Distributed Multi-Level Recovery in
Main-Memory Databases

Rajeev Rastogi* Philip Bohannon* James Parker*

S. Seshadrif Avi Silberschatz* S. Sudarshanf
* Bell Laboratories, Murray Hill, N.J
{rastogi,plbohannon,parker,avi}@bell-labs.com
7 Indian Institute of Technology, Bombay, India
{seshadri,sudarsha}@cse.iith.ernet.in

Abstract

In this paper we present recovery techniques for distributed main-memory
databases, specifically for client-server and shared-disk architectures. We
present a recovery scheme for client-server architectures, based on shipping log
records to the server, and two recovery schemes for shared-disk architectures
one based on page shipping, and the other based on broadcasting of the log
of updates. The schemes offer different tradeoffs, based on factors such as
update rates.

Our techniques are extensions to a distributed-memory setting of a cent-
ralized recovery scheme for main-memory databases, which has been imple-
mented in the Dali main-memory database system. Our centralized as well
as distributed-memory recovery schemes have several attractive features
they support an explicit multi-level recovery abstraction for high concurrency,
reduce disk /O by writing only redo log records to disk during normal pro-
cessing, and use per-transaction redo and undo logs to reduce contention on
the system log. Further, the techniques use a fuzzy checkpointing scheme
that writes only dirty pages to disk, yet minimally interferes with normal
processing all but one of our recovery schemes do not require updaters to
even acquire a latch before updating a page. Our log shipping/broadcasting
schemes also support concurrent updates to the same page at different sites.

tThe work of these authors was performed in part while they were at Bell Tabs.

1 Introduction

A large number of applications (e.g., call routing and switching in telecommunic-
ations, financial applications, automation control) require high performance access
to data with response time requirements of the order of a few milliseconds to tens
of milliseconds. Traditional disk-based database systems are incapable of meeting
the high performance needs of such applications due to the latency of accessing data
that is disk-resident. An attractive approach to providing applications with low
(and predictable) response times is to load the entire database into main-memory.
Databases for such applications are often of the order of tens or hundreds of mega-
bytes, which can easily be supported in main-memory. Further, machines with main
memories of 8 gigabytes or more are already available, and with the falling price
of RAM, machines with such large main memories will become cheaper and more
common.

One approach for implementing such high performance databases is to provide
a large buffer-cache to a traditional disk-based system. In contrast, in a main-
memory database system (MMDB) (see, e.g., [GMS92, L.SC92, JLRF94, DKO*84]),
the entire database can be directly mapped into the virtual address space of the
process and locked in memory. Data can be accessed either directly by virtual
memory pointers, or indirectly via location independent database offsets that can
be quickly translated to memory addresses. During data access, there is no need to
interact with a buffer manager, either for locating data, or for fetching/pinning buffer
pages. Also, objects larger than the system’s page size can be stored contiguously,
thereby simplifying retrieval or in-place use. Thus, data access using a main-memory
database is very fast compared to using disk-based storage managers, even when
the disk-based manager has sufficient memory to cache all data pages.

Distributed architectures in which several machines are connected by a fast net-
work, and perform database accesses and updates in parallel, provide significant
further performance improvements for a number of applications. For example, con-
sider applications in which transactions are predominantly read-only and update
rates are low (e.g., number translation and call routing in telecommunications).
Fach machine can locally access data cached in memory, thus avoiding network com-
munication which could be fairly expensive. Another example is Computer Aided
Design applications, where locality of reference is very high, update transactions
are long, and interactive response time is very important.

Distribution also enhances fault tolerance, which is required in many mission-
critical applications, even if data fits easily in a single machine’s main-memory.
In this case, especially with low update rates, a distributed database is preferable
to a hot-spare since the load can be distributed in the non-failure case leading to
improved performance.

The recovery scheme used in the Dali main-memory database system [JLR*94]
is based on the main-memory recovery scheme presented in [JSS93]. The recovery
scheme of [JSS93] provides important features such as transient undo logging in
which undo log records are kept in memory and only written to disk if required for

checkpointing, per-transaction logs in memory to reduce contention on the system
log tail, and recovery using only a single pass over the system log. The recovery
scheme used in Dali provides several further extensions, such as multi-level recovery
([WHBM90, MHT.792, T.om92]), and fuzzy checkpointing [SGM90a, Hag86].

The goal of the work described here was to extend the Dali recovery scheme
to the distributed memory case, simultaneously maintaining the advantages of the
single-site scheme, and efficiently supporting the applications described above. For
example, we can make use of transient undo logging to reduce the size of the log
written to disk, as well as the size of the log sent across network links in distributed
protocols.

We present, three distinct but related distributed recovery schemes the first for
client-server architectures, and the second and third for shared disk architectures.
These are all “data-shipping” schemes (see, e.g., [FZTT92]) in which a transac-
tion executes at a single site, fetching data (pages) as required from other sites.
Distributed commit protocols are not needed as in “function-shipping” environ-
ments. While shared disk architectures have traditionally been closely tied to hard-
ware platforms (e.g., VAXCluster), UNTX-based shared disk platforms and network
of workstation architectures with similar performance characteristics are becoming
more common.

A key property of the client-server scheme and one of the shared disk schemes
s that concurrent updates are possible at granularities smaller than a page-size.
Thereby minimizing “false-sharing” (that is, apparent, conflicts due to coarse-granu-
larity locking) and consequently, needless network accesses to resolve false sharing.
Our distributed recovery algorithms provide the advanced features of our centralized
recovery algorithms, such as transient undo logging, explicit multi-level recovery,
and fuzzy checkpointing. Site or global recovery requires only a single pass over
the system log, starting from the end of the system log recorded in the most recent
checkpoint.

The remainder of the paper is organized as follows. We present background on
multi-level recovery and the single-site algorithm on which the present work 1s based
in Section 2. Related work is presented in Section 3. We present our client-server
recovery algorithm in Section 4. Section 5 describes our shared disk model, while
Sections 6 and 7 present our shared disk recovery algorithms. Section 8 concludes
the paper.

2 Overview of Main-Memory Recovery

In this section we present a review of multi-level recovery concepts and an overview
of the single-site main-memory recovery scheme used in the Dali system. Low-level
details of our scheme are described in [BPRT96].

In our scheme, data is logically organized into regions. A region can be a tuple,
an object, or an arbitrary data structure like a list or a tree. FEach region has a
single associated lock, referred to as the region lock, with exclusive (X) and shared
(S) modes that guard updates and accesses to the region, respectively.

Database Undo Log Dirty Page
Table
Trans. Local
Logs

—_ Active Trans.
Table

End of
Stable Log System Log Tail I'n Main Menory
!
v

Stable System Log ﬁJ On Disk] Endof
- e Stable log
cur_ckpt e - Database
@ Ckpt A ckpt_dpt
Ckpt B ~ Active Trans
~ Table (ATT)
N | (undologs)

Figure 1: Overview of Recovery Structures

2.1 Multi-Level Recovery

Multi-level recovery [WHBM90, MHT.+*92, T.om92] provides recovery support for
enhanced concurrency based on the semantics of operations. Specifically, it permits
the use of weaker operation locks in place of stronger shared /exclusive region locks.

A common example is index management, where holding physical region locks
until transaction commit leads to unacceptably low levels of concurrency. Tf undo
logging has been done physically (e.g. recording exactly which bytes were modified
to insert a key into the index) then the transaction management system must ensure
that these physical undo descriptions are valid until transaction commit. Since the
descriptions refer to byte changes at specific positions, this typically implies that
the region locks on the updated index nodes must be held till transaction commit
to ensure correct recovery, in addition to considerations for concurrent access to the
index.

The multi-level recovery approach 1s to replace these low-level physical undo log
records with higher level logical undo log records containing undo descriptions at
the operation level. Thus, for an insert operation, physical undo records would be
replaced by a logical undo record indicating that the inserted key must be deleted.
Once this replacement is made, the region locks may be released and only (less
restrictive) operation locks are retained. For example, region locks on the particular
nodes involved in an insert can be released, while an operation lock on the newly
inserted key that prevents the key from being accessed or deleted is held.

2.2 System Overview

Figure 1 gives an overview of the structures used for recovery. The database (a
sequence of fixed size pages) is mapped into the address space of each process and
is in main memory, with (two) checkpoint images Ckpt_A and Ckpt_B on disk. Also
stored on disk are 1) cur_ckpt, an “anchor” pointing to the most recent, valid check-

point image for the database, and 2) a single system log containing redo information,
with 1ts tail in memory. The variable end_of_stable_log stores a pointer into the sys-
tem log such that all records prior to the pointer are known to have been flushed to
the stable system log.

There is a single active transaction table (ATT) in main-memory which stores
separate redo and undo logs for active transactions, in addition to information about
transaction status. A dirty page table, dpt, is maintained in memory to record pages
that have been updated since the last checkpoint. For simplicity of presentation,
we assume that the dirty page is maintained as a bitmap with one bit per page.
The ATT (with undo logs, but without redo logs) and the dirty page table are also
stored with each checkpoint image. The dirty page table in a checkpoint image is
referred to as ckpt_dpt.

2.3 Transactions and Operations

Transactions, in our model, consist of a sequence of multi-level operations, following
to [Lom92]. We briefly describe the model below. Each operation has a level I;
associated with 1t. An operation at level I.; can consist of a sequence of operations
at level I; 1. Transactions, assumed to be at level I, call operations at level
Ln_1. Physical updates to regions are level 1y operations. For transactions, we
distinguish between pre-commit, when the commit record enters the system log in
memory, establishing a point in the serialization order, and commit when the commit
record hits the stable log. For operations, we use the terms commit and pre-commit
interchangeably since both refer to the time when the commit record enters the
system log in memory.

Each transaction obtains an operation lock before it executes an operation; the
operation lock is granted if the operation commutes with other operation locks held
by other active transactions. TLevel Ly operations obtain region locks instead of
operation locks. The locks on the region are released once the I operation pre-
commits; similarly, an operation lock at level I; is held until the transaction or the
containing operation (at level I; 11) commits. All the locks acquired by a transaction
are released once it commits.!

2.4 Logging Model

The recovery algorithm maintains separate local undo and redo logs in memory for
each transaction. These are stored as a linked list off an entry for the transaction
in the ATT. Each physical update (to a part of a region) generates physical undo
and redo log records that are appended to the respective local log. When a trans-
action /operation pre-commits, the current contents of the transaction’s local redo
log are appended to the system log tail in memory, and the logical undo description

Tt is possible to release locks for a transaction on pre-commit; as a result read-only transactions
may read uncommitted data, and their commit must be delayed until the dirty data they have read
has been committed.

for the operation is included in an operation commit log record appended to the
system log. Thus, with the exception of logical undo descriptors, only redo records
are written to the system log during normal processing.

Also, when an operation pre-commits, the undo log records for its subopera-
tions/updates are replaced in the transaction’s (local) undo log with a logical undo
log record containing the undo description for the operation. ITn-memory undo logs
of transactions that have committed are deleted since they are not required again.?

The system log 1s flushed to disk when a transaction commits. For each redo log
record written to disk, pages touched by the update on the log record are marked
dirty in the dirty page table, dpt, by the flushing procedure. Tn our single-site recov-
ery scheme, update actions do not obtain latches on pages instead region locks are
obtained to ensure that updates do not interfere with each other.® Eliminating latch-
ing significantly decreases access costs in main-memory, and reduces programming
complexity. Recovery related actions that are normally taken on page latching, such
as sefting of dirty bits for the page, are now performed based on log records written
to the redo log. (Our distributed-memory schemes, with the exception of one of the
shared-disk schemes, do not obtain page latches either; the sole exception uses page
latching to ensure cache coherency, which is not, a problem in the single-site case.)
The redo log 1s used as a single unifying resource to coordinate the application’s
interaction with the recovery system, and this approach has proven very useful.

2.5 Ping-pong Checkpointing

Consistent with the terminology in main-memory databases, we use the term check-
point to mean a copy of the main-memory database which is stored on disk, and the
term checkpointing to refer to the action of creating a checkpoint. This terminology
differs slightly from the terminology used, for example, in ARIES [MHT.%92].

Traditional recovery schemes implement, write-ahead logging (WAT.), whereby all
undo logs for updates on a page are flushed to disk before the page is flushed to
disk. Tn such systems, to guarantee the WAT, property, typically a latch on a page
18 obtained, all log records pertaining to the page are flushed to stable storage the
page is copied to disk, and the latch released. Updaters also obtain the same page
latch, thereby preventing concurrent updates while a page is being flushed to disk.
As a result of not obtaining latches on pages during updates, it i1s not possible to
enforce the write-ahead logging policy, since pages may be updated even as they are
being written out.

Instead, our recovery algorithm makes use of a strategy called ping-pong check-
pointing (see, e.g., [SGM9I0b]). Tn ping-pong checkpointing two copies of the data-
base image are stored on disk, and alternate checkpoints write dirty pages to altern-

2The logs can be deleted on pre-commit, since, short of a system crash, nothing can result in
the transaction aborting.

3Tn cases when region sizes change, certain additional region locks on storage allocation struc-
tures may need to be obtained. For example, in a page based system, if an update causes the size
of a tuple to change, then in addition to a region lock on the tuple, an X mode region lock on the
storage allocation structures on the page must be obtained.

ate copies. Writing alternate checkpoints to alternate copies permits a checkpoint
that 1s being created to be temporarily inconsistent; 1.e., updates may have been
written out without corresponding undo records having been written. However,
after writing out dirty pages, sufficient redo and undo log information is written
out to bring the checkpoint to a consistent state. Fven if a failure occurs while
creating one checkpoint, the other checkpoint is still consistent and can be used for
recovery.

Keeping two copies of a main-memory database on disk for ping-pong checkpoint-
ing does not have a very high space penalty, since disk space is much cheaper
than main-memory. Further, ping-pong checkpointing has several other benefits.
For instance, although many recovery schemes assume page writes are atomic, in
reality they are not, and complex schemes are needed to detect and recover from
incomplete page writes resulting from, for example, power failures. Incomplete page
writes cause no problems with ping-pong checkpointing, since the previous check-
point image is still available. Ping-pong checkpointing also permits some physical
and logical consistency checks to be performed on the checkpoint before declaring
it successfully completed.

Before writing any dirty data to disk, the checkpoint notes the current end of the
stable log in the variable end_of stable_log, which will be stored with the checkpoint.
This is the start point for scanning the system log when recovering from a crash
using this checkpoint. Next, the contents of the (in-memory) ckpt_dpt are set to
those of the dpt and the dpt is zeroed (noting of end_of_stable_log and zeroing of dpt
are done atomically with respect to flushing). The pages written out are the pages
that were either dirty in the ckpt_dpt of the last completed checkpoint, or dirty in
the current, (in-memory) ckpt_dpt, or in both. Tn other words, all pages are written
out that were modified since the current checkpoint image was previously written,
namely, pages that were dirtied since the last-but-one checkpoint. This is necessary
to ensure that updates described by log records preceding the current checkpoint’s
end_of_stable_log have made it in the database image in the current checkpoint.

Checkpoints write out, dirty pages without obtaining any latches and thereby avoid
interfering with normal operations. The checkpoint image is thus fuzzy. Fuzzy
checkpointing however could result in two problems for recovery:

e the checkpoint page image may contain partial updates of an operation

e the undo log record for an update may not be in the stable system log (which
could result in a problem if the system were to crash immediately after the
checkpoint).

The first problem is solved by our policy of always writing physical redo log records.
By applying physical redo log records (whose effects are idempotent) to a checkpoint
page image we can ensure that we can obtain a page image that does not contain
any partial updates.

The second problem is solved by ensuring that for any update whose effects have
made it to the checkpoint image, one of the following holds: 1) corresponding phys-
ical undo log records are written out to disk after the database image has been

written or 2) all physical redo log records for the operation (corresponding to the
partial update) as well as the logical undo descriptor in the operation commit log
record are on stable storage. This is performed by checkpointing the ATT and
flushing the log after checkpointing the data. The checkpoint of the ATT writes out
undo log records, as well as some other status information. Tn case the operation
containing the partial update completes and consequently the undo log records are
removed from the ATT before the checkpoint of the ATT, the log flush ensures that
all log records corresponding to the operation (containing the partial update) as well
as the operation commit log record are on stable storage. The checkpoint is declared
completed (and consistent) by toggling cur_ckpt to point to the new checkpoint.

2.6 Abort Processing

When a transaction aborts, that 1s, does not successfully complete execution, up-
dates/operations described by log records in the transaction’s undo log are undone
by traversing the undo log backwards from the end. Transaction abort is carried
out by executing, in reverse order, every undo record just as if the execution were
part of the transaction.

Following the philosophy of repeating history [MHLT92], new physical redo log re-
cords are created for each physical undo record encountered during the abort. Sim-
ilarly, for each logical undo record encountered, a new “compensation” or “proxy”
operation is executed based on the undo description. Tog records for updates per-
formed by the operation are generated as during normal processing. Furthermore,
when the proxy operation commits, all its undo log records are deleted along with
the logical undo record for the operation that was undone. The commit record for
the proxy operation serves a purpose similar to that served by compensation log re-
cords (CLRs) in ARTES during restart recovery, when it is encountered, the logical
undo log record for the operation that was undone 1s deleted from the transaction’s
undo log, thus preventing it from being undone again.

2.7 Recovery

Restart recovery begins by initializing the ATT and transaction undo logs to the
ATT and undo logs stored in the most recent checkpoint, loads the database image
and sets dpt to zero. Next, recovery processes redo log records. Recall that as part of
the checkpoint operation, the end of the system log on disk, end_of_stable_log, is noted
before the database image 1s checkpointed. This value of end_of_stable_log becomes
the “begin recovery point” for the checkpoint once the checkpoint has completed.
All updates described by log records preceding this point are guaranteed to be
reflected in the checkpointed database image.

Thus, during restart recovery only redo log records following the end_of stable_log
for the last completed checkpoint of the database are applied. Restart recovery
ignores redo log records for updates performed by an operation if the commit log
record for the operation is not found in the system log. Such log records represent

uncommitted updates, and may not have corresponding undo records in the check-
pointed ATT. However, if the undo records are absent, the effects of the log records
will not be reflected in the checkpointed database image. Such records would be
present only due to a crash while the log records for an operation were being flushed.

During the application of redo log records, appropriate pages in dpt are set to
dirty for each log record and necessary actions are taken to keep the checkpointed
image of the ATT consistent with the log as it is applied. These actions on the ATT
mirror the actions taken during normal processing. For example, when an operation
commit log record is encountered, lower level log records in the transaction’s undo
log for the operation are replaced by a higher level undo description.

Once all the redo log records have been applied, the active transactions are rolled
back. To do this, all completed operations that have been invoked directly by the
transaction, or have been directly invoked by an incomplete operation, have to be
rolled back. However, the order in which operations of different transactions are
rolled back is very important, so that an undo at level I.; sees data structures that
are consistent [Lom92]. First, all operations (across all transactions) at Ly that
must be rolled back are rolled back, followed by all operations at level Iq, then I,
and so on.

3 Connection to Related Work

Multi-level recovery and variants thereof, primarily for disk-based systems, have
been proposed in the literature [WHBM90, Lom92, MHL*92]. Like these schemes,
our schemes repeat history, generate log records during undo processing and log
operation commits when undo operations complete (similar to CLRs described in
[MHT.+92]). Also, as in [Lom92], transaction rollback at crash recovery is performed
level by level. Some of the features of our main-memory recovery technique which
impact the distributed schemes are

1. Due to transient undo logging, no physical undo logs are written out to the
global log except during checkpoints.

2. Separate undo logs are maintained in memory for active transactions. A result
18 that transaction rollback does not need to access the global log, part of which

could be on disk.

3. Our single-site scheme does not require latching of pages during updates,
which is inconvenient and expensive in either a main-memory DB or an OODB
setting. Actions that are normally taken on page latching, such as setting of
dirty bits for the page, are efficiently performed based on physical redo log
records written to the global log. (One of our shared-disk schemes uses page
latching for ensuring cache consistency, while the other shared-disk scheme
does not.)

4. The correctness requirements of the write-ahead logging policy are accom-
plished with a single flush for the entire database during a checkpoint, rather
than (potentially) one flush per page.

5. Our scheme does not perform in-place update of the disk image during page
flush, instead using ping-pong checkpointing.

Tn the ARTES-SD [MN91] family of schemes for recovery in the shared disk en-
vironment, each site maintains a separate log, and pages are shipped between sites.
Our shared-disk log-shipping scheme does not ship pages, but instead broadcasts log
records, taking advantage of cheap application of these log records in main-memory,
and permitting concurrent updates at a smaller-than-page granularity. In our shared
disk schemes, log flushes are driven by the release of a lock from a site, in order to
support repeating of history and correct rollback of multi-level actions during crash
recovery. The “super fast” method of ARTES-ST [MN91] does not describe flushes
to protect the early release of locks, making it unclear how that scheme supports
logical undo and high-concurrency index operations.

In [Rah91], the authors propose recovery schemes for the shared disk environment
which assume page-level concurrency control and the NO-STEAT, page write policy

neither of which are assumptions made in our schemes.

Tn [MN94], the authors show how the ARTES recovery algorithm described in
[MHT.*92] can be extended fo a client-server environment. In contrast to our
client-server scheme, their scheme involves the clients as well as the server in the
checkpointing process. We also support concurrent updates to a page by different
clients, which is not supported in [MN94].

In [CF794], object-level as well as adaptive locking and replica management are
discussed, but recovery considerations are not extensively addressed. In [FZT+92],
the client-server recovery scheme for the Exodus storage manager (ESM-CS) is
described. This recovery scheme, based on ARIES [MHT.792], requires page-level
locking until end of transaction (for example, the Commit Dirty Page Tist).

4 Client-Server Recovery Scheme

In this section, we describe the client-server recovery scheme. Our system model is
as follows.

e There is a single server with stable storage, which is responsible for co-
ordinating all the logging, and for performing checkpoints and recovery (see
Figure 2). The server maintains a copy of the entire database in memory.

e Multiple clients may be connected to the server; each client has a copy of the
entire database in its memory.

e A fransaction executes at a single client, and updates/accesses the copy of the
database at the client.

Database Database

ATT ATT DPT

System Log Tail System Log Tail

I'n Main Menory

SERVER

In Main Menory

Client nodes Network
@ ‘Stable System Log
Database cur_ckpt

Checkpoints

Ckpt A
System Log Tail i

Ckpt B

-

On Di sk

ATT

In Main Menory

Figure 2: Client-Server Architecture

e The network 1s FIFO and reliable.

As a result of updating the local copy of the database, database pages updated by
a client may not be current at some other client. Therefore, a page at a client isin
one of two states walid or invalid. Tnvalid pages contain stale versions of certain
data due to updates by other clients and are refreshed by obtaining the latest copy
of the page from the server.

Transactions follow the callback locking scheme [LLOWI1, CF794] when obtaining
and releasing locks. Each client site has a local lock manager (LLM) which caches
locks and a global lock manager (GLM) at the server keeps track of locks cached
at the various clients. Transaction requests for locks cached locally are handled at
the client itself. However, requests for locks not cached locally are forwarded to the
GILM which calls back the lock from other clients that may have cached the lock in
a conflicting mode (before granting the lock request). A client relinquishes a lock
in response to a callback as soon as transactions currently holding the lock (if any)
release the lock.

The server maintains the dpt and the ATT (for all transactions in the client-server
system) while the clients maintain the ATT for the transactions belonging to that
client. The log records for updates generated by a transaction at a client site are
stored in that site’s ATT. Client sites do not maintain a system log on disk, but
keep a system log tail in memory and append log records from the local redo logs to
this tail when operations commit/abort. Checkpointing is performed solely at the
server, and follows the same procedure as the centralized case.

When a lock is relinquished from a site or a transaction commits, log records in the
system log are shipped by the client to the server. In the case of transaction commit,
the client waits for the server to flush the newly received log records to disk before

10

reporting the commit to the user. The shipped redo log records are used to update
the server’s copy of the affected pages, ensuring that pages shipped to clients from
the server are current (note that pages are shipped only from the server to clients
and never vice versa). This enables our scheme to support. concurrent updates to
a single page at multiple clients since re-applying the updates at the server causes
them to be merged (this approach is also adopted in [CDFT94]). Shipping the log
records will usually be cheaper than shipping pages, and the cost of applying the log
records themselves is small since, in our main-memory database context, the server
will not have to read the affected pages from disk.

We will now describe our scheme in detail and also outline several possible optim-
izations to the basic ideas discussed above.

4.1 Basic Operations

We now describe the features which distinguish the client-server scheme from the
centralized case, in terms of actions performed at the client and the server at specific
points in processing.

ahead without communicating with the server. FElse, if the page is invalid
(certain data on the page may be stale), then the client refreshes the page
by 1) obtaining the most recent version of the page from the server, and 2)
applying to the newly received page any local updates which have not been
sent to the server (this step merges local updates with updates from other
sites). The client then marks the page as valid. The server keeps track of
clients that have the page in a valid state.

To prevent race conditions, the client does not send log records to the server
after asking for a page and before receiving 1t.

An optimization of the above is to check for validity of pages at the time of
acquisition of region locks from the server rather than on every access; for this
optimization to be used, the set of pages covered by the region lock must be
known.

e Operation/Transaction Commit: At the client, redo log records are
moved to the system log, a commit record is appended, and appropriate actions
are performed on the transaction’s undo log in the ATT as described for the
centralized case. In case of a transaction commit the log records in the system
log are shipped to the server, and commit processing waits until the server
has acknowledged that the log records have been flushed to disk.

Finally, all the locks acquired by the operation /transaction are released locally.
The local lock manager at the site may however continue to cache the locks
locally.

e Lock Release: When a lock is relinquished by a client, all redo log records
that were generated under this lock need to be shipped to the server. The

11

server then applies these log records to its database 1mage to ensure that an-
other client that obtains the same lock gets a copy of the pages which contains
the updates described by these log records. A simple way to ensure that all
log records generated under the lock are shipped to the server is to flush the
system log from the client to the server.

An optimization to avoid flushing the system log each time is to store the end
of the client system log with the lock (at the client) when a X mode region lock
or an operation lock is released by a transaction. Thus, for any region lock,
all redo log records in the system log affecting that region precede the point
in the log stored with the lock. Similarly, for an operation lock, all log records
relating to the operation (including operation commit) precede the point in the
system log stored with the lock. This location in the log is client-site-specific.

Before a client site relinquishes an X mode region lock or operation lock to
the server due to call-back, it ships to the server at least the portion of the
system log which precedes the log pointer stored with the lock. This ensures
that the next lock will not be acquired on the region until the server’s copy
18 up to date, and the history of the update is in place in the server’s logs.
For X mode region locks, this flush ensures repeating of history on regions,
while for operation locks this flush ensures that the server receives the logical
undo descriptors in the operation commit log records for the operation which
released the locks. Thus, if the server aborts a transaction after a site failure,
the abort of this operation will take place at the logical level of the locks still
held for it at the server.

Log Record Processing: At the server, for each physical redo log record
(received from a client), the undo log record is generated by reading the current,
contents of the page at the server. The new log record is then appended to the
undo log for this transaction in the server’s ATT. Next the update described
by the redo log record is applied, following which the log record 1s appended
to the redo log for the transaction in the server’s ATT. Operation/transaction
commit log records received from the client are processed by performing the
same actions as in the centralized case when the log records were generated.
In addition, for operation commit, the logical undo descriptor is extracted
from the commit log record and appended to the undo log for the transaction
in the server’s ATT. For transaction commit, the client whose transaction
committed is notified after the log flush to disk succeeds.

By applying all the physical updates described in the physical log records
to 1ts pages, the server ensures that 1t always contains the latest updates on
regions for locks which have been released to it from the clients. The effect
of the logging scheme, as far as data updates are concerned, 1s just as if the
client transaction actually ran at the server site.

Transaction Abort/Site Failures: If a client site decides to abort, a trans-
action, it processes the abort (as in the centralized case) using the undo logs

12

for the transaction in the client’s ATT. If the client site itself fails, the server
will abort transactions that were active at the client using undo logs for the
transaction in it’s ATT(since the client cannot. commit without communicat-
ing with the server, in case of partition, a decision to abort is enforceable by
the server). Tf the server fails, then the complete system is brought down, and
restart recovery is performed af the server as described in Section 2.7.

e Page Invalidation

We complete our client-server scheme by presenting two methods, invalidate-
on-update, and invalidate-on-lock, for ensuring that data accessed by a client
is up-to-date.

All actions described so far are used in common by both methods. Tn partic-
ular, both methods follow the rule that all log records pertaining to updates
made under a lock are flushed to the server before the lock is relinquished
from the site. Since the server would have applied the log records to its copy
of the data, this ensures that when the server grants a lock, 1t has the current
version of all pages containing data covered by that lock. However, when a
client acquires a lock, it 1s still possible that the copy of one or more pages
involved in the region for which the lock was obtained are not up-to-date at
the client.

Both methods mark pages at the clients as invalid, to denote that some of the
data on the page is out of date. Even if a page is marked invalid, some of
the data in the page may still be up-to-date, for instance, if the client has a
region lock on the data. The first method, invalidate-on-update, 1s an eager
method that marks pages as invalid at clients as soon as an update occurs
at the server, while the second, invalidate-on-lock, is a more lazy method,
marking pages as invalid at clients when the client gets a lock. The second
scheme reduces invalidation messages by keeping extra per-lock information
at the server. Details of the two methods are presented in Sections 4.2 and
4.3 respectively.

4.2 Invalidate-On-Update

The invalidate-on-update scheme works as follows. When the server receives log
records from a client, it does the following. For each page that it updates, it sends
invalidate messages to clients (other than the client that updated the page) that may
have the page marked as valid. For all clients other than the client that updated the
page, the server notes that the client does not have the page marked valid. Clients,
on receiving the invalidate message, mark their page as invalid. Thus invalidation
messages are received by clients before they can acquire a region lock on the updated
data, and begin accessing the data.

Although the method 1s very simple and easy to implement, 1t has some drawbacks.
For example, consider two sites s and s updating the same page concurrently under
two different region locks. et sy be the site that flushes its updates to the server

13

first; the update will cause the server to send an invalidate message to so, which will
then re-read the page from the server. However, if site so accesses the page again
under the lock that it already has, then the invalidate was not necessary, since the
data in the region it has locked has not changed. The invalidate-on-lock scheme in
the next section takes advantage of this observation to reduce overheads.

4.3 Invalidate-On-Lock

The invalidate-on-lock scheme decreases unnecessary invalidations and the overhead
of sending invalidation messages by marking pages as invalid only when a lock on
a region covering the page 1s obtained by a client. As a result, if two clients are
updating different regions on the same page, as in the earlier example, no invalid-
ation messages are sent to either client. By piggy-backing invalidation messages
for updated pages on lock grant messages from the server, the overhead of sending
separate invalidation messages in the previous scheme is eliminated.

The biggest benefit of the invalidate-on-lock scheme, however, is that there 1s no
need to check for validity of a page on every access or update to the page it suffices
to check for validity at lock acquisition time.

To achieve the above, the scheme must associate with the lock for a region in-
formation about updates to that region. Specifically, when updates described by
a physical redo record are applied to pages at the server, the updated pages are
associated with the lock for the updated region. Thus, the scheme requires that it
be possible to determine the region lock from the redo record. A simple way of
obtaining this information is to require that an update call must specify not only
the data to be updated, but also the region lock that protects the data. Tt 1s easy for
a programmer to provide this information, since all updates must be made holding
a region lock. The lock name can then be sent with the redo log record.

This scheme also requires that the server associate a Log Sequence Number (LSN),
with each log record, which reflects both the order in which the record was applied
to the server’s copy of the page and the order in which it was added to the system
log. For each page, the server stores the LSN of the most recent log record that
updated the page, and the identity of the client which issued it. In addition, for
each client, the server maintains in a client page table (cpt), the state of the page at
the client (valid/invalid), along with the LSN for the page when it was last shipped
to the client.

The server also maintains for each region lock a list of pages that are dirty due
to updates to the region. For each page in the list, the server stores the LSN of the
most recent log record received by the server that recorded an update to the part
of the region on this page, and the client which performed the update. Thus, when
a client is granted a region lock, if, for a page in the lock list, the LSN is greater
than the LSN for the page when it was last shipped to the client, then the client
page contains stale data for the region and must be invalidated.

14

The LSN information serves to minimize the shipping of pages to clients, marking
a page as invalid only if there is an update performed under the region lock requested
by the client, and the update has not yet been propagated to the client.

The additional actions for this scheme are as follows:

e Log apply: When the server applies to a page P a redo log record, LR,
generated at client C under region lock L, it takes the following actions (after
P has been updated). First, the L.SN for P is set to the L.SN for LR. Second,
the entry for P in the list of dirty pages for L is updated (or created), setting
the client to C, and the L.SN to the T.SN for LR.

e Lock grant: A set of invalidate messages is passed back to the client with the
lock acquisition. The invalidate messages are for pages in the list associated
with the lock being acquired that meet three criteria: 1) the page is cached at
the client in the valid state, 2) the TSN of the page in the cpt for the client is
smaller than the TSN of the page in the lock list, and 3) the client acquiring
the lock was not the last to update the page under this lock. The invalidated
pages are marked invalid in the cpt for the client and at the client site.

e Page refresh: When the server sends a page to a client (page refresh), at
the server, the page 1s marked valid in the ¢cpt for the client and the LSN for
the page in the cpt 1s updated to be the L.SN for the page at the server.

e Lock list cleanup: We are interested in keeping the list of pages with every
lock as small as possible. This can be achieved by periodically deleting pages
P from the list of lock L such that the following condition holds, where C is
the client noted in the list of pages for L as the last client to update P:

Every client other than C has the page cached either in an invalid
state or with LSN greater than or equal to the LLSN for the page in
the list for lock L.

The rationale for this rule is that the purpose of region lock lists is to determine
pages that must be invalidated. However, if for a page in a client’s cpt, the
ILSN is greater than the LSN for the page in the lock list, then the client has
the most recent update to the region on the page, and thus the page will not
need to be part of any invalidation list sent to the client.

5 Shared Disk Recovery: Model and Common Struc-
tures

In the shared disk approach, a number of machines are interconnected and also have
direct access to disks over a fast network. The shared disk environment is used in
many systems, such as the DEC VA Xclusters, and provides benefits over a shared
nothing architecture, such as faster access to non-local disks and fault-tolerance.

15

Also, the basic advantage of shared disk schemes over the client-server schemes
18 that the algorithms are symmetric with respect to which site executes them,
preventing one system from becoming a bottleneck in the system. As in our client-
server scheme, in addition to careful consideration of the interaction with multi-
level recovery, our main concern is minimizing false sharing through fine-grained
concurrency control. This allows, for example, read-only transactions with a fully
cached working set to proceed at main-memory speeds, an important property for
our intended applications.
We now describe our shared disk recovery model.

e Each site maintains its own copy of the entire database in memory and its own
system log on disk. Thus there are be multiple logs in the system.

e Sites obtain locks from a Global Lock Manager (GLM); the function of the lock
manager could be distributed for speed and reliability, but this is orthogonal
to our discussion.

e Sites cache locks, and relinquish locks based on the call back locking mechan-
ism described in Section 4. We assume the network 1s FTFO and reliable.

e Fach site has its own system log on disk and therefore the logs are distrib-
uted. To repeat history during restart recovery, we need some mechanism to
temporally order log records that affect the same region. To enable this, each
site maintains a global timestamp counter TS_ctr, and a timestamp obtained
from this counter is stored in each physical redo log record for an update. We
will see the details of how this TS_ctr is maintained and used later.

e FEach site maintains its own version of the dirty page table dpt, system log (in
memory and on disk), and an ATT (with separate undo and redo log records
for each transaction) which stores information relating to transactions that
execute at that site.

e A single pair of checkpointed images is maintained on disk for the database.
A checkpoint 1mage consists of an 1mage of the database, the dirty page table
ckpt_dpt, and for every site:

1. end_of stable_log the point in the site’s system log from which the system
log must be scanned during recovery.

2. a copy of the ATT at the site (containing undo logs).

In the next two sections, we present two schemes for shared disk concurrency
control and recovery. The first is a page-shipping approach which is similar in
spirit to the Tnvalidate-on-Update client-server mode. The second is a log shipping
scheme which allows concurrent use of non-overlapping regions on a page across
sites.

16

Site N

E
ik E
I:l

Merory Sys Log Tail

T T
V v
Logs |Stable SysLog | | Stable Sys Log |] shared O sk

1 23 .. N Ei
~| End of Stable log

e

cur_ckpt // ATT

. (undo logs)
Checkpoi nts | CkptA
Ckpt B \\ Database ckpt_ptt | ckpt_dpt
N
N
N

Figure 3: Page-Shipping Shared Disk Architecture

6 Page-Shipping Shared Disk Recovery Scheme

Our page-shipping scheme is similar in spirit to the Invalidate-on-Update client-
server scheme in that a transaction at a site updating a region on a page is guaran-
teed to have the latest copy of the page. Therefore, concurrent updates to different
regions of a page are not possible in this scheme.

6.1 Data Structures

We now describe data structures specific to the page-shipping scheme. Common
data structures were described in Section . An overview of the data structures for
this scheme is given in Figure 3.

In addition to the TS_ctr for the site, a timestamp for each page is maintained at
each site in the page timestamp table, ptt which keeps track of the TS_ctr value when
the page was last updated. Each page has an associated page lock which helps in
ensuring that a transaction always has the latest copy of the page while accessing
or updating the page. Sites cache locks, and relinquish locks based on the call back
locking mechanism described earlier. Along with each of the two checkpoint images
of the database is stored a checkpoint page timestamp table, referred to as ckpt_ptt.

6.2 Normal Processing

We describe below the actions taken during normal processing, in addition to those
performed 1n the centralized case, to support distributed concurrency control and
recovery. Checkpointing and recovery from system and site failure are described in
subsequent, subsections.

17

e Update: T.ike in the centralized case, before accessing a region, each transac-
tion obtains a region lock from the LLM. Additional page locks are acquired
in S(X) mode while accessing(updating) data on a page. Tf this lock is not
cached at the site, actions are performed as described below under Lock Ac-
quisition.

Page locks for an access are released by a transaction once the access is
completed; page locks for an update are released by a transaction only after
the update on the page is completed. The value of TS_ctr at the site when the
redo log record was generated is stored in the redo log record corresponding
to the update. Also, the timestamp for the updated page (in the ptt) at the
site is set to the TS_ctr stored in the log record.

An important point to note is that log records in the system log may not be
ordered on their TS_ctr values. This is because the value of TS_ctr is stored
in the redo log record when the update i1s performed, but the log record is
appended to the transaction local log, which is not flushed to the system redo
log until operation or transaction commit.

e Lock Release: When a transaction releases an X mode region lock or oper-
ation lock, it stores the end of log in memory with the lock (this is stored to
optimize the amount of flushing that needs to be done when a lock 1s relin-
quished as in the client-server scheme). Note that all updates for the operation
which held the region lock will be moved to the global log by the normal op-
eration commit semantics prior to the release of this lock. Thus, for a region
lock, all redo log records for updates to the region covered by the lock precede
the end of log point stored with the lock (similar for operations). When a site
relinquishes an X region lock or operation lock, it flushes the global log at its
site until the end of log point stored with the lock. The flush on release of X
region or operation locks is done to ensure that it is possible to repeat history
during restart recovery, and appropriate locks for undoing operations are held
in case of site crashes. Note that no flushes are performed when page locks
are released.

Additionally, when a site releases an X page or X region lock back to the
GLM, it stamps it with the site’s TS_ctr; the TS_ctr value of the lock is used
by other sites that later acquire the lock, as we will see shortly. The GL.M also
stores with each page lock the site that last held the page lock in X mode; the
information is updated each time a site relinquishes an X mode page lock,

e Lock Acquisition:

A transaction acquiring a lock cached by the LT.M need take no special action.
If it 1s a page lock, then the page is already current at this site.

When an X-mode page or region lock arrives from the GLM| it includes the
timestamp from the last site that held the lock in X mode, as described above.
Upon receiving an X region lock or page lock at a site, the site’s TS_ctr is set,

18

to the maximum of 1) it’s current value, and 2) the TS_ctr value associated
with the incoming lock plus one.

When a site acquires a page lock on behalf of a transaction from the GLM
(that is, the lock is not already cached at the site), the site requests the page
from the last site that held the page lock in X mode (using the site identifier
sent with the lock). Tn order to handle single-site recovery, failure of the
acquiring site to obtain a copy of the page, due to a failure of the site from
which it is being requested, causes the lock acquisition to fail and the lock to
be returned to the GLM unchanged.

Shipping timestamps with page locks ensures that log records for successive up-
dates to a page at different sites are assigned increasing timestamp values. Shipping
timestamps with region locks ensure that log records generated under conflicting
locks are applied in the correct order during recovery even though redo log records
in the individual site may not be ordered by timestamp (as mentioned earlier).
However, the algorithm still works correctly, as shown in the discussion of recovery
and correctness below.

6.3 Checkpointing

Unlike the centralized and client-server scheme, checkpointing in the shared disk
environment requires coordination among the various sites. As mentioned above, a
single pair of checkpointed images is maintained for all the sites.

The site initiating the checkpoint coordinates the operation, which consists of the
following three steps at each site 1) writing the database file image 2) writing the
ATT and 3) flushing the global log. Below, we describe each step:

1. The coordinator announces the beginning of the checkpoint, at which time
all sites (including the coordinator) note their current, end_of_stable_log values,
then make a copy of their dpts and zero their dpts. Note that zeroing the dpt
and recording end_of stable_log is done atomically with respect to flushes.

Each site then makes a copy of its current, ptt and sends it to the coordinator
along with the end_of stable_log (noted ahove), and a copy of the dpt. The
coordinator constructs ckpt_dpt by or’ing together the copy of 1ts dpt and all
the dpts received from other sites (recall that we are assuming the dpt is a
bitmap). The database pages to be written out during the checkpoint are the
pages that are dirty in ckpt_dpt or in the ckpt_dpt in the previous checkpoint.

For each page to be written out, the coordinator uses the ptts sent to it by
the other sites and its own ptt to determine the site whose ptt contains the
highest timestamp for the page. This site is responsible for writing the page to
the checkpoint image. Once the coordinator has partitioned the set of pages
to be written out among the various sites, each site is sent the set of page
identifiers assigned to it. A site, upon receiving its assigned set of pages to
write, proceeds to write those pages to the checkpoint image. Since no two
sites will be assigned the same page, site can write pages concurrently.

19

The coordinator then constructs ckpt_ptt by first reading the ckpt_ptt in the
previous checkpoint into memory. For every page that was determined to be
written out (by some site 7), the timestamp for the page in ckpt_ptt is set to
its timestamp in the copy of the ptt for site i. Finally, ckpt_dpt constructed
earlier, ckpt_ptt and the end_of stable_logs for all the sites are written to the
checkpoint.

Note that since the site with the highest timestamp for a page writes the
page to the checkpoint image, updates to the page by log records preceding
end_of_stable_log recorded for a site, are contained in the checkpoint. Further-
more, as will be discussed in the correctness section below, updates for a page
recorded in log records with timestamps less than the timestamp for the page
in ckpt_ptt are also contained in the checkpoint.

2. Once every site has written out the database image and reported this to the
coordinator, the coordinator instructs each site to write out its ATT. Note
that multiple sites can be concurrently writing out the ATT.

3. After writing out the ATT, each site flushes the global log at that site as in
the centralized case. Finally, the database checkpoint 1s committed after all
sites have completed their flushing.

6.4 Recovery

In case the entire system fails, restart recovery is performed by any one site, say j.
The site j, which we will call the acting coordinator site, reads the following from the
most recent checkpoint image: the database image, the ckpt_ptt, and for each site,
the ATT and the end_of stable_log. A separate page table ptt is initialized to ckpt_ptt
and for each site 7 a separate dpt, dpt; is initialized to contain zero bits for all pages.
Starting from the end_of stable_log point stored for a site in the checkpoint, the log
records in all the system logs are merged as described below, and applied to the
database. To merge the system logs, they are scanned in parallel; at each point,
if the next log record in any of the system logs is not a redo log record, then any
one such record 1s processed and the ATT for its site is modified as described for
the centralized case in Section 2.7. On the other hand, if the next records in all the
system logs are redo log records, then the log record output next is the one amongst
them with the lowest timestamp value. If, for a page updated by the log record, the
timestamp in the log record is greater than or equal to the timestamp for the page
in ckpt_ptt, then 1) the update is applied to the page, 2) the page is marked dirty
in the dpt for the site whose system log contains the record, and 3) the timestamp
for the page in ptt is set to the maximum of its current value and the timestamp in
the log record.

Note that redo records in the system log for a site may not be in timestamp order
as mentioned earlier. However, this does not cause a problem and conflicting log
records are applied in the order in which they were generated. The reason for this
18 that for two conflicting log records in separate system logs, the earlier log record

20

and log records preceding it in its system log have lower timestamps than the log
record generated later. This fact 1s revisited below in our overview of correctness.

Once the last log record has been processed, TS_ctr at the acting coordinator site
j 1s set to the largest timestamp contained in the ptt at site j. Site 5 then rolls back
in-progress operations in the ATTs for the various sites beginning with level 7., and
then considering successive levels Ly, Ly and so on (as described in Section 2.7).
When an operation in an ATT entry for a site ¢ 1s being processed, actions are
performed on the undo and redo logs for the entry. Furthermore, each redo log
record generated when processing an operation for site i is assigned a timestamp
equal to TS_ctr at site j, and when an operation pre-commits/aborts, log records
from the redo log are appended to the system log for site 1.

Next, site j flushes every site’s system logs causing appropriate pages in the dpt
for the site (maintained at site j) to be marked dirty. After this point, the other
sites are involved in recovery. The TS_ctr at every site is set to the TS_ctr at site j
after incrementing it by one. The dpt at each site is then set to the dpt maintained
for the site during recovery at site j, and the database image and ptt at each site is
set equal to the database image and ptt at site j. Finally ckpt_ptt and dpt for other
sites are deleted from site j, bringing recovery to completion.

6.5 Overview of Correctness

In this section, we present additional arguments about the correctness of our page-
shipping recovery scheme by discussing below several properties on which the cor-
rectness is based.

1. A page, 7, in a checkpoint image reflects all updates with timestamp less than
ckpt_ptt[i].

2. Any log record affecting page ¢ prior to end_of stable_log at any site has
timestamp less than or equal to ckpt_ptt[i] and is reflected in the checkpoint
image of page 1.

3. If I,y and I5 are conflicting log records and Iy is generated before Lo, then if
.5 1s flushed to the stable log, then so 1s I.q.

4. If Iy and L, are conflicting log records in different system logs and 1. is
generated before Lo, then Iy and all log records preceding it in its system log
have lower timestamps than 7.

(1) follows from the fact that timestamps for pages in the ptt are set, only after they
are updated, and passing timestamps with page locks guarantees that successive up-
dates to a page have non-decreasing timestamps (and in turn, assign non-decreasing
timestamps to the ptt entry).

(2) For a log record that updates page i prior to end_of stable_log at a site, (a)
ppt[i] at the site is greater than or equal to the timestamp in the log record, (b)
the page is in the dpt of the site and (c¢) the page at the site contains the update

21

(when the site sends its ppt and dpt to the coordinator during the first phase of the
checkpoint). Thus, since the site for which ppt[i] is the largest writes the page to the
checkpoint image, ckpt_ppt[i] is greater than or equal to the timestamp in the log
record. Also, since versions of a page with higher timestamps contain all updates
in versions with lower timestamps, the update by the log record is reflected in the
checkpoint image of page 1.

(3) When the region lock covering I, was released, it must have followed the
commit of an operation due to the rules of multi-level recovery. Thus, that log
record would be moved to the global log during the operation commit, and would
thus be before the point noted on release of the region lock. The flush to that point
carried out when a region lock is released by a site guarantees the property.

(4) The shipping of TS_ctrs with region locks ensures this property. The reason
for this is that 7.y 1s appended to the system log at its site before the X region lock
for the updated region 1s released by the site. The timestamp assigned to the lock
is the TS_ctr at the site for I,; which is at least as large as the timestamps in I
and all the redo records preceding Iy in the releasing site’s system log. Before 1.9
can be generated, its site has to acquire the region lock in X mode which causes the
timestamp at the site where Ly is generated to be set higher than the timestamp
for the lock. Thus, 14 is assigned a timestamp greater than 1, as well as all log
records preceding Iy.

Properties (1) through (4) can be used to show that our recovery scheme repeats
history when scanning the system logs. Property (1) implies that updates to a
page i by a log record do not need to be applied if ckpt_ptt[i] is greater than the
timestamp in the log record. From property (2), it follows that log records pre-
ceding end_of_stable_log can be ignored since these updates are already contained
in the checkpoint image. Property (3) ensures that log records in the system logs
accurately and completely describe the history of updates to every region. Finally,
property (4) ensures that conflicting updates described by log records that appear
after end_of stable_log are applied during recovery in the order in which they were
performed during normal processing (in spite of timestamps possibly being out of
order within a single site’s log). Note that, for conflicting log records Iy and Lo on
page i, 1.1 generated before 19, s may precede end_of stable_log for its site, while
L1 follows end_of stable_log for its site. Tn this case, due to property (2), ckpt_ptt[7]
would be greater than or equal to the timestamp for s and the timestamp for 79
would be greater than that for 7.;. Thus, the update to page ¢ by 7.; would not be
applied during recovery.

6.6 Recovery from Site Failure

Our recovery algorithm can also be extended to deal with a site failure without
performing a complete system restart, so long as the GLLM data has not been lost,
or can be regenerated from the other sites. If this is not the case, a full system
recovery is performed instead.

22

Recovery from a single site failure is complicated since log records for updates by
active transactions at the failed site may not have made 1t to stable storage while
the updates themselves may have been propagated to other sites when the pages
containing the updates are shipped between sites. There is no way to undo these
updates since the undo information for them is contained 1s main-memory and is
lost when the site failed. Thus, the only way to roll back the above set, of updates is
to recover the set of pages that the updates span. (Note that such a problem would
not arise with a scheme providing lower concurrency, such as page locks held to end
of transaction.)

In order to support this roll-back, i1t must be possible to associate with any region
or operation lock the set of pages such that some part of the page may be updated
by an operation that holds the lock; we call this set of pages as the pages affected
by the lock.

The first step, when a site j recovers, is to determine the set of pages that must
be recovered these are pages that either:

1. May contain updates by uncommitted transactions from site j, or
2. Were last updated by site j.

The pages in (1) are those affected by any operation or X mode region lock held by
site j at the GL.M. The pages in (2) are those pages on which site j was the last site
to have obtained an X page lock. The pages in (2) that are not in (1) are the set of
pages that contain updates belonging to transactions that committed at site 5. Note
that for these pages, if a different site £ holds an S lock on the page, the page need
not be recovered, and the GLM merely notes that the site & has the latest version
of the page.

Once the set of pages to be recovered are determined as described above, they are
all locked in X mode by site j so that all updates to these pages by other sites are
blocked (any other page locks held by site j are released).

Site 7 then retrieves from the most recent checkpoint, the database image, the
ATT for site j, ckpt_ptt and the end_of_stable_log for each site. Tt then requests from
every other site, the current end_of_stable_log at the site and the sequence of redo
records in memory at the site (that is, redo records in the transaction local logs
or in the system log after end_of stable_log) involving updates to the pages being
recovered. The redo pass is performed by scanning all the system logs as described
in the Section 6.4 except that 1) only updates to pages being recovered are applied
depending on the timestamps for these pages in ckpt_ptt, and the timestamps for
only these updated pages are modified in ptt, 2) only the pages in the dpt for site
J are marked dirty, 3) only actions on the ATT for site j are performed, and 4)
the system log for a site is scanned until the end_of stable_log returned by that site
at the beginning of this recovery. After this, the in-memory redo records received
from the various sites are applied in timestamp order to the pages being recovered,
and the timestamps for the updated pages in ptt are set to the timestamp in the log
record.

23

At the end of the redo pass, the pages being recovered contain updates by transac-
tions at every other site and updates by transactions at site j for which log records
are contained in the stable log (thus, updates described by redo log records in
memory of site j when it crashed are absent this includes the transaction local
logs and the portion of the global log in main memory). At this point, other sites
can be granted page locks held by site j if they request it. TS_ctr at site j is set to
be greater than the largest timestamp in the ptt at site j.

Before rolling back in-progress operations, the locks that were cached at site j
at the time it crashed are obtained by the recovery process at site j by consulting
the GLM. As described in Section 2.7, rollback is performed level by level, with
additional locks requested as is done during normal processing (see Section 7.2).
Level I.; operation locks at site j can be released once all active operations at level
L;+1 have been rolled back.

As in normal processing, TS_ctr at site j is incremented when a new lock is ob-
tained, TS_ctr stored in a redo log record and in the timestamp entries for updated
pages when the redo log 1s generated, and log flushes are performed when opera-
tion/X mode region locks are released by site j.

7 Log-Shipping Shared Disk Recovery Scheme

We are interested in improving the concurrency of the page-shipping shared disk
recovery scheme by allowing multiple concurrent readers and writers of the same
page at different sites, as long as the parts of the page they update come under
different region locks. A result of this is that copies of a page at different sites may
contain a different set of updates, which must be merged before the page is written
to disk. Unlike the client-server case, there is no server to carry out the task of
merging updates.

To solve the above problem, in our scheme, log records generated at a site are
broadcast to all other sites, so the updates can be carried out there. Since log
records are shipped, there 1s no need to ship pages. The scheme ensures that every
time a site obtains a region lock, the most recent version of the region i1s guaranteed
to be accessed at the site. More precisely, it guarantees that every time a site obtains
any lock (whether an operation lock or a region lock), all log records generated by
all operations which held the same lock in a conflicting mode have been applied to
the local page images.

The 1dea of broadcasting log records leads to an architecture that essentially im-
plements distributed shared memory, without the overhead of shipping pages. Note
that the overhead of broadcasting log records to all the sites may not be too severe
if update rates are not too high. Broadcasting may also be seen as a strategy to
propagate updates early, possibly using greater bandwidth, but avoiding the latency
of waiting for pages to be shipped when another transaction needs to update the
data. Also, in some network architectures (e.g., ethernet), the cost of a broadcast
to all sites may not be very different from the cost of sending a message to a single
site.

24

Site N

E DPT, ATTzE Adl \ e o e
[mmm] 1 o
Menory Sys Log Tail Memory Sys Log Tail

i i

v v

Logs |Stable SysLog | | Stable Sys Log |] shared O sk

1 23 .. N Ei
~| End of Stable log

e
cur_ckpt // ATT
. (undo logs)
Checkpoints | CkptA Acarray (TS_ctrs
Ckpt B \\
N Database ckpt_dpt
N
AN

Figure 4: Log-Ship Shared Disk Architecture

7.1 Data Structures

An overview of data structures used for our shared disk scheme is given in Fig-
ure 4. In addition to the common elements described in Section 5, the log-based
scheme maintains the following additional data structures. At every site j, an ar-
ray of TS_ctrs (one TS_ctr per site), A; is maintained in memory. A;[i] stores the
timestamp of the latest update from site 7 that has been applied to the database at
site j. Aj; serves a purpose similar to ptts in the page-shipping scheme it keeps
track of the state of the database relative to log records.

With each checkpointed image on disk, each site stores the TS_ctr following which
redo log records from that site must be applied to the database. Collectively these
counters are referred to as Ax. Note that since pages are not shipped between sites,
the log-shipping scheme does not need page locks.

7.2 Normal Processing

We describe below the actions taken during normal processing to support distributed
concurrency control and recovery (in addition to those for the centralized case).
Checkpointing and recovery from system and site failure are described 1n subsequent
sections.

e Log Records: Every time a physical redo log record is moved from a trans-
action’s local redo log to the system log, TS_ctr is incremented by 1 and stored
in the log record. The timestamps are used to order log records that describe
conflicting updates.

e System Log Flush: When the system log at site 7 s flushed to stable storage,
each redo log record which has hit the disk is also broadcast to the other sites.
The sending site i, also sets A;[7] to the timestamp in the log record. Flushing
of a sequence of log records 1s completed once every log record has been written
to disk as well as sent to the remaining sites. Also, as in the centralized case,
pages updated by the flushed log records are marked dirty in the site’s dpt.

e Log Record Receipt: A site j processes an update broadcast to it from site
i as follows (updates are processed in the order in which they are received).
On receiving a broadcast log record, the site applies the update to its local
copy of the affected page(s), and sets the appropriate bits in its dpt. After
updating the appropriate pages, the site sets A;[i] to the timestamp contained
in the update (redo log record).

e Lock Release: The lock managers aid the scheme in two ways. First, as
in the previous schemes, the current local end-of-log is noted with region
and operation locks when the lock is released by a transaction, and the T.T.M
ensures that the log is flushed to this point before releasing the lock from the
site. This aids in recovery by ensuring that history is repeated, and when
lower level locks are released, the logical undo actions which accompany the
higher level locks have made it to disk. Since logs are broadcast on flush,
it helps ensure that another site will receive the necessary log records before
getting the same lock in a conflicting mode.

Note that the FIFO property of the network does not ensure that a site j
receives an update broadcast from a site i before it obtains the region lock
for the updated region from the GLM (relinquished to the GLM by site 7).
In order to ensure that all previous updates to a region are received by a
site before i1t obtains the region lock, the LLM before releasing a region lock
from a site must ensure that not only have all redo log records preceding the
end-of-log (noted for the lock) flushed to disk, but also that acknowledgments
of receipt. of the broadcast records have been received from all sites.

Second, when a transaction releases an X mode region lock, the timestamp
for the lock is set to the current value of TS_ctr at the site. When this lock is
called back by the GT.M, this value is also sent and is associated with the lock
by the GLM. When received by another site, the timestamp is used to ensure
that log records for conflicting actions covered by this lock have increasing
timestamp values. As an optimization, the site identifier can also be sent, with
the lock to the GL.M; the purpose will become clear in the next point.

e Lock Acquisition: When a site receives an X mode region lock from the
GLM, it sets its own TS_ctr to be the maximum of its current TS_ctr and the
timestamp associated with the lock (received from the GLM). Further, the
lock is granted to a local transaction only after all outstanding (unapplied)
updates at the time of acquiring the lock have been applied to the page. This

26

is to ensure that data accessed at a site is always the most recent version of
the data.

As an optimization, if a site identifier is provided with the lock by the GL.M,
it suffices to process log records up to (and including) the log record from the
site with the timestamp provided.

7.3 Checkpointing

Checkpointing is coordinated by one of the sites. The checkpointing operation con-
sists of three steps 1) writing the database image by the coordinator, 2) writing
the ATT at each site and 3) flushing the logs at, each site. The main difference from
the centralized case lies in how each step is carried out. We describe each step
below:

1. The coordinator announces the beginning of the checkpoint, at which time
all other sites first make a copy of their dpts and then subsequently zero
their dpts, and note their current end_of stable_log values. Note that recording
end_of_stable_log and dpt, and then zeroing dpt is done atomically with respect
to flushes. Every site sends the recorded dpt and end_of stable_log values to
the coordinator. The coordinator site j applies all outstanding updates, then
atomically (with respect to processing further log records and flushing) records
its end_of stable_log, copies its timestamp array A; to Az, copies its dpt to
ckpt_dpt, and then zeroes its own dpt. The coordinator then or’s its ckpt_dpt
with the copies of the dpts 1t receives from the other sites. Tt then writes to
the checkpoint image the ckpt_dpt, the end_of_stable_logs for each site, and the
timestamp array Ag.

Next, the database image is written out by the coordinator in the same fashion
as in the centralized case, writing out not only pages dirty in this checkpoint
interval (in ckpt_dpt), but also pages dirtied in the previous checkpoint interval
(in the ckpt_dpt stored in the previous checkpoint).

2. Once the coordinator has written out the database image, it instructs each
site to write out its ATT. Multiple sites can be concurrently writing out their

ATTs.

3. The logs are flushed at each site and after all sites flush their logs the co-
ordinator commits the checkpoint by toggling cur_ckpt, as in the centralized
case.

Note that in Step 1, applying outstanding updates at the coordinator before record-
ing ckpt_dpt and Aq ensures that updates preceding end_of stable_log reported by
other sites have been applied to the database pages, and thus, it is safe to zero dpts
at sites when end_of_stable_log is noted. Also, since each site notes end_of stable_log
independently, it is possible that for a redo log record after end_of stable_log at one
site, a conflicting redo log record generated after 1t may be before end_of_stable_log

27

noted at a different site. As a result, during restart recovery, applying every update
after end_of_stable_log in the system log for a site could result in the latter update
being lost. Storing A in the checkpoint and during restart recovery, applying only
redo records at site 7 whose timestamps are greater than A« [i] eliminates the above
problem since timestamps for both updates would be smaller than the corresponding
TS_ctr values for the sites in As.

7.4 Recovery

Restart recovery in case of a system wide failure (where all sites have to be re-
covered) can be performed as follows by an arbitrary site j in the system, which we
will call the acting coordinator. The following actions are performed by site j alone.

First, the database image and the checkpointed timestamp array Ao are read,
and for each site, the ATT and the end_of stable_log recorded in the checkpoint are
read. Redo log records in the system logs for the various sites are then applied to
the database image by concurrently scanning the various system logs. FEach site’s
system log is scanned in parallel, starting from the end_of stable_log recorded for
the site in the checkpoint. At each point, if the next log record to be considered in
any of the system logs 1s not a redo log record, then it 1s processed and the ATT
for 1ts site 1s modified as described for the centralized case in Section 2.7. On the
other hand, if the next record to be considered in all the system logs is a redo log
record, then the log record considered next is the one (among all the system logs on
disk being considered) with the lowest timestamp value. For every redo log record
encountered in the system log for a site, 7, with a timestamp greater than A[i], the
update 1s applied and the affected pages are marked as dirty in j’s dpt.

Once all the system logs have been scanned, TS_ctr at site j is set to the largest
timestamp contained in a redo log record. In-progress operations in the ATTs for
the various sites are then rolled back and executed, respectively, at site j against
the database at site 7, beginning with level 7.y and then considering successive levels
L1, Lo and so on (as described in Section 2.7). When an operation in an ATT entry
for a site 1s being processed, actions are performed on the undo and redo logs for
the entry. Furthermore, when an operation pre-commits/aborts, log records from
the redo log are appended to the system log for the site and the timestamp for each
redo log record appended is obtained by incrementing TS_ctr at site j.

Finally, every site’s system logs are flushed causing appropriate pages in j’s dpt
to be marked dirty (updates are not broadcast, however), and the TS_ctr at every
site and Ag[i] for all sites k and 7 are set to the TS_ctr value at site j. The database
image at every site is copied from the database image at site j, the dpt for each site
is copied from the dpt at site j; recovery is then complete.

7.5 Overview of Correctness

The correctness of the checkpointing and recovery algorithms follows from the fol-
lowing properties.

28

1. Tf the timestamp contained in a log record for site ¢ is less than or equal
to Ac[7], then the log record’s effects must have made it to the copy of the
database in the checkpoint.

2. Any log record in the system log for site 7 prior to end_of stable_log for the site
has a timestamp less than or equal to As[7].

3. If I,y and I5 are conflicting log records and Iy is generated before Lo, then if
.5 1s flushed to the stable log, then so 1s I.q.

4. If Iy and L, are conflicting log records in different system logs and 1. is
generated before Lo, then 1 has a lower timestamp than /5.

Property (1) holds since when a page is written to disk during a checkpoint at
site j, updates preceding A;[i] have made it to the image of the page at site j (due
to the algorithm for application of incoming log records), and this page is dirty in
J’s dpt (because the dpt is noted atomically with A¢).

Property (2) holds since before site i sends its end_of_stable_log to the checkpoint
coordinator, any update preceding it is sent, to the coordinator (when the system log
is flushed at site 7). Since the network is FTFO, the receipt of the end_of stable_log
implies that all necessary log records have arrived. Furthermore, before noting
Acld], the coordinator applies outstanding updates from site ¢ and thus sets A;[4]
to the timestamp of the last update applied from site 1.

Property (3) holds since the log is flushed every time a site relinquishes a region
lock. Finally, property (4) holds since before the region lock that guards I, is
released by its site, 1.1 1s appended to the system log and assigned a timestamp
from the TS_ctr at the site. Furthermore, the TS_ctr at I.q’s site is shipped along
with the region lock when it releases the region lock, and the site for .o sets its TS_ctr
to be at least the timestamp it receives when it acquires the lock. Thus, since I
18 generated after the lock is obtained by its site, it is assigned a timestamp greater
than the TS_ctr value at its site when the site receives the region lock, and the
property holds.

From the above properties, it follows that history is repeated as a consequence
of applying the redo log records contained in the system logs in timestamp order
during restart recovery. From properties (1) and (2), it follows that log records
preceding end_of stable_log can be ignored since these updates are already contained
in the checkpoint image. Similarly, property (2) implies that updates at a site i
by a log record do not need to be applied if Ac[i] is greater than or equal to the
timestamp in the log record. Property (3) ensures that log records in the system logs
accurately and completely describe the history of updates to every region. Finally,
property (4) ensures that conflicting updates described by log records that appear
after end_of stable_log are applied during recovery in the order in which they were
performed during normal processing. Note that, for conflicting log records I,y and
Lo, L1 generated before Ly, Lo may precede end_of stable_log for its site (say),
while Iy follows end_of stable_log for its site. Tn this case, due to property (2), A¢[i]
would be greater than or equal to the timestamp for s and the timestamp for 79

29

would be greater than that for ;. Thus, the update by 7.y would not be applied
during recovery.

7.6 Recovery from Site Failure

Our recovery algorithm can also be extended to deal with a site failure without
performing a complete system restart, so long as the GLLM data has not been lost,
or can be regenerated from the other sites. If this is not the case, a full system
recovery is performed instead. Recovery from site failure, as with regular system
recovery, has a redo pass, followed by rollback of in-progress operations.

Before beginning the redo recovery pass, the recovering site, say j, retrieves from
the most recent checkpoint the database image, the ATT for site j, the timestamp
array Ac and the end_of stable_log for each site. Tt then informs other sites that it
18 up, and requests from each site ¢, that site’s current end_of stable_log value, and
the value of A;[j]. At this point, other sites start sending log records to j; these are
buffered and processed later. The redo pass is then performed by scanning all the
system logs as described in the previous subsection except, that 1) only the pages
in the dpt for site j are marked dirty, 2) only actions on the ATT for site j are
performed, and 3) the system log for a site is scanned until the end_of stable_log
returned by that site at the beginning of site j’s recovery.

Also, log records in the tail end of the log of the recovering site may not have
made it to other sites since a log record is broadcast after 1t 1s flushed. For each
site 7 (other than the recovering site, j) all log records in site j’s system log that
have timestamps greater than A;[j] are broadcast to site i as they are processed.
Once the redo pass is completed, A;[i] is set to the maximum timestamp in a redo
log record encountered during the redo pass in the system log for site 2. Also,
TS_ctr at site j is set to the maximum of A;[7] for all sites 4. At this point, site j
can begin applying updates described by log records received from other sites, as
during normal processing, in the order received, and checkpoints can again be taken
as normal.

Before rolling back in-progress operations, the locks that were cached at site j at
the time 1t crashed are re-obtained by the recovery process at site j by consulting
the GLM. As described in Section 2.7, rollback is performed level by level, with
additional locks requested as is done during normal processing (see Section 7.2).
Thus, TS_ctr at site j is incremented and outstanding updates are applied when a
new lock is obtained, TS_ctr is incremented when a redo log record is appended to
the system log, and log flushes are performed when operation /X mode region locks
are released by site 7. Also, level I; operation locks at site j can be released once
all active operations at level ;11 have been rolled back.

8 Conclusion

In this paper, we showed how our single-site multi-level recovery algorithm for
main-memory databases can be extended to a distributed-memory data-shipping

30

system while maintaining many of the original benefits of the single-site algorithm.
The first scheme presented supports client-server processing in which a central
system controls logs and checkpoints. Tn the second and third scheme, suitable
for a cluster of computers with a shared disk, sites participate symmetrically in
transaction processing activities.

We described details of recovery after the failure of clients or the server in the
client-server case, and from single site as well as system-wide failure in the shared
disk case. Our schemes allow concurrent updates at multiple clients in a client-
server environment or multiple sites of the shared disk environment. By allowing
fine-grained and flexible concurrency control, our schemes are applicable to a range
of distributed, main-memory applications which need transactional access to data.

Our distributed schemes are based on a multi-level scheme for recovery in main-
memory databases which has been implemented in the Dali Main Memory Storage
Manager [JLR194]. Thus, the benefits of this algorithm are extended to the dis-
tributed schemes; the benefits include fuzzy checkpointing, use of the log for imple-
menting functions that otherwise require page latching, low overhead logging with
undo records written only due to a checkpoint, and per-transaction logs for low
contention.

Future work includes parallelization of recovery in the shared disk setting, and
recovery in a system where not all sites store the entire database. We also plan to
explore the performance of our schemes through experimentation, and then build a
distributed, data-shipping version of Dali based on these algorithms.

References

[BPR*96] P. Bohannon, J. Parker, R. Rastogi, S. Seshadri, and S. Sudarshan.
Distributed multi-level recovery in main-memory databases. Technical
Report 112530-96-02-27-01TM, Lucent Technologies, Bell TLaborator-
ies, February 1996.

[CDF+94] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. I.. McAul-
iffe, J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G.
Tsatalos, S..J. White, and M. J. Zwilling. Shoring up persistent applica-
tions. In Proceedings of ACM-SIGMOD 1994 International Conference
on Management of Data, Minneapolis, Minnesota, pages 383 394, May
1994.

[CF7.94] M. J. Carey, M. J. Franklin, and M. Zaharioudakis. Fine-grained shar-
ing in a page server OODBMS. In Proceedings of ACM-SIGMOD 1994
International Conference on Management of Data, Minneapolis, Min-
nesota, pages 359 370, May 1994.

[DKOT84] D. J. DeWitt, R. Katz, F. Olken, D. Shapiro, M. Stonebraker, and

D. Wood. Tmplementation techniques for main memory database sys-

31

[F7T+92]

[GMS92]

[Hag&6]

[TLR*94]

[18593]

[LLOWYI1]

[L.om92]

[1.5092]

[MHIL.*92]

[MNO1]

tems. Proc. ACM-SIGMOD 1984 Int’l Conf. on Management of Data,
pages 1 8, June 1984.

M. J. Franklin, M. J. Zwilling, C. K. Tan, M. J. Carey, and D. J.
DeWitt. Crash recovery in client-server EXODUS. Tn Proceedings
of ACM-STIGMOD 1992 International Conference on Management of
Data, San Diego, California, pages 165 174, June 1992.

H. Garcia-Molina and K. Salem. Main memory database systems: An
overview. TEFE Transactions on Knowledge and Data FEngineering,

4(6):509 516, December 1992.

Robert B. Hagmann. A crash recovery scheme for a memory-resident
database system. TEEFE Transactions on Computers, C-35(9):839 847,
September 1986.

H.V. Jagadish, Dan Lieuwen, Rajeev Rastogi, Avi Silberschatz, and
S. Sudarshan. Dali: A high performance main-memory storage man-
ager. In Procs. of the International Conf. on Very Large Databases,

1994.

H.V. Jagadish, Avi Silberschatz, and S. Sudarshan. Recovering from
main-memory lapses. In Procs. of the International Conf. on Very
Large Databases, 1993.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstore
database system. Communications of the ACM, 34(10), October 1991.

D. Lomet. MLR: A recovery method for multi-level systems. Tn Proceed-
mgs of ACM-STGMOTD 1992 International Conference on Management
of Data, San Diego, California, pages 185 194, 1992.

T. Lehman, E. J. Shekita, and I.. Cabrera. An evaluation of Starburst’s
memory resident storage component. ITEFEFE Transactions on Knowledge
and Data Engineering, 4(6):555 566, December 1992.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. AR-
TES: A transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems, 17(1):94 162, March 1992.

C. Mohan and T. Narang. Recovery and coherency-control protocols for
fast intersystem page transfer and fine-granularity locking in a shared
disks transaction environment. In Proceedings of the Seventeenth Inter-
national Conference on Very Large Databases, Barcelona, pages 193

207, September 1991.

32

[MN94]

[Rah91]

[SGM90a]

[SGM90b]

[WHBM90]

C. Mohan and T. Narang. ARTES/CSA: a method for database recov-
ery in client-server architectures. In Proceedings of ACM-SIGMOD
1994 International Conference on Management of Data, Minneapolis,
Minnesota, pages 55 66, May 1994.

F. Rahm. Recovery concepts for data sharing systems. In Proceedings
of the Twenty first International Conference on Fault-Tolerant Com-
puting (FTCS-21), Montreal, pages 109 123, June 1991.

K. Salem and H. Garcia-Molina. System M: A transaction processing
testbed for memory resident data. TEEE Transactions on Knowledge
and Data Engineering, 2(1):161 172, March 1990.

K. Salem and H. Garcia-Molina. System M: A transaction processing
testbed for memory resident data. TEEE Transactions on Knowledge
and Data Engineering, 2(1):161 172, 1990.

G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery.
In Proceedings of the Nineth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, Nashuville, pages 109 123,
June 1990.

33

