
Distributed Multi-Level Re
overy in Main-Memory DatabasesPhilip Bohannon�James Parker�Rajeev Rastogi�S. SeshadriyAvi Silbers
hatz�S. Sudarshany� Bell Laboratories, Murray Hill, NJfplbohannon,rastogi,avig�bell-labs.
omparker�lu
ent.
omy Indian Institute of Te
hnology, Bombay, Indiafseshadri,sudarshag�
se.iitb.ernet.inAbstra
tIn this paper, we present two s
hemes for
on
urren-
y
ontrol and re
overy in distributed main-memorydatabases. In the
lient-server s
heme,
lients shiplog re
ords to the server, whi
h applies the updates toits database
opy. In the shared disk s
heme, ea
h sitebroad
asts its updates to other sites. The above en-able our s
hemes to support
on
urrent updates to thesame page at di�erent sites.Both s
hemes support an expli
it multi-level re
ov-ery abstra
tion for high
on
urren
y, redu
ed disk I/Oby writing only redo log re
ords to disk during normalpro
essing, and use of per-transa
tion redo and un-do logs to redu
e
ontention. Further, we use a fuzzy
he
kpointing s
heme that writes only dirty pages todisk, yet minimally interferes with normal pro
essing,not requiring updaters to even a
quire a lat
h beforeupdating a page.1 Introdu
tionA large number of appli
ations (e.g.,
all routingand swit
hing in tele
ommuni
ations, �nan
ial appli-
ations, automation
ontrol) require high performan
ea

ess to data with response time requirements of theorder of a few millise
onds to tens of millise
onds. Tra-ditional disk-based database systems are in
apable ofmeeting the high performan
e needs of su
h appli
a-tions due to the laten
y of a

essing data that is disk-resident. An attra
tive approa
h to providing appli
a-tions with low (and predi
table) response times is toyThe work of these authors was performed in part while theywere at Bell Labs.

load the entire database into main-memory. Databas-es for su
h appli
ations are often of the order of tens orhundreds of megabytes, whi
h
an easily be supportedin main-memory. Further, ma
hines with main mem-ories of 8 gigabytes or more are already available, andwith the falling pri
e of RAM, ma
hines with su
hlarge main memories will be
ome
heaper and more
ommon.One approa
h for implementing su
h high perfor-man
e databases is to provide a large bu�er-
a
heto a traditional disk-based system. In
ontrast,in a main-memory database system (MMDB) (see,e.g., [GMS92, LSC92, JLR+94, DKO+84℄), the en-tire database
an be dire
tly mapped into the virtu-al address spa
e of the pro
ess and lo
ked in mem-ory. Data
an be a

essed either dire
tly by virtualmemory pointers, or indire
tly via lo
ation indepen-dent database o�sets that
an be qui
kly translatedto memory addresses. During data a

ess, there is noneed to intera
t with a bu�er manager, either for lo-
ating data, or for fet
hing/pinning bu�er pages. Al-so, obje
ts larger than the system's page size
an bestored
ontiguously, thereby simplifying retrieval orin-pla
e use. Thus, data a

ess using a main-memorydatabase is very fast
ompared to using disk-based s-torage managers, even when the disk-based managerhas suÆ
ient memory to
a
he all data pages.Further performan
e improvements
an be ob-tained for a number of appli
ations by employing a dis-tributed ar
hite
ture in whi
h several ma
hines
on-ne
ted by a fast network perform database a

essesand updates in parallel. This is espe
ially the
ase inappli
ations in whi
h transa
tions are predominant-

ly read-only and update rates are low (e.g., numbertranslation and
all routing in tele
ommuni
ations).As a result, ea
h ma
hine
an lo
ally a

ess data
a
hed in memory, thus avoiding network
ommuni-
ation whi
h
ould be fairly expensive. A very di�er-ent example is CAD pro
essing, in whi
h lo
ality ofreferen
e is very high, update transa
tions are long,and intera
tive response time is very important. Fi-nally, distribution also enhan
es fault toleran
e, whi
his required in many mission-
riti
al appli
ations evenif data �ts easily in main-memory. In this
ase, espe-
ially with low update rates, a distributed database ispreferable to a hot-spare sin
e load
an be distribut-ed in the non-failure
ase leading to improved perfor-man
e.The goal of the work des
ribed here was to ex-tend the main-memory re
overy s
heme presented in[JSS93, BPR+96℄ to the distributed
ase, maintainingthe eÆ
ien
ies of the single-site s
heme, and support-ing the appli
ations des
ribed above. For example, we
an make use of the MMDB optimization
alled tran-sient undo logging, originally proposed in [JSS93℄, inwhi
h undo log re
ords are kept in memory and on-ly written to disk as required for
he
kpointing. Thisredu
es the size of the log written to disk, and per-haps more importantly, the size of the log sent a
rossnetwork links in distributed proto
ols.We present two distin
t but related distributed re-
overy s
hemes, the �rst for
lient-server ar
hite
turesand the se
ond for shared disk ar
hite
tures. Theseare both \data-shipping" s
hemes (e.g., [FZT+92℄) inwhi
h a transa
tion exe
utes at a single site, fet
hingdata (pages) as required from other sites. Distribut-ed
ommit proto
ols are not needed as in \fun
tion-shipping" environments. While shared disk ar
hite
-tures have traditionally been
losely tied to hardwareplatforms (e.g., VAXCluster), UNIX-based shareddisk platforms and network of workstation ar
hite
-tures with similar performan
e
hara
teristi
s are be-
oming more
ommon.A key property of our s
hemes is that
on
urren-t updates are possible at granularities smaller than apage-size, minimizing false-sharing (and thus needlessnetwork a

esses). In addition to the transient redologging optimization des
ribed above, our algorithmsprovide advan
ed features su
h as expli
it multi-levelre
overy (e.g., [WHBM90, MN94, Lom92℄), and fuzzy
he
kpointing [SGM90a, Hag86℄. Site or global re
ov-ery requires only a single pass over the system log,starting from the end of the system log re
orded dur-ing the most re
ent
he
kpoint. As mentioned earli-er, obje
ts in the system
an span one or more page

boundaries.The remainder of the paper is organized as follows.We present ba
kground on multi-level re
overy andthe single-site algorithm on whi
h the present work isbased in Se
tion 2. We present our
lient-server re
ov-ery algorithm in Se
tion 3, and the shared disk algo-rithm in Se
tion 4. Related work and our
on
lusionsare presented in Se
tions 5 and 6, respe
tively.2 Overview of Main-Memory Re
ov-eryIn this se
tion we present a review of multi-levelre
overy
on
epts and an overview of our single-site main-memory re
overy s
heme. Our
entralizeds
heme extends the s
heme presented in [JSS93℄ withmulti-level re
overy, and a fuzzy
he
kpointing s
hemethat only writes dirty pages. Low-level details of ours
heme are des
ribed in [BPR+96℄.In our s
heme, data is logi
ally organized into re-gions. A region
an be a tuple, an obje
t, or an arbi-trary data stru
ture like a list or a tree. Ea
h regionhas a single asso
iated lo
k with ex
lusive (X) andshared (S) modes, referred to as the region lo
k, thatguards a

esses and updates to the region.2.1 Multi-Level Re
overyMulti-level re
overy [WHBM90, MHL+92, Lom92℄provides re
overy support for enhan
ed
on
urren
ybased on the semanti
s of operations. Spe
i�
ally, itpermits the use of weaker operation lo
ks in pla
e ofstronger shared/ex
lusive region lo
ks.A
ommon example is index management, whereholding physi
al lo
ks until transa
tion
ommit leadsto una

eptably low levels of
on
urren
y. If undo log-ging has been done physi
ally (e.g. re
ording exa
tlywhi
h bytes were modi�ed to insert a key into the in-dex) then the transa
tion management system mustensure that these physi
al undo des
riptions are validuntil transa
tion
ommit. Sin
e the des
riptions referto spe
i�
 updates at spe
i�
 positions, this typi
allyimplies that the region lo
ks on the updated index n-odes be held to ensure
orre
t re
overy, in addition to
onsiderations for
on
urrent a

ess to the index.The multi-level re
overy approa
h is to repla
ethese low-level physi
al undo log re
ords with high-er level logi
al undo log re
ords
ontaining undo de-s
riptions at the operation level. Thus, for an insertoperation, physi
al undo re
ords would be repla
ed bya logi
al undo re
ord indi
ating that the inserted keymust be deleted. On
e this repla
ement is made, theregion lo
ks may be released and only (less restri
tive)operation lo
ks are retained. For example, region lo
k-s on the parti
ular nodes involved in an insert
an be

In Main Memory
End of
Stable Log

Active Trans.
 Table

Dirty Page
 Table

Database

End of
Stable log
Database
ckpt_dpt

cur_ckpt

Ckpt A

Ckpt B

Stable System Log

System Log Tail

On Disk

Active Trans
Table (ATT)
(undo logs)

Redo Log

Undo Log

Trans. Local
 Logs

Figure 1: Overview of Re
overy Stru
turesreleased, while an operation lo
k on the newly insert-ed key that prevents the key from being a

essed ordeleted is held.2.2 System OverviewFigure 1 gives an overview of the stru
tures usedfor re
overy. The database (a sequen
e of �xed sizepages) is mapped into the address spa
e of ea
h pro-
ess and is in main memory, with (two)
he
kpoint im-ages Ckpt A and Ckpt B on disk. Also stored on diskare 1)
ur
kpt, an \an
hor" pointing to the most re-
ent valid
he
kpoint image for the database, and 2) asingle system log
ontaining redo information, with itstail in memory. The variable end of stable log stores apointer into the system log su
h that all re
ords priorto the pointer are known to have been
ushed to thestable system log.There is a single a
tive transa
tion table (ATT) thatstores separate redo and undo logs for a
tive transa
-tions. A dirty page table, dpt, is maintained in mem-ory whi
h re
ords the pages that have been updatedsin
e the last
he
kpoint. The ATT (with undo logs)and the dirty page table are also stored with ea
h
he
kpoint. The dirty page table in a
he
kpoint isreferred to as
kpt dpt.2.3 Transa
tions and OperationsTransa
tions, in our model,
onsist of a sequen
e ofoperations. Similar to [Lom92℄, we assume that ea
hoperation has a level Li asso
iated with it. An opera-tion at level Li
an
onsist of a sequen
e of operationsat level Li�1. Transa
tions, assumed to be at levelLn,
all operations at level Ln�1. Physi
al updatesto regions are level L0 operations. For transa
tions,we distinguish between pre-
ommit, when the
ommitre
ord enters the system log in memory establishinga point in the serialization order, and
ommit whenthe
ommit re
ord hits the stable log. We use the

same terminology for operations, where only the pre-
ommit point is meaningful, though this is sometimesreferred to as \operation
ommit" in the paper.Ea
h transa
tion obtains an operation lo
k beforean operation exe
utes (the lo
k is granted to the op-eration if it
ommutes with other operation lo
ks heldby a
tive transa
tions), and L0 operations must ob-tain region lo
ks. The lo
ks on the region are releasedon
e the L1 operation pre-
ommits; however, an op-eration lo
k at level Li is held until the transa
tion orthe
ontaining operation (at level Li+1) pre-
ommits.Thus, all the lo
ks a
quired by a transa
tion are re-leased on
e it pre-
ommits.2.4 Logging ModelThe re
overy algorithm maintains separate undoand redo logs in memory for ea
h transa
tion. Theseare stored as a linked list o� an entry for the trans-a
tion in the ATT. Ea
h update (to a part of a re-gion) generates physi
al undo and redo log re
ordsthat are appended to the transa
tion's undo and redologs respe
tively. When a transa
tion/operation pre-
ommits, all the redo log re
ords for the transa
tionin its redo log are appended to the system log, and thelogi
al undo des
ription for the operation is in
ludedin the operation
ommit log re
ord in the system log.Thus, with the ex
eption of logi
al undo des
riptors,only redo re
ords are written to the system log duringnormal pro
essing.Also, when an operation pre-
ommits, the undolog re
ords for its suboperations/updates are deletedfrom the transa
tion's undo log and a logi
al undo logre
ord
ontaining the undo des
ription for the oper-ation is appended. In-memory undo logs of transa
-tions that have pre-
ommitted are deleted sin
e theyare not required again. Lo
ks a
quired by an opera-tion/transa
tion are released on
e they pre-
ommit.The system log is
ushed to disk when a transa
-tion de
ides to
ommit. Pages updated by every redolog re
ord written to disk are marked dirty in the dirtypage table, dpt, by the
ushing pro
edure. In our re-
overy s
heme, update a
tions do not obtain lat
heson pages { instead region lo
ks ensure that updatesdo not interfere with ea
h other1. In addition, a
tion-s that are normally taken on page lat
hing, su
h assetting of dirty bits for the page, are now performedbased on log re
ords written to the redo log. The redolog is used as a single unifying resour
e to
oordinate1In
ases when region sizes
hange,
ertain additional regionlo
ks on storage allo
ation stru
tures may need to be obtained.For example, in a page based system, if an update
auses thesize of a tuple to
hange, then in addition to a region lo
k on thetuple, an Xmode region lo
k on the storage allo
ation stru
tureson the page must be obtained.

the appli
ations intera
tion with the re
overy system,and this approa
h has proven very useful.2.5 Ping-pong Che
kpointingConsistent with the terminology in main-memorydatabases, we use the term
he
kpoint to mean a
opyof main-memory, stored on disk, and
he
kpointingrefers to the a
tion of
reating a
he
kpoint. This ter-minology di�ers slightly from the terminology used,for example, in ARIES [MHL+92℄.Traditional re
overy s
hemes implement write-ahead logging (WAL), whereby all undo logs for up-dates on a page are
ushed to disk before the page is
ushed to disk. To guarantee the WAL property, alat
h on the page (or possibly on the system log) isheld while
opying the page to disk. In our re
overys
heme, we eliminate lat
hes on pages during updates,sin
e lat
hing
an signi�
antly in
rease a

ess
osts inmain-memory. It
an also interfere with normal pro-
essing, as well as in
rease programming
omplexity.However, as a result it is not possible to enfor
e thewrite-ahead logging poli
y, sin
e pages may be updat-ed even as they are being written out.For
orre
tness, in the absen
e of write-ahead log-ging, two
opies of the database image are stored ondisk, and alternate
he
kpoints write dirty pages to al-ternate
opies. This strategy,
alled ping-pong
he
k-pointing (see, e.g., [SGM90b℄), permits a
he
kpointthat is being
reated to be temporarily in
onsistent;i.e., updates may have been written out without
orre-sponding undo re
ords having been written. However,after writing out dirty pages, suÆ
ient redo and undolog information is written out to bring the
he
kpointto a
onsistent state. Even if a failure o

urs while
reating one
he
kpoint, the other
he
kpoint is still
onsistent and
an be used for re
overy.Keeping two
opies of a main-memory database ondisk for ping-pong
he
kpointing does not have a veryhigh spa
e penalty, sin
e disk spa
e is mu
h
heaperthan main-memory. As we shall see later, there is anI/O penalty in that dirty pages have to be writtenout to both
he
kpoints even if there was only oneupdate on the page. However, this penalty is smallfor hot pages, and the bene�ts outweigh the I/O
ostfor typi
al main-memory database appli
ations.Before writing any dirty data to disk, the
he
k-point notes the
urrent end of the stable log in thevariable end of stable log, whi
h will be stored withthe
he
kpoint. This is the start point for s
anningthe system log when re
overing from a
rash usingthis
he
kpoint. Next, the
ontents of the (in-memory)
kpt dpt are set to those of the dpt and the dpt is ze-roed (noting of end of stable log and zeroing of dpt are

done atomi
ally with respe
t to
ushing). The pageswritten out are the pages that were either dirty in the
kpt dpt of the last
ompleted
he
kpoint, or dirty inthe
urrent (in-memory)
kpt dpt, or in both. In oth-er words, all pages that were modi�ed sin
e the
ur-rent
he
kpoint image was last written, namely, pagesthat were dirtied sin
e the last-but-one
he
kpoint, arewritten out. This is ne
essary to ensure that updatesdes
ribed by log re
ords pre
eding the
urrent
he
k-point's end of stable log have made it in the databaseimage in the
urrent
he
kpoint.Che
kpoints write out dirty pages without obtain-ing any lat
hes and thus without interfering with nor-mal operations. This fuzzy
he
kpointing is possiblesin
e physi
al redo log re
ords are generated by all up-dates; these are used during restart re
overy and theire�e
ts are idempotent. For any un
ommitted updatewhose e�e
ts have made it to the
he
kpoint image,undo log re
ords would be written out to disk after thedatabase image has been written. This is performedby
he
kpointing the ATT after
he
kpointing the da-ta; the
he
kpoint of the ATT writes out undo logre
ords, as well as some other status information.At the end of
he
kpointing, a log
ush must bedone before de
laring the
he
kpoint
ompleted (and
onsistent) by toggling
ur
kpt to point to the new
he
kpoint, for the following reason. Undo logs aredeleted on transa
tion/operation pre-
ommit, whi
hmay happen before the
he
kpoint of the ATT. If the
he
kpoint
ompletes, and the system then fails beforea log
ush, then the
he
kpoint may
ontain un
om-mitted updates for whi
h there is no undo information.The log
ush ensures that the transa
tion/operationhas
ommitted, and so the updates will not have to beundone (ex
ept perhaps by a
ompensating operation,for whi
h undo information will be present in the log).2.6 Abort Pro
essingWhen a transa
tion aborts, that is, does not su
-
essfully
omplete exe
ution, updates/operations de-s
ribed by log re
ords in the transa
tion's undo log areundone by traversing the undo log sequentially fromthe end. Transa
tion abort is
arried out by exe
ut-ing, in reverse order, every undo re
ord just as if theexe
ution were part of the transa
tion.Following the philosophy of repeating history[MHL+92℄, new physi
al redo log re
ords are
reatedfor ea
h physi
al undo re
ord en
ountered during theabort. Similarly, for ea
h logi
al undo re
ord en
oun-tered, a new \
ompensation" or \proxy" operation isexe
uted based on the undo des
ription. Log re
ordsfor updates performed by the operation are generat-ed as during normal pro
essing. Furthermore, when

the proxy operation
ommits, all its undo log re
ordsare deleted along with the logi
al undo re
ord for theoperation that was undone. The
ommit re
ord forthe proxy operation serves a purpose similar to thatserved by
ompensation log re
ords (CLRs) in ARIES{ during restart re
overy, when it is en
ountered, thelogi
al undo log re
ord for the operation that was un-done is deleted from the transa
tion's undo log, thuspreventing it from being undone again.2.7 Re
overyRestart re
overy, after initializing the ATT andtransa
tion undo logs with the ATT and undo logsstored in the most re
ent
he
kpoint, loads thedatabase image and sets dpt to zero. As part of the
he
kpoint operation, the end of the system log ondisk is noted before the database image is
he
kpoint-ed, and be
omes the \begin-re
overy-point" for this
he
kpoint on
e the
he
kpoint has
ompleted. Allupdates des
ribed by log re
ords pre
eding this pointare guaranteed to be re
e
ted in the
he
kpointeddatabase image. Thus, during restart re
overy, on-ly redo log re
ords following the begin-re
overy-pointfor the last
ompleted
he
kpoint of the database areapplied (appropriate pages in dpt are set to dirty forea
h log re
ord). During the appli
ation of redo logre
ords, ne
essary a
tions are taken to keep the
he
k-pointed image of the ATT
onsistent with the log asit is applied. These a
tions mirror the a
tions takenduring normal pro
essing. For example, when an op-eration
ommit log re
ord is en
ountered, lower levellog re
ords in the transa
tion's undo log for the oper-ation are repla
ed by a higher level undo des
ription.On
e all the redo log re
ords have been applied,the a
tive transa
tions are rolled ba
k. To do this, all
ompleted operations that have been invoked dire
tlyby the transa
tion, or have been dire
tly invoked byan in
omplete operation have to be rolled ba
k. How-ever, the order in whi
h operations of di�erent trans-a
tions are rolled ba
k is very important, so that anundo at level Li sees data stru
tures that are
onsis-tent [Lom92℄. First, all operations (a
ross all transa
-tions) at L0 that must be rolled ba
k are rolled ba
k,followed by all operations at level L1, then L2 and soon.Note that for
ertain un
ommitted updates presentin the redo log, undo log re
ords may not have beenre
orded during the
he
kpoint { this
ould happenfor instan
e when an operation exe
utes and
ommitsafter the
he
kpoint, and the
ontaining transa
tionhas not
ommitted. However, this is not a problem s-in
e the undo des
ription for the operation would havebeen found in operation
ommit log re
ords during the

forward pass over the system log earlier during re
ov-ery. Any redo log re
ords for updates performed byan operation whose
ommit log re
ord is not found inthe system log are ignored (sin
e these must be due toa
rash during
ush and are at the tail of the systemlog).3 Client-Server Re
overy S
hemeOther than integration with our multi-level re
ov-ery s
heme, a key feature of the
lient-server s
heme is�ne-grained
on
urren
y
ontrol for regions. Our algo-rithms hinge on the simple assumption that a regionis
ontrolled by a lo
k, thus may easily be adaptedto re
ord-oriented or obje
t-oriented database model-s. The support of �ne-grained
on
urren
y, present inour Invalidate-on-Lo
k s
heme for
a
he
oheren
y, isparti
ularly important for distributed main-memoryappli
ations where the
ost of network a

ess due tofalse sharing will be proportionally higher (i.e. as
om-pared to a few memory a

esses).In this approa
h, we assume a single server witha

ess to stable storage that is responsible for
o-ordinating all the logging, and for performing
he
k-points and re
overy. Multiple
lients (with or withoutdisks) are
onne
ted to the server. For simpli
ity ofpresentation, the network is assumed to be FIFO andreliable, but all our s
hemes
an be easily modi�ed ifthis is not the
ase. Ea
h
lient and the server has itsown
opy of the database in main memory. A transa
-tion exe
utes at a single
lient and updates/a

essesthe
opy of the database at the
lient. As a result,database pages updated by a
lient may not be
ur-rent at some other
lient. Our s
heme maintains stateinformation at ea
h
lient about ea
h database page.A page at a
lient is in one of two states { valid orinvalid. Invalid pages
ontain stale versions of
ertaindata, and are refreshed on a

ess by obtaining the lat-est
opy of the page from the server.In our
lient-server s
heme, log re
ords for updatesgenerated by a transa
tion at a
lient site are stored inthat site's ATT as in the
entralized
ase. Client sitesdo not maintain a system log on disk, but keep a sys-tem log tail in memory and append log re
ords fromthe lo
al redo logs to this tail when operations
om-mit/abort. Furthermore, on the o

urren
e of
ertainevents (e.g., transa
tion
ommit, lo
k release from asite), log re
ords in the system log are shipped by the
lient to the server (note that pages are shipped on-ly from the server to
lients). The shipped redo logre
ords are used to update the server's
opy of thea�e
ted pages, ensuring that pages shipped to
lientsfrom the server are
urrent. This enables our s
hemeto support
on
urrent updates to a single page at mul-

tiple
lients sin
e re-applying the updates at the serv-er
auses them to be merged (this approa
h is alsoadopted in [CDF+94℄). Shipping the log re
ords willusually be
heaper than shipping pages, and the
ostof applying the log re
ords themselves is small sin
e, inour main-memory database
ontext, the server will nothave to read the a�e
ted pages from disk. The serv-er maintains all the data stru
tures des
ribed for the
entralized
ase.2 Che
kpointing is performed solelyat the server, and follows the same pro
edure as the
entralized
ase.Transa
tions follow the
allba
k lo
king s
heme[LLOW91, CFZ94℄ when obtaining and releasing lo
k-s. Ea
h site has a lo
al lo
k manager (LLM) whi
h
a
hes lo
ks and a global lo
k manager (GLM) atthe server keeps tra
k of lo
ks
a
hed at the various
lients. Transa
tion requests for lo
ks
a
hed lo
al-ly are handled at the
lient itself. However, requestsfor lo
ks not
a
hed lo
ally are forwarded to the glob-al lo
k manager whi
h
alls ba
k the lo
k from other
lients that may have
a
hed the lo
k in a
on
i
t-ing mode (before granting the lo
k request). A
lientrelinquishes a lo
k in response to a
allba
k if no trans-a
tion exe
uting at the
lient is
urrently holding thelo
k.In addition, the LLM at a
lient provides supportfor asso
iating a point in the system log at the
lientwith ea
h lo
k; the purpose of this support will be
ome
lear later.3.1 Basi
 OperationsWe now des
ribe the features whi
h distinguishthe
lient-server s
heme from the
entralized
ase, interms of a
tions performed at the
lient and the serv-er at spe
i�
 points in pro
essing. We present twovariations for maintaining page state information,
or-responding to \eager" versus \lazy" refresh. In bothte
hniques, we allow two sites to
on
urrently updatethe same page when di�erent lo
ks
over di�erent re-gions on the page. We begin with a
tions
ommon toboth methods.� Page A

ess: In
ase a
lient a

esses a pagethat is valid, it simply goes ahead without
om-muni
ating with the server. Else, if the page isinvalid (
ertain data on the page may be stale),then the
lient refreshes the page by 1) obtain-ing the most re
ent version of the page from theserver, and 2) applying to the newly re
eived pageany lo
al updates whi
h have not been sent to theserver (this step merges lo
al updates with up-dates from other sites). It then marks the page2We assume there is a one-to-one mapping between ATTentries at the
lient sites and the server.

as valid. The server keeps tra
k of
lients thathave the page in a valid state.� Operation/Transa
tion Commit: At the
lient, redo log re
ords are moved to the systemlog, a
ommit re
ord is appended, and appropri-ate a
tions are performed on the transa
tion's un-do log in the ATT as des
ribed for the
entralized
ase. In
ase of a transa
tion
ommit, however,the log re
ords in the system log are shipped tothe server, and further a
tions are delayed untilthe server has a
knowledged that the log re
ordshave been
ushed to disk.Finally, all the lo
ks a
quired by the opera-tion/transa
tion are released lo
ally.� Lo
k Release: For ea
h X mode region lo
k andoperation lo
k that is released by a transa
tion,the end of the
lient system log is noted and s-tored with the lo
k. Thus, for any region lo
k, allredo log re
ords in the system log a�e
ting thatregion pre
ede the point in the log stored withthe lo
k. Similarly, for an operation lo
k, all logre
ords relating to the operation (in
luding oper-ation
ommit) pre
ede the point in the system logstored with the lo
k. This lo
ation in the log is
lient-site-spe
i�
.Before a
lient site relinquishes an X mode regionlo
k or operation lo
k to the server due to the
all-ba
k des
ribed above, it ships to the serverat least the portion of the system log whi
h pre-
edes the log pointer stored with the lo
k. Thisensures that the next lo
k will not be a
quired onthe region until the server's
opy is up to date,and the history of the update is in pla
e in theserver's logs. For X region lo
ks, this
ush en-sures repeating of history on regions, while foroperation lo
ks this
ush ensures that the serverre
eives the logi
al undo des
riptors in the oper-ation
ommit log re
ords for the operation whi
hreleased the lo
ks. Thus, if the server aborts atransa
tion after a site failure, the abort of thisoperation will take pla
e at the logi
al level of thelo
ks still held for it at the server.� Log Re
ord Pro
essing: At the server, for ea
hphysi
al redo log re
ord (re
eived from a
lient),the undo log re
ord is generated by reading the
urrent
ontents of the page at the server. Thenew log re
ord is then appended to the undo logfor this transa
tion in the server's ATT. Next theupdate des
ribed by the redo log re
ord is ap-plied, following whi
h the log re
ord is appended

to the redo log for the transa
tion in the server'sATT. Operation/transa
tion
ommit and abortlog re
ords re
eived from the
lient are pro
essedby performing the same a
tions as in the
entral-ized
ase when the log re
ords were generated.The ex
eptions are lo
k release, whi
h is drivenby the
lient, operation
ommit, where the logi
alundo des
riptor is extra
ted from the
ommit logre
ord, and transa
tion
ommit, where the
lientwhose transa
tion
ommitted is noti�ed after thelog
ush to disk su

eeds.By applying all the physi
al updates des
ribed inthe physi
al log re
ords to its pages, the serverensures that it always
ontains the latest updateson regions for lo
ks whi
h have been released to itfrom the
lients. The e�e
t of the logging s
heme,as far as data updates are
on
erned, is just as ifthe
lient transa
tion a
tually ran at the serversite.� Transa
tion Abort/Site Failures: If a
lientsite de
ides to abort a transa
tion, it pro
essesthe abort (as in the
entralized
ase) using theundo logs for the transa
tion in the
lient's ATT.If the
lient site itself fails, the server will aborttransa
tions that were a
tive at the
lient usingundo logs for the transa
tion in it's ATT. (Sin
ethe
lient
annot
ommit without
ommuni
atingwith the server, in
ase of partition, a de
ision toabort is is enfor
eable by the server.) If the serverfails, then the
omplete system is brought down,and restart re
overy is performed at the server asdes
ribed in Se
tion 2.7.We now
omplete our
lient-server s
heme by p-resenting two methods, invalidate-on-update, andinvalidate-on-lo
k, for ensuring that data a

essed bya
lient is up-to-date. All a
tions des
ribed so far areused in
ommon by both s
hemes, and both s
hemesfollow the rule that all log re
ords are
ushed to theserver before the lo
k whi
h
overed these updates isreleased from the site. Sin
e the server would haveapplied the log re
ords to its
opy of the data, thisensures that when the server grants a lo
k, it has the
urrent version of all pages
ontaining data
overed bythat lo
k. However, it is possible that the
opy of oneor more pages involved in the region for whi
h the lo
kwas obtained are not up-to-date at the
lient. Ea
hs
heme, by invalidating pages at the
lient, ensuresthat
lients do not a

ess stale data. The s
hemespermit regions to span multiple pages and do not re-quire the pages spanned by a region to be known.

3.2 Invalidate-On-UpdateThe �rst invalidation s
heme, based on updates,is simple, and is similar to the invalidation proto
olsfollowed in multi-pro
essor ma
hines in order to keep
a
hes
oherent. It is an eager proto
ol sin
e a pageat a
lient is invalidated whenever any update is madeto the page at the server. The se
ond s
heme, in thenext subse
tion, redu
es these invalidation messagesby tra
king per-lo
k information at the server.When the server re
eives log re
ords from a
lient,it does the following. For ea
h page that it updates,it sends invalidate messages to
lients (other than the
lient that updated the page) that may have the pagemarked as valid. For all
lients other than the
lien-t that updated the page, the server notes that the
lient does not have the page marked valid. Clients,on re
eiving the invalidate message, mark their pageas invalid.For example,
onsider two sites updating the samepage
on
urrently under two di�erent region lo
ks.Whi
hever site
ushes its updates to the server �rstwill
ause the server to send an invalidate message tothe other site, whi
h will then re-read the page fromthe server. However, if this site a

esses the same pageagain under the same lo
k, then the invalidate was notne
essary, sin
e the data in the region it has lo
ked hasnot
hanged. The following s
heme takes advantage ofthis observation.3.3 Invalidate-On-Lo
kThe invalidate-on-lo
k s
heme attempts to de
reaseunne
essary invalidations and the overhead of sendinginvalidation messages by asso
iating with the lo
k fora region information about updates to that region.Furthermore, pages
ontaining updated portions of aregion are invalidated only when the lo
k on the re-gion is obtained by a
lient. As a result, if two
lientsare updating di�erent regions on the same page, noinvalidation messages are sent to either
lient. Ad-ditionally, by piggyba
king invalidation messages forupdated pages on lo
k grant messages from the server,the overhead of sending separate invalidation messagesin the previous s
heme is eliminated.In the s
heme, when updates des
ribed by a physi-
al redo re
ord are applied to pages at the server, theupdated pages are asso
iated with the lo
k for the up-dated region. Thus, the s
heme requires that it bepossible to determine the region lo
k from the redore
ord. This
ould be a
hieved by requiring that thelo
k for a region be spe
i�ed by the user when theregion is updated, whi
h should be trivial sin
e all up-dates must be made holding a region lo
k. The lo
kname
an then be in
luded in the redo log re
ord.

This s
heme also requires that the server asso
iatea Log Sequen
e Number (LSN), with ea
h log re
ord,whi
h re
e
ts both the order in whi
h the re
ord wasapplied to the server's
opy of the page and the orderin whi
h it was added to the system log. For ea
hpage, the server stores the LSN of the most re
ent logre
ord that updated the page, and the identity of the
lient whi
h issued it. In addition, for ea
h
lient, theserver maintains in a
lient page table (
pt), the stateof the page at the
lient (valid/invalid), along withthe LSN for the page when it was last shipped to the
lient.The server also maintains for ea
h region lo
k a listof pages that are dirty due to updates to the region.For ea
h page in the list, we store the LSN of the mostre
ent log re
ord re
eived by the server that re
ordedan update to the part of the region on this page, andthe
lient whi
h performed the update. Thus, whena
lient is granted a region lo
k, if, for a page in thelo
k list, the LSN is greater than the LSN for the pagewhen it was last shipped to the
lient, then the
lientpage
ontains stale data for the region and must beinvalidated.The additional a
tions for this s
heme are as fol-lows:� Log apply: When the server applies to a page Pa redo log re
ord, LR, generated at
lient C underregion lo
k L, it takes the following a
tions. First,the LSN for P is set to the LSN for LR. Se
ond,the entry for P in the list of dirty pages for L isupdated (or
reated), setting the
lient to C, andthe LSN to the LSN for LR.� Lo
k grant: A set of invalidate messages ispassed ba
k to the
lient with the lo
k a
quisi-tion. The invalidate messages are for pages in thelist asso
iated with the lo
k being a
quired thatmeet three
riteria: 1) the page is
a
hed at the
lient in the valid state, 2) the LSN of the pagein the
pt for the
lient is smaller than the LSNof the page in the lo
k list, and 3) the
lient a
-quiring the lo
k was not the last to update thepage under this lo
k. The invalidated pages aremarked invalid in the
pt for the
lient and at the
lient site.� Page refresh: When the server sends a page toa
lient (page refresh), at the server, the page ismarked valid in the
pt for the
lient and the LSNfor the page in the
pt is updated to be the LSNfor the page at the server.� Lo
k list
leanup: We are interested in keeping

the list of pages with every lo
k as small as possi-ble. This
an be a
hieved by periodi
ally deletingpages P from the list of lo
k L su
h that the follow-ing
ondition holds, where C is the
lient noted inthe list of pages for L as the last
lient to updateP: Every
lient other than C has the page
a
hed either in an invalid state or withLSN greater than or equal to the LSNfor the page in the list for lo
k L.The rationale for this rule is that the purpose ofregion lo
ks lists is to determine pages that mustbe invalidated. However, if for a page in a
lient's
pt, the LSN is greater than the LSN for the pagein the lo
k list, then the
lient has the most re
entupdate to the region on the page, and thus thepage will not need to be sent in any invalidatelist.4 Shared Disk Re
overy S
hemeIn the shared disk approa
h, there is no server; ev-ery site has dire
t a

ess to disks over a fast network.The shared disk environment is used in many systems,su
h as the DEC VAX
lusters, and provides bene�tsover a shared nothing ar
hite
ture, su
h as fast
om-muni
ation and fault toleran
e. As in our
lient-servers
heme, in addition to
areful
onsideration of the in-tera
tion with multi-level re
overy, our main
on
ernis minimizing false sharing through �ne-grained
on-
urren
y
ontrol. This allows, for example, read-onlytransa
tions with a fully
a
hed working set to pro-
eed at main-memory speeds, an important propertyfor our intended appli
ations.In our shared disk model, ea
h site maintains itsown
opy of the database and its own system log ondisk. Sites obtain lo
ks from a GLM; the fun
tionof the lo
k manager
ould be distributed for speedand reliability, but this is orthogonal to our dis
ussion.Sites
a
he lo
ks, and relinquish lo
ks based on the
all ba
k lo
king me
hanism des
ribed in Se
tion 3.For simpli
ity of presentation, we assume the networkis FIFO and reliable; however, the s
hemes
an beextended if this were not the
ase.We are interested in allowing multiple
on
urrentreaders and writers of the same page at di�erent sites,as long as the same region lo
k is not required by twosites in
on
i
ting mode. A result of this is that
opiesof a page at di�erent sites may
ontain a di�erent setof updates, whi
h must be merged before the page iswritten to disk. Unlike the
lient-server
ase, there isno server to
arry out the task of merging updates.

cur_ckpt

Ckpt A

Ckpt B

Site 1 DB

ATTDPT 1 A []

Sys Log Tail

Stable Sys Log

DB

ATT
DPT

Sys Log Tail

Stable Sys Log

A []2

Site 2

Memory Memory

Shared Disk
Logs

Checkpoint
 DPTDatabase Image

1 2 3 ...

Site N

N

Checkpoints

1
1

2
2

End of Stable log

CA array (TS_ctrs)

ATT
(undo logs)Figure 2: The Shared Disk Ar
hite
tureTo solve the above problems, in our s
heme, logre
ords generated at a site are broad
ast to all othersites, so the updates
an be
arried out there. Sin
elog re
ords are shipped, there is no need to ship pages.The s
heme ensures that every time a site obtains aregion lo
k, the most re
ent version of the region isguaranteed to be a

essed at the site. More pre
ise-ly, it guarantees that every time a site obtains anylo
k (whether an operation lo
k or a region lo
k), alllog re
ords generated by all operations whi
h held thesame lo
k in a
on
i
ting mode have been applied tothe lo
al page images.The idea of broad
asting log re
ords leads to anar
hite
ture that essentially implements distributedshared memory, without the overhead of shippingpages. Note that the overhead of broad
asting logre
ords to all the sites may not be too severe if updaterates are not too high. Also, in some network ar
hi-te
tures (e.g., ethernet), the
ost of sending a messageto a single site may not be very di�erent from the
ostof a broad
ast to all sites.Finally, we note that although we have presenteddi�erent s
hemes for the
lient-server and shared diskar
hite
tures (based on page invalidation for
lient-server, and based on log broad
asting for shared-disk),both s
hemes should be appli
able to either ar
hi-te
ture (perhaps with di�erent performan
e tradeo�-s, and with di�erent requirements on
on
urrent up-daters). For la
k of spa
e, we have not explored thesealternatives here.4.1 Data Stru
turesAn overview of data stru
tures used for our shareddisk s
heme is given in Figure 2. At ea
h site, aglobal timestamp
ounter TS
tr is maintained, anda timestamp obtained from this
ounter is stored inea
h physi
al redo log re
ord for an update. At everysite j, an array of TS
trs (one TS
tr per site), Aj ismaintained in memory. Aj [i℄ stores the timestamp of

the latest update from site i that has been applied tothe database at site j.Separate undo and redo logs are maintained for ev-ery transa
tion as des
ribed in the earlier s
hemes.Ea
h site maintains its own version of the dirty pagetable dpt, system log, and an ATT whi
h stores infor-mation relating to transa
tions that exe
ute at thatsite.A single pair of
he
kpointed images is maintainedon disk for the database. A
he
kpoint image
onsist-s of an image of the database, the dirty page table
kpt dpt, and for every site:1. end of stable log { the point in the site's systemlog from whi
h the system log must be s
annedduring re
overy.2. the TS
tr following whi
h redo log re
ords fromthe site must be applied to the database. Colle
-tively these
ounters are referred to as AC .3. a
opy of the ATT at the site (
ontaining undologs).The LLM at a site stores a point in the system logwith ea
h lo
k as in the
lient-server s
heme. Both theLLM and GLM also store a timestamp with ea
h re-gion lo
k, and the GLM notes whi
h site most re
entlyheld the lo
k in X mode.4.2 Normal Pro
essingWe des
ribe below the a
tions taken during normalpro
essing to support distributed
on
urren
y
ontroland re
overy. Re
overy from system and site failure isdes
ribed in subsequent se
tions.� Log Re
ords: Every time a physi
al redo logre
ord is moved from a transa
tion's lo
al redolog to the system log, TS
tr is in
remented by 1and stored in the log re
ord. The timestamps areused to order log re
ords that des
ribe
on
i
tingupdates.� System Log Flush: When the system log atsite i is
ushed to stable storage, ea
h redo logre
ord whi
h has hit the disk is also broad
ast tothe other sites. The sending site i, also sets Ai[i℄to the timestamp in the log re
ord. Flushing ofa sequen
e of log re
ords is
ompleted on
e everylog re
ord has been written to disk as well as sentto the remaining sites.� Log Re
ord Re
eipt: A site j pro
esses an up-date broad
ast to it from site i as follows (updatesare pro
essed in the order in whi
h they are re-
eived). On re
eiving a broad
ast log re
ord, the

site applies the update to its lo
al
opy of thea�e
ted page(s), and sets the appropriate bits inits dpt. After updating the appropriate pages, thesite sets Aj [i℄ to the timestamp
ontained in theupdate (redo log re
ord).� Lo
k Release: The lo
k managers aid
orre
t-ness in two ways. First, similar to the
lient-server
ase, the
urrent lo
al end-of-log is not-ed when an operation or a region lo
k is released,and the LLM ensures that the log is
ushed to thispoint before releasing the lo
k from the site. Thisaids in re
overy by ensuring that history is repeat-ed, and when lower level lo
ks are released, thelogi
al undo a
tions whi
h a

ompany the higherlevel lo
ks have made it to disk. Sin
e logs arebroad
ast on
ush, it helps ensure that anothersite will re
eive the ne
essary log re
ords beforegetting the same lo
k in a
on
i
ting mode. Notethat this
ould require no log
ushes if the logre
ords have already been
ushed earlier due toanother lo
k release or some other transa
tion's
ommit.Se
ond, when a transa
tion releases an X moderegion lo
k, the timestamp for the lo
k is set tothe
urrent value of TS
tr at the site. When thislo
k is
alled ba
k by the GLM, this value is alsosent and is asso
iated with the lo
k by the GLM.When re
eived by another site, the timestamp isused to ensure that log re
ords for
on
i
ting a
-tions
overed by this lo
k have in
reasing times-tamp values. As an optimization, the site identi-�er
an also be sent with the lo
k to the GLM;the purpose will be
ome
lear in the next point.� Lo
k A
quisition: When a site re
eives an Xmode region lo
k from the GLM, it bumps up itsown TS
tr to be the maximum of its
urrent T-S
tr and the timestamp asso
iated with the lo
k(re
eived for the GLM). Further, the lo
k is grant-ed to a lo
al transa
tion only after all outstanding(unapplied) updates at the time of a
quiring thelo
k have been applied to the page. This is toensure that data a

essed at a site is always themost re
ent version of the data.As an optimization, if a site identi�er is providedwith the lo
k by the GLM, it suÆ
es to pro
esslog re
ords up to (and in
luding) the log re
ordfrom the site with the timestamp provided.4.3 Che
kpointingChe
kpointing is initiated by a site, whi
h
oor-dinates the operation. The
he
kpointing operation

onsists, as for the
entralized
ase, of three steps |1) writing the database image by the
o-ordinator, 2)writing the ATT at ea
h site and 3) �nally
ommit-ting the
he
kpoint. The main di�eren
e from the
entralized
ase lies in how ea
h step is
arried out.We des
ribe ea
h step below:1. The
oordinator announ
es the beginning of the
he
kpoint, at whi
h time all other sites zero theirdpts, and report their
urrent end of stable logvalues. Note that zeroing dpt and re
ordingend of stable log is done atomi
ally with respe
tto
ushes. The
oordinator applies all outstand-ing updates, then atomi
ally (with respe
t to pro-
essing further log re
ords and
ushing) re
ordsits end of stable log, notes AC from it's own Aj ,and
kpt dpt from its dpt, and then zeroes its owndpt. The
oordinator then writes to the
he
k-point image the
kpt dpt, the end of stable logsfor ea
h site, and the timestamp array AC .Applying outstanding updates at the
oordina-tor before noting
kpt dpt and AC ensures that1) updates pre
eding end of stable log reportedby other sites have been applied to the databasepages, and 2) the pages are marked dirty in
kpt dpt and thus, it is safe to zero dpts atsites when end of stable log is noted. Also, s-in
e ea
h site notes end of stable log independent-ly, it is possible that for a redo log re
ord af-ter end of stable log at one site, a
on
i
ting re-do log re
ord generated after it may be beforeend of stable log noted at a di�erent site. As aresult, during restart re
overy, applying every up-date after end of stable log in the system log for asite
ould result in the latter update being lost. S-toring AC in the
he
kpoint and during restart re-
overy, applying only redo re
ords at site i whosetimestamps are greater than AC [i℄ eliminates theabove problem sin
e timestamps for both updateswould be smaller than the
orresponding TS
trvalues for the sites in AC .2. Next, the database image is written out by the
oordinator in the same fashion as in the
entral-ized
ase, writing out not only pages dirty in this
he
kpoint interval (in
kpt dpt), but also pagesdirtied in the previous
he
kpoint interval (in the
kpt dpt stored in the previous
he
kpoint).3. On
e the
oordinator has written out thedatabase image, it instru
ts ea
h site to write outits ATT. Note that, as in the single site algorith-m, writing the ATT at a site
auses the system

log at the site to be
ushed. Multiple sites
anbe
on
urrently writing out their ATTs.4. On
e every site has reported to the
oordinatorthat its ATT has been written out, the database
he
kpoint is
ommitted by toggling
ur
kpt asin the
entralized
ase.4.4 Re
overyRestart re
overy in
ase of a system wide failure(where all sites have to be re
overed)
an be performedas follows by an arbitrary site j in the system. Thedatabase image and the
he
kpointed timestamp ar-ray AC are read, and for ea
h site, the ATT and theend of stable log re
orded in the
he
kpoint are read.Redo log re
ords in the system logs for the varioussites are then applied to the database image by
on-
urrently s
anning the various system logs. Ea
h site'ssystem log is s
anned in parallel, starting from theend of stable log re
orded for the site in the
he
k-point. At ea
h point, if the next log re
ord to be
onsidered in any of the system logs is not a redolog re
ord, then it is pro
essed and the ATT for itssite is modi�ed as des
ribed for the
entralized
asein Se
tion 2.7. On the other hand, if the next re
ordto be
onsidered in all the system logs is a redo logre
ord, then the log re
ord
onsidered next is the one(among all the system logs on disk being
onsidered)with the lowest timestamp value. For every redo logre
ord en
ountered in the system log for a site, i, witha timestamp greater than AC [i℄, the update is appliedand the a�e
ted pages are marked as dirty in j's dpt.On
e all the system logs have been s
anned, TS
trat site j is set to the largest timestamp
ontained in aredo log re
ord. In-progress and post-
ommit opera-tions in the ATTs for the various sites are then rolledba
k and exe
uted, respe
tively, at site j against thedatabase at site j, beginning with level L0 and then
onsidering su

essive levels L1; L2 and so on (as de-s
ribed in Se
tion 2.7). When an operation in an ATTentry for a site is being pro
essed, a
tions are per-formed on the undo and redo logs for the entry. Fur-thermore, when an operation pre-
ommits/aborts, logre
ords from the redo log are appended to the systemlog for the site and the timestamp for ea
h redo logre
ord appended is obtained by in
rementing TS
trat site j.Finally, every site's system logs are
ushed
ausingappropriate pages in j's dpt to be marked dirty (up-dates are not broad
ast, however), and the TS
tr atevery site and Ak[i℄ for all sites k and i are set to theTS
tr value at site j. The database image at everysite is set equal to the database image at site j, the

dpt for ea
h site is
opied from the dpt at site j, andre
overy is
ompleted.For la
k of spa
e we omit a proof of
orre
tness, buta sket
h of the proof is provided in the appendix.4.5 Re
overy from Site FailureOur re
overy algorithm
an also be extended to dealwith a site failure without performing a
omplete sys-tem restart, so long as the GLM data has not beenlost, or
an be regenerated from the other sites. If thisis not the
ase, a full system re
overy is performedinstead. Re
overy from site failure, as with regularsystem re
overy, has a redo pass, followed by rollba
kof in-progress operations.Before beginning the redo re
overy pass, the re-
overing site, say j, retrieves from the most re
ent
he
kpoint the database image, the ATT for site j,the timestamp array AC and the end of stable log forea
h site. It then informs other sites that it is up, andrequests from ea
h site i, that site's end of stable logvalue, and the value of Ai[j℄. At this point, other sitesstart sending log re
ords to j; these are bu�ered andpro
essed later. The redo pass is then performed bys
anning all the system logs as des
ribed in the previ-ous subse
tion ex
ept that 1) only the pages in the dptfor site j are marked dirty, 2) only a
tions on the ATTfor site j are performed, and 3) the system log for asite is s
anned until the end of stable log returned bythat site at the beginning of this re
overy.Also, log re
ords in the tail end of the log of there
overing site may not have made it to other sites {sin
e a log re
ord is broad
ast after it is
ushed. Forea
h site i (other than the re
overing site, j) all logre
ords in site i's system log that have timestampsgreater than Ai[j℄ are broad
ast to site i as they arepro
essed. On
e the redo pass is
ompleted, Aj [i℄ isset to the maximum timestamp in a redo log re
orden
ountered during the redo pass in the system log forsite i. Also, TS
tr at site j is set to the maximum ofAj [i℄ for all sites i. At this point, site j
an begin ap-plying updates des
ribed by log re
ords re
eived fromother sites, as during normal pro
essing, in the orderre
eived, and
he
kpoints
an again be taken as nor-mal.Before rolling ba
k in-progress operations, the lo
ksthat were
a
hed at site j at the time it
rashed are re-obtained by the lo
k manager at site j by
onsultingthe GLM. These lo
ks are all spe
ially marked | noneof these lo
ks will be returned on
all ba
k until un-marked sin
e they may have been held by some trans-a
tions at the lo
al site at the time of the failure. Asdes
ribed in Se
tion 2.7, rollba
k is performed level bylevel, with additional lo
ks requested as is done during

normal pro
essing (see Se
tion 4.2). Thus, TS
tr atsite j is bumped up and outstanding updates are ap-plied when a new lo
k is obtained, TS
tr is in
rement-ed when a redo log re
ord is appended to the systemlog, and log
ushes are performed when operation/Xmode region lo
ks are released by site j. Also, level Lioperation lo
ks at site j are unmarked on
e all a
tiveoperations at level Li+1 have been rolled ba
k. Thespe
ial treatment of marked lo
ks, along with level-by-level rollba
k, ensures that an in-progress operationwhi
h held a lo
k will in fa
t be prote
ted by the lo
kheld on behalf of the site.5 Conne
tion to Related WorkMulti-level re
overy and variants thereof, primari-ly for disk-based systems, have been proposed in theliterature [WHBM90, Lom92, MHL+92℄. Like theses
hemes, our s
hemes repeat history, generate logre
ords during undo pro
essing and log operation
om-mits when undo operations
omplete (similar to CLRsdes
ribed in [MHL+92℄). Also, as in [Lom92℄, trans-a
tion rollba
k at
rash re
overy is performed levelby level. Some of the main-memory features of ours
heme whi
h impa
t the distributed s
hemes are1. No physi
al undo logs are written out to the glob-al log ex
ept during
he
kpoints.2. Separate undo logs are maintained in memory fora
tive transa
tions. A result is that transa
tionrollba
k does not need to a

ess the global log,part of whi
h
ould be on disk.3. Our s
heme does not require lat
hing of pagesduring updates, whi
h is in
onvenient and expen-sive in either a main-memory DB or an OODBsetting. A
tions that are normally taken on pagelat
hing, su
h as setting of dirty bits for the page,are eÆ
iently performed based on physi
al redolog re
ords written to the global log.4. Our s
heme uses transient undo logging whi
h re-du
es the disk I/O.In the ARIES-SD [MN91℄ family of s
hemes for re-
overy in the shared disk environment, ea
h site main-tains a separate log, and pages are shipped betweensites. Our s
heme does not ship pages, but insteadbroad
asts log re
ords, taking advantage of
heap ap-pli
ation of these log re
ords in main-memory, andpermitting
on
urrent updates at a smaller than pagegranularity. In our s
heme, log
ushes are driven bythe release of a lo
k from a site, in order to sup-port repeating of history and
orre
t rollba
k of multi-level a
tions during
rash re
overy. The \super fast"

method of ARIES-SD [MN91℄ does not des
ribe
ush-es to prote
t the early release of lo
ks, making it un-
lear how that s
heme supports logi
al undo and high-
on
urren
y index operations.In [Rah91℄, the authors propose re
overy s
hemesfor the shared disk environment whi
h assume page-level
on
urren
y
ontrol and the NO-STEAL pagewrite poli
y { neither of whi
h are assumptions madein our s
hemes.In [MN94℄, the authors show how the ARIES re
ov-ery algorithm des
ribed in [MHL+92℄
an be extend-ed to a
lient-server environment. In
ontrast to ours
heme, the s
heme des
ribed here involves the
lientsas well as the server in the
he
kpointing pro
ess. Wealso support
on
urrent updates to a page by di�erent
lients, whi
h is not supported in [MN94℄.In [CFZ94℄, obje
t-level as well as adaptive lo
k-ing and repli
a management are dis
ussed, but re
ov-ery
onsiderations are not extensively addressed. In[FZT+92℄, the
lient-server re
overy s
heme for theExodus storage manager (ESM-CS) is des
ribed. Thisre
overy s
heme, based on ARIES [MHL+92℄, requirespage-level lo
king until end of transa
tion (for exam-ple, the Commit Dirty Page List).6 Con
luding RemarksIn this paper, we showed how our multi-level re-
overy algorithm [BPR+96℄
an be extended to adistributed data-shipping system while maintainingmany of the original bene�ts of the single-site algorith-m. The �rst s
heme presented supports
lient-serverpro
essing in whi
h a
entral system
ontrols logs and
he
kpoints. In the se
ond s
heme, suitable for a
lus-ter of
omputers with a shared disk, sites parti
ipatesymmetri
ally in transa
tion pro
essing a
tivities. Wedes
ribed the details of re
overy after the failure of
lients or the server in the
lient-server
ase and fromsingle site and system-wide failure in the shared disk
ase. Our s
heme allows
on
urrent updates at mul-tiple
lients in a
lient-server environment or multiplesites of the shared disk environment. By allowing �ne-grained and
exible
on
urren
y
ontrol, our s
hemesare appli
able to a range of distributed, main-memoryappli
ations whi
h need transa
tional a

ess to data.Our distributed s
hemes are based on a multi-levels
heme for re
overy in main-memory databases whi
hhas been implemented in the Dali Main Memory S-torage Manager [JLR+94℄. Thus, the bene�ts of thisalgorithm are extended to the distributed s
hemes, in-
luding fuzzy, dirty-page only
he
kpointing, relian
eon the log for fun
tions whi
h are typi
ally page based,low overhead logging with undo re
ords written onlydue to a
he
kpoint, and per-transa
tion logs for low

ontention.We plan to explore the performan
e of theses
hemes through experimentation, and then build adistributed, data-shipping version of Dali based onthese algorithms.Referen
es[BPR+96℄ P. Bohannon, J. Parker, R. Rastogi,S. Seshadri, and S. Sudarshan. Distributedmulti-level re
overy in main-memory databas-es. Te
hni
al Report 112530-96-02-27-01TM,Lu
ent Te
hnologies, Bell Laboratories, Febru-ary 1996.[CDF+94℄ M. J. Carey, D. J. DeWitt, M. J. Franklin,N. E. Hall, M. L. M
Auli�e, J. F. Naughton,D. T. S
huh, M. H. Solomon, C. K. Tan, O. G.Tsatalos, S. J. White, and M. J. Zwilling.Shoring up persistent appli
ations. In Pro-
eedings of ACM-SIGMOD 1994 Internation-al Conferen
e on Management of Data, Min-neapolis, Minnesota, pages 383{394, May 1994.[CFZ94℄ M. J. Carey, M. J. Franklin, and M. Zahari-oudakis. Fine-grained sharing in a page serverOODBMS. In Pro
eedings of ACM-SIGMOD1994 International Conferen
e on Managementof Data, Minneapolis, Minnesota, pages 359{370, May 1994.[DKO+84℄ D. J. DeWitt, R. Katz, F. Olken,D. Shapiro, M. Stonebraker, and D. Wood.Implementation te
hniques for main memorydatabase systems. Pro
. ACM-SIGMOD 1984Int'l Conf. on Management of Data, pages 1{8,June 1984.[FZT+92℄ M. J. Franklin, M. J. Zwilling, C. K. Tan,M. J. Carey, and D. J. DeWitt. Crash re
ov-ery in
lient-server EXODUS. In Pro
eedings ofACM-SIGMOD 1992 International Conferen
eon Management of Data, San Diego, Califor-nia, pages 165{174, June 1992.[GMS92℄ H. Gar
ia-Molina and K. Salem. Main mem-ory database systems: An overview. IEEETransa
tions on Knowledge and Data Engi-neering, 4(6):509{516, De
ember 1992.[Hag86℄ Robert B. Hagmann. A
rash re
overys
heme for a memory-resident database sys-tem. IEEE Transa
tions on Computers, C-35(9):839{847, September 1986.

[JLR+94℄ H.V. Jagadish, Dan Lieuwen, Rajeev Ras-togi, Avi Silbers
hatz, and S. Sudarshan. Dal-i: A high performan
e main-memory storagemanager. In Pro
s. of the International Conf.on Very Large Databases, 1994.[JSS93℄ H.V. Jagadish, Avi Silbers
hatz, and S. Su-darshan. Re
overing from main-memory laps-es. In Pro
s. of the International Conf. on VeryLarge Databases, 1993.[LLOW91℄ C. Lamb, G. Landis, J. Orenstein, andD. Weinreb. The obje
tstore database system.Communi
ations of the ACM, 34(10), O
tober1991.[Lom92℄ D. Lomet. MLR: A re
overy method formulti-level systems. In Pro
eedings of ACM-SIGMOD 1992 International Conferen
e onManagement of Data, San Diego, California,pages 185{194, 1992.[LSC92℄ T. Lehman, E. J. Shekita, and L. Cabrera.An evaluation of Starburst's memory residen-t storage
omponent. IEEE Transa
tions onKnowledge and Data Engineering, 4(6):555{566, De
ember 1992.[MHL+92℄ C. Mohan, D. Haderle, B. Lindsay, H. Pi-rahesh, and P. S
hwarz. ARIES: A transa
tionre
overy method supporting �ne-granularitylo
king and partial rollba
ks using write-aheadlogging. ACM Transa
tions on Database Sys-tems, 17(1):94{162, Mar
h 1992.[MN91℄ C. Mohan and I. Narang. Re
overy and
oheren
y-
ontrol proto
ols for fast intersys-tem page transfer and �ne-granularity lo
k-ing in a shared disks transa
tion environmen-t. In Pro
eedings of the Seventeenth Inter-national Conferen
e on Very Large Databases,Bar
elona, pages 193{207, September 1991.[MN94℄ C. Mohan and I. Narang. ARIES/CSA:a method for database re
overy in
lient-server ar
hite
tures. In Pro
eedings of ACM-SIGMOD 1994 International Conferen
e onManagement of Data, Minneapolis, Minneso-ta, pages 55{66, May 1994.[Rah91℄ E. Rahm. Re
overy
on
epts for data shar-ing systems. In Pro
eedings of the Twenty �rstInternational Conferen
e on Fault-TolerantComputing (FTCS-21), Montreal, pages 109{123, June 1991.

[SGM90a℄ K. Salem and H. Gar
ia-Molina. Sys-tem M: A transa
tion pro
essing testbed formemory resident data. IEEE Transa
tions onKnowledge and Data Engineering, 2(1):161{172, Mar
h 1990.[SGM90b℄ K. Salem and H. Gar
ia-Molina. Sys-tem M: A transa
tion pro
essing testbed formemory resident data. IEEE Transa
tions onKnowledge and Data Engineering, 2(1):161{172, 1990.[WHBM90℄ G. Weikum, C. Hasse, P. Broessler, andP. Muth. Multi-level re
overy. In Pro
eedings ofthe Nineth ACM SIGACT-SIGMOD-SIGARTSymposium on Prin
iples of Database Systems,Nashville, pages 109{123, June 1990.A Corre
tness of Shared Disk Algo-rithmsThe basi
 idea behind the proof of
orre
tness isto treat the
ombined system logs
on
eptually asa single log, merged a

ording to the timestamps.The
he
kpointed timestamp array AC is essentiallya pointer into this logi
al log, and
onstitutes the log-i
al log restart re
overy point. We show
orre
tnessof the shared disk re
overy and
a
he
oheren
y algo-rithms by showing the following:1. For every update written out during the
he
k-point operation, and that had not
ommitted be-fore the end of
he
kpointing, the undo log re
orddes
ribing the update is also written out.2. All updates des
ribed by log re
ords before thelogi
al log restart point (array AC) noted in the
he
kpoint have made it to the database image.3. History is repeated as a
onsequen
e of applyingthe redo log re
ords during restart re
overy.Point 1 is ensured sin
e the ATTs are
he
kpoint-ed after an update
ompleted, and every system logis
ushed to disk before the
he
kpoint
ompletes, sothat all pre-
ommitted updates get
ommitted. Thus,the undo log for any un
ommitted update is guaran-teed to be written to disk.Point 2 holds sin
e when a page is written to diskduring a
he
kpoint at site j, updates pre
eding Aj [i℄have made it to the image of the page at site j (due tothe algorithm for appli
ation of in
oming log re
ords),and this page is dirty in j's dpt (be
ause the dpt isnoted atomi
ally with AC).Point 3 is ensured due to the following reasons {

1. All physi
al log re
ords are applied during re
ov-ery in timestamp order { immediate from the re-
overy algorithm.2. For a given region, the order of log re
ord times-tamps re
e
ts the order of updates whi
h gener-ated the log re
ords. For every log re
ord, L, (inthe system log of a site) des
ribing an update,the log re
ord, L0 for the pre
eding (
on
i
ting)update is also in some site's stable log with times-tamp less than the timestamp for this log re
ord.The reason for this is that before a region lo
k isreleased by a site, updates
overed by the regionlo
k are appended to the system log,
ushed todisk, and broad
ast to the network. TS
tr at there
eiving site is bumped up and so must be larg-er than the timestamp
ontained in L0 when logre
ord L is moved to the system log and assigneda timestamp.3. If a timestamp
ontained in a log re
ord for site iis less than or equal to Aj [i℄, then the log re
ord'se�e
ts must have made it to the
opy of thedatabase at site j.4. Finally, we show that if a log re
ord, L1, from sitei is applied to a page during re
overy, then a
on-
i
ting log re
ord, L2, from another site, j, withtimestamp higher than the L1's timestamp, willalso be applied. In other words, the timestamp ofthe se
ond log re
ord is greater than AC [j℄.Suppose log re
ord L1 is applied during re
ov-ery, and it des
ribes an update at site i. Supposefurther that the update for L1 pre
edes anotherupdate at site j, des
ribed by L2. Then, at the
o-ordinator site for the last
ompleted
he
kpoint,L2's timestamp is larger than the timestamp ar-ray entry for j. The reason for this is that L1is �rst broad
ast before lo
ks are released, andonly later is L2 broad
ast to all the sites. Sin
eL1 is applied, its timestamp must be greater thanAC [i℄, whi
h means the broad
ast of L1 did notrea
h the last site that did the
he
kpoint. Butthen neither
ould the broad
ast of L2 { so thetimestamp AC [j℄ must be less than the timestampof L2, and L2 would be exe
uted as well.

