
Versioning Algorithms for Improving Transaction Predictability inReal-time Main-memory DatabasesRajeev Rastogi1S. Seshadri1Philip Bohannon1Dennis Leinbaugh1Avi Silberschatz1S. Sudarshan21Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974-06362Indian Institute of TechnologyComputer Science and Engineering Dept.Bombay, IndiaAbstractWe present a design for multi-version concurrency control and recovery in a main memorydatabase, and describe logical and physical versioning schemes that allow read-only transactionsto execute without obtaining data item locks or system latches. Our schemes enable a system toprovide the guarantee that updaters will never interfere with read-only transactions, and read-onlytransactions will not be delayed (for the purpose of ensuring data consistency) as long as the op-erating system provides them with su�cient cycles. Consequently, transaction executions becomemore predictable { this partially alleviates a major problem in real-time database system (RTDBS)scheduling, namely, signi�cant unpredictability in transaction execution times. As a result, in addi-tion to a transaction's deadline, a more accurate estimate of its execution time can also be taken intoaccount, thus facilitating better scheduling decisions. Our contributions include several space savingtechniques for the main-memory implementation, including improved methods for logical aging ofdata items and the introduction of physical aging for low-level structures. Some of these schemeshave been implemented on a widely-used software platform within Lucent, and the full scheme isimplemented in the Dal�� main-memory storage manager.1 IntroductionTransactions, in a real-time database system (RTDBS), have completion deadlines associated with them.The objective of the transaction processing component in such a system is to maximize the number oftransactions that complete before their deadlines while preserving database consistency [SZ88, Ram93].RTDBSs are extensively deployed in a number of environments like telecommunications, programstock trading, and command and control systems. Of these, telecommunications constitutes an impor-tant application domain. In a telecommunication network, RTDBSs typically are either embedded in1



network elements (e.g., switches, routers) and store call routing and forwarding tables, or are employedin adjuncts to switches to perform functions like 800 number translation. The RTDBSs are frequentlyconsulted during call setup to allocate resources (e.g., trunks, switch ports) when a circuit is estab-lished, and for mapping a dialed number to a destination number. As a consequence, since call setupis required to complete in a few milliseconds, the read-only transactions that access the RTDBSs havestringent response time requirements which are in the order of tens of microseconds.In order to meet the strict deadlines associated with the above read-only transactions, the RTDBSinfrastructure must provide support for fast and predictable execution times for such transactions. Aspointed out in [Ram93], the two major obstacles to achieving this in conventional DBMSs are (1) diskaccess latency incurred when accessing a disk-resident page, and (2) blocking due to lock con
icts {this occurs when a transaction requests a lock held by a di�erent transaction in a con
icting mode.In this paper, we employ main-memory database (MMDB) technology and version-based concurrencycontrol mechanisms to overcome the above-mentioned challenges.Unlike disk latency, which is variable and in the order of tens of milliseconds, main-memory accessesare fast and measured in a few hundreds of nanoseconds. Thus, storing the entire database in mainmemory can result in short and bounded transaction execution times. While disk-based databasesexhibit improved performance if the entire database can �t in the main-memory bu�er cache, a MMDB(e.g. [SGM90, LSC92, JLR+94, DKO+84]) improves performance further by dispensing with the bu�ermanager, and tuning algorithms to the 
at storage hierarchy and the reduced cost of indirection. Also,MMDB schemes attempt to minimize space usage, of vital importance since main memory remainsabout one hundred times as expensive as disk space. Since disk I/O in an MMDB is only needed forpersistence of the log, no disk activity is required on behalf of read-only transactions. As a result,response times for read-only transactions are more predictable, making MMDBs highly suitable for alarge class of real-time applications in which the most time critical queries are read-only. However, asmentioned earlier, a read-only transaction may still have to wait on locks held by an update transaction,which may in turn be waiting on a di�erent transaction, or on disk writes to the log. These waits becomea serious source of unpredictability for response times.Multiversion concurrency control methods [MPL92, Had88, AS89, BG83, BC92a, IKK90, CFL+82]prevent update transactions from con
icting with read-only transactions by providing the latter with aconsistent but somewhat out-of-date view of the database. In order to provide this view, multiple ver-sions of recently updated data items are retained. Early multi-version schemes [Ree78] used timestampsfor readers and writers, but more recent multi-version locking schemes [CFL+82, AS89, BC92a, MPL92]use timestamps with read-only transactions, allowing them to use old versions without locking, whilerequiring updaters to perform locking. However, none of the above techniques guarantees completeisolation of read-only transactions from update transactions in a system, since the access path to thedata could be modi�ed by update transactions. Thus, read-only transactions must obtain latches(semaphores) to ensure that they read physically consistent data.Requiring read-only transactions to obtain latches could cause update transactions to interfere withtheir execution. Furthermore, in a number of environments, application code is often linked directlywith database code, accessing the database directly through shared memory for speed. This introducesthe possibility that a process could fail while holding latches or locks, leading to long delays in anytransaction waiting on one of these latches or locks while the death of the �rst process is detectedand handled. By avoiding latches, read-only transactions will never encounter this delay. Finally, ina main-memory database system, the use of latches imposes a substantial overhead [GL92] and, byavoiding their use, signi�cant performance gains can be obtained for read-only transactions.In this paper, we present schemes that eliminate the need for both locking and latching by read-2



only transactions without sacri�cing recency, since read-only transactions see all committed updatesas of their start-times. Locks are eliminated by a novel implementation of logical versioning for mainmemory, an area which has been well-studied for disk-databases. Our implementation reduces thestorage space overhead required to keep track of versions. Latches are eliminated by a mechanism wecall physical versioning [KL80], that is applied to the access paths to data items. Updates to theseaccess paths are not made in place { instead, the updates are made on a new copy of the node, calleda \physical version". The new version of the node is linked into the access path using an atomicword-write (an operation which is universally supported on standard architectures). This enables read-only transactions to traverse data structures without acquiring latches. By freeing them from gettingany latches, the performance of read-only transactions is completely de-coupled from that of updatetransactions, and becomes a simple function of available CPU resources, making it relatively easy toguarantee the response times of these transactions.There are numerous bene�ts to making an entire class of read-only transactions in a RTDBSenvironment completely non-blocking. Since transaction executions become more predictable, theirrunning times can be estimated more accurately. Consequently, in addition to a transaction's deadline,a more accurate estimate of its execution time can also be taken into account when making schedulingdecisions. For instance, for a certain aborted transaction before it is re-executed, it may be possibleto conclude that it will not meet its deadline even if it had exclusive access to all the resources inthe system { as a result, the transaction can be discarded early, thus resulting in better utilization ofresources [Ram93]. Similarly, transactions with smaller execution times may be given a higher prioritythan those with longer running times { this could result in a larger number of transactions meetingtheir deadlines.Since memory conservation is far more critical in a main-memory database, we have developed twoorthogonal techniques for garbage collecting unneeded versions, without a�ecting the recency of dataseen by read-only transactions. First, we present a novel technique for aging old versions of data items,in which e�ort can be traded for memory utilization, allowing the database management system toadapt to currently available memory. Second, we introduce our schemes for physical aging which allowmemory used for low-level data structures to be more quickly returned to system control.We also describe techniques for performing transaction rollback and recovery from system crashes.Our recovery schemes do not require the generation of physical undo log records, thereby reducing diskI/O and overhead due to logging. Variants of the schemes presented in this paper are implemented inLucent's 2NCP product's database subsystem which performs a number of tasks, including 800 num-ber translation, in the long distance telecommunications network. The main memory and versioningarchitecture enable the 2NCP to meet the stringent time constraints of real-time transactions that areexecuted during call setup. We have also implemented the complete schemes in the Dal�� main-memorystorage manager at Bell Laboratories [JLR+94].The remainder of the paper is organized as follows. In sections 2 and 3, we provide an overviewof logical and physical versioning, respectively. We present the design of our logical version managerin Section 4. In Section 5, we discuss related work, and in Section 6, we give our conclusions anddirections for future work.2 Logical VersioningThe idea of maintaining multiple versions of an item was �rst proposed by [Ree78] and is known asmulti-versioning or just versioning. In this paper, we refer to this as logical versioning to di�erentiateit from physical versioning, which is described further in Section 3. In this section, we describe the3



basic structure of our multi-version locking scheme [CFL+82, AS89, BC92a, MPL92]. We also proposea design for version management that takes advantage of the fact that data is resident in memory.2.1 OverviewIn a system that supports multi-versioning, transactions are classi�ed as read-only transactions { thosethat only read items, and update transactions { those that update or write some item, or simply wantaccess to the most current data. When an update transaction updates a data item, a new version ofthat item is created. Update transactions follow the two-phase locking protocol by locking items theyread or write. When an update transaction T , commits, it is assigned a timestamp denoted by tsn(T )which is obtained by incrementing a global logical timestamp counter. As part of commit processing,before any locks held by the transaction are released, the transaction stamps each version it has createdwith tsn(T ). Thus, the versions of an item can be ordered according to their timestamps. A read-onlytransaction is assigned a timestamp by reading (but not incrementing) the logical timestamp counterwhen it starts. Subsequently, for each item, the read-only transaction reads the latest version whosetimestamp is less than or equal to its timestamp.At startup, read-only transactions read the logical timestamp counter without any locking implyingthat 1) the timestamp counter must be incremented by a transaction only after the stamping processis complete and the transaction has committed and 2) the counter itself either �ts in a word or is readthrough a pointer ensuring that the non-locking read is atomic with respect to the update. Furthermore,in order to prevent multiple updaters from interfering with each other, every updater must obtain anX latch (ignored by read-only transactions) on the logical timestamp counter before accessing it duringcommit processing. The latch is held until all the versions have been stamped and the counter hasbeen incremented.A version that is no longer needed by any read-only transaction can be deleted and the spacereclaimed. This action is called aging that version. A version can be aged safely if no read-onlytransaction exists which has a timestamp equal to or larger than that of the version in question, butsmaller than the next newer version of the item. Algorithms for aging are presented in Section 4.9.2.2 Logical Versioning in Main MemoryWe now discuss the design of a version manager for a main-memory database system. The basicdi�erence between a main-memory based design and a disk-based design is that the versions of an itemneed not be physically clustered together for e�cient access. This fact, as we will see shortly, allowsus to minimize the space overhead of versioning in a main-memory system.In most disk-based schemes [BC92b, MPL92], storage space for a certain number of versions ispre-allocated on each page for e�cient access which could result in under-utilization of storage space(e.g., each item on a page has a single version). In our design, on the other hand, space for versionsis dynamically allocated as they are created. Furthermore, since a database could consist of millionsof \cold" items that have only one version, we eliminate the space overhead due to versioning which isimposed on these items by not using any space inside a version for bookkeeping information. Instead,we use an auxiliary data structure called a Version List Entry (VLE), shown in Figure 1, to maintainthe bookkeeping information and link the versions of an item together. An item that has only oneversion is stored as is without a VLE. VLEs are dynamically allocated as subsequent versions of theitem are created, and for items with more than one version, a VLE exists to represent each version.A VLE contains the timestamp of the transaction that created it, and a pointer to the versionitself. The VLEs of an item are linked together as a doubly linked list ordered by timestamp. Read-4



Version List Entry

Timestamp

Version Pointer
Older Versions
of this Item

Newer Versions 
of this Item

Other Items Changed 
by this Transaction Figure 1: Structure of a Version List Entryonly transactions traverse the VLE chain of an item in order to �nd the required version. Each VLE isalso on a list of versions created by the same transaction while the transaction is active; this facilitateseasy update of timestamps of versions created by the transaction when it commits. Also, when atransaction aborts, the versions created by the transaction can be e�ciently determined and deleted.3 Physical VersioningIn this section, we describe physical versioning and discuss interactions between physical and logicalversioning.3.1 OverviewPhysical versioning is a technique that permits read-only transactions to access data structures withoutgetting any latches or locks, even while other update transactions are updating the data structure.Physical versioning is based on atomic reads and writes of words, operations which are universallysupported on current generation architectures.The main motivation for physical versioning comes from real-time systems in which read-onlytransactions are time critical, and cannot a�ord unpredictable delays that may occur if they have towait for latches. Whereas logical versioning eliminates the need for read-only transaction to wait forlocks, physical versioning eliminates the need for read-only transactions to wait even on latches. Withphysical versioning, the response time of a read-only transaction depends only on the number of CPUcycles available to it, which helps make it's �nish time highly predictable.To demonstrate the physical versioning idea, we �rst consider an access structure such as a singlylinked list or a tree, which has a single root. Assume that the sole pointer to the root is stored in a singleword and that updaters are serialized. Updaters then copy the entire data structure and make changeson the copy. On completion, they update the pointer to the root; since the write is atomic, readers eithersee the old version of the data structure or the completed new version of the data structure. Thus theentire update to the data structure appears to be atomic to read-only transactions, even though theyhave not obtained any latches or locks. Locking protocols are of course required to prevent updatersfrom interfering with each other.Once a data structure has been copied and the root pointer to the data structure has been overwrit-ten by the new pointer, new read-only transactions cannot access the old data. However, there may beexisting read-only transactions that are accessing the old version of the data structure. Therefore, the5



old version cannot be deleted immediately after the root pointer has been updated. Instead, it mustbe deleted only after all read-only transactions that were accessing it are no longer accessing it.The process of detecting that an old version of data is no longer being accessed, and actuallydeleting it, is called physical aging. Physical aging is complementary to logical aging, and a di�erentset of techniques are used to implement it. Physical aging is best implemented by a separate processwhich we refer to as the physical ager. We discuss physical aging in detail in Section 3.4.3.2 Purely Physical VersioningIn this section, we show how data structures in the form of a tree lend themselves to e�cient physicalversioning while allowing readers to see an operation-consistent state of the tree. In other words, theoperations are each performed atomically with respect to readers. This is a fairly important class ofdata structure since B-trees, T-trees1 and even hash tables with collision chains2 fall in this category.We assume nodes in the tree are �xed size entities and for every edge out of the node, a pointer to theother node in the edge is stored within the node itself. The techniques in this section work irrespectiveof whether the system is using logical versioning or not, hence the name purely physical versioning.We de�ne a component to be any connected set of nodes of the tree. Given an update operation,the component a�ected by the operation is the set of nodes changed by the operation, plus any othernodes which may be necessary to connect the changed nodes. The root of the component is de�ned inthe obvious way as the root of the smallest subtree that contains the component.Let N be the root of the component a�ected by an operation. Then, physical versioning is performedas follows:1. First copy the component; let N 0 be the copy of N . The data in each node in the copy is exactlythe same as the data in the corresponding nodes in the original tree, except that pointers tonodes in the component now point to the new copies of the nodes.2. Perform the update on the new copy of the component. This can create new nodes, and updateor delete existing nodes in the new copy of the component. However, no node in the original tree(including the old copy of the component) is a�ected by the update.3. Atomically update the pointer to N to point to N 0 instead (if N is the root, the pointer to N isthe root pointer for the tree, otherwise it is from the parent of N).The �nal atomic update of the original pointer to N to point to N 0 exposes the update to read-onlytransactions, and it is easy to see that read-only transactions do not see partial updates. The a�ectedcomponent for many well known operations on B-trees, T-trees and hash tables can be easily de�ned.For example, consider an insert into a B-tree, which attempts to insert a new entry into a leaf nodeL. The insert can cause a split, which can propagate several levels up in the tree, say up to node I.Then the a�ected component consists of the path from I to L. Copying this set of nodes and thenperforming the update starting from the new copy of I will not a�ect the original copy of the tree.Furthermore, by toggling the pointer to I in I's parent, to the new copy of I, the entire split operationcan be made to execute atomically with respect to read-only transactions.1T-trees are an index structure based on AVL trees [AHU74]. They were proposed in [LC86] as a storage e�cient datastructure for main-memory databases.2The main hash table can be treated as a single large tree node.6



N

N

N

1.

2.

3.

4.

Figure 2: Temporary Inconsistency in a Doubly Linked List3.3 Combining Physical and Logical VersioningSo far we have considered the data structure to be a tree. If the data structure is not a tree, purelyphysical versioning cannot easily be applied. Common examples of such structures include doubly linkedlists, (for example, the VLE chain of Section 2), and B-trees whose leaf nodes are linked together. Also,the a�ected component of an operation may be large, with many nodes that are not updated but haveto be included to make the component connected. For example, a delete operation on a T-tree mayhave to update both a node and it's in-order predecessor node in the tree, in which case the a�ectedcomponent contains all nodes in the path between the nodes.To handle the above problems, we relax the requirement that read-only transactions see an operationconsistent view of data. We only require that the data structure be consistent enough for traversal {however, a read-only transaction may be exposed to a partially executed operation. This does not createproblems in a system which supports logical versioning since a read-only transaction is not interestedin any update that takes place after it begins. A read-only transaction, T , essentially executes againsta transaction consistent snapshot that existed as of some time before it began execution. We thereforeexploit logical versioning to weed out partial e�ects of updates executing concurrently with read-onlytransactions. We will demonstrate this by considering an insert into a doubly linked list. Let us assumethat logical versioning provides some mechanism for detecting whether a given node in the doubly linkedlist is to be read by a read-only transaction or not. N cannot be atomically linked into the list sincethere are two pointers (N 's successor and predecessor) that have to be atomically updated. However,N can be linked in by �rst making the successor of N 's predecessor N and then the predecessor of N 'ssuccessor N , as show in Figure 2. Notice that the linked list can be traversed consistently at all pointsof time except that the node N may be visible while traversing in one direction but not in the other.Notice that regardless of the traversal, physical consistency is ensured, and a read-only transaction seesevery node that belongs to the consistent snapshot for it. It does not matter whether the read-onlytransaction sees N or not since in any case the logical versioning mechanism would not let the read-onlytransaction read N . 7



3.4 Physical AgingThe process of reclaiming space occupied by older copies of data that have been physically versionedis called physical aging. The old versions of the data have to be preserved as long as a read-onlytransaction can attempt to read the data (this is similar to logical aging). The crucial di�erencebetween logical and physical aging is, however, in when a read-only transaction ceases to see somedata. We assume that each operation traverses an access structure afresh and pointers to nodes arenot cached across operations. Therefore, a piece of data that is visible to a read-only transaction cannot be logically aged for the duration of the reading transaction while a piece of data that is visible toa read-only transaction during an operation cannot be physically aged for the duration of the readingoperation.For example, the old version of an index node that is physically versioned after a read-only transac-tion initiated an index lookup operation may be visible to the transaction until the lookup completesand thus, cannot be aged until then. However, the old version can be aged once the lookup completessince a subsequent index lookup operation performed by the same read-only transaction retraversesthe index (beginning with the most recent root node) and thus, does not see the old version of theindex node. Thus, the physical ager has to ensure before aging a node that no operation of a read-onlytransaction began before the node was physically versioned.We associate a physical timestamp with each read-only transaction (this is di�erent from the times-tamp assigned to the transaction by logical versioning). The physical timestamp is1 if the transactionis not currently performing any operation. It is set to the value of a global physical timestamp counterbefore starting an operation and reset to1 afterwards. An updater, after making an update that phys-ically versions a piece of data and makes it unreachable for future read-only transactions incrementsthe global physical timestamp counter while holding a latch. The updater also adds the older versioninto a physical ager's list by appending to the list, an entry containing a pointer to the version beingaged and the value of physical timestamp counter when the version was aged (that is, after the olderversion was unlinked and the physical timestamp counter was incremented). The physical ager thencan de-allocate the space for an older version once no transaction has a physical timestamp smallerthan the version's physical timestamp.The above scheme works reasonably well if operations are short. However, in the presence of longindex operations like an index scan, very old versions can remain in the system for a long time. Thereason for this is that treating an entire scan as a single operation could potentially result in longdelays in the aging of data. This problem can be alleviated by decomposing a scan into a number ofsmaller operations as follows. The key idea is to force the scan to start at the top of the tree to �nd thenext node (retraverse the tree) occasionally if it is holding up the reclamation of old versions for a longtime. More speci�cally, with every scan, two bits are maintained { a retraverse bit and an in progressbit. The retraverse bit is used by the physical ager to force the scan to perform a retraversal of thetree. The Next operation for a scan �rst sets the in progress bit to 1 and checks to see if the retraversebit for it has been set to 1. If so, it discards it's current state (cached from the previous Next call),sets the retraverse bit to 0, obtains a new physical timestamp and retraverses the tree from the currentroot node. Before returning, Next sets the in progress bit to 0. In order to reclaim data held up by along running scan, the physical ager notes the current physical timestamp then sets the retraverse bitfor the scan to 1. It then waits until the retraverse bit or the in progress bit for the scan becomes 0,following which it frees data assuming the physical timestamp for the scan is the maximum of notedtimestamp and the scan's current physical timestamp.Note that, unlike logical versioning, physical versioning can take place on a per-access-structure8



basis, decreasing contention on the global timestamp and speeding recovery of space.4 Logical Version ManagerIn this section, we describe in detail the design of a main-memory based logical version manager. Recallfrom Section 2 that the versions of an item are doubly linked using VLEs, an auxiliary data structure(see Figure 1). We will assume that inserts and deletes into these doubly linked lists are performedusing physical versioning as described in Section 3.3. This enables traversals and updates to the VLEchain to be performed without obtaining any latches. Furthermore, versions of items that are no longerneeded (and the VLE entries that point to them) are placed on the physical ager's list and aged in themanner described in Section 3.4.We assume for this presentation that each item has a primary key that uniquely identi�es it. We willalso assume that all access to items is through index (primary or secondary) structures. In the case thatan item has a single version, an index entry for that item is a direct pointer to the version. If the itemhas multiple versions, the index entry points directly to one of the VLEs. If more than one of an item'sversions have the same key value, then the index entry points to the latest version with the key value(see Figure 3). When we refer to the \version pointed to by the index entry" this is assumed to involvean indirection if the entry actually points to a VLE. Note that the key value can be obtained from theversion that is being pointed to (possibly indirectly through the VLE) [LC86, DKO+84] rather thanexplicitly storing the key values in the index. This is possible since the database is memory residentand pointer dereferencing is inexpensive.For a primary index, the key value for an entry is basically the primary key value stored in the versionthat the entry points to. We assume for simplicity of presentation that user secondary indices allowduplicates, however we implement them using unique index code by the way the key is constructed. Fora secondary index, the key value for an entry is obtained by concatenating the secondary key with theprimary key for the item. This ensures that the key values in the index (both primary and secondary)are unique. This allows us to compare key values and handle cases where there are more items with aparticular secondary key value than can �t in a single index node easily. Key values supplied by theuser for a secondary index can be supplemented by minimum or maximum primary key values in astraightforward manner to maintain the semantics of the operation. Also, for a secondary index, usingthe primary key to disambiguate duplicates ensures that an update to the latest version that does notmodify the secondary key value leaves the key value in the index itself unchanged. Thus, the indexentry pointing to the old version simply needs to be toggled to point to the new version rather thandeleted and reinserted.Locks on keys are implemented by locking the item (its collection and primary key) that the indexentry for the key points to. Thus, following the terminology in [ML92], we perform data only locking.For delete, update and read operations belonging to update transactions, we assume that a pointerto a version or VLE has been obtained by traversing the index and a lock in the appropriate modeon the item is held. Also, before an item is inserted, a lock on the item is obtained. Finally, for aread operation belonging to a read-only transaction, we assume that a pointer to the version/VLE tobe read has been obtained by traversing the index { no lock is needed. In this design, no latches arerequired by read-only transactions when searching a VLE chain for the correct version, and for updatetransactions, ensuring the consistency of the chain is piggybacked on the lock on the item itself forspeed. 9



o

o

o
Versions
of an Item

ts: 100

ts:200

ts:205 a VLE

Access Paths (Indices)

Pointers to
VLE or to
an item

ItemsFigure 3: Pointers to Items and VLEs from Indexes4.1 UpdateThe following protocol is followed when updating an item:1. If a pointer to a version is passed as a parameter to update (that is, no VLE exists for the item),then two VLEs v1 and v2 are allocated. The timestamp in v1 is set to �1 (a value smaller thanthe minimum of the timestamps of currently running read-only transactions), the version pointeris set to point to the item being updated and the next pointer is set to point to v2. In v2, thetimestamp is initially set to 1, ensuring a recoverable schedule since by de�nition no reader isold enough to read it. Also, the version pointer is set to point to the newly allocated version. Forindices on attribute(s) for which the key value in the new version is the same as that in the oldversion, the pointer in the index to the item is simply toggled to point to v2; for the remainingindices, the pointer to the version is toggled to point to v1 and a new pointer to v2 is insertedinto the index. Thus, we ensure that for an item, for a particular key value, only one index entrypoints to a version of the item. While the update is being performed, read-only transactionseither see the pointer to the version in the index or a pointer to v1 or v2. In all three case, as wewill see shortly, the read-only transaction correctly reads or ignores the version of this item thatit is supposed to read.2. If a pointer to a VLE is passed as an argument to update, then a new VLE is allocated thatpoints to the newly allocated version and has timestamp of 1. The new VLE is linked at the(rightmost) end of the VLE chain for the item. For every index, for the key value in the newversion, if a pointer to a previous version of the item with the same key value is contained in theindex, then the pointer is toggled to point to the new VLE; else, a new pointer to the new VLEis inserted into the index.
10



4.2 DeleteDeletion of an item creates a \delete-VLE" (with timestamp1 and null version pointer) to record thedeletion of the item. If a pointer to a VLE is passed as an argument to delete, then the delete-VLE issimply linked at the end of the VLE chain. If a pointer to a version is passed as an argument (that is,no VLE exists), an additional VLE with timestamp �1 and which points to this version is allocated,and the delete VLE is appended to it. For every index, the pointer to the item in the index is toggledto point to the new VLE for the item. Transactions that start after the commit of the transaction thatdeleted the item will �nd the delete-VLE when they attempt to access the item, and thereby detectthat it is deleted.4.3 InsertWe �rst consider the case that the primary key for the item (to be inserted) is already present in theprimary index. If the pointer in the index is 1) directly to a version or 2) to a VLE such that the lastVLE on the chain is not a delete-VLE, an error is returned (since an item with the same primary keyvalue logically exists). If the duplicate is not detected, Update is simply invoked with the pointer (tothe VLE) in the primary index and the contents of the new item to be inserted.In case the primary key for the item is not contained in the primary index, a VLE v1 is allocated,the timestamp is set to1 and the version pointer is set to point to the item. A pointer to v1 is insertedinto every index. In addition another VLE v2 is allocated, the timestamp in v2 is set to �1, the versionpointer is set to null, and next pointer is set to v1. The VLE v2 is added to the logical ager's list whenthe transaction commits. The logical ager uses v2 to access the VLE chain for the item and deletesall VLE information for the item if no updates to the item have been performed for a while. This isfurther described in Section 4.8.4.4 Read (Read-Only Transactions)From a pointer in the index, the item to be returned is determined as follows. If the pointer is a directpointer to an item, then the item pointer is returned. Else, if the pointer is to a VLE, say v1, then theVLE chain is traversed to determine the VLE, say v2, with the largest timestamp less than or equalto the timestamp for the transaction. If no such VLE exists or the version pointer in the VLE is null,then null is returned. In case the key value for v2 (in the index) di�ers from the key value for v1, thentoo, null is returned (since in the transaction consistent database state for the read-only transaction,the item does not have a key value equal to that for v1). Else, the version pointer in v2 is returned.Note that if null is returned by the version manager to a read-only search, the appropriate action maybe to continue the search after disqualifying this particular item.4.5 Read (Updaters)If read is passed a pointer to an item, then the item pointer is simply returned. Else, the versionpointer contained in the last VLE on the VLE chain is returned (note that if the item has been deleted,then null is returned since the version pointer in a delete-VLE is null).4.6 Transaction CommitVLEs for versions created by a transaction and delete-VLEs allocated by the transaction are linkedtogether in a separate chain for the transaction (VLEs with timestamp �1 are not in the chain).11



When a transaction commits, for all VLEs in the transaction's chain, the timestamp in the VLE isset (from 1) to tsn(T ), as described in Section 2. In addition, the VLE preceding every VLE in thetransaction's chain is appended to the logical ager's list. Thus, VLEs in the logical ager's list are sortedbased on the timestamp of their successor versions.4.7 Transaction AbortFor every version created by the transaction, all newly inserted entries in the indices are deleted. Allindex entries that were toggled by the transaction are reset to their initial value before they weretoggled. Every VLE allocated by the transaction is �rst unlinked from the VLE chain, following whichthe VLEs and versions that were allocated by the transaction are placed on the physical ager's list.Note that the actions to be performed during transaction abort can be easily deduced from the contentsof the VLE chain for VLEs on the transaction's chain. As a result, no explicit undo log records aregenerated in our scheme.4.8 Logical AgingThe logical ager has a linked list of VLEs whose associated versions are candidates to be aged. Asdescribed earlier, a version is added to the list when its successor version is committed. The logicalager decides to age a version and its VLE when it does not �nd a reader with timestamp betweenthe VLE's timestamp and the timestamp of the version following it in the VLE chain. We outline ane�cient algorithm for determining the versions to age in the next subsection.In our design, in addition to the task of placing versions of items that are no longer required on thephysical agers list, the logical ager has a secondary function of checking if, on deletion of a version, onlyone version of that item remains. This version can then be stabilized by removing the VLE associatedwith it and toggling index entries to point to the version instead of the VLE.A version/VLE is aged as follows. First, in order to ensure that no updaters are accessing the item,an X lock on the item is obtained. The primary key for the item is determined from the version pointedto by the VLE. In case the version pointer in the VLE is null, the VLE chain is traversed, and theprimary key contained in one of the versions of the item is used (if no versions are found, then no lockis obtained since the item does not exist). The following actions are then performed.1. If the version pointer in the VLE is not null, then for every index that contains a pointer to theVLE, if a previous version of the item contains the same key value as the current version, thenthe pointer to the VLE in the index is toggled to the previous version's VLE; else, the pointer tothe VLE is deleted from the index.2. If no other VLE precedes the VLE and a single VLE, say v0, follows the VLE in the VLE chainfor the item, then the item is stabilized by performing the following actions: 1) if the versionpointer in v0 is non-null, then the pointer to v0 in every index is toggled to the version pointed inv0 2) v0 is placed on the physical ager's list.3. The VLE is unlinked from the VLE chain for the item and both the VLE and the version pointedto by it (if non-null) are placed on the physical ager's list following which the lock on the item isreleased.
12



4.9 Algorithm for Determining Versions to AgeIn this subsection, we describe an e�cient algorithm employed by the logical ager for detecting unneededversions. The algorithm adapts to become more aggressive if memory is scarce. In a main-memorybased versioning scheme, the e�ciency of collecting old versions which are no longer needed is atradeo� between space and time: if you spend less time to �nd unneeded versions, more of them sitaround taking up space. This situation is quite di�erent from disk-based systems, where space on eachpage is usually pre-allocated to hold versions of items on that page [MPL92, BC92a], and e�orts togarbage collect versions can wait until memory on that particular page is needed. To balance thesecontradictory goals, our aging scheme uses simple parameters to vary the level of eagerness exhibitedby the algorithm. By tying these parameters to statistics about memory usage, the garbage collectionscheme has a low CPU overhead when memory is plentiful, yet becomes more aggressive if memoryresources become scarce.The aging algorithm assumes a timestamp-sorted list of active readers called readers, and a list ofnon-current item versions called oldver sorted by the timestamp of the transaction which created thesuccessor version of the item. We call this the �nish time of the version, though it would actually beobtained by following one link in the VLE list and examining the successor version's timestamp.This algorithm works with a timestamp parameter, L, which determines how aggressively the logicalager will attempt to age old versions. Only versions whose �nish timestamp is smaller than L will beconsidered for collection. This corresponds to the intuition that there are a signi�cant number of\short" readers, and that it is more cost-e�ective to attempt to age versions which are older than theaverage age of these short readers. Of course, in a system with very few readers, or mostly very longreaders, this parameter would be less meaningful.On each pass, the logical ager simultaneously traverses the readers and oldver lists in a mannersimilar to a merge, using pointers to the current entry in the respective lists. The algorithm begins byinitializing one pointer to the reader with the largest timestamp smaller than L in readers and one tothe version with the largest �nish timestamp smaller than L in oldver. It then works backwards to thebeginning of the readers and oldver lists. A temporary set of versions of items, open, is maintained asa max-heap on the version timestamps. As an invariant, open contains versions which are not neededby any reader yet encountered.At each step in the algorithm, the largest of three timestamps is selected: the �nish time of thecurrent version in the oldver list, the timestamp of the current reader, and the largest version timestampin the set open. Depending on which of the three is the largest, one of the following actions is performed:1. If the �nish time from oldver is the largest, then the version is added to open, and the pointer ismoved down the list by one (toward versions with earlier �nish times).2. If the timestamp of the reader is the largest, then all versions currently in open are needed bythis reader, so open is discarded and none of the versions in it are aged.3. If the timestamp from open is the largest, then it is not needed by any reader, and the versionwith the largest timestamp is aged (as described in Section 4.8) and deleted from open.Once the earliest reader is encountered, the remaining versions are all aged.The above algorithm ages any non-viable versions with �nish time smaller than L by performing asingle pass over readers and oldver. If L is increased, then the ager becomes more aggressive in attempt-ing to free storage, at the expense of checking a longer list of transactions and versions, and increasingthe likelihood that a version is checked for aging multiple times before actually being collected. Thus,13



if memory is short, a larger value of L is appropriate. If L is decreased, all potential readers of a versionare more likely to have �nished before an attempt is made to reclaim that version's space.4.10 SummaryThe logical versioning scheme just described is designed to give good performance for readers andupdaters while minimizing space usage and allowing latch-free traversal by read-only transactions. Inparticular, no space overhead is imposed on stable items which have only one version in the system.No latches are required by read-only transactions when searching a VLE chain for the correct version,and for update transactions the consistency of the chain is piggybacked on the lock on the item itselffor speed. Logging is minimized by dispensing with undo logs which are physically encoded in theVLE chains. We have also outlined the services required of the index manager, which include insertion,deletion, toggling, and the ability to extract keys from pointers to versions (or indirectly through theVLEs). The design of one such index manager, for T-trees, which also supports latch free traversal byread-only transactions, is described in [BLR+95].We must point out that our logical versioning scheme can easily be extended to handle the casewhen transactions have associate deadlines. Each transaction is assigned a priority based on its deadline(if transactions have values, then these can be incorporated into the priority assignment as describedin [HSRT89, HCL93]). Since read-only transactions do not obtain locks, they are never involved incon
icts, and so are irrelevant from a concurrency control perspective. Updaters, however, do obtainlocks and may be involved in con
icts. These con
icts can be resolved in favor of the transaction withthe higher priority as is done in the 2PL-HP scheme [AGM88]. Alternately, if the transaction holdingthe lock has a lower priority, then it can inherit the priority of the blocked transaction as described in[HSRT91].5 Related WorkIn this section, we discuss related work on multi-version concurrency control schemes and the rela-tionship of our work with deadline cognizant concurrency control algorithms proposed in the real-timedatabase systems literature [SZ88, AGM88, AGM89, HCL90b, HCL90a, HSRT89, HSRT91, HCL93,Ram93]. A number of versioning schemes have been proposed for disk-based databases [BHR80,CFL+82, MPL92, AS89, BC92b]. Our logical versioning scheme is tailored for main-memory sys-tems since it eliminates storage space overheads for items with a single version and it garbage collectsold versions aggressively. We also present the actions performed on indices when items are updated.The idea of using atomic updates to avoid latches while performing lookups in binary trees wasoriginally proposed in [KL80]. We extend this work to T-trees and general tree structures, addresstransaction level concurrency control and recovery issues (see [BLR+95] for details) and show additionaladvantages from using these techniques in a multi-version concurrency control system. Schemes similarto our physical aging scheme have been presented in [ML82, SG88]. Our requirement of completelynon-blocking readers, and techniques to interrupt long operations (e.g., scans) to allow e�cient garbagecollection distinguish our work.Our work on making read-only transactions completely non-blocking and their execution times morepredictable is complementary to the time-cognizant transaction processing schemes proposed in thereal-time database systems literature [AGM88, AGM89, HCL90b, HCL90a, HSRT89, HSRT91, HCL93].Our use of main-memory technology and version-based concurrency control schemes enable transactionrunning times to be estimated more accurately. Consequently, scheduling algorithms can generate14



better schedules, that is, schedules in which more transactions meet their deadlines. Further, ourlogical versioning scheme can easily be extended using the schemes in [HCL93] to handle the case whentransactions have associated values. Each transaction is assigned a priority which is a function ofits deadline and value. Con
icts involving update transactions in which a higher priority transactionrequests a lock held in a con
icting mode by a lower priority transaction can be resolved in one ofseveral ways. Either the lower priority transaction can be aborted or it can inherit the priority of theblocked transaction thus enabling it to complete sooner than with its own priority.The problem of supporting predictability in real-time database systems is also addressed in [KS96].Transactions are classi�ed into three categories: periodic transactions with hard deadlines, transactionswith critical timing constraints and �nally, real-time transactions with soft deadlines. Transactions ofthe �rst category are assumed to be completely predictable, that is, all data and run-time requirementsare known in advance. Further, they are assigned the highest priority in the system. Transactionsfor whom a priori knowledge of resource requirements is not available are assigned lower prioritiesand belong to the latter two categories. The versioning algorithms proposed in this paper can aid inreducing the unpredictability of these latter transaction types.In [LSLH98], the authors observe that in order to satisfy the timing constraints of real-time trans-actions, it may be desirable to relax the serializability requirement in RTDBSs. To this end, theypropose a new notion of consistency, view consistency, for read-only transactions. In a nutshell, viewconsistency requires that for each read-only transaction, only the concurrent execution involving updatetransactions and the read-only transaction is serializable. Thus, it is possible for the overall scheduleto be non-serializable and for di�erent read-only transactions to percieve di�erent serialization ordersof update transactions. However, view consistency guarantees that every read-only transaction sees aconsistent database state, that is, one that results due to the serial execution of some subset of updatetransactions.6 Concluding RemarksWe have presented a design for multi-version concurrency control, recovery and index management ina main-memory database system. We have shown how this design supports real-time performance forread-only transactions by freeing them from obtaining locks (using logical versioning) and latches usingthe technique of physical versioning, a general method for eliminating reader's latches from tree-likedata structures. Our design considers in depth the practical requirements of recovery and deadlock-free operation, �tting well with recovery schemes designed for the Dal�� main memory storage manager[JLR+94]. Some of the salient features of our design are 1) read-only transactions do not obtain latcheswhile performing lookups, 2) update transactions perform latch-free traversals on the tree, and 3) nophysical undo log records are generated. We used the technique of physical aging to collect physicallyversioned information more quickly than versions of data items.There are numerous bene�ts to making an entire class of read-only transactions in a real-timedatabase environment completely non-blocking. Since transaction executions become more predictable,their running times can be estimated fairly accurately. Consequently, in addition to a transaction'sdeadline, a more accurate estimate of its execution time can also be taken into account when makingscheduling decisions. For instance, for a certain aborted transaction before it is re-executed, it may bepossible to conclude that it will not meet its deadline even if it had exclusive access to all the resourcesin the system { as a result, the transaction can be discarded early, thus resulting in better utilizationof resources.Variants of the logical and physical versioning schemes are implemented in Lucent's 2NCP prod-15



uct, and the Dal�� main-memory storage manager. We have also applied these techniques to design aconcurrent implementation of T-trees, an index structure for main-memory systems, and demonstratedexperimentally the performance improvement due to physical versioning in [BLR+95].References[AGM88] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance eval-uation. In Procs. of the International Conf. on Very Large Databases, 1988.[AGM89] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk-resident data.In Procs. of the International Conf. on Very Large Databases, 1989.[AHU74] A. Aho, J. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, 1974.[AS89] D. Agrawal and S. Sengupta. Modular synchronization in multiversion databases: Versioncontrol and concurrency control. ACM SIGMOD Conf. on the Management of Data 89,(Portland OR), -Jun.., May 1989.[BC92a] P. Bober and M. Carey. On mixing queries and transactions via multiversion locking. InProc.IEEE CS Intl.Conf. on Data Engineering 8, Tempe, AZ., February 1992.[BC92b] P.M. Bober and M.J. Carey. Multiversion query locking. In Proceedings of the Conferenceon Very Large Databases, Morgan Kaufman pubs. (Los Altos CA) 18, Vancouver., August1992.[BG83] P.A. Bernstein and N. Goodman. Multiversion concurrency control | theory and algo-rithms. ACM Transactions on Database Systems ., 8(4):465{483, December 1983.[BHR80] R. Bayer, H. Heller, and A. Reiser. Parallelism and recovery in database systems. ACMTrans. on Database Systems, 5(2):139{156, June 1980.[BLR+95] P. Bohannon, D. Leinbaugh, R. Rastogi, S. Seshadri, A. Silberschatz, and S. Sudarshan.Logical and physical versioning in main memory databases. Technical Report 113880-951031-12, AT&T Bell Laboratories, Murray Hill, 1995.[CFL+82] A. Chan, S. Fox, W-T.K. Lin, A. Nori, and D.R. Ries. The implementation of an integratedconcurrency control and recovery scheme. In ACM SIGMOD Conf. on the Management ofData 82, Orlando FL., pages 184{191, June 1982.[DKO+84] D. J. DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker, and D. Wood. Implementa-tion techniques for main memory database systems. Proc. ACM-SIGMOD 1984 Int'l Conf.on Management of Data, pages 1{8, June 1984.[GL92] V. Gottemukkala and T. Lehman. Locking and latching in a memory-resident databasesystem. In Proceedings of the Eighteenth International Conference on Very Large Databases,Vancouver, pages 533{544, August 1992.[Had88] Thanasis Hadzilacos. Serialization graph algorithms for multiversion concurrency control. InProceedings of the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of DatabaseSystems, pages 135{141, March 1988. 16



[HCL90a] J. Haritsa, M. Carey, and M. Livny. Dynamic real-time optimistic concurrency control. InProceedings of the IEEE Real-Time Systems Symposium, 1990.[HCL90b] J. Haritsa, M. Carey, and M. Livny. On being optimistic about real-time constraints. InProceedings of the ACM SIGACT-SIGART-SIGMOD Symposium on Principles of DatabaseSystems, 1990.[HCL93] J. Haritsa, M. Carey, and M. Livny. Value-based scheduling in real-time database systems.VLDB Journal, 2(2):117{152, 1993.[HSRT89] J. Huang, J. Stankovic, K. Ramamritham, and D. Townsley. Experimental evaluation ofreal-time transaction processing. In Proceedings of the IEEE Real-Time Systems Sympo-sium, 1989.[HSRT91] J. Huang, J. Stankovic, K. Ramamritham, and D. Townsley. On using priority inheritancein real-time databases. In Proceedings of the IEEE Real-Time Systems Symposium, 1991.[IKK90] T. Ibaraki, T. Kameda, and N. Katoh. Multiversion cautious schedulers for database con-currency control. IEEE Transactions on Software Engineering (SE), ; ACM ComputingReviews 9012-0981., 16(3), March 1990.[JLR+94] H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi, Avi Silberschatz, and S. Sudarshan. Dali: Ahigh performance main-memory storage manager. In Procs. of the International Conf. onVery Large Databases, 1994.[KL80] H.T. Kung and P.L. Lehman. Concurrent manipulation of binary search trees. ACMTransactions on Database Systems ., 5(3):354{382, September 1980.[KS96] Y. Kim and S.H. Son. Supporting predictability in real-time database systems. In Proceed-ings of the IEEE Real-Time Technology and Applications Symposium, 1996.[LC86] T.J. Lehman and M.J. Carey. A study of index structures for main memory databasemanagement systems. In Proceedings of the Conference on Very Large Databases, MorganKaufman pubs. (Los Altos CA) 12, Kyoto., pages 294{303, August 1986.[LSC92] T. Lehman, E. J. Shekita, and L. Cabrera. An evaluation of Starburst's memory residentstorage component. IEEE Transactions on Knowledge and Data Engineering, 4(6):555{566,December 1992.[LSLH98] K. Lam, S.H. Son, V. Lee, and S. Hung. Using separate algorithms to process read-onlytransactions in real-time systems. In Proceedings of the IEEE Real-Time Systems Sympo-sium, 1998.[ML82] U. Manber and G.D. Ladner. Concurrency control in dynamic search structures. ACMProc.on Database Systems, Boston., pages 268{282, April 1982.[ML92] C. Mohan and F. Levine. Aries/im an e�cient and high concurrency index managementmethod using write- ahead logging. In ACM SIGMOD Conf. on the Management of Data92, San Diego., June 1992. 17



[MPL92] C. Mohan, H. Pirahesh, and R. Lorte. E�cient and 
exible methods for transient versioningof records to avoid locking by read-only transactions. In ACM SIGMOD Conf. on theManagement of Data 92, San Diego., June 1992.[Ram93] K. Ramamritham. Real-time databases. International Journal of Distributed and ParallelDatabases, 1:199{226, 1993.[Ree78] D. P. Reed. Naming and synchronization in a decentralized computer system. TechnicalReport MIT-LCS-TR-205, Massachusetts Institute of Technology, Cambridge, September1978.[SG88] D. Shasha and N. Goodman. Concurrent search structure algorithms. ACM Transactionson Database Systems , no.1., 13:53{90, March 1988.[SGM90] K. Salem and H. Garcia-Molina. System M: A transaction processing testbed for mem-ory resident data. IEEE Transactions on Knowledge and Data Engineering, 2(1):161{172,March 1990.[SZ88] J. Stankovic and W. Zhao. On real-time transactions. ACM Sigmod Record, 17(1):4{18,1988.

18


