
Distributed Multi-Level Recovery inMain-Memory DatabasesRajeev Rastogi� Philip Bohannon� James Parker�S. Seshadriy Avi Silberschatz� S. Sudarshany� Bell Laboratories, Murray Hill, NJfrastogi,plbohannon,parker,avig@bell-labs.comy Indian Institute of Technology, Bombay, Indiafseshadri,sudarshag@cse.iitb.ernet.inAbstractIn this paper we present recovery techniques for distributed main-memorydatabases, speci�cally for client-server and shared-disk architectures. Wepresent a recovery scheme for client-server architectures, based on shipping logrecords to the server, and two recovery schemes for shared-disk architectures|one based on page shipping, and the other based on broadcasting of the logof updates. The schemes o�er di�erent tradeo�s, based on factors such asupdate rates.Our techniques are extensions to a distributed-memory setting of a cent-ralized recovery scheme for main-memory databases, which has been imple-mented in the Dal�� main-memory database system. Our centralized as wellas distributed-memory recovery schemes have several attractive features|they support an explicit multi-level recovery abstraction for high concurrency,reduce disk I/O by writing only redo log records to disk during normal pro-cessing, and use per-transaction redo and undo logs to reduce contention onthe system log. Further, the techniques use a fuzzy checkpointing schemethat writes only dirty pages to disk, yet minimally interferes with normalprocessing|all but one of our recovery schemes do not require updaters toeven acquire a latch before updating a page. Our log shipping/broadcastingschemes also support concurrent updates to the same page at di�erent sites.yThe work of these authors was performed in part while they were at Bell Labs.0

1 IntroductionA large number of applications (e.g., call routing and switching in telecommunic-ations, �nancial applications, automation control) require high performance accessto data with response time requirements of the order of a few milliseconds to tensof milliseconds. Traditional disk-based database systems are incapable of meetingthe high performance needs of such applications due to the latency of accessing datathat is disk-resident. An attractive approach to providing applications with low(and predictable) response times is to load the entire database into main-memory.Databases for such applications are often of the order of tens or hundreds of mega-bytes, which can easily be supported in main-memory. Further, machines with mainmemories of 8 gigabytes or more are already available, and with the falling priceof RAM, machines with such large main memories will become cheaper and morecommon.One approach for implementing such high performance databases is to providea large bu�er-cache to a traditional disk-based system. In contrast, in a main-memory database system (MMDB) (see, e.g., [GMS92, LSC92, JLR+94, DKO+84]),the entire database can be directly mapped into the virtual address space of theprocess and locked in memory. Data can be accessed either directly by virtualmemory pointers, or indirectly via location independent database o�sets that canbe quickly translated to memory addresses. During data access, there is no need tointeract with a bu�er manager, either for locating data, or for fetching/pinning bu�erpages. Also, objects larger than the system's page size can be stored contiguously,thereby simplifying retrieval or in-place use. Thus, data access using a main-memorydatabase is very fast compared to using disk-based storage managers, even whenthe disk-based manager has su�cient memory to cache all data pages.Distributed architectures in which several machines are connected by a fast net-work, and perform database accesses and updates in parallel, provide signi�cantfurther performance improvements for a number of applications. For example, con-sider applications in which transactions are predominantly read-only and updaterates are low (e.g., number translation and call routing in telecommunications).Each machine can locally access data cached in memory, thus avoiding network com-munication which could be fairly expensive. Another example is Computer AidedDesign applications, where locality of reference is very high, update transactionsare long, and interactive response time is very important.Distribution also enhances fault tolerance, which is required in many mission-critical applications, even if data �ts easily in a single machine's main-memory.In this case, especially with low update rates, a distributed database is preferableto a hot-spare since the load can be distributed in the non-failure case leading toimproved performance.The recovery scheme used in the Dal�� main-memory database system [JLR+94]is based on the main-memory recovery scheme presented in [JSS93]. The recoveryscheme of [JSS93] provides important features such as transient undo logging inwhich undo log records are kept in memory and only written to disk if required for1

checkpointing, per-transaction logs in memory to reduce contention on the systemlog tail, and recovery using only a single pass over the system log. The recoveryscheme used in Dal�� provides several further extensions, such as multi-level recovery([WHBM90, MHL+92, Lom92]), and fuzzy checkpointing [SGM90a, Hag86].The goal of the work described here was to extend the Dal�� recovery schemeto the distributed memory case, simultaneously maintaining the advantages of thesingle-site scheme, and e�ciently supporting the applications described above. Forexample, we can make use of transient undo logging to reduce the size of the logwritten to disk, as well as the size of the log sent across network links in distributedprotocols.We present three distinct but related distributed recovery schemes { the �rst forclient-server architectures, and the second and third for shared disk architectures.These are all \data-shipping" schemes (see, e.g., [FZT+92]) in which a transac-tion executes at a single site, fetching data (pages) as required from other sites.Distributed commit protocols are not needed as in \function-shipping" environ-ments. While shared disk architectures have traditionally been closely tied to hard-ware platforms (e.g., VAXCluster), UNIX-based shared disk platforms and networkof workstation architectures with similar performance characteristics are becomingmore common.A key property of the client-server scheme and one of the shared disk schemesis that concurrent updates are possible at granularities smaller than a page-size.Thereby minimizing \false-sharing" (that is, apparent conicts due to coarse-granu-larity locking) and consequently, needless network accesses to resolve false sharing.Our distributed recovery algorithms provide the advanced features of our centralizedrecovery algorithms, such as transient undo logging, explicit multi-level recovery,and fuzzy checkpointing. Site or global recovery requires only a single pass overthe system log, starting from the end of the system log recorded in the most recentcheckpoint.The remainder of the paper is organized as follows. We present background onmulti-level recovery and the single-site algorithm on which the present work is basedin Section 2. Related work is presented in Section 3. We present our client-serverrecovery algorithm in Section 4. Section 5 describes our shared disk model, whileSections 6 and 7 present our shared disk recovery algorithms. Section 8 concludesthe paper.2 Overview of Main-Memory RecoveryIn this section we present a review of multi-level recovery concepts and an overviewof the single-site main-memory recovery scheme used in the Dal�� system. Low-leveldetails of our scheme are described in [BPR+96].In our scheme, data is logically organized into regions. A region can be a tuple,an object, or an arbitrary data structure like a list or a tree. Each region has asingle associated lock, referred to as the region lock, with exclusive (X) and shared(S) modes that guard updates and accesses to the region, respectively.2

In Main Memory
End of
Stable Log

Active Trans.
 Table

Dirty Page
 Table

Database

End of
Stable log
Database
ckpt_dpt

cur_ckpt

Ckpt A

Ckpt B

Stable System Log

System Log Tail

On Disk

Active Trans
Table (ATT)
(undo logs)

Redo Log

Undo Log

Trans. Local
 Logs

Figure 1: Overview of Recovery Structures2.1 Multi-Level RecoveryMulti-level recovery [WHBM90, MHL+92, Lom92] provides recovery support forenhanced concurrency based on the semantics of operations. Speci�cally, it permitsthe use of weaker operation locks in place of stronger shared/exclusive region locks.A common example is index management, where holding physical region locksuntil transaction commit leads to unacceptably low levels of concurrency. If undologging has been done physically (e.g. recording exactly which bytes were modi�edto insert a key into the index) then the transaction management system must ensurethat these physical undo descriptions are valid until transaction commit. Since thedescriptions refer to byte changes at speci�c positions, this typically implies thatthe region locks on the updated index nodes must be held till transaction committo ensure correct recovery, in addition to considerations for concurrent access to theindex.The multi-level recovery approach is to replace these low-level physical undo logrecords with higher level logical undo log records containing undo descriptions atthe operation level. Thus, for an insert operation, physical undo records would bereplaced by a logical undo record indicating that the inserted key must be deleted.Once this replacement is made, the region locks may be released and only (lessrestrictive) operation locks are retained. For example, region locks on the particularnodes involved in an insert can be released, while an operation lock on the newlyinserted key that prevents the key from being accessed or deleted is held.2.2 System OverviewFigure 1 gives an overview of the structures used for recovery. The database (asequence of �xed size pages) is mapped into the address space of each process andis in main memory, with (two) checkpoint images Ckpt A and Ckpt B on disk. Alsostored on disk are 1) cur ckpt, an \anchor" pointing to the most recent valid check-3

point image for the database, and 2) a single system log containing redo information,with its tail in memory. The variable end of stable log stores a pointer into the sys-tem log such that all records prior to the pointer are known to have been ushed tothe stable system log.There is a single active transaction table (ATT) in main-memory which storesseparate redo and undo logs for active transactions, in addition to information abouttransaction status. A dirty page table, dpt, is maintained in memory to record pagesthat have been updated since the last checkpoint. For simplicity of presentation,we assume that the dirty page is maintained as a bitmap with one bit per page.The ATT (with undo logs, but without redo logs) and the dirty page table are alsostored with each checkpoint image. The dirty page table in a checkpoint image isreferred to as ckpt dpt.2.3 Transactions and OperationsTransactions, in our model, consist of a sequence of multi-level operations, followingto [Lom92]. We briey describe the model below. Each operation has a level Liassociated with it. An operation at level Li can consist of a sequence of operationsat level Li�1. Transactions, assumed to be at level Ln, call operations at levelLn�1. Physical updates to regions are level L0 operations. For transactions, wedistinguish between pre-commit, when the commit record enters the system log inmemory, establishing a point in the serialization order, and commitwhen the commitrecord hits the stable log. For operations, we use the terms commit and pre-commitinterchangeably since both refer to the time when the commit record enters thesystem log in memory.Each transaction obtains an operation lock before it executes an operation; theoperation lock is granted if the operation commutes with other operation locks heldby other active transactions. Level L0 operations obtain region locks instead ofoperation locks. The locks on the region are released once the L1 operation pre-commits; similarly, an operation lock at level Li is held until the transaction or thecontaining operation (at level Li+1) commits. All the locks acquired by a transactionare released once it commits.12.4 Logging ModelThe recovery algorithm maintains separate local undo and redo logs in memory foreach transaction. These are stored as a linked list o� an entry for the transactionin the ATT. Each physical update (to a part of a region) generates physical undoand redo log records that are appended to the respective local log. When a trans-action/operation pre-commits, the current contents of the transaction's local redolog are appended to the system log tail in memory, and the logical undo description1It is possible to release locks for a transactionon pre-commit; as a result read-only transactionsmay read uncommitted data, and their commit must be delayed until the dirty data they have readhas been committed. 4

for the operation is included in an operation commit log record appended to thesystem log. Thus, with the exception of logical undo descriptors, only redo recordsare written to the system log during normal processing.Also, when an operation pre-commits, the undo log records for its subopera-tions/updates are replaced in the transaction's (local) undo log with a logical undolog record containing the undo description for the operation. In-memory undo logsof transactions that have committed are deleted since they are not required again.2The system log is ushed to disk when a transaction commits. For each redo logrecord written to disk, pages touched by the update on the log record are markeddirty in the dirty page table, dpt, by the ushing procedure. In our single-site recov-ery scheme, update actions do not obtain latches on pages { instead region locks areobtained to ensure that updates do not interfere with each other.3 Eliminating latch-ing signi�cantly decreases access costs in main-memory, and reduces programmingcomplexity. Recovery related actions that are normally taken on page latching, suchas setting of dirty bits for the page, are now performed based on log records writtento the redo log. (Our distributed-memory schemes, with the exception of one of theshared-disk schemes, do not obtain page latches either; the sole exception uses pagelatching to ensure cache coherency, which is not a problem in the single-site case.)The redo log is used as a single unifying resource to coordinate the application'sinteraction with the recovery system, and this approach has proven very useful.2.5 Ping-pong CheckpointingConsistent with the terminology in main-memory databases, we use the term check-point to mean a copy of the main-memory database which is stored on disk, and theterm checkpointing to refer to the action of creating a checkpoint. This terminologydi�ers slightly from the terminology used, for example, in ARIES [MHL+92].Traditional recovery schemes implement write-ahead logging (WAL), whereby allundo logs for updates on a page are ushed to disk before the page is ushed todisk. In such systems, to guarantee the WAL property, typically a latch on a pageis obtained, all log records pertaining to the page are ushed to stable storage thepage is copied to disk, and the latch released. Updaters also obtain the same pagelatch, thereby preventing concurrent updates while a page is being ushed to disk.As a result of not obtaining latches on pages during updates, it is not possible toenforce the write-ahead logging policy, since pages may be updated even as they arebeing written out.Instead, our recovery algorithm makes use of a strategy called ping-pong check-pointing (see, e.g., [SGM90b]). In ping-pong checkpointing two copies of the data-base image are stored on disk, and alternate checkpoints write dirty pages to altern-2The logs can be deleted on pre-commit, since, short of a system crash, nothing can result inthe transaction aborting.3In cases when region sizes change, certain additional region locks on storage allocation struc-tures may need to be obtained. For example, in a page based system, if an update causes the sizeof a tuple to change, then in addition to a region lock on the tuple, an X mode region lock on thestorage allocation structures on the page must be obtained.5

ate copies. Writing alternate checkpoints to alternate copies permits a checkpointthat is being created to be temporarily inconsistent; i.e., updates may have beenwritten out without corresponding undo records having been written. However,after writing out dirty pages, su�cient redo and undo log information is writtenout to bring the checkpoint to a consistent state. Even if a failure occurs whilecreating one checkpoint, the other checkpoint is still consistent and can be used forrecovery.Keeping two copies of a main-memory database on disk for ping-pong checkpoint-ing does not have a very high space penalty, since disk space is much cheaperthan main-memory. Further, ping-pong checkpointing has several other bene�ts.For instance, although many recovery schemes assume page writes are atomic, inreality they are not, and complex schemes are needed to detect and recover fromincomplete page writes resulting from, for example, power failures. Incomplete pagewrites cause no problems with ping-pong checkpointing, since the previous check-point image is still available. Ping-pong checkpointing also permits some physicaland logical consistency checks to be performed on the checkpoint before declaringit successfully completed.Before writing any dirty data to disk, the checkpoint notes the current end of thestable log in the variable end of stable log, which will be stored with the checkpoint.This is the start point for scanning the system log when recovering from a crashusing this checkpoint. Next, the contents of the (in-memory) ckpt dpt are set tothose of the dpt and the dpt is zeroed (noting of end of stable log and zeroing of dptare done atomically with respect to ushing). The pages written out are the pagesthat were either dirty in the ckpt dpt of the last completed checkpoint, or dirty inthe current (in-memory) ckpt dpt, or in both. In other words, all pages are writtenout that were modi�ed since the current checkpoint image was previously written,namely, pages that were dirtied since the last-but-one checkpoint. This is necessaryto ensure that updates described by log records preceding the current checkpoint'send of stable log have made it in the database image in the current checkpoint.Checkpoints write out dirty pages without obtaining any latches and thereby avoidinterfering with normal operations. The checkpoint image is thus fuzzy. Fuzzycheckpointing however could result in two problems for recovery:� the checkpoint page image may contain partial updates of an operation� the undo log record for an update may not be in the stable system log (whichcould result in a problem if the system were to crash immediately after thecheckpoint).The �rst problem is solved by our policy of always writing physical redo log records.By applying physical redo log records (whose e�ects are idempotent) to a checkpointpage image we can ensure that we can obtain a page image that does not containany partial updates.The second problem is solved by ensuring that for any update whose e�ects havemade it to the checkpoint image, one of the following holds: 1) corresponding phys-ical undo log records are written out to disk after the database image has been6

written or 2) all physical redo log records for the operation (corresponding to thepartial update) as well as the logical undo descriptor in the operation commit logrecord are on stable storage. This is performed by checkpointing the ATT andushing the log after checkpointing the data. The checkpoint of the ATT writes outundo log records, as well as some other status information. In case the operationcontaining the partial update completes and consequently the undo log records areremoved from the ATT before the checkpoint of the ATT, the log ush ensures thatall log records corresponding to the operation (containing the partial update) as wellas the operation commit log record are on stable storage. The checkpoint is declaredcompleted (and consistent) by toggling cur ckpt to point to the new checkpoint.2.6 Abort ProcessingWhen a transaction aborts, that is, does not successfully complete execution, up-dates/operations described by log records in the transaction's undo log are undoneby traversing the undo log backwards from the end. Transaction abort is carriedout by executing, in reverse order, every undo record just as if the execution werepart of the transaction.Following the philosophy of repeating history [MHL+92], new physical redo log re-cords are created for each physical undo record encountered during the abort. Sim-ilarly, for each logical undo record encountered, a new \compensation" or \proxy"operation is executed based on the undo description. Log records for updates per-formed by the operation are generated as during normal processing. Furthermore,when the proxy operation commits, all its undo log records are deleted along withthe logical undo record for the operation that was undone. The commit record forthe proxy operation serves a purpose similar to that served by compensation log re-cords (CLRs) in ARIES { during restart recovery, when it is encountered, the logicalundo log record for the operation that was undone is deleted from the transaction'sundo log, thus preventing it from being undone again.2.7 RecoveryRestart recovery begins by initializing the ATT and transaction undo logs to theATT and undo logs stored in the most recent checkpoint, loads the database imageand sets dpt to zero. Next, recovery processes redo log records. Recall that as part ofthe checkpoint operation, the end of the system log on disk, end of stable log, is notedbefore the database image is checkpointed. This value of end of stable log becomesthe \begin recovery point" for the checkpoint once the checkpoint has completed.All updates described by log records preceding this point are guaranteed to bereected in the checkpointed database image.Thus, during restart recovery only redo log records following the end of stable logfor the last completed checkpoint of the database are applied. Restart recoveryignores redo log records for updates performed by an operation if the commit logrecord for the operation is not found in the system log. Such log records represent7

uncommitted updates, and may not have corresponding undo records in the check-pointed ATT. However, if the undo records are absent, the e�ects of the log recordswill not be reected in the checkpointed database image. Such records would bepresent only due to a crash while the log records for an operation were being ushed.During the application of redo log records, appropriate pages in dpt are set todirty for each log record and necessary actions are taken to keep the checkpointedimage of the ATT consistent with the log as it is applied. These actions on the ATTmirror the actions taken during normal processing. For example, when an operationcommit log record is encountered, lower level log records in the transaction's undolog for the operation are replaced by a higher level undo description.Once all the redo log records have been applied, the active transactions are rolledback. To do this, all completed operations that have been invoked directly by thetransaction, or have been directly invoked by an incomplete operation, have to berolled back. However, the order in which operations of di�erent transactions arerolled back is very important, so that an undo at level Li sees data structures thatare consistent [Lom92]. First, all operations (across all transactions) at L0 thatmust be rolled back are rolled back, followed by all operations at level L1, then L2and so on.3 Connection to Related WorkMulti-level recovery and variants thereof, primarily for disk-based systems, havebeen proposed in the literature [WHBM90, Lom92, MHL+92]. Like these schemes,our schemes repeat history, generate log records during undo processing and logoperation commits when undo operations complete (similar to CLRs described in[MHL+92]). Also, as in [Lom92], transaction rollback at crash recovery is performedlevel by level. Some of the features of our main-memory recovery technique whichimpact the distributed schemes are1. Due to transient undo logging, no physical undo logs are written out to theglobal log except during checkpoints.2. Separate undo logs are maintained in memory for active transactions. A resultis that transaction rollback does not need to access the global log, part of whichcould be on disk.3. Our single-site scheme does not require latching of pages during updates,which is inconvenient and expensive in either a main-memoryDB or an OODBsetting. Actions that are normally taken on page latching, such as setting ofdirty bits for the page, are e�ciently performed based on physical redo logrecords written to the global log. (One of our shared-disk schemes uses pagelatching for ensuring cache consistency, while the other shared-disk schemedoes not.) 8

4. The correctness requirements of the write-ahead logging policy are accom-plished with a single ush for the entire database during a checkpoint, ratherthan (potentially) one ush per page.5. Our scheme does not perform in-place update of the disk image during pageush, instead using ping-pong checkpointing.In the ARIES-SD [MN91] family of schemes for recovery in the shared disk en-vironment, each site maintains a separate log, and pages are shipped between sites.Our shared-disk log-shipping scheme does not ship pages, but instead broadcasts logrecords, taking advantage of cheap application of these log records in main-memory,and permitting concurrent updates at a smaller-than-page granularity. In our shareddisk schemes, log ushes are driven by the release of a lock from a site, in order tosupport repeating of history and correct rollback of multi-level actions during crashrecovery. The \super fast" method of ARIES-SD [MN91] does not describe ushesto protect the early release of locks, making it unclear how that scheme supportslogical undo and high-concurrency index operations.In [Rah91], the authors propose recovery schemes for the shared disk environmentwhich assume page-level concurrency control and the NO-STEAL page write policy{ neither of which are assumptions made in our schemes.In [MN94], the authors show how the ARIES recovery algorithm described in[MHL+92] can be extended to a client-server environment. In contrast to ourclient-server scheme, their scheme involves the clients as well as the server in thecheckpointing process. We also support concurrent updates to a page by di�erentclients, which is not supported in [MN94].In [CFZ94], object-level as well as adaptive locking and replica management arediscussed, but recovery considerations are not extensively addressed. In [FZT+92],the client-server recovery scheme for the Exodus storage manager (ESM-CS) isdescribed. This recovery scheme, based on ARIES [MHL+92], requires page-levellocking until end of transaction (for example, the Commit Dirty Page List).4 Client-Server Recovery SchemeIn this section, we describe the client-server recovery scheme. Our system model isas follows.� There is a single server with stable storage, which is responsible for co-ordinating all the logging, and for performing checkpoints and recovery (seeFigure 2). The server maintains a copy of the entire database in memory.� Multiple clients may be connected to the server; each client has a copy of theentire database in its memory.� A transaction executes at a single client and updates/accesses the copy of thedatabase at the client. 9

In Main Memory

Stable System Log

On Disk

Client nodes

In Main Memory

In Main Memory
SERVER

Network

System Log Tail

Database

System Log Tail

Database
ATT

ATT

System Log Tail

Database
ATT DPT

Checkpoints
cur_ckpt

Ckpt A

Ckpt BFigure 2: Client-Server Architecture� The network is FIFO and reliable.As a result of updating the local copy of the database, database pages updated bya client may not be current at some other client. Therefore, a page at a client is inone of two states { valid or invalid. Invalid pages contain stale versions of certaindata due to updates by other clients and are refreshed by obtaining the latest copyof the page from the server.Transactions follow the callback locking scheme [LLOW91, CFZ94] when obtainingand releasing locks. Each client site has a local lock manager (LLM) which cacheslocks and a global lock manager (GLM) at the server keeps track of locks cachedat the various clients. Transaction requests for locks cached locally are handled atthe client itself. However, requests for locks not cached locally are forwarded to theGLM which calls back the lock from other clients that may have cached the lock ina conicting mode (before granting the lock request). A client relinquishes a lockin response to a callback as soon as transactions currently holding the lock (if any)release the lock.The server maintains the dpt and the ATT (for all transactions in the client-serversystem) while the clients maintain the ATT for the transactions belonging to thatclient. The log records for updates generated by a transaction at a client site arestored in that site's ATT. Client sites do not maintain a system log on disk, butkeep a system log tail in memory and append log records from the local redo logs tothis tail when operations commit/abort. Checkpointing is performed solely at theserver, and follows the same procedure as the centralized case.When a lock is relinquished from a site or a transaction commits, log records in thesystem log are shipped by the client to the server. In the case of transaction commit,the client waits for the server to ush the newly received log records to disk before10

reporting the commit to the user. The shipped redo log records are used to updatethe server's copy of the a�ected pages, ensuring that pages shipped to clients fromthe server are current (note that pages are shipped only from the server to clientsand never vice versa). This enables our scheme to support concurrent updates toa single page at multiple clients since re-applying the updates at the server causesthem to be merged (this approach is also adopted in [CDF+94]). Shipping the logrecords will usually be cheaper than shipping pages, and the cost of applying the logrecords themselves is small since, in our main-memory database context, the serverwill not have to read the a�ected pages from disk.We will now describe our scheme in detail and also outline several possible optim-izations to the basic ideas discussed above.4.1 Basic OperationsWe now describe the features which distinguish the client-server scheme from thecentralized case, in terms of actions performed at the client and the server at speci�cpoints in processing.� Page Access: In case a client accesses a page that is valid, it simply goesahead without communicating with the server. Else, if the page is invalid(certain data on the page may be stale), then the client refreshes the pageby 1) obtaining the most recent version of the page from the server, and 2)applying to the newly received page any local updates which have not beensent to the server (this step merges local updates with updates from othersites). The client then marks the page as valid. The server keeps track ofclients that have the page in a valid state.To prevent race conditions, the client does not send log records to the serverafter asking for a page and before receiving it.An optimization of the above is to check for validity of pages at the time ofacquisition of region locks from the server rather than on every access; for thisoptimization to be used, the set of pages covered by the region lock must beknown.� Operation/Transaction Commit: At the client, redo log records aremoved to the system log, a commit record is appended, and appropriate actionsare performed on the transaction's undo log in the ATT as described for thecentralized case. In case of a transaction commit the log records in the systemlog are shipped to the server, and commit processing waits until the serverhas acknowledged that the log records have been ushed to disk.Finally, all the locks acquired by the operation/transaction are released locally.The local lock manager at the site may however continue to cache the lockslocally.� Lock Release: When a lock is relinquished by a client, all redo log recordsthat were generated under this lock need to be shipped to the server. The11

server then applies these log records to its database image to ensure that an-other client that obtains the same lock gets a copy of the pages which containsthe updates described by these log records. A simple way to ensure that alllog records generated under the lock are shipped to the server is to ush thesystem log from the client to the server.An optimization to avoid ushing the system log each time is to store the endof the client system log with the lock (at the client) when a X mode region lockor an operation lock is released by a transaction. Thus, for any region lock,all redo log records in the system log a�ecting that region precede the pointin the log stored with the lock. Similarly, for an operation lock, all log recordsrelating to the operation (including operation commit) precede the point in thesystem log stored with the lock. This location in the log is client-site-speci�c.Before a client site relinquishes an X mode region lock or operation lock tothe server due to call-back, it ships to the server at least the portion of thesystem log which precedes the log pointer stored with the lock. This ensuresthat the next lock will not be acquired on the region until the server's copyis up to date, and the history of the update is in place in the server's logs.For X mode region locks, this ush ensures repeating of history on regions,while for operation locks this ush ensures that the server receives the logicalundo descriptors in the operation commit log records for the operation whichreleased the locks. Thus, if the server aborts a transaction after a site failure,the abort of this operation will take place at the logical level of the locks stillheld for it at the server.� Log Record Processing: At the server, for each physical redo log record(received froma client), the undo log record is generated by reading the currentcontents of the page at the server. The new log record is then appended to theundo log for this transaction in the server's ATT. Next the update describedby the redo log record is applied, following which the log record is appendedto the redo log for the transaction in the server's ATT. Operation/transactioncommit log records received from the client are processed by performing thesame actions as in the centralized case when the log records were generated.In addition, for operation commit, the logical undo descriptor is extractedfrom the commit log record and appended to the undo log for the transactionin the server's ATT. For transaction commit, the client whose transactioncommitted is noti�ed after the log ush to disk succeeds.By applying all the physical updates described in the physical log recordsto its pages, the server ensures that it always contains the latest updates onregions for locks which have been released to it from the clients. The e�ectof the logging scheme, as far as data updates are concerned, is just as if theclient transaction actually ran at the server site.� Transaction Abort/Site Failures: If a client site decides to abort a trans-action, it processes the abort (as in the centralized case) using the undo logs12

for the transaction in the client's ATT. If the client site itself fails, the serverwill abort transactions that were active at the client using undo logs for thetransaction in it's ATT(since the client cannot commit without communicat-ing with the server, in case of partition, a decision to abort is enforceable bythe server). If the server fails, then the complete system is brought down, andrestart recovery is performed at the server as described in Section 2.7.� Page InvalidationWe complete our client-server scheme by presenting two methods, invalidate-on-update, and invalidate-on-lock, for ensuring that data accessed by a clientis up-to-date.All actions described so far are used in common by both methods. In partic-ular, both methods follow the rule that all log records pertaining to updatesmade under a lock are ushed to the server before the lock is relinquishedfrom the site. Since the server would have applied the log records to its copyof the data, this ensures that when the server grants a lock, it has the currentversion of all pages containing data covered by that lock. However, when aclient acquires a lock, it is still possible that the copy of one or more pagesinvolved in the region for which the lock was obtained are not up-to-date atthe client.Both methods mark pages at the clients as invalid, to denote that some of thedata on the page is out of date. Even if a page is marked invalid, some ofthe data in the page may still be up-to-date, for instance, if the client has aregion lock on the data. The �rst method, invalidate-on-update, is an eagermethod that marks pages as invalid at clients as soon as an update occursat the server, while the second, invalidate-on-lock, is a more lazy method,marking pages as invalid at clients when the client gets a lock. The secondscheme reduces invalidation messages by keeping extra per-lock informationat the server. Details of the two methods are presented in Sections 4.2 and4.3 respectively.4.2 Invalidate-On-UpdateThe invalidate-on-update scheme works as follows. When the server receives logrecords from a client, it does the following. For each page that it updates, it sendsinvalidate messages to clients (other than the client that updated the page) that mayhave the page marked as valid. For all clients other than the client that updated thepage, the server notes that the client does not have the page marked valid. Clients,on receiving the invalidate message, mark their page as invalid. Thus invalidationmessages are received by clients before they can acquire a region lock on the updateddata, and begin accessing the data.Although the method is very simple and easy to implement, it has some drawbacks.For example, consider two sites s1 and s2 updating the same page concurrently undertwo di�erent region locks. Let s1 be the site that ushes its updates to the server13

�rst; the update will cause the server to send an invalidate message to s2, which willthen re-read the page from the server. However, if site s2 accesses the page againunder the lock that it already has, then the invalidate was not necessary, since thedata in the region it has locked has not changed. The invalidate-on-lock scheme inthe next section takes advantage of this observation to reduce overheads.4.3 Invalidate-On-LockThe invalidate-on-lock scheme decreases unnecessary invalidations and the overheadof sending invalidation messages by marking pages as invalid only when a lock ona region covering the page is obtained by a client. As a result, if two clients areupdating di�erent regions on the same page, as in the earlier example, no invalid-ation messages are sent to either client. By piggy-backing invalidation messagesfor updated pages on lock grant messages from the server, the overhead of sendingseparate invalidation messages in the previous scheme is eliminated.The biggest bene�t of the invalidate-on-lock scheme, however, is that there is noneed to check for validity of a page on every access or update to the page|it su�cesto check for validity at lock acquisition time.To achieve the above, the scheme must associate with the lock for a region in-formation about updates to that region. Speci�cally, when updates described bya physical redo record are applied to pages at the server, the updated pages areassociated with the lock for the updated region. Thus, the scheme requires that itbe possible to determine the region lock from the redo record. A simple way ofobtaining this information is to require that an update call must specify not onlythe data to be updated, but also the region lock that protects the data. It is easy fora programmer to provide this information, since all updates must be made holdinga region lock. The lock name can then be sent with the redo log record.This scheme also requires that the server associate a Log Sequence Number (LSN),with each log record, which reects both the order in which the record was appliedto the server's copy of the page and the order in which it was added to the systemlog. For each page, the server stores the LSN of the most recent log record thatupdated the page, and the identity of the client which issued it. In addition, foreach client, the server maintains in a client page table (cpt), the state of the page atthe client (valid/invalid), along with the LSN for the page when it was last shippedto the client.The server also maintains for each region lock a list of pages that are dirty dueto updates to the region. For each page in the list, the server stores the LSN of themost recent log record received by the server that recorded an update to the partof the region on this page, and the client which performed the update. Thus, whena client is granted a region lock, if, for a page in the lock list, the LSN is greaterthan the LSN for the page when it was last shipped to the client, then the clientpage contains stale data for the region and must be invalidated.14

The LSN information serves to minimize the shipping of pages to clients, markinga page as invalid only if there is an update performed under the region lock requestedby the client, and the update has not yet been propagated to the client.The additional actions for this scheme are as follows:� Log apply: When the server applies to a page P a redo log record, LR,generated at client C under region lock L, it takes the following actions (afterP has been updated). First, the LSN for P is set to the LSN for LR. Second,the entry for P in the list of dirty pages for L is updated (or created), settingthe client to C, and the LSN to the LSN for LR.� Lock grant: A set of invalidate messages is passed back to the client with thelock acquisition. The invalidate messages are for pages in the list associatedwith the lock being acquired that meet three criteria: 1) the page is cached atthe client in the valid state, 2) the LSN of the page in the cpt for the client issmaller than the LSN of the page in the lock list, and 3) the client acquiringthe lock was not the last to update the page under this lock. The invalidatedpages are marked invalid in the cpt for the client and at the client site.� Page refresh: When the server sends a page to a client (page refresh), atthe server, the page is marked valid in the cpt for the client and the LSN forthe page in the cpt is updated to be the LSN for the page at the server.� Lock list cleanup: We are interested in keeping the list of pages with everylock as small as possible. This can be achieved by periodically deleting pagesP from the list of lock L such that the following condition holds, where C isthe client noted in the list of pages for L as the last client to update P:Every client other than C has the page cached either in an invalidstate or with LSN greater than or equal to the LSN for the page inthe list for lock L.The rationale for this rule is that the purpose of region lock lists is to determinepages that must be invalidated. However, if for a page in a client's cpt, theLSN is greater than the LSN for the page in the lock list, then the client hasthe most recent update to the region on the page, and thus the page will notneed to be part of any invalidation list sent to the client.5 Shared Disk Recovery: Model and Common Struc-turesIn the shared disk approach, a number of machines are interconnected and also havedirect access to disks over a fast network. The shared disk environment is used inmany systems, such as the DEC VAXclusters, and provides bene�ts over a sharednothing architecture, such as faster access to non-local disks and fault-tolerance.15

Also, the basic advantage of shared disk schemes over the client-server schemesis that the algorithms are symmetric with respect to which site executes them,preventing one system from becoming a bottleneck in the system. As in our client-server scheme, in addition to careful consideration of the interaction with multi-level recovery, our main concern is minimizing false sharing through �ne-grainedconcurrency control. This allows, for example, read-only transactions with a fullycached working set to proceed at main-memory speeds, an important property forour intended applications.We now describe our shared disk recovery model.� Each site maintains its own copy of the entire database in memory and its ownsystem log on disk. Thus there are be multiple logs in the system.� Sites obtain locks from a Global Lock Manager (GLM); the function of the lockmanager could be distributed for speed and reliability, but this is orthogonalto our discussion.� Sites cache locks, and relinquish locks based on the call back locking mechan-ism described in Section 4. We assume the network is FIFO and reliable.� Each site has its own system log on disk and therefore the logs are distrib-uted. To repeat history during restart recovery, we need some mechanism totemporally order log records that a�ect the same region. To enable this, eachsite maintains a global timestamp counter TS ctr, and a timestamp obtainedfrom this counter is stored in each physical redo log record for an update. Wewill see the details of how this TS ctr is maintained and used later.� Each site maintains its own version of the dirty page table dpt, system log (inmemory and on disk), and an ATT (with separate undo and redo log recordsfor each transaction) which stores information relating to transactions thatexecute at that site.� A single pair of checkpointed images is maintained on disk for the database.A checkpoint image consists of an image of the database, the dirty page tableckpt dpt, and for every site:1. end of stable log { the point in the site's system log fromwhich the systemlog must be scanned during recovery.2. a copy of the ATT at the site (containing undo logs).In the next two sections, we present two schemes for shared disk concurrencycontrol and recovery. The �rst is a page-shipping approach which is similar inspirit to the Invalidate-on-Update client-server mode. The second is a log shippingscheme which allows concurrent use of non-overlapping regions on a page acrosssites. 16

cur_ckpt

Ckpt A

Ckpt B

Site 1 DB

ATTDPT

Sys Log Tail

Stable Sys Log

DB

ATT
DPT

Sys Log Tail

Stable Sys Log

Site 2

Memory Memory

Shared Disk
Logs

1 2 3 ...

Site N

N

Checkpoints

1
1

2
2

End of Stable log

ATT
(undo logs)

1PTT PTT2

Database ckpt_ptt ckpt_dptFigure 3: Page-Shipping Shared Disk Architecture6 Page-Shipping Shared Disk Recovery SchemeOur page-shipping scheme is similar in spirit to the Invalidate-on-Update client-server scheme in that a transaction at a site updating a region on a page is guaran-teed to have the latest copy of the page. Therefore, concurrent updates to di�erentregions of a page are not possible in this scheme.6.1 Data StructuresWe now describe data structures speci�c to the page-shipping scheme. Commondata structures were described in Section 5. An overview of the data structures forthis scheme is given in Figure 3.In addition to the TS ctr for the site, a timestamp for each page is maintained ateach site in the page timestamp table, ptt which keeps track of the TS ctr value whenthe page was last updated. Each page has an associated page lock which helps inensuring that a transaction always has the latest copy of the page while accessingor updating the page. Sites cache locks, and relinquish locks based on the call backlocking mechanism described earlier. Along with each of the two checkpoint imagesof the database is stored a checkpoint page timestamp table, referred to as ckpt ptt.6.2 Normal ProcessingWe describe below the actions taken during normal processing, in addition to thoseperformed in the centralized case, to support distributed concurrency control andrecovery. Checkpointing and recovery from system and site failure are described insubsequent subsections. 17

� Update: Like in the centralized case, before accessing a region, each transac-tion obtains a region lock from the LLM. Additional page locks are acquiredin S(X) mode while accessing(updating) data on a page. If this lock is notcached at the site, actions are performed as described below under Lock Ac-quisition.Page locks for an access are released by a transaction once the access iscompleted; page locks for an update are released by a transaction only afterthe update on the page is completed. The value of TS ctr at the site when theredo log record was generated is stored in the redo log record correspondingto the update. Also, the timestamp for the updated page (in the ptt) at thesite is set to the TS ctr stored in the log record.An important point to note is that log records in the system log may not beordered on their TS ctr values. This is because the value of TS ctr is storedin the redo log record when the update is performed, but the log record isappended to the transaction local log, which is not ushed to the system redolog until operation or transaction commit.� Lock Release: When a transaction releases an X mode region lock or oper-ation lock, it stores the end of log in memory with the lock (this is stored tooptimize the amount of ushing that needs to be done when a lock is relin-quished as in the client-server scheme). Note that all updates for the operationwhich held the region lock will be moved to the global log by the normal op-eration commit semantics prior to the release of this lock. Thus, for a regionlock, all redo log records for updates to the region covered by the lock precedethe end of log point stored with the lock (similar for operations). When a siterelinquishes an X region lock or operation lock, it ushes the global log at itssite until the end of log point stored with the lock. The ush on release of Xregion or operation locks is done to ensure that it is possible to repeat historyduring restart recovery, and appropriate locks for undoing operations are heldin case of site crashes. Note that no ushes are performed when page locksare released.Additionally, when a site releases an X page or X region lock back to theGLM, it stamps it with the site's TS ctr; the TS ctr value of the lock is usedby other sites that later acquire the lock, as we will see shortly. The GLM alsostores with each page lock the site that last held the page lock in X mode; theinformation is updated each time a site relinquishes an X mode page lock,� Lock Acquisition:A transaction acquiring a lock cached by the LLM need take no special action.If it is a page lock, then the page is already current at this site.When an X-mode page or region lock arrives from the GLM, it includes thetimestamp from the last site that held the lock in X mode, as described above.Upon receiving an X region lock or page lock at a site, the site's TS ctr is set18

to the maximum of 1) it's current value, and 2) the TS ctr value associatedwith the incoming lock plus one.When a site acquires a page lock on behalf of a transaction from the GLM(that is, the lock is not already cached at the site), the site requests the pagefrom the last site that held the page lock in X mode (using the site identi�ersent with the lock). In order to handle single-site recovery, failure of theacquiring site to obtain a copy of the page, due to a failure of the site fromwhich it is being requested, causes the lock acquisition to fail and the lock tobe returned to the GLM unchanged.Shipping timestamps with page locks ensures that log records for successive up-dates to a page at di�erent sites are assigned increasing timestamp values. Shippingtimestamps with region locks ensure that log records generated under conictinglocks are applied in the correct order during recovery even though redo log recordsin the individual site may not be ordered by timestamp (as mentioned earlier).However, the algorithm still works correctly, as shown in the discussion of recoveryand correctness below.6.3 CheckpointingUnlike the centralized and client-server scheme, checkpointing in the shared diskenvironment requires coordination among the various sites. As mentioned above, asingle pair of checkpointed images is maintained for all the sites.The site initiating the checkpoint coordinates the operation, which consists of thefollowing three steps at each site { 1) writing the database �le image 2) writing theATT and 3) ushing the global log. Below, we describe each step:1. The coordinator announces the beginning of the checkpoint, at which timeall sites (including the coordinator) note their current end of stable log values,then make a copy of their dpts and zero their dpts. Note that zeroing the dptand recording end of stable log is done atomically with respect to ushes.Each site then makes a copy of its current ptt and sends it to the coordinatoralong with the end of stable log (noted above), and a copy of the dpt. Thecoordinator constructs ckpt dpt by or'ing together the copy of its dpt and allthe dpts received from other sites (recall that we are assuming the dpt is abitmap). The database pages to be written out during the checkpoint are thepages that are dirty in ckpt dpt or in the ckpt dpt in the previous checkpoint.For each page to be written out, the coordinator uses the ptts sent to it bythe other sites and its own ptt to determine the site whose ptt contains thehighest timestamp for the page. This site is responsible for writing the page tothe checkpoint image. Once the coordinator has partitioned the set of pagesto be written out among the various sites, each site is sent the set of pageidenti�ers assigned to it. A site, upon receiving its assigned set of pages towrite, proceeds to write those pages to the checkpoint image. Since no twosites will be assigned the same page, site can write pages concurrently.19

The coordinator then constructs ckpt ptt by �rst reading the ckpt ptt in theprevious checkpoint into memory. For every page that was determined to bewritten out (by some site i), the timestamp for the page in ckpt ptt is set toits timestamp in the copy of the ptt for site i. Finally, ckpt dpt constructedearlier, ckpt ptt and the end of stable logs for all the sites are written to thecheckpoint.Note that since the site with the highest timestamp for a page writes thepage to the checkpoint image, updates to the page by log records precedingend of stable log recorded for a site, are contained in the checkpoint. Further-more, as will be discussed in the correctness section below, updates for a pagerecorded in log records with timestamps less than the timestamp for the pagein ckpt ptt are also contained in the checkpoint.2. Once every site has written out the database image and reported this to thecoordinator, the coordinator instructs each site to write out its ATT. Notethat multiple sites can be concurrently writing out the ATT.3. After writing out the ATT, each site ushes the global log at that site as inthe centralized case. Finally, the database checkpoint is committed after allsites have completed their ushing.6.4 RecoveryIn case the entire system fails, restart recovery is performed by any one site, say j.The site j, which we will call the acting coordinator site, reads the following from themost recent checkpoint image: the database image, the ckpt ptt, and for each site,the ATT and the end of stable log. A separate page table ptt is initialized to ckpt pttand for each site i a separate dpt, dpti is initialized to contain zero bits for all pages.Starting from the end of stable log point stored for a site in the checkpoint, the logrecords in all the system logs are merged as described below, and applied to thedatabase. To merge the system logs, they are scanned in parallel; at each point,if the next log record in any of the system logs is not a redo log record, then anyone such record is processed and the ATT for its site is modi�ed as described forthe centralized case in Section 2.7. On the other hand, if the next records in all thesystem logs are redo log records, then the log record output next is the one amongstthem with the lowest timestamp value. If, for a page updated by the log record, thetimestamp in the log record is greater than or equal to the timestamp for the pagein ckpt ptt, then 1) the update is applied to the page, 2) the page is marked dirtyin the dpt for the site whose system log contains the record, and 3) the timestampfor the page in ptt is set to the maximum of its current value and the timestamp inthe log record.Note that redo records in the system log for a site may not be in timestamp orderas mentioned earlier. However, this does not cause a problem and conicting logrecords are applied in the order in which they were generated. The reason for thisis that for two conicting log records in separate system logs, the earlier log record20

and log records preceding it in its system log have lower timestamps than the logrecord generated later. This fact is revisited below in our overview of correctness.Once the last log record has been processed, TS ctr at the acting coordinator sitej is set to the largest timestamp contained in the ptt at site j. Site j then rolls backin-progress operations in the ATTs for the various sites beginning with level L0 andthen considering successive levels L1; L2 and so on (as described in Section 2.7).When an operation in an ATT entry for a site i is being processed, actions areperformed on the undo and redo logs for the entry. Furthermore, each redo logrecord generated when processing an operation for site i is assigned a timestampequal to TS ctr at site j, and when an operation pre-commits/aborts, log recordsfrom the redo log are appended to the system log for site i.Next, site j ushes every site's system logs causing appropriate pages in the dptfor the site (maintained at site j) to be marked dirty. After this point, the othersites are involved in recovery. The TS ctr at every site is set to the TS ctr at site jafter incrementing it by one. The dpt at each site is then set to the dpt maintainedfor the site during recovery at site j, and the database image and ptt at each site isset equal to the database image and ptt at site j. Finally ckpt ptt and dpt for othersites are deleted from site j, bringing recovery to completion.6.5 Overview of CorrectnessIn this section, we present additional arguments about the correctness of our page-shipping recovery scheme by discussing below several properties on which the cor-rectness is based.1. A page, i, in a checkpoint image reects all updates with timestamp less thanckpt ptt[i].2. Any log record a�ecting page i prior to end of stable log at any site hastimestamp less than or equal to ckpt ptt[i] and is reected in the checkpointimage of page i.3. If L1 and L2 are conicting log records and L1 is generated before L2, then ifL2 is ushed to the stable log, then so is L1.4. If L1 and L2 are conicting log records in di�erent system logs and L1 isgenerated before L2, then L1 and all log records preceding it in its system loghave lower timestamps than L2.(1) follows from the fact that timestamps for pages in the ptt are set only after theyare updated, and passing timestamps with page locks guarantees that successive up-dates to a page have non-decreasing timestamps (and in turn, assign non-decreasingtimestamps to the ptt entry).(2) For a log record that updates page i prior to end of stable log at a site, (a)ppt[i] at the site is greater than or equal to the timestamp in the log record, (b)the page is in the dpt of the site and (c) the page at the site contains the update21

(when the site sends its ppt and dpt to the coordinator during the �rst phase of thecheckpoint). Thus, since the site for which ppt[i] is the largest writes the page to thecheckpoint image, ckpt ppt[i] is greater than or equal to the timestamp in the logrecord. Also, since versions of a page with higher timestamps contain all updatesin versions with lower timestamps, the update by the log record is reected in thecheckpoint image of page i.(3) When the region lock covering L1 was released, it must have followed thecommit of an operation due to the rules of multi-level recovery. Thus, that logrecord would be moved to the global log during the operation commit, and wouldthus be before the point noted on release of the region lock. The ush to that pointcarried out when a region lock is released by a site guarantees the property.(4) The shipping of TS ctrs with region locks ensures this property. The reasonfor this is that L1 is appended to the system log at its site before the X region lockfor the updated region is released by the site. The timestamp assigned to the lockis the TS ctr at the site for L1 which is at least as large as the timestamps in L1and all the redo records preceding L1 in the releasing site's system log. Before L2can be generated, its site has to acquire the region lock in X mode which causes thetimestamp at the site where L2 is generated to be set higher than the timestampfor the lock. Thus, L2 is assigned a timestamp greater than L1 as well as all logrecords preceding L1.Properties (1) through (4) can be used to show that our recovery scheme repeatshistory when scanning the system logs. Property (1) implies that updates to apage i by a log record do not need to be applied if ckpt ptt[i] is greater than thetimestamp in the log record. From property (2), it follows that log records pre-ceding end of stable log can be ignored since these updates are already containedin the checkpoint image. Property (3) ensures that log records in the system logsaccurately and completely describe the history of updates to every region. Finally,property (4) ensures that conicting updates described by log records that appearafter end of stable log are applied during recovery in the order in which they wereperformed during normal processing (in spite of timestamps possibly being out oforder within a single site's log). Note that, for conicting log records L1 and L2 onpage i, L1 generated before L2, L2 may precede end of stable log for its site, whileL1 follows end of stable log for its site. In this case, due to property (2), ckpt ptt[i]would be greater than or equal to the timestamp for L2 and the timestamp for L2would be greater than that for L1. Thus, the update to page i by L1 would not beapplied during recovery.6.6 Recovery from Site FailureOur recovery algorithm can also be extended to deal with a site failure withoutperforming a complete system restart, so long as the GLM data has not been lost,or can be regenerated from the other sites. If this is not the case, a full systemrecovery is performed instead. 22

Recovery from a single site failure is complicated since log records for updates byactive transactions at the failed site may not have made it to stable storage whilethe updates themselves may have been propagated to other sites when the pagescontaining the updates are shipped between sites. There is no way to undo theseupdates since the undo information for them is contained is main-memory and islost when the site failed. Thus, the only way to roll back the above set of updates isto recover the set of pages that the updates span. (Note that such a problem wouldnot arise with a scheme providing lower concurrency, such as page locks held to endof transaction.)In order to support this roll-back, it must be possible to associate with any regionor operation lock the set of pages such that some part of the page may be updatedby an operation that holds the lock; we call this set of pages as the pages a�ectedby the lock.The �rst step, when a site j recovers, is to determine the set of pages that mustbe recovered|these are pages that either:1. May contain updates by uncommitted transactions from site j, or2. Were last updated by site j.The pages in (1) are those a�ected by any operation or X mode region lock held bysite j at the GLM. The pages in (2) are those pages on which site j was the last siteto have obtained an X page lock. The pages in (2) that are not in (1) are the set ofpages that contain updates belonging to transactions that committed at site j. Notethat for these pages, if a di�erent site k holds an S lock on the page, the page neednot be recovered, and the GLM merely notes that the site k has the latest versionof the page.Once the set of pages to be recovered are determined as described above, they areall locked in X mode by site j so that all updates to these pages by other sites areblocked (any other page locks held by site j are released).Site j then retrieves from the most recent checkpoint, the database image, theATT for site j, ckpt ptt and the end of stable log for each site. It then requests fromevery other site, the current end of stable log at the site and the sequence of redorecords in memory at the site (that is, redo records in the transaction local logsor in the system log after end of stable log) involving updates to the pages beingrecovered. The redo pass is performed by scanning all the system logs as describedin the Section 6.4 except that 1) only updates to pages being recovered are applieddepending on the timestamps for these pages in ckpt ptt, and the timestamps foronly these updated pages are modi�ed in ptt, 2) only the pages in the dpt for sitej are marked dirty, 3) only actions on the ATT for site j are performed, and 4)the system log for a site is scanned until the end of stable log returned by that siteat the beginning of this recovery. After this, the in-memory redo records receivedfrom the various sites are applied in timestamp order to the pages being recovered,and the timestamps for the updated pages in ptt are set to the timestamp in the logrecord. 23

At the end of the redo pass, the pages being recovered contain updates by transac-tions at every other site and updates by transactions at site j for which log recordsare contained in the stable log (thus, updates described by redo log records inmemory of site j when it crashed are absent { this includes the transaction locallogs and the portion of the global log in main memory). At this point, other sitescan be granted page locks held by site j if they request it. TS ctr at site j is set tobe greater than the largest timestamp in the ptt at site j.Before rolling back in-progress operations, the locks that were cached at site jat the time it crashed are obtained by the recovery process at site j by consultingthe GLM. As described in Section 2.7, rollback is performed level by level, withadditional locks requested as is done during normal processing (see Section 7.2).Level Li operation locks at site j can be released once all active operations at levelLi+1 have been rolled back.As in normal processing, TS ctr at site j is incremented when a new lock is ob-tained, TS ctr stored in a redo log record and in the timestamp entries for updatedpages when the redo log is generated, and log ushes are performed when opera-tion/X mode region locks are released by site j.7 Log-Shipping Shared Disk Recovery SchemeWe are interested in improving the concurrency of the page-shipping shared diskrecovery scheme by allowing multiple concurrent readers and writers of the samepage at di�erent sites, as long as the parts of the page they update come underdi�erent region locks. A result of this is that copies of a page at di�erent sites maycontain a di�erent set of updates, which must be merged before the page is writtento disk. Unlike the client-server case, there is no server to carry out the task ofmerging updates.To solve the above problem, in our scheme, log records generated at a site arebroadcast to all other sites, so the updates can be carried out there. Since logrecords are shipped, there is no need to ship pages. The scheme ensures that everytime a site obtains a region lock, the most recent version of the region is guaranteedto be accessed at the site. More precisely, it guarantees that every time a site obtainsany lock (whether an operation lock or a region lock), all log records generated byall operations which held the same lock in a conicting mode have been applied tothe local page images.The idea of broadcasting log records leads to an architecture that essentially im-plements distributed shared memory, without the overhead of shipping pages. Notethat the overhead of broadcasting log records to all the sites may not be too severeif update rates are not too high. Broadcasting may also be seen as a strategy topropagate updates early, possibly using greater bandwidth, but avoiding the latencyof waiting for pages to be shipped when another transaction needs to update thedata. Also, in some network architectures (e.g., ethernet), the cost of a broadcastto all sites may not be very di�erent from the cost of sending a message to a singlesite. 24

cur_ckpt

Ckpt A

Ckpt B

Site 1 DB

ATTDPT 1 A []

Sys Log Tail

Stable Sys Log

DB

ATT
DPT

Sys Log Tail

Stable Sys Log

A []2

Site 2

Memory Memory

Shared Disk
Logs

1 2 3 ...

Site N

N

Checkpoints

1
1

2
2

End of Stable log

CA array (TS_ctrs)

ATT
(undo logs)

ckpt_dptDatabaseFigure 4: Log-Ship Shared Disk Architecture7.1 Data StructuresAn overview of data structures used for our shared disk scheme is given in Fig-ure 4. In addition to the common elements described in Section 5, the log-basedscheme maintains the following additional data structures. At every site j, an ar-ray of TS ctrs (one TS ctr per site), Aj is maintained in memory. Aj [i] stores thetimestamp of the latest update from site i that has been applied to the database atsite j. Aj serves a purpose similar to ptts in the page-shipping scheme { it keepstrack of the state of the database relative to log records.With each checkpointed image on disk, each site stores the TS ctr following whichredo log records from that site must be applied to the database. Collectively thesecounters are referred to as AC . Note that since pages are not shipped between sites,the log-shipping scheme does not need page locks.7.2 Normal ProcessingWe describe below the actions taken during normal processing to support distributedconcurrency control and recovery (in addition to those for the centralized case).Checkpointing and recovery from system and site failure are described in subsequentsections.� Log Records: Every time a physical redo log record is moved from a trans-action's local redo log to the system log, TS ctr is incremented by 1 and storedin the log record. The timestamps are used to order log records that describeconicting updates. 25

� System Log Flush: When the system log at site i is ushed to stable storage,each redo log record which has hit the disk is also broadcast to the other sites.The sending site i, also sets Ai[i] to the timestamp in the log record. Flushingof a sequence of log records is completed once every log record has been writtento disk as well as sent to the remaining sites. Also, as in the centralized case,pages updated by the ushed log records are marked dirty in the site's dpt.� Log Record Receipt: A site j processes an update broadcast to it from sitei as follows (updates are processed in the order in which they are received).On receiving a broadcast log record, the site applies the update to its localcopy of the a�ected page(s), and sets the appropriate bits in its dpt. Afterupdating the appropriate pages, the site sets Aj [i] to the timestamp containedin the update (redo log record).� Lock Release: The lock managers aid the scheme in two ways. First, asin the previous schemes, the current local end-of-log is noted with regionand operation locks when the lock is released by a transaction, and the LLMensures that the log is ushed to this point before releasing the lock from thesite. This aids in recovery by ensuring that history is repeated, and whenlower level locks are released, the logical undo actions which accompany thehigher level locks have made it to disk. Since logs are broadcast on ush,it helps ensure that another site will receive the necessary log records beforegetting the same lock in a conicting mode.Note that the FIFO property of the network does not ensure that a site jreceives an update broadcast from a site i before it obtains the region lockfor the updated region from the GLM (relinquished to the GLM by site i).In order to ensure that all previous updates to a region are received by asite before it obtains the region lock, the LLM before releasing a region lockfrom a site must ensure that not only have all redo log records preceding theend-of-log (noted for the lock) ushed to disk, but also that acknowledgmentsof receipt of the broadcast records have been received from all sites.Second, when a transaction releases an X mode region lock, the timestampfor the lock is set to the current value of TS ctr at the site. When this lock iscalled back by the GLM, this value is also sent and is associated with the lockby the GLM. When received by another site, the timestamp is used to ensurethat log records for conicting actions covered by this lock have increasingtimestamp values. As an optimization, the site identi�er can also be sent withthe lock to the GLM; the purpose will become clear in the next point.� Lock Acquisition: When a site receives an X mode region lock from theGLM, it sets its own TS ctr to be the maximum of its current TS ctr and thetimestamp associated with the lock (received from the GLM). Further, thelock is granted to a local transaction only after all outstanding (unapplied)updates at the time of acquiring the lock have been applied to the page. This26

is to ensure that data accessed at a site is always the most recent version ofthe data.As an optimization, if a site identi�er is provided with the lock by the GLM,it su�ces to process log records up to (and including) the log record from thesite with the timestamp provided.7.3 CheckpointingCheckpointing is coordinated by one of the sites. The checkpointing operation con-sists of three steps | 1) writing the database image by the coordinator, 2) writingthe ATT at each site and 3) ushing the logs at each site. The main di�erence fromthe centralized case lies in how each step is carried out. We describe each stepbelow:1. The coordinator announces the beginning of the checkpoint, at which timeall other sites �rst make a copy of their dpts and then subsequently zerotheir dpts, and note their current end of stable log values. Note that recordingend of stable log and dpt, and then zeroing dpt is done atomically with respectto ushes. Every site sends the recorded dpt and end of stable log values tothe coordinator. The coordinator site j applies all outstanding updates, thenatomically (with respect to processing further log records and ushing) recordsits end of stable log, copies its timestamp array Aj to AC , copies its dpt tockpt dpt, and then zeroes its own dpt. The coordinator then or's its ckpt dptwith the copies of the dpts it receives from the other sites. It then writes tothe checkpoint image the ckpt dpt, the end of stable logs for each site, and thetimestamp array AC .Next, the database image is written out by the coordinator in the same fashionas in the centralized case, writing out not only pages dirty in this checkpointinterval (in ckpt dpt), but also pages dirtied in the previous checkpoint interval(in the ckpt dpt stored in the previous checkpoint).2. Once the coordinator has written out the database image, it instructs eachsite to write out its ATT. Multiple sites can be concurrently writing out theirATTs.3. The logs are ushed at each site and after all sites ush their logs the co-ordinator commits the checkpoint by toggling cur ckpt, as in the centralizedcase.Note that in Step 1, applying outstanding updates at the coordinator before record-ing ckpt dpt and AC ensures that updates preceding end of stable log reported byother sites have been applied to the database pages, and thus, it is safe to zero dptsat sites when end of stable log is noted. Also, since each site notes end of stable logindependently, it is possible that for a redo log record after end of stable log at onesite, a conicting redo log record generated after it may be before end of stable log27

noted at a di�erent site. As a result, during restart recovery, applying every updateafter end of stable log in the system log for a site could result in the latter updatebeing lost. Storing AC in the checkpoint and during restart recovery, applying onlyredo records at site i whose timestamps are greater than AC [i] eliminates the aboveproblem since timestamps for both updates would be smaller than the correspondingTS ctr values for the sites in AC .7.4 RecoveryRestart recovery in case of a system wide failure (where all sites have to be re-covered) can be performed as follows by an arbitrary site j in the system, which wewill call the acting coordinator. The following actions are performed by site j alone.First, the database image and the checkpointed timestamp array AC are read,and for each site, the ATT and the end of stable log recorded in the checkpoint areread. Redo log records in the system logs for the various sites are then applied tothe database image by concurrently scanning the various system logs. Each site'ssystem log is scanned in parallel, starting from the end of stable log recorded forthe site in the checkpoint. At each point, if the next log record to be considered inany of the system logs is not a redo log record, then it is processed and the ATTfor its site is modi�ed as described for the centralized case in Section 2.7. On theother hand, if the next record to be considered in all the system logs is a redo logrecord, then the log record considered next is the one (among all the system logs ondisk being considered) with the lowest timestamp value. For every redo log recordencountered in the system log for a site, i, with a timestamp greater than AC [i], theupdate is applied and the a�ected pages are marked as dirty in j's dpt.Once all the system logs have been scanned, TS ctr at site j is set to the largesttimestamp contained in a redo log record. In-progress operations in the ATTs forthe various sites are then rolled back and executed, respectively, at site j againstthe database at site j, beginning with level L0 and then considering successive levelsL1; L2 and so on (as described in Section 2.7). When an operation in an ATT entryfor a site is being processed, actions are performed on the undo and redo logs forthe entry. Furthermore, when an operation pre-commits/aborts, log records fromthe redo log are appended to the system log for the site and the timestamp for eachredo log record appended is obtained by incrementing TS ctr at site j.Finally, every site's system logs are ushed causing appropriate pages in j's dptto be marked dirty (updates are not broadcast, however), and the TS ctr at everysite and Ak[i] for all sites k and i are set to the TS ctr value at site j. The databaseimage at every site is copied from the database image at site j, the dpt for each siteis copied from the dpt at site j; recovery is then complete.7.5 Overview of CorrectnessThe correctness of the checkpointing and recovery algorithms follows from the fol-lowing properties. 28

1. If the timestamp contained in a log record for site i is less than or equalto AC [i], then the log record's e�ects must have made it to the copy of thedatabase in the checkpoint.2. Any log record in the system log for site i prior to end of stable log for the sitehas a timestamp less than or equal to AC [i].3. If L1 and L2 are conicting log records and L1 is generated before L2, then ifL2 is ushed to the stable log, then so is L1.4. If L1 and L2 are conicting log records in di�erent system logs and L1 isgenerated before L2, then L1 has a lower timestamp than L2.Property (1) holds since when a page is written to disk during a checkpoint atsite j, updates preceding Aj [i] have made it to the image of the page at site j (dueto the algorithm for application of incoming log records), and this page is dirty inj's dpt (because the dpt is noted atomically with AC).Property (2) holds since before site i sends its end of stable log to the checkpointcoordinator, any update preceding it is sent to the coordinator (when the system logis ushed at site i). Since the network is FIFO, the receipt of the end of stable logimplies that all necessary log records have arrived. Furthermore, before notingAC [i], the coordinator applies outstanding updates from site i and thus sets Aj [i]to the timestamp of the last update applied from site i.Property (3) holds since the log is ushed every time a site relinquishes a regionlock. Finally, property (4) holds since before the region lock that guards L1 isreleased by its site, L1 is appended to the system log and assigned a timestampfrom the TS ctr at the site. Furthermore, the TS ctr at L1's site is shipped alongwith the region lock when it releases the region lock, and the site for L2 sets its TS ctrto be at least the timestamp it receives when it acquires the lock. Thus, since L2is generated after the lock is obtained by its site, it is assigned a timestamp greaterthan the TS ctr value at its site when the site receives the region lock, and theproperty holds.From the above properties, it follows that history is repeated as a consequenceof applying the redo log records contained in the system logs in timestamp orderduring restart recovery. From properties (1) and (2), it follows that log recordspreceding end of stable log can be ignored since these updates are already containedin the checkpoint image. Similarly, property (2) implies that updates at a site iby a log record do not need to be applied if AC [i] is greater than or equal to thetimestamp in the log record. Property (3) ensures that log records in the system logsaccurately and completely describe the history of updates to every region. Finally,property (4) ensures that conicting updates described by log records that appearafter end of stable log are applied during recovery in the order in which they wereperformed during normal processing. Note that, for conicting log records L1 andL2, L1 generated before L2, L2 may precede end of stable log for its site (say i),while L1 follows end of stable log for its site. In this case, due to property (2), AC [i]would be greater than or equal to the timestamp for L2 and the timestamp for L229

would be greater than that for L1. Thus, the update by L1 would not be appliedduring recovery.7.6 Recovery from Site FailureOur recovery algorithm can also be extended to deal with a site failure withoutperforming a complete system restart, so long as the GLM data has not been lost,or can be regenerated from the other sites. If this is not the case, a full systemrecovery is performed instead. Recovery from site failure, as with regular systemrecovery, has a redo pass, followed by rollback of in-progress operations.Before beginning the redo recovery pass, the recovering site, say j, retrieves fromthe most recent checkpoint the database image, the ATT for site j, the timestamparray AC and the end of stable log for each site. It then informs other sites that itis up, and requests from each site i, that site's current end of stable log value, andthe value of Ai[j]. At this point, other sites start sending log records to j; these arebu�ered and processed later. The redo pass is then performed by scanning all thesystem logs as described in the previous subsection except that 1) only the pagesin the dpt for site j are marked dirty, 2) only actions on the ATT for site j areperformed, and 3) the system log for a site is scanned until the end of stable logreturned by that site at the beginning of site j's recovery.Also, log records in the tail end of the log of the recovering site may not havemade it to other sites { since a log record is broadcast after it is ushed. For eachsite i (other than the recovering site, j) all log records in site j's system log thathave timestamps greater than Ai[j] are broadcast to site i as they are processed.Once the redo pass is completed, Aj[i] is set to the maximum timestamp in a redolog record encountered during the redo pass in the system log for site i. Also,TS ctr at site j is set to the maximum of Aj[i] for all sites i. At this point, site jcan begin applying updates described by log records received from other sites, asduring normal processing, in the order received, and checkpoints can again be takenas normal.Before rolling back in-progress operations, the locks that were cached at site j atthe time it crashed are re-obtained by the recovery process at site j by consultingthe GLM. As described in Section 2.7, rollback is performed level by level, withadditional locks requested as is done during normal processing (see Section 7.2).Thus, TS ctr at site j is incremented and outstanding updates are applied when anew lock is obtained, TS ctr is incremented when a redo log record is appended tothe system log, and log ushes are performed when operation/X mode region locksare released by site j. Also, level Li operation locks at site j can be released onceall active operations at level Li+1 have been rolled back.8 ConclusionIn this paper, we showed how our single-site multi-level recovery algorithm formain-memory databases can be extended to a distributed-memory data-shipping30

system while maintaining many of the original bene�ts of the single-site algorithm.The �rst scheme presented supports client-server processing in which a centralsystem controls logs and checkpoints. In the second and third scheme, suitablefor a cluster of computers with a shared disk, sites participate symmetrically intransaction processing activities.We described details of recovery after the failure of clients or the server in theclient-server case, and from single site as well as system-wide failure in the shareddisk case. Our schemes allow concurrent updates at multiple clients in a client-server environment or multiple sites of the shared disk environment. By allowing�ne-grained and exible concurrency control, our schemes are applicable to a rangeof distributed, main-memory applications which need transactional access to data.Our distributed schemes are based on a multi-level scheme for recovery in main-memory databases which has been implemented in the Dal�� Main Memory StorageManager [JLR+94]. Thus, the bene�ts of this algorithm are extended to the dis-tributed schemes; the bene�ts include fuzzy checkpointing, use of the log for imple-menting functions that otherwise require page latching, low overhead logging withundo records written only due to a checkpoint, and per-transaction logs for lowcontention.Future work includes parallelization of recovery in the shared disk setting, andrecovery in a system where not all sites store the entire database. We also plan toexplore the performance of our schemes through experimentation, and then build adistributed, data-shipping version of Dal�� based on these algorithms.References[BPR+96] P. Bohannon, J. Parker, R. Rastogi, S. Seshadri, and S. Sudarshan.Distributed multi-level recovery in main-memory databases. TechnicalReport 112530-96-02-27-01TM, Lucent Technologies, Bell Laborator-ies, February 1996.[CDF+94] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAul-i�e, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G.Tsatalos, S. J. White, and M. J. Zwilling. Shoring up persistent applica-tions. In Proceedings of ACM-SIGMOD 1994 International Conferenceon Management of Data, Minneapolis, Minnesota, pages 383{394, May1994.[CFZ94] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-grained shar-ing in a page server OODBMS. In Proceedings of ACM-SIGMOD 1994International Conference on Management of Data, Minneapolis, Min-nesota, pages 359{370, May 1994.[DKO+84] D. J. DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker, andD. Wood. Implementation techniques for main memory database sys-31

tems. Proc. ACM-SIGMOD 1984 Int'l Conf. on Management of Data,pages 1{8, June 1984.[FZT+92] M. J. Franklin, M. J. Zwilling, C. K. Tan, M. J. Carey, and D. J.DeWitt. Crash recovery in client-server EXODUS. In Proceedingsof ACM-SIGMOD 1992 International Conference on Management ofData, San Diego, California, pages 165{174, June 1992.[GMS92] H. Garcia-Molina and K. Salem. Main memory database systems: Anoverview. IEEE Transactions on Knowledge and Data Engineering,4(6):509{516, December 1992.[Hag86] Robert B. Hagmann. A crash recovery scheme for a memory-residentdatabase system. IEEE Transactions on Computers, C-35(9):839{847,September 1986.[JLR+94] H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi, Avi Silberschatz, andS. Sudarshan. Dali: A high performance main-memory storage man-ager. In Procs. of the International Conf. on Very Large Databases,1994.[JSS93] H.V. Jagadish, Avi Silberschatz, and S. Sudarshan. Recovering frommain-memory lapses. In Procs. of the International Conf. on VeryLarge Databases, 1993.[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstoredatabase system. Communications of the ACM, 34(10), October 1991.[Lom92] D. Lomet. MLR: A recovery method for multi-level systems. In Proceed-ings of ACM-SIGMOD 1992 International Conference on Managementof Data, San Diego, California, pages 185{194, 1992.[LSC92] T. Lehman, E. J. Shekita, and L. Cabrera. An evaluation of Starburst'smemory resident storage component. IEEE Transactions on Knowledgeand Data Engineering, 4(6):555{566, December 1992.[MHL+92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. AR-IES: A transaction recovery method supporting �ne-granularity lockingand partial rollbacks using write-ahead logging. ACM Transactions onDatabase Systems, 17(1):94{162, March 1992.[MN91] C. Mohan and I. Narang. Recovery and coherency-control protocols forfast intersystem page transfer and �ne-granularity locking in a shareddisks transaction environment. In Proceedings of the Seventeenth Inter-national Conference on Very Large Databases, Barcelona, pages 193{207, September 1991. 32

[MN94] C. Mohan and I. Narang. ARIES/CSA: a method for database recov-ery in client-server architectures. In Proceedings of ACM-SIGMOD1994 International Conference on Management of Data, Minneapolis,Minnesota, pages 55{66, May 1994.[Rah91] E. Rahm. Recovery concepts for data sharing systems. In Proceedingsof the Twenty �rst International Conference on Fault-Tolerant Com-puting (FTCS-21), Montreal, pages 109{123, June 1991.[SGM90a] K. Salem and H. Garcia-Molina. System M: A transaction processingtestbed for memory resident data. IEEE Transactions on Knowledgeand Data Engineering, 2(1):161{172, March 1990.[SGM90b] K. Salem and H. Garcia-Molina. System M: A transaction processingtestbed for memory resident data. IEEE Transactions on Knowledgeand Data Engineering, 2(1):161{172, 1990.[WHBM90] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery.In Proceedings of the Nineth ACM SIGACT-SIGMOD-SIGART Sym-posium on Principles of Database Systems, Nashville, pages 109{123,June 1990.

33

