointed to (possibly indirectly through the VLE) [LC86, DKO™84] rather than
explicitly storing the key values in the index. This is possible since the database is memory resident
and pointer dereferencing is inexpensive.

For a primary index, the key value for an entry is basically the primary key value stored in the version
that the entry points to. We assume for simplicity of presentation that user secondary indices allow
duplicates, however we implement them using unique index code by the way the key is constructed. For
a secondary index, the key value for an entry is obtained by concatenating the secondary key with the
primary key for the item. This ensures that the key values in the index (both primary and secondary)
are unique. This allows us to compare key values and handle cases where there are more items with a
particular secondary key value than can fit in a single index node easily. Key values supplied by the
user for a secondary index can be supplemented by minimum or maximum primary key values in a
straightforward manner to maintain the semantics of the operation. Also, for a secondary index, using
the primary key to disambiguate duplicates ensures that an update to the latest version that does not
modify the secondary key value leaves the key value in the index itself unchanged. Thus, the index
entry pointing to the old version simply needs to be toggled to point to the new version rather than
deleted and reinserted.

Locks on keys are implemented by locking the item (its collection and primary key) that the index
entry for the key points to. Thus, following the terminology in [ML92], we perform data only locking.

For delete, update and read operations belonging to update transactions, we assume that a pointer
to a version or VLE has been obtained by traversing the index and a lock in the appropriate mode
on the item is held. Also, before an item is inserted, a lock on the item is obtained. Finally, for a
read operation belonging to a read-only transaction, we assume that a pointer to the version/VLE to
be read has been obtained by traversing the index — no lock is needed. In this design, no latches are
required by read-only transactions when searching a VLE chain for the correct version, and for update
transactions, ensuring the consistency of the chain is piggybacked on the lock on the item itself for
speed.



4.1

Access Paths (Indices)

Pointers to
VLE or to
an item

Versions
of an Item

Items

Figure 3: Pointers to Items and VLEs from Indexes

Update

The following protocol is followed when updating an item:

1. If a pointer to a version is passed as a parameter to update (that is, no VLE exists for the item),

then two VLEs vy and v are allocated. The timestamp in vy is set to —oo (a value smaller than
the minimum of the timestamps of currently running read-only transactions), the version pointer
is set to point to the item being updated and the next pointer is set to point to vo. In wvg, the
timestamp is initially set to oo, ensuring a recoverable schedule since by definition no reader is
old enough to read it. Also, the version pointer is set to point to the newly allocated version. For
indices on attribute(s) for which the key value in the new version is the same as that in the old
version, the pointer in the index to the item is simply toggled to point to ve; for the remaining
indices, the pointer to the version is toggled to point to v; and a new pointer to vy is inserted
into the index. Thus, we ensure that for an item, for a particular key value, only one index entry
points to a version of the item. While the update is being performed, read-only transactions
either see the pointer to the version in the index or a pointer to v; or vo. In all three case, as we
will see shortly, the read-only transaction correctly reads or ignores the version of this item that
it is supposed to read.

If a pointer to a VLE is passed as an argument to update, then a new VLE is allocated that
points to the newly allocated version and has timestamp of co. The new VLE is linked at the
(rightmost) end of the VLE chain for the item. For every index, for the key value in the new
version, if a pointer to a previous version of the item with the same key value is contained in the
index, then the pointer is toggled to point to the new VLE; else, a new pointer to the new VLE
is inserted into the index.

10



4.2 Delete

Deletion of an item creates a “delete-VLE” (with timestamp oc and null version pointer) to record the
deletion of the item. If a pointer to a VLE is passed as an argument to delete, then the delete-VLE is
simply linked at the end of the VLE chain. If a pointer to a version is passed as an argument (that is,
no VLE exists), an additional VLE with timestamp —oc and which points to this version is allocated,
and the delete VLE is appended to it. For every index, the pointer to the item in the index is toggled
to point to the new VLE for the item. Transactions that start after the commit of the transaction that
deleted the item will find the delete-VLE when they attempt to access the item, and thereby detect
that it is deleted.

4.3 Insert

We first consider the case that the primary key for the item (to be inserted) is already present in the
primary index. If the pointer in the index is 1) directly to a version or 2) to a VLE such that the last
VLE on the chain is not a delete-VLE, an error is returned (since an item with the same primary key
value logically exists). If the duplicate is not detected, Update is simply invoked with the pointer (to
the VLE) in the primary index and the contents of the new item to be inserted.

In case the primary key for the item is not contained in the primary index, a VLE v; is allocated,
the timestamp is set to oo and the version pointer is set to point to the item. A pointer to vy is inserted
into every index. In addition another VLE w5 is allocated, the timestamp in vs is set to —oo, the version
pointer is set to null, and next pointer is set to v;. The VLE vy is added to the logical ager’s list when
the transaction commits. The logical ager uses vy to access the VLE chain for the item and deletes
all VLE information for the item if no updates to the item have been performed for a while. This is
further described in Section 4.8.

4.4 Read (Read-Only Transactions)

From a pointer in the index, the item to be returned is determined as follows. If the pointer is a direct
pointer to an item, then the item pointer is returned. Else, if the pointer is to a VLE, say vy, then the
VLE chain is traversed to determine the VLE, say vy, with the largest timestamp less than or equal
to the timestamp for the transaction. If no such VLE exists or the version pointer in the VLE is null,
then null is returned. In case the key value for vy (in the index) differs from the key value for vy, then
too, null is returned (since in the transaction consistent database state for the read-only transaction,
the item does not have a key value equal to that for v1). Else, the version pointer in vy is returned.
Note that if null is returned by the version manager to a read-only search, the appropriate action may
be to continue the search after disqualifying this particular item.

4.5 Read (Updaters)

If read is passed a pointer to an item, then the item pointer is simply returned. Else, the version
pointer contained in the last VLE on the VLE chain is returned (note that if the item has been deleted,
then null is returned since the version pointer in a delete-VLE is null).

4.6 Transaction Commit

VLEs for versions created by a transaction and delete-VLEs allocated by the transaction are linked
together in a separate chain for the transaction (VLEs with timestamp —oc are not in the chain).

11



When a transaction commits, for all VLEs in the transaction’s chain, the timestamp in the VLE is
set (from oc) to tsn(T"), as described in Section 2. In addition, the VLE preceding every VLE in the
transaction’s chain is appended to the logical ager’s list. Thus, VLEs in the logical ager’s list are sorted
based on the timestamp of their successor versions.

4.7 Transaction Abort

For every version created by the transaction, all newly inserted entries in the indices are deleted. All
index entries that were toggled by the transaction are reset to their initial value before they were
toggled. Every VLE allocated by the transaction is first unlinked from the VLE chain, following which
the VLEs and versions that were allocated by the transaction are placed on the physical ager’s list.
Note that the actions to be performed during transaction abort can be easily deduced from the contents
of the VLE chain for VLEs on the transaction’s chain. As a result, no explicit undo log records are
generated in our scheme.

4.8 Logical Aging

The logical ager has a linked list of VLEs whose associated versions are candidates to be aged. As
described earlier, a version is added to the list when its successor version is committed. The logical
ager decides to age a version and its VLE when it does not find a reader with timestamp between
the VLE’s timestamp and the timestamp of the version following it in the VLE chain. We outline an
efficient algorithm for determining the versions to age in the next subsection.

In our design, in addition to the task of placing versions of items that are no longer required on the
physical agers list, the logical ager has a secondary function of checking if, on deletion of a version, only
one version of that item remains. This version can then be stabilized by removing the VLE associated
with it and toggling index entries to point to the version instead of the VLE.

A version/VLE is aged as follows. First, in order to ensure that no updaters are accessing the item,
an X lock on the item is obtained. The primary key for the item is determined from the version pointed
to by the VLE. In case the version pointer in the VLE is null, the VLE chain is traversed, and the
primary key contained in one of the versions of the item is used (if no versions are found, then no lock
is obtained since the item does not exist). The following actions are then performed.

1. If the version pointer in the VLE is not null, then for every index that contains a pointer to the
VLE, if a previous version of the item contains the same key value as the current version, then
the pointer to the VLE in the index is toggled to the previous version’s VLE; else, the pointer to
the VLE is deleted from the index.

2. If no other VLE precedes the VLE and a single VLE, say v, follows the VLE in the VLE chain
for the item, then the item is stabilized by performing the following actions: 1) if the version
pointer in v is non-null, then the pointer to v’ in every index is toggled to the version pointed in
v' 2) v’ is placed on the physical ager’s list.

3. The VLE is unlinked from the VLE chain for the item and both the VLE and the version pointed
to by it (if non-null) are placed on the physical ager’s list following which the lock on the item is
released.

12



4.9 Algorithm for Determining Versions to Age

In this subsection, we describe an efficient algorithm employed by the logical ager for detecting unneeded
versions. The algorithm adapts to become more aggressive if memory is scarce. In a main-memory
based versioning scheme, the efficiency of collecting old versions which are no longer needed is a
tradeoff between space and time: if you spend less time to find unneeded versions, more of them sit
around taking up space. This situation is quite different from disk-based systems, where space on each
page is usually pre-allocated to hold versions of items on that page [MPL92, BC92a], and efforts to
garbage collect versions can wait until memory on that particular page is needed. To balance these
contradictory goals, our aging scheme uses simple parameters to vary the level of eagerness exhibited
by the algorithm. By tying these parameters to statistics about memory usage, the garbage collection
scheme has a low CPU overhead when memory is plentiful, yet becomes more aggressive if memory
resources become scarce.

The aging algorithm assumes a timestamp-sorted list of active readers called readers, and a list of
non-current item versions called oldver sorted by the timestamp of the transaction which created the
successor version of the item. We call this the finish time of the version, though it would actually be
obtained by following one link in the VLE list and examining the successor version’s timestamp.

This algorithm works with a timestamp parameter, L, which determines how aggressively the logical
ager will attempt to age old versions. Only versions whose finish timestamp is smaller than L will be
considered for collection. This corresponds to the intuition that there are a significant number of
“short” readers, and that it is more cost-effective to attempt to age versions which are older than the
average age of these short readers. Of course, in a system with very few readers, or mostly very long
readers, this parameter would be less meaningful.

On each pass, the logical ager simultaneously traverses the readers and oldver lists in a manner
similar to a merge, using pointers to the current entry in the respective lists. The algorithm begins by
initializing one pointer to the reader with the largest timestamp smaller than L in readers and one to
the version with the largest finish timestamp smaller than L in oldver. It then works backwards to the
beginning of the readers and oldver lists. A temporary set of versions of items, open, is maintained as
a max-heap on the version timestamps. As an invariant, open contains versions which are not needed
by any reader yet encountered.

At each step in the algorithm, the largest of three timestamps is selected: the finish time of the
current version in the oldver list, the timestamp of the current reader, and the largest version timestamp
in the set open. Depending on which of the three is the largest, one of the following actions is performed:

1. If the finish time from oldver is the largest, then the version is added to open, and the pointer is
moved down the list by one (toward versions with earlier finish times).

2. If the timestamp of the reader is the largest, then all versions currently in open are needed by
this reader, so open is discarded and none of the versions in it are aged.

3. If the timestamp from open is the largest, then it is not needed by any reader, and the version
with the largest timestamp is aged (as described in Section 4.8) and deleted from open.

Once the earliest reader is encountered, the remaining versions are all aged.

The above algorithm ages any non-viable versions with finish time smaller than L by performing a
single pass over readers and oldver. If L is increased, then the ager becomes more aggressive in attempt-
ing to free storage, at the expense of checking a longer list of transactions and versions, and increasing
the likelihood that a version is checked for aging multiple times before actually being collected. Thus,

13



if memory is short, a larger value of L is appropriate. If L is decreased, all potential readers of a version
are more likely to have finished before an attempt is made to reclaim that version’s space.

4.10 Summary

The logical versioning scheme just described is designed to give good performance for readers and
updaters while minimizing space usage and allowing latch-free traversal by read-only transactions. In
particular, no space overhead is imposed on stable items which have only one version in the system.
No latches are required by read-only transactions when searching a VLE chain for the correct version,
and for update transactions the consistency of the chain is piggybacked on the lock on the item itself
for speed. Logging is minimized by dispensing with undo logs which are physically encoded in the
VLE chains. We have also outlined the services required of the index manager, which include insertion,
deletion, toggling, and the ability to extract keys from pointers to versions (or indirectly through the
VLEs). The design of one such index manager, for T-trees, which also supports latch free traversal by
read-only transactions, is described in [BLR*95].

We must point out that our logical versioning scheme can easily be extended to handle the case
when transactions have associate deadlines. Each transaction is assigned a priority based on its deadline
(if transactions have values, then these can be incorporated into the priority assignment as described
in [HSRT89, HCL93]). Since read-only transactions do not obtain locks, they are never involved in
conflicts, and so are irrelevant from a concurrency control perspective. Updaters, however, do obtain
locks and may be involved in conflicts. These conflicts can be resolved in favor of the transaction with
the higher priority as is done in the 2PL-HP scheme [AGMS88]. Alternately, if the transaction holding
the lock has a lower priority, then it can inherit the priority of the blocked transaction as described in
[HSRT91].

5 Related Work

In this section, we discuss related work on multi-version concurrency control schemes and the rela-
tionship of our work with deadline cognizant concurrency control algorithms proposed in the real-time
database systems literature [SZ88, AGM88, AGM89, HCL90b, HCL90a, HSRT89, HSRT91, HCL9I3,
Ram93]. A number of versioning schemes have been proposed for disk-based databases [BHRS80,
CFL*82, MPL92, AS89, BC92b]. Our logical versioning scheme is tailored for main-memory sys-
tems since it eliminates storage space overheads for items with a single version and it garbage collects
old versions aggressively. We also present the actions performed on indices when items are updated.

The idea of using atomic updates to avoid latches while performing lookups in binary trees was
originally proposed in [KL80]. We extend this work to T-trees and general tree structures, address
transaction level concurrency control and recovery issues (see [BLR195] for details) and show additional
advantages from using these techniques in a multi-version concurrency control system. Schemes similar
to our physical aging scheme have been presented in [ML82, SG88]. Our requirement of completely
non-blocking readers, and techniques to interrupt long operations (e.g., scans) to allow efficient garbage
collection distinguish our work.

Our work on making read-only transactions completely non-blocking and their execution times more
predictable is complementary to the time-cognizant transaction processing schemes proposed in the
real-time database systems literature [AGMS88, AGM89, HCL90b, HCL90a, HSRT89, HSRT91, HCL93].
Our use of main-memory technology and version-based concurrency control schemes enable transaction
running times to be estimated more accurately. Consequently, scheduling algorithms can generate

14



better schedules, that is, schedules in which more transactions meet their deadlines. Further, our
logical versioning scheme can easily be extended using the schemes in [HCL93] to handle the case when
transactions have associated values. Fach transaction is assigned a priority which is a function of
its deadline and value. Conflicts involving update transactions in which a higher priority transaction
requests a lock held in a conflicting mode by a lower priority transaction can be resolved in one of
several ways. Either the lower priority transaction can be aborted or it can inherit the priority of the
blocked transaction thus enabling it to complete sooner than with its own priority.

The problem of supporting predictability in real-time database systems is also addressed in [KS96].
Transactions are classified into three categories: periodic transactions with hard deadlines, transactions
with critical timing constraints and finally, real-time transactions with soft deadlines. Transactions of
the first category are assumed to be completely predictable, that is, all data and run-time requirements
are known in advance. Further, they are assigned the highest priority in the system. Transactions
for whom a priori knowledge of resource requirements is not available are assigned lower priorities
and belong to the latter two categories. The versioning algorithms proposed in this paper can aid in
reducing the unpredictability of these latter transaction types.

In [LSLH98], the authors observe that in order to satisfy the timing constraints of real-time trans-
actions, it may be desirable to relax the serializability requirement in RTDBSs. To this end, they
propose a new notion of consistency, view consistency, for read-only transactions. In a nutshell, view
consistency requires that for each read-only transaction, only the concurrent execution involving update
transactions and the read-only transaction is serializable. Thus, it is possible for the overall schedule
to be non-serializable and for different read-only transactions to percieve different serialization orders
of update transactions. However, view consistency guarantees that every read-only transaction sees a
consistent database state, that is, one that results due to the serial execution of some subset of update
transactions.

6 Concluding Remarks

We have presented a design for multi-version concurrency control, recovery and index management in
a main-memory database system. We have shown how this design supports real-time performance for
read-only transactions by freeing them from obtaining locks (using logical versioning) and latches using
the technique of physical versioning, a general method for eliminating reader’s latches from tree-like
data structures. Our design considers in depth the practical requirements of recovery and deadlock-
free operation, fitting well with recovery schemes designed for the Dali main memory storage manager
[JLR'94]. Some of the salient features of our design are 1) read-only transactions do not obtain latches
while performing lookups, 2) update transactions perform latch-free traversals on the tree, and 3) no
physical undo log records are generated. We used the technique of physical aging to collect physically
versioned information more quickly than versions of data items.

There are numerous benefits to making an entire class of read-only transactions in a real-time
database environment completely non-blocking. Since transaction executions become more predictable,
their running times can be estimated fairly accurately. Consequently, in addition to a transaction’s
deadline, a more accurate estimate of its execution time can also be taken into account when making
scheduling decisions. For instance, for a certain aborted transaction before it is re-executed, it may be
possible to conclude that it will not meet its deadline even if it had exclusive access to all the resources
in the system — as a result, the transaction can be discarded early, thus resulting in better utilization
of resources.

Variants of the logical and physical versioning schemes are implemented in Lucent’s 2NCP prod-

15



uct, and the Dali main-memory storage manager. We have also applied these techniques to design a
concurrent implementation of T-trees, an index structure for main-memory systems, and demonstrated
experimentally the performance improvement due to physical versioning in [BLR*95].

References

[AGMSS]

[AGMSY]

[AHUT74]

[AS89)]

[BCY2a]

[BCY2b)

[BG83]

[BHRS0]

[BLR95]

[CFL*82]

[DKO™84]

[GLY2]

[Hads8]

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance eval-
uation. In Procs. of the International Conf. on Very Large Databases, 1988.

R. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk-resident data.
In Procs. of the International Conf. on Very Large Databases, 1989.

A. Aho, J. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

D. Agrawal and S. Sengupta. Modular synchronization in multiversion databases: Version
control and concurrency control. ACM SIGMOD Conf. on the Management of Data 89,
(Portland OR), -Jun.., May 1989.

P. Bober and M. Carey. On mixing queries and transactions via multiversion locking. In
Proc.IEEE CS Intl.Conf. on Data Engineering 8, Tempe, AZ., February 1992.

P.M. Bober and M.J. Carey. Multiversion query locking. In Proceedings of the Conference
on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA) 18, Vancouver., August
1992.

P.A. Bernstein and N. Goodman. Multiversion concurrency control — theory and algo-
rithms. ACM Transactions on Database Systems ., 8(4):465-483, December 1983.

R. Bayer, H. Heller, and A. Reiser. Parallelism and recovery in database systems. ACM
Trans. on Database Systems, 5(2):139-156, June 1980.

P. Bohannon, D. Leinbaugh, R. Rastogi, S. Seshadri, A. Silberschatz, and S. Sudarshan.
Logical and physical versioning in main memory databases. Technical Report 113880-
951031-12, AT&T Bell Laboratories, Murray Hill, 1995.

A. Chan, S. Fox, W-T.K. Lin, A. Nori, and D.R. Ries. The implementation of an integrated
concurrency control and recovery scheme. In ACM SIGMOD Conf. on the Management of
Data 82, Orlando FL., pages 184-191, June 1982.

D. J. DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker, and D. Wood. Implementa-
tion techniques for main memory database systems. Proc. ACM-SIGMOD 198 Int’l Conf.
on Management of Data, pages 1-8, June 1984.

V. Gottemukkala and T. Lehman. Locking and latching in a memory-resident database
system. In Proceedings of the Eighteenth International Conference on Very Large Databases,
Vancouver, pages 533-544, August 1992.

Thanasis Hadzilacos. Serialization graph algorithms for multiversion concurrency control. In
Proceedings of the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of Database
Systems, pages 135-141, March 1988.

16



[HCL90a]

[HCL9Ob)]

[HCL93]

[HSRTSY]

[HSRT91]

[TKK90]

[JLR+94]

[KL8O]

[KS96]

[LCS6]

[LSC92]

[LSLH9S]

[ML82]

[ML92]

J. Haritsa, M. Carey, and M. Livny. Dynamic real-time optimistic concurrency control. In
Proceedings of the IEEE Real-Time Systems Symposium, 1990.

J. Haritsa, M. Carey, and M. Livny. On being optimistic about real-time constraints. In
Proceedings of the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of Database
Systems, 1990.

J. Haritsa, M. Carey, and M. Livny. Value-based scheduling in real-time database systems.
VLDB Journal, 2(2):117-152, 1993.

J. Huang, J. Stankovic, K. Ramamritham, and D. Townsley. Experimental evaluation of
real-time transaction processing. In Proceedings of the IEEE Real-Time Systems Sympo-
stum, 1989.

J. Huang, J. Stankovic, K. Ramamritham, and D. Townsley. On using priority inheritance
in real-time databases. In Proceedings of the IEEE Real-Time Systems Symposium, 1991.

T. Ibaraki, T. Kameda, and N. Katoh. Multiversion cautious schedulers for database con-
currency control. IEEE Transactions on Software Engineering (SE), ; ACM Computing
Reviews 9012-0981., 16(3), March 1990.

H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi, Avi Silberschatz, and S. Sudarshan. Dali: A
high performance main-memory storage manager. In Procs. of the International Conf. on
Very Large Databases, 1994.

H.T. Kung and P.L. Lehman. Concurrent manipulation of binary search trees. ACM
Transactions on Database Systems ., 5(3):354-382, September 1980.

Y. Kim and S.H. Son. Supporting predictability in real-time database systems. In Proceed-
ings of the IEEE Real-Time Technology and Applications Symposium, 1996.

T.J. Lehman and M.J. Carey. A study of index structures for main memory database
management systems. In Proceedings of the Conference on Very Large Databases, Morgan
Kaufman pubs. (Los Altos CA) 12, Kyoto., pages 294-303, August 1986.

T. Lehman, E. J. Shekita, and L. Cabrera. An evaluation of Starburst’s memory resident
storage component. IEEE Transactions on Knowledge and Data Engineering, 4(6):555-566,
December 1992.

K. Lam, S.H. Son, V. Lee, and S. Hung. Using separate algorithms to process read-only
transactions in real-time systems. In Proceedings of the IEEE Real-Time Systems Sympo-
stum, 1998.

U. Manber and G.D. Ladner. Concurrency control in dynamic search structures. ACM
Proc.on Database Systems, Boston., pages 268—-282, April 1982.

C. Mohan and F. Levine. Aries/im an efficient and high concurrency index management
method using write- ahead logging. In ACM SIGMOD Conf. on the Management of Data
92, San Diego., June 1992.

17



[MPL92]

[Ram93]

[ReeT8|

[SGSS]

[SGM90]

SZ88]

C. Mohan, H. Pirahesh, and R. Lorte. Efficient and flexible methods for transient versioning
of records to avoid locking by read-only transactions. In ACM SIGMOD Conf. on the
Management of Data 92, San Diego., June 1992.

K. Ramamritham. Real-time databases. International Journal of Distributed and Parallel
Databases, 1:199-226, 1993.

D. P. Reed. Naming and synchronization in a decentralized computer system. Technical
Report MIT-LCS-TR-205, Massachusetts Institute of Technology, Cambridge, September
1978.

D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transactions
on Database Systems , no.1., 13:53-90, March 1988.

K. Salem and H. Garcia-Molina. System M: A transaction processing testbed for mem-
ory resident data. IEEE Transactions on Knowledge and Data Engineering, 2(1):161-172,
March 1990.

J. Stankovic and W. Zhao. On real-time transactions. ACM Sigmod Record, 17(1):4-18,
1988.

18



