
Program Analysis and Transformation for
Holistic Optimization of Database Applications

Karthik Ramachandra
Indian Institute of Technology Bombay

karthiksr@cse.iitb.ac.in

Ravindra Guravannavar
Indian Institute of Technology

Hyderabad
ravig@acm.org

S Sudarshan
Indian Institute of Technology Bombay

sudarsha@cse.iitb.ac.in

Abstract
We describe DBridge, a novel program analysis and transforma-
tion tool to optimize database and web service access. Tradition-
ally, rewrite of queries and programs are done independently, by
the database query optimizer and the language compiler respec-
tively, leaving out many optimization opportunities. Our tool aims
to bridge this gap by performing holistic transformations, which
include both program and query rewrite.

There has been earlier research in this area involving program
analysis and transformation for automatically rewriting database
applications to perform optimizations; for example, our earlier
work has addressed batching or asynchronous submission of it-
erative queries, and prefetching query results. DBridge implements
these techniques for Java programs and internally uses Soot, a Java
optimization framework, for static analysis and transformation.
DBridge can perform such optimizations on Java programs that use
the JDBC API to access the database. It is currently being extended
to handle the Hibernate API, and Web Services.

In this paper, we describe the program transformations that
DBridge can perform. We then discuss the design and implementa-
tion of DBridge with a focus on how the Soot framework has been
used to achieve these goals. Finally, we conclude by discussing
some of the future directions for our tool.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis; H.2.4 [Database Man-
agement Systems]: Query processing

1. Introduction
Database applications, typically written in languages such as Java,
PHP, C#, perform declarative queries and updates from within
imperative code that encodes business logic. Such applications use
a mix of procedural constructs andSQL. In such applications, poor
performance is often observed due to (a) repeated execution of
parameterized queries leading to network round-trip delays and
server-side random IO, and (b) synchronous (blocking) execution
of queries leading to ineffective use of computing resources Some
of the approaches that have been proposed to avoid or reduce the
effects of these delays are as follows.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SOAP’12 June 14, Beijing, China.
Copyright c© 2012 ACM ISBN 978-1-4503-1490-9/12/06. . . $10.00

• Set Oriented Query Execution:
Iterative execution of parameterized SQL queries can be re-
placed by abatched form or set oriented form of the query,
which is often far more efficient. The importance of set ori-
ented execution is well known in the database community, es-
pecially in the context of nested subqueries. Query decorrela-
tion [5, 12, 15] addresses the problem of iterative execution of
nested subqueries, by rewriting them using set operations such
as joins, thereby reducing random I/O. However, decorrelation
techniques are not directly applicable to imperative program
loops. Guravannavar et. al. [7] propose a set of program trans-
formation rules for automatically rewriting loops containing
query invocations to use batched parameter bindings, thereby
enabling set oriented execution of database queries. The trans-
formation rules make use of inter-statement data dependencies
gathered from static analysis of the program. The proposed pro-
gram transformation rules are powerful enough to rewrite a
large class of loops involving complex control flow and arbi-
trary level of nesting.

• Asynchronous Query Submission:
Synchronous execution of queries or Web service requests
forces the calling application to block until the query/request is
satisfied. The performance of applications can be significantly
improved by asynchronous submission of queries. Manjhi et
al. [13] consider rewriting of application code by means of
inserting prefetches within a procedure. Yeung [17] proposes
deferred execution of remote procedure calls and code shipping
by using program rewrite techniques. Chavan et. al. [1] ad-
dress the issue of automatically transforming a program written
assuming synchronous query submission, to one that exploits
asynchronous query submission. Their approach is based on
dataflow analysis and is framed as a set of transformation rules
based on the work of Guravannavar et. al. [7].

• Prefetching Query Results:
Recently, Ramachandra et. al. [14] proposed techniques based
on program analysis and rewriting to prefetch the results of
queries or Web service requests that are subsequently issued
by a program. These techniques statically place asynchronous
prefetch instructions for query execution statements at the ear-
liest possible points. To find more prefetching opportunities,
techniques such as loop fission are employed, and the proposed
approach works even when calls to the database are deep within
functions called within a loop. This work integrates well with
[1, 7] and enables those transformations to work with interpro-
cedural code.

All the above optimization techniques [1, 3, 7, 13, 14, 17]
require the understanding of the query or the Web service API
in addition to the standard data and control flow information of

Connection con = DriverManager.getConnection(url);
PreparedStatement pstmt = con. prepareStatement (

‘‘SELECT count(partkey) FROM part WHERE category=?”);

while(category !=−1) {
pstmt . setInt (1, category);
ResultSet rs = pstmt .executeQuery ();
if (rs . next ()) {

partCount = rs . getInt (0);
total += partCount;

print (category + ‘‘:’’ + partCount);
}
category = getParent (category);

}

Figure 1. A Program Snippet with JDBC Calls [2])

the program. Such techniques that span the application and the
database are referred to asholistic optimization techniques [13].

DBridge [2] is a holistic optimization tool based on the tech-
niques presented in [1, 7] and [14]. DBridge performs these opti-
mizations on Java programs that use the JDBC API [9] to access
the database. It is currently being extended to handle the Hibernate
API [8], and Web services. DBridge uses the Soot framework [16]
extensively for code analysis and transformation. Soot provides a
convenient intermediate representation called Jimple, and also pro-
vides some of the data flow analyses required by DBridge.

DBridge statically analyzes the input program and identifies
opportunities for the above mentioned techniques; it then rewrites
the program accordingly. DBridge is designed to be a source-to-
source transformation tool, and to this end, it ensures readability
of the transformed code. The tool is thus best suited for integration
into an application development environment (IDE). DBridge can
also be used as a preprocessing step inside a language compiler,
thus making the compiler “database access aware” [2].

2. Overview of DBridge
In this paper we outline how program analysis and transformation
is performed in DBridge, using the Soot framework. DBridge com-
prises of two components - a program transformer, and a runtime
library. These have been described in detail in [1, 2, 7, 14]. We now
briefly summarize these components.

2.1 Program Analysis and Transformation

DBridge primarily performs two kinds of transformations: loop
fission and prefetch statement insertion.

2.1.1 Loop Fission

Techniques presented in both [7] and [1] depend on loop fission
as the basic transformation to enable set oriented or asynchronous
submission of queries. As an illustration of the kind of loop fission
DBridge can perform, consider the Java program snippet shown in
Figure 1 (reproduced from [2]. The program computes the total
number of parts in a given list of categories. Note the repeated exe-
cution of a parameterized aggregate query inside thewhile loop.
The program snippet after transformation by DBridge is shown
in Figure 2. Note that the repeated execution of the parameter-
ized query has been replaced by the single execution of a batched
version of the query which is not part of any loop. The trans-
formed code is a result of the application of several transformation
rules. An overview of the important transformations performed by
DBridge are presented in [2]; we briefly describe them here.

• Statement Reordering: DBridge applies a set of transformation
rules to reorder the statements within the loop body, so as to

Connection con =DBridgeDriverManager .getConnection(url);
PreparedStatement pstmt = con.dBridgePrepareStatement(

‘‘SELECT count(partkey) FROM part WHERE category=?”);

LoopContextTable lct = new LoopContextTable();
while(category !=−1) {

LoopContext ctx = lct.createContext();
pstmt . setInt (1, category);
ctx.setInt(“category”, category);
category = getParent (category);
pstmt .addBatch(ctx);

}

pstmt .executeBatch ();

for (LoopContext ctx: lct){
category = ctx.getInt(“category”) ;
ResultSet rs = pstmt .getResultSet(ctx);
if (rs . next ()) {

partCount = rs . getInt (0);
total += partCount;

print (category + ‘‘:’’ + partCount);
}

}

Figure 2. Program snippet after Transformation [2]

permit loop splitting at the query execution statement. State-
ment reordering is performed taking inter-statement data de-
pendencies into account. In order to achieve this, we define
the ReorderingUnit interface, and model the loop body as a
nested sequence ofReorderingUnits. TheseReorderingUnits
are swapped based on rules that preserve all the true depen-
dencies. Pseudo dependencies (also known as anti and output
dependencies [10]) that prohibit loop fission, are broken by in-
troducing temporary variables; see [6, 7] for details.

• Loop Splitting: This is the key transformation, described in [1,
7] to enable set oriented execution or asynchronous submission.
As a result of this transformation, a loop is split into two
parts as described in [2]; Figure 2 shows the result of loop
splitting applied to the program in Figure 1. The loop fission
transformation has certain preconditions for its applicability
[7], and may require prior application of statement reordering
so that the preconditions are met. The preconditions are defined
on the Data Dependence Graph.

• Rewrite of Conditional Blocks: DBridge can deal with con-
ditional control transfer statements (if-then-else), and query
execution statements inside conditional blocks. DBridge also
handlesorder-sensitive operations within the loop correctly.
Order-sensitive operations are operations whose order of exe-
cution is important for the correctness of the program. DBridge
first transforms conditional blocks into a sequence of guarded
statements by introducing a boolean variable to remember the
branching decision. Each member in this sequence is aRe-
orderingUnit. It then applies the loop splitting transformation.
Finally, the sequence ofReorderingUnits are merged back and
conditional blocks are regenerated.

• Nested Loops: DBridge works with arbitrary levels of loop nest-
ing. Also, in general, the body of a loop may contain more than
one parameterized query. Repeated application of the loop split-
ting transformation allows rewriting of any number of queries
that lie inside the loop.

2.1.2 Prefetch Statement Insertion

Techniques for query result prefetching are described in [14],
which are implemented in DBridge. These techniques consider

void generateReport (int custId , int curr , String fromDate){
(n1) ResultSet a=executeQuery (‘‘SELECT ∗ FROM accounts

WHERE custId=?”, custId); //q1
(n2) while(a. next ()){
(n3) int accountId = a. getInt (‘‘ accountId ’’);
(n4) processAccount(a);
(n5) processTransactions(accountId , fromDate);

}

(n6) ResultSet c =executeQuery (‘‘ SELECT ∗ FROM customers
WHERE custId=?”, custId); //q2

(n7) processCustomer(c);

(n8) if (curr != DEFAULT CURR){
(n9) ResultSet s=executeQuery (‘‘SELECT exchgRate

FROM exchange WHERE src=? AND dest=?”,
{curr , DEFAULT CURR}); // q3

(n10) printExchangeRate(s , curr);
}

}

Figure 3. Program with prefetching opportunities [14]

void generateReport (int custId , int curr , String fromDate){
submit(q2, custId);
submit(q1, custId);

booleanb = (curr != DEFAULT CURR);
if(b) submit(q3, {curr , DEFAULT CURR});

... // code unchanged (lines n1 to n7)
if (b){

... // code unchanged (lines n9, n10)
}

}

Figure 4. Program with prefetch requests [14]

programs with query execution statements embedded within them,
and statically insert prefetch instructions for those queries at the
earliest possible points in the program across method invocations.

An example from [14] is reproduced here in Figure 3 in order to
illustrate the kind of prefetching performed by DBridge. Thegen-
erateReport method accepts a customer id (custId), a currency code
(curr), and a date (fromDate), and performs the following tasks
in sequence: (i) Retrieves information about all accounts of that
customer and processes them in a loop (n1 to n5), (ii) Retrieves
and processes customer information (n6 andn7), (iii) If the sup-
plied currency code does not match the default (DEFAULT CURR),
it fetches and displays the current exchange rate between the two
(n8 to n10). The program after insertion of prefetch instructions is
shown in Figure 4. Thesubmit method is the instruction that issues
an asynchronous prefetch. For brevity, Figure 4 uses symbolsq1,
q2 etc. to denote actual query strings, and omits lines of code that
remain unchanged.

In order to detect such opportunities, Ramachandra et. al. [14]
extend anticipable expressions analysis [11], to analyze anticipa-
bility of queries. DBridge performsquery anticipability analysis,
and insert prefetch instructions as described in [14]. We briefly de-
scribe the analysis here; see [14] for details.

Query Anticipability Analysis:
Prefetching of queries involves inserting query submission re-

quests at program points where they were not present in the original
program. The goal is to insert asynchronous query prefetch requests

Figure 5. CFG for Figure 3 [14]

at the earliest possible points in the program so that the latency of
network and query execution can be maximally overlapped with
local computation.

Suppose a queryq is executed with parameter valuesv at point
p in the program. The earliest possible pointse where queryq could
be issued are the set of points where the following conditions hold:
(a) all parameters ofq are available, (b) the results of executingq at
pointse andp are the same, (c) conditions (a) and (b) do not hold
for predecessors ofe, and (d) no prefetch request should be wasted.
The scope of this analysis is intraprocedural, but the prefetching
algorithm combines the results of this analysis to insert prefetches
across method calls. Query anticipability is defined as follows [14]:

DEFINITION 2.1. A query execution statementq is anticipable at a
program pointu if every path fromu to End contains an execution
of q which is not preceded by any statement that modifies the
parameters ofq or affects the results ofq. �

Query anticipability analysis is a bit vector backward data flow
framework with query execution statements being the data flow
values.Genn is 1 at bitq if n is the query execution statementq.
Killn is 1 at bitq if eithern contains an assignment to a parameter
of q, or performs an update to the database that may affect the
results ofq. The equations that describe query anticipability are:

Inn = (Outn −Killn) ∪Genn (1)

Outn =

{

φ if n isEnd node
⋂

s∈succ(n) Ins otherwise (2)

The CFG corresponding to Figure 3 is shown in Figure 5, and
the results of performing query anticipability analysis on Figure 3
is shown in Table 1. The table shows only the changed values in
iteration #2.

DBridge implements this analysis by implementing a newBack-
wardFlowAnalysis which uses theArrayPackedSet to hold the bit
vectors. Anticipability can be blocked by the presence ofcritical
edges in the CFG. DBridge therefore uses Soot’s built inCriti-
calEdgeRemover as a preprocessing step on theUnitGraph.

2.2 The DBridge Runtime Library

The DBridge runtime library works as a layer between the actual
data access API (JDBC/Hibernate etc.) and the application code.
It provides set oriented execution, asynchronous submission and
prefetch submission methods in addition to wrapping the under-
lying API. Features such as query rewriting, thread management
and cache management are handled by this library. The API is de-
signed in such a way that it can be configured to either use param-
eter batching(set oriented execution) or asynchronous submission

Node Local Information Global Information
Iteration #1 Iteration #2

Genn Killn Outn Inn Outn Inn

End 000 000 000 000
n10 000 000 000 000
n9 001 000 000 001
n8 000 000 000 000
n7 000 000 000 000
n6 010 000 000 010
n5 000 000 111 111 010 010
n4 000 000 111 111 010 010
n3 000 000 111 111 010 010
n2 000 000 010 010
n1 100 000 010 110

Start 000 111 110 000

Table 1. Query anticipability analysis for Figure 3 [14]

of queries on the transformed code with split loops, and Figure 2
highlights the corresponding DBridge API calls.

If the API is configured to use parameter batching, query rewrite
is performed at runtime within DBridge’s implementation of the
executeBatch method, as described in [2]. TheexecuteBatch call
is present in between the two loops as shown in Figure 2. This
method internally transforms the query statement into a set oriented
form, which is often more efficient. For example, the scalar aggre-
gate query in the example would be transformed into the following
query, wherepb is a temporary table in which the parameter bind-
ings are materialized.

SELECT pb.category, le.c1
FROM pbatch pb,

OUTER APPLY (SELECT count(partkey) as c1
FROM part
WHERE category=pb.category) le;

The rewritten query shown here uses the OUTER APPLY con-
struct of Microsoft SQL Server. The query can alternatively be writ-
ten using the left outer join combined with LATERAL construct,
depending on which construct the underlying database supports.
Such a rewriting enables the use of efficient set oriented query pro-
cessing algorithms such as hash or merge join.

In the asynchronous submission mode, loop splitting is done
as shown in Figure 2, but instead of waiting for the first loop to
finish before sending a batched query, queries are submitted asyn-
chronously within the first loop. Thestmt.addBatch(ctx) invocation
is a non blocking query submission. This request queue is mon-
itored by a thread pool which manages multiple threads (number
of threads being configurable). The requests are picked up by free
threads which maintain open connections to the database, and ex-
ecute the query. The results are then placed in an array indexed by
the loop context (ctx). The second loop accesses the results corre-
sponding to the loop context and executes statements that depend
on the query results.

Queries, being side-effect free, can be executed in any order
of the parameter bindings. However, the loop can contain other
order-sensitive operations, which must be executed in the same
order as in the original program. To ensure this, the loop splitting
transformation of DBridge maintains the loop context in an ordered
table (LoopContextTable), and iterates over the loop context records
in the order in which they are produced.

In the case of prefetching, the transformed program contains
submit calls which are nonblocking query submissions. Figure 4
highlights thesubmit calls of the DBridge API. The library takes

care of issuing a prefetch in the background at this point, while
the program continues to execute. The results of the query are put
into a cache keyed by(queryString, parameterBindings). DBridge’s
implementation of theexecuteQuery method looks up the cache,
and blocks till the results become available.

One of the design goals for this API is to make it extensible in
order to add support for different data access APIs. It is currently
being extended to handle web services. A more detailed description
of our API is available in [1, 2] and [14].

3. System Design
We now discuss some of the design considerations and challenges
in engineering a program transformation tool such as DBridge. As
described in [2], ensuring that the transformed program isequiva-
lent in its functionality to the original program is astrict require-
ment for DBridge. DBridge makes conservative assumptions about
data dependencies that cannot be statically determined, at the cost
of losing optimization opportunities, in order to preserve equiva-
lence. The transformations we perform are based on a set of for-
mally defined equivalence rules, whose correctness proofs can be
found in [6].

DBridge is built with the following design goals:

• Robustness: It is not always possible to split every loop that
involves a query execution statement. Inter-statement data de-
pendencies may prohibit such a rewrite. Similarly, prefetch in-
structions are blocked by certain statements which form barri-
ers for prefetching, due to data or control dependences. Hence,
identifying desired program patterns is very important.

The intermediate code has the advantage of being simple and
suitable for data flow analysis, but it makes the task of recogniz-
ing desired program patterns difficult. Each high level language
construct translates to several instructions in the intermediate
representation. DBridge has been designed for robust matching
of desired program fragments and can handle several variations
in programs.

• Readability: The prefetching transformation is very less intru-
sive as it only places prefetch instructions at certain points in
the program and hardly modifies existing lines of code. The
loop fission transformation, though, can end up making quite
intrusive changes depending on the complexity of the original
program. The presence of nested loops, and complex control
flow can make the resulting code less readable.

Programmers may need to read the transformed code to de-
bug a program, or even to gain confidence in the correctness
of the transformed code. Therefore, maintaining readability of
the transformed code is very important. We achieve this goal
through several measures. For instance, when we rewrite con-
ditional blocks and then split a loop, the resulting code will have
many guarded statements. We therefore introduce a pass where
such guarded statements are grouped back in each of the two
generated loops, so that the resulting code resembles the origi-
nal code [1, 2].

Another challenge encountered in ensuring readability was the
limitation of decompilation, which at times resulted in code
that was quite unreadable. We use the Dava decompiler that is
bundled with Soot, and we have encountered instances where
the whole body of a loop is folded into the header of the
for loop. We have currently worked around this by carefully
generating Jimple code to avoid such results.

• Extensibility : DBridge is designed in a way that provides an
elegant framework for introducing new transformation rules or

extending existing rules. Each rule is encapsulated as an object,
and all the information necessary to apply a rule is provided by
the framework via theDBridgeDependenceGraph. The runtime
library API is designed to allow different data sources to be
plugged in with less effort.

4. Implementation
The important phases in the program transformation process are
shown in Figure 6. The input is a standard Java program writ-
ten using the JDBC API for database access. The input file is
first converted into Jimple, using which we construct aDBridge
Dependence Graph, which is the basic data structure on which
our transformation rules rely. TheDBridge Dependence Graph es-
sentially encapsulates theDataDependencyGraph, UnitGraph, the
LoopNestTree and other supporting data structures. While building
the data dependency graph, Soot analyzes all the library classes as
well, which is time and memory intensive. If library classes are
excluded, we would prefer Soot to be conservative and add depen-
dencies which may be spurious. For a tool like DBridge, where
preserving semantics is of prime importance, it is acceptable to not
perform certain optimizations rather than changing semantics.

4.1 Applying transformations

The main task of DBridge appears in theApply Trans Rules phase.
The program transformation rules are applied in an iterative man-
ner, updating the dataflow information each time the code changes.
The rule application process stops when all (or the user chosen)
transformations are done. The intermediate representation is then
converted back to a target Java source file.

4.1.1 Loop Fission

The program transformation rules presented in [1, 6] can be ap-
plied repeatedly to refine a given program. Applying a rule to a
program involves substituting a program fragment that matches the
antecedent (LHS) of the rule with the program fragment instanti-
ated by the consequent (RHS) of the rule. Some rules facilitate the
application of other rules and together achieve the goal of splitting
a loop.

In DBridge, the transformation rules are applied iteratively as
shown in Figure 7. A query execution statement present within
a loop body is considered as acandidate for batching or asyn-
chronous submission, and for each such candidate, the rules are ap-
plied. First, conditional blocks if any, are converted into a sequence
of guarded statements. Then the statement reordering algorithm is
run, which enables loop fission. Finally, the control structure of the
program is restored by merging back guarded statements into con-
ditional blocks.

Code (Jimple)
Intermediate

Source Java
File

Dataflow
Analysis

Def−Use
Information

DDG
Construction

Dependence
Graph

Modified
Jimple CodeDecompileFile

Target Java

Parsing and
Conversion to
Interm Rep

 Rules
Apply Trans

Figure 6. Program transformation phases [2]

Compute Dependence Graph

Find candidate loop to split Merge sequence of guarded

statements to condition blocks

Split the loop

Reorder Statements

Convert conditional blocks to

sequence of guarded statements

Rewrite using DBridge

API method calls

Figure 7. Application of transformation rules for loop fission [2]

4.1.2 Prefetch insertion

DBridge uses the fixed point iteration provided byBackwardFlow-
Analysis in order to perform query anticipability analysis. We de-
fine aValue type calledQueryExecutionValue that stores the query
statement and its parameters in theFlowSet. The SootCallGraph
construction takes considerably long time, and we essentially re-
quire a simplified call graph which only deals with methods of in-
terest to us. Hence we have extended Soot’sCallGraph and built
our own, over which we traverse in reverse topological order (us-
ing Soot’sPseudoTopologicalOrderer), as per the interprocedural
algorithm in [14].

4.2 Challenges

We now discuss a few implementation challenges and describe
some reusable patterns that evolved in our implementation.

4.2.1 Detecting complex patterns in code

In order to perform transformations such as loop fission or prefetch
statement insertion, we need to identify patterns in the input pro-
gram where these transformations are applicable. We refer to these
patterns ascandidates for transformation. For example, any query
execution statement is a potentialcandidate for the prefetching
transformation. A query execution statement present within a loop
body is considered as a potentialcandidate for batching or asyn-
chronous submission. More formally, a query execution statement
present within a loop body, and which does not lie on a cycle of
true data dependencies is acandidate for our loop fission transfor-
mation (Refer to [1, 6] for formal definitions and proofs). Detecting
suchcandidates for JDBC programs involves combining informa-
tion from theUnitGraph (i.e., the CFG) and theDataDependency-
Graph (i.e., the DDG), and involves the following steps:

1. The SQL query string is typically found as an argument to the
prepareStatement method, and theexecuteQuery method is the
query execution statement. Methods namedsetInt, setFloat etc.
that are invoked on the JDBCPreparedStatement interface are
the ones that bind query parameters. We combine information
from all these statements in order to get the query string and the
variables (or constants) that are bound as its parameters.

2. To identify query execution statements present in loops, we
need to look for cycles in the CFG containing anexecuteQuery
call. Soot’sLoopNestTree is a convenient way to iterate over
loops instead of directly working with theUnitGraph.

3. Subsequently, we use theDataDependencyGraph to identify
whether theexecuteQuery call lies on a cycle of true data
dependencies.

In general, in order to perform transformations on large programs,
we feel that a tool like Soot should provide (a) a concise and
perhaps declarative way to specify such candidate patterns, and

(b) an efficient mechanism that accepts the pattern specification as
input and detects these patterns in large programs.

4.2.2 ReorderingUnits for transformation

As described in Section 2.1.1, the kind of transformations per-
formed by DBridge involves equivalence-preserving reordering of
statements. The statement reordering algorithm [1] enables split-
ting of the loop at the desired statement boundary. Wherever nec-
essary, pseudo dependencies (anti and output dependencies [10])
are broken by introducing local variables.

This is implemented by modeling the loop body as a nested
sequence ofReorderingUnits. AReorderingUnit comprises of a list
of Units which may be statements or otherReorderingUnits. This
way, we represent (i) single Jimple statements (Stmt), (ii) block
of statements (Block), (iii) conditional blocks (if-else constructs),
(iv) loops, and (v) ternary statements asReorderingUnits. Now,
theseReorderingUnits are swapped based on rules that preserve
all the true dependencies. This abstraction helps deal with nested
structures such as nested loops and nested conditional blocks in a
uniform manner.

4.2.3 Channelizing transformations

The transformations performed by DBridge are of the following
types:

• Insertion of new statements,
• Deletion of statements,
• Replacement of statements,
• Modifying targets ofgoto statements.

As described earlier, our program transformation rules are applied
in an iterative manner, and each application of a rule results in many
transformations to the body. Also, we use data structures such as
ReorderingUnit and DBridgeDependenceGraph which wrap and
compose the Body, UnitGraph and other Soot structures. We need
to make sure that our data structures are always consistent with
changes made to the underlying body. Hence all our rule objects ad-
here to a pattern that simplifies the management of complex trans-
formations. Instead of making changes directly to the unit chain
from the rule objects, transformations are channelized through
a TransformationsCollector object that builds up a collection of
transformations of the above types. At the end of a rule application,
a ‘commit’ is performed to apply all the collected transformations
to theBody in an appropriate order, and all dependent data struc-
tures are updated to reflect the changes.

4.3 Limitations and Future Work

Currently, DBridge does not fully support programs with all kinds
of exception handling and other unconditional control transfer
statements. External dependences i.e., dependences through files
or other resources outside the program are not yet supported. Also,
DBridge does not support language features such as reflection, dy-
namic class loading, and native code. This is not a big concern
for database/web applications, since such features are rarely used
inside core application functions that access the database.

We are currently extending DBridge to support other data access
APIs and we intend to make it more extensible to be able to plug
in different data sources. In future, we plan to implement more
holistic optimization techniques in DBridge, and implement a cost
model to decide which calls need to be transformed using which
techniques. We also intend to scale DBridge to be able to run on
large codebases; the time and memory consumption of Soot in
whole program mode while performing interprocedural analyses is
currently one of the issues we face in this direction.

5. Conclusion
We described the design and implementation of a tool called
DBridge, that optimizes database/web service access by perform-
ing optimizations that span across the boundaries of the application
and the data source. Experiments described in [1, 7, 14] show that
these optimizations lead to significant gains in performance. More
details about DBridge are available on the project website [4].

We believe that there are lots of opportunities for applying static
analysis techniques in optimizing database/web applications. The
availability of Soot has been one of the compelling reasons to build
this tool in Java. Soot provides a convenient intermediate represen-
tation called Jimple, and also performs most of the necessary data
flow analyses which we require. We found Soot to be an extremely
valuable tool for prototyping of research ideas.

Acknowledgments
We would like to thank Mahendra Chavan and Prabhas Kumar
Samanta for having implemented many features of DBridge.

References
[1] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan.

Program transformations for asynchronous query submission.In IEEE
International Conference on Data Engineering, pages 375–386, 2011.

[2] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan.
Dbridge: A program rewrite tool for set-oriented query execution. In
IEEE International Conference on Data Engineering, pages 1284–
1287, 2011.

[3] A. Dasgupta, V. Narasayya, and M. Syamala. A static analysis frame-
work for database applications. InIEEE International Conference on
Data Engineering, 2009.

[4] DBridge. The DBridge Holistic Optimizer
http://www.cse.iitb.ac.in/infolab/dbridge.

[5] M. Elhemali, C. A. Galindo-Legaria, T. Grabs, and M. M. Joshi.
Execution Strategies for SQL Subqueries. InACM SIGMOD, 2007.

[6] R. Guravannavar.Optimization and Evaluation of Nested Queries and
Procedures. Ph.D. thesis, Indian Institute of Technology, Bombay,
2009.

[7] R. Guravannavar and S. Sudarshan. Rewriting Proceduresfor Batched
Bindings. InIntl. Conf. on Very Large Databases, 2008.

[8] Hibernate. The Hibernate O/R mapping tool: http://hibernate.org.

[9] JDBC. Java Database Connectivity (JDBC) API
http://java.sun.com/products/jdbc/overview.html.

[10] K. Kennedy and J. R. Allen.Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2002. ISBN 1-55860-286-0.

[11] U. Khedker, A. Sanyal, and B. Karkare.Data Flow Analysis: Theory
and Practice. CRC Press, Inc., 1st edition, 2009. ISBN 0849328802.

[12] W. Kim. On Optimizing an SQL-like Nested Query. InACM Trans.
on Database Systems, Vol 7, No.3, 1982.

[13] A. Manjhi, C. Garrod, B. M. Maggs, T. C. Mowry, and A. Tomasic.
Holistic Query Transformations for Dynamic Web Applications.In
IEEE International Conference on Data Engineering, 2009.

[14] K. Ramachandra and S. Sudarshan. Holistic optimization by prefetch-
ing query results. InACM SIGMOD, 2012(to appear).

[15] P. Seshadri, H. Pirahesh, and T. C. Leung. Complex Query Decorrela-
tion. In IEEE International Conference on Data Engineering, 1996.

[16] SOOT. A Java Optimization Framework
http://www.sable.mcgill.ca/soot.

[17] K. C. Yeung.Dynamic Performance Optimisation of Distributed Java
Applications. PhD thesis, Imperial College of Science, Technology
and Medicine, 2004.

