
Distributed Multi-Level Reovery in Main-Memory DatabasesPhilip Bohannon�James Parker�Rajeev Rastogi�S. SeshadriyAvi Silbershatz�S. Sudarshany� Bell Laboratories, Murray Hill, NJfplbohannon,rastogi,avig�bell-labs.omparker�luent.omy Indian Institute of Tehnology, Bombay, Indiafseshadri,sudarshag�se.iitb.ernet.inAbstratIn this paper, we present two shemes for onurren-y ontrol and reovery in distributed main-memorydatabases. In the lient-server sheme, lients shiplog reords to the server, whih applies the updates toits database opy. In the shared disk sheme, eah sitebroadasts its updates to other sites. The above en-able our shemes to support onurrent updates to thesame page at di�erent sites.Both shemes support an expliit multi-level reov-ery abstration for high onurreny, redued disk I/Oby writing only redo log reords to disk during normalproessing, and use of per-transation redo and un-do logs to redue ontention. Further, we use a fuzzyhekpointing sheme that writes only dirty pages todisk, yet minimally interferes with normal proessing,not requiring updaters to even aquire a lath beforeupdating a page.1 IntrodutionA large number of appliations (e.g., all routingand swithing in teleommuniations, �nanial appli-ations, automation ontrol) require high performaneaess to data with response time requirements of theorder of a few milliseonds to tens of milliseonds. Tra-ditional disk-based database systems are inapable ofmeeting the high performane needs of suh applia-tions due to the lateny of aessing data that is disk-resident. An attrative approah to providing applia-tions with low (and preditable) response times is toyThe work of these authors was performed in part while theywere at Bell Labs.

load the entire database into main-memory. Databas-es for suh appliations are often of the order of tens orhundreds of megabytes, whih an easily be supportedin main-memory. Further, mahines with main mem-ories of 8 gigabytes or more are already available, andwith the falling prie of RAM, mahines with suhlarge main memories will beome heaper and moreommon.One approah for implementing suh high perfor-mane databases is to provide a large bu�er-aheto a traditional disk-based system. In ontrast,in a main-memory database system (MMDB) (see,e.g., [GMS92, LSC92, JLR+94, DKO+84℄), the en-tire database an be diretly mapped into the virtu-al address spae of the proess and loked in mem-ory. Data an be aessed either diretly by virtualmemory pointers, or indiretly via loation indepen-dent database o�sets that an be quikly translatedto memory addresses. During data aess, there is noneed to interat with a bu�er manager, either for lo-ating data, or for fething/pinning bu�er pages. Al-so, objets larger than the system's page size an bestored ontiguously, thereby simplifying retrieval orin-plae use. Thus, data aess using a main-memorydatabase is very fast ompared to using disk-based s-torage managers, even when the disk-based managerhas suÆient memory to ahe all data pages.Further performane improvements an be ob-tained for a number of appliations by employing a dis-tributed arhiteture in whih several mahines on-neted by a fast network perform database aessesand updates in parallel. This is espeially the ase inappliations in whih transations are predominant-

ly read-only and update rates are low (e.g., numbertranslation and all routing in teleommuniations).As a result, eah mahine an loally aess dataahed in memory, thus avoiding network ommuni-ation whih ould be fairly expensive. A very di�er-ent example is CAD proessing, in whih loality ofreferene is very high, update transations are long,and interative response time is very important. Fi-nally, distribution also enhanes fault tolerane, whihis required in many mission-ritial appliations evenif data �ts easily in main-memory. In this ase, espe-ially with low update rates, a distributed database ispreferable to a hot-spare sine load an be distribut-ed in the non-failure ase leading to improved perfor-mane.The goal of the work desribed here was to ex-tend the main-memory reovery sheme presented in[JSS93, BPR+96℄ to the distributed ase, maintainingthe eÆienies of the single-site sheme, and support-ing the appliations desribed above. For example, wean make use of the MMDB optimization alled tran-sient undo logging, originally proposed in [JSS93℄, inwhih undo log reords are kept in memory and on-ly written to disk as required for hekpointing. Thisredues the size of the log written to disk, and per-haps more importantly, the size of the log sent arossnetwork links in distributed protools.We present two distint but related distributed re-overy shemes, the �rst for lient-server arhiteturesand the seond for shared disk arhitetures. Theseare both \data-shipping" shemes (e.g., [FZT+92℄) inwhih a transation exeutes at a single site, fethingdata (pages) as required from other sites. Distribut-ed ommit protools are not needed as in \funtion-shipping" environments. While shared disk arhite-tures have traditionally been losely tied to hardwareplatforms (e.g., VAXCluster), UNIX-based shareddisk platforms and network of workstation arhite-tures with similar performane harateristis are be-oming more ommon.A key property of our shemes is that onurren-t updates are possible at granularities smaller than apage-size, minimizing false-sharing (and thus needlessnetwork aesses). In addition to the transient redologging optimization desribed above, our algorithmsprovide advaned features suh as expliit multi-levelreovery (e.g., [WHBM90, MN94, Lom92℄), and fuzzyhekpointing [SGM90a, Hag86℄. Site or global reov-ery requires only a single pass over the system log,starting from the end of the system log reorded dur-ing the most reent hekpoint. As mentioned earli-er, objets in the system an span one or more page

boundaries.The remainder of the paper is organized as follows.We present bakground on multi-level reovery andthe single-site algorithm on whih the present work isbased in Setion 2. We present our lient-server reov-ery algorithm in Setion 3, and the shared disk algo-rithm in Setion 4. Related work and our onlusionsare presented in Setions 5 and 6, respetively.2 Overview of Main-Memory Reov-eryIn this setion we present a review of multi-levelreovery onepts and an overview of our single-site main-memory reovery sheme. Our entralizedsheme extends the sheme presented in [JSS93℄ withmulti-level reovery, and a fuzzy hekpointing shemethat only writes dirty pages. Low-level details of oursheme are desribed in [BPR+96℄.In our sheme, data is logially organized into re-gions. A region an be a tuple, an objet, or an arbi-trary data struture like a list or a tree. Eah regionhas a single assoiated lok with exlusive (X) andshared (S) modes, referred to as the region lok, thatguards aesses and updates to the region.2.1 Multi-Level ReoveryMulti-level reovery [WHBM90, MHL+92, Lom92℄provides reovery support for enhaned onurrenybased on the semantis of operations. Spei�ally, itpermits the use of weaker operation loks in plae ofstronger shared/exlusive region loks.A ommon example is index management, whereholding physial loks until transation ommit leadsto unaeptably low levels of onurreny. If undo log-ging has been done physially (e.g. reording exatlywhih bytes were modi�ed to insert a key into the in-dex) then the transation management system mustensure that these physial undo desriptions are validuntil transation ommit. Sine the desriptions referto spei� updates at spei� positions, this typiallyimplies that the region loks on the updated index n-odes be held to ensure orret reovery, in addition toonsiderations for onurrent aess to the index.The multi-level reovery approah is to replaethese low-level physial undo log reords with high-er level logial undo log reords ontaining undo de-sriptions at the operation level. Thus, for an insertoperation, physial undo reords would be replaed bya logial undo reord indiating that the inserted keymust be deleted. One this replaement is made, theregion loks may be released and only (less restritive)operation loks are retained. For example, region lok-s on the partiular nodes involved in an insert an be

In Main Memory
End of
Stable Log

Active Trans.
 Table

Dirty Page
 Table

Database

End of
Stable log
Database
ckpt_dpt

cur_ckpt

Ckpt A

Ckpt B

Stable System Log

System Log Tail

On Disk

Active Trans
Table (ATT)
(undo logs)

Redo Log

Undo Log

Trans. Local
 Logs

Figure 1: Overview of Reovery Struturesreleased, while an operation lok on the newly insert-ed key that prevents the key from being aessed ordeleted is held.2.2 System OverviewFigure 1 gives an overview of the strutures usedfor reovery. The database (a sequene of �xed sizepages) is mapped into the address spae of eah pro-ess and is in main memory, with (two) hekpoint im-ages Ckpt A and Ckpt B on disk. Also stored on diskare 1) ur kpt, an \anhor" pointing to the most re-ent valid hekpoint image for the database, and 2) asingle system log ontaining redo information, with itstail in memory. The variable end of stable log stores apointer into the system log suh that all reords priorto the pointer are known to have been ushed to thestable system log.There is a single ative transation table (ATT) thatstores separate redo and undo logs for ative transa-tions. A dirty page table, dpt, is maintained in mem-ory whih reords the pages that have been updatedsine the last hekpoint. The ATT (with undo logs)and the dirty page table are also stored with eahhekpoint. The dirty page table in a hekpoint isreferred to as kpt dpt.2.3 Transations and OperationsTransations, in our model, onsist of a sequene ofoperations. Similar to [Lom92℄, we assume that eahoperation has a level Li assoiated with it. An opera-tion at level Li an onsist of a sequene of operationsat level Li�1. Transations, assumed to be at levelLn, all operations at level Ln�1. Physial updatesto regions are level L0 operations. For transations,we distinguish between pre-ommit, when the ommitreord enters the system log in memory establishinga point in the serialization order, and ommit whenthe ommit reord hits the stable log. We use the

same terminology for operations, where only the pre-ommit point is meaningful, though this is sometimesreferred to as \operation ommit" in the paper.Eah transation obtains an operation lok beforean operation exeutes (the lok is granted to the op-eration if it ommutes with other operation loks heldby ative transations), and L0 operations must ob-tain region loks. The loks on the region are releasedone the L1 operation pre-ommits; however, an op-eration lok at level Li is held until the transation orthe ontaining operation (at level Li+1) pre-ommits.Thus, all the loks aquired by a transation are re-leased one it pre-ommits.2.4 Logging ModelThe reovery algorithm maintains separate undoand redo logs in memory for eah transation. Theseare stored as a linked list o� an entry for the trans-ation in the ATT. Eah update (to a part of a re-gion) generates physial undo and redo log reordsthat are appended to the transation's undo and redologs respetively. When a transation/operation pre-ommits, all the redo log reords for the transationin its redo log are appended to the system log, and thelogial undo desription for the operation is inludedin the operation ommit log reord in the system log.Thus, with the exeption of logial undo desriptors,only redo reords are written to the system log duringnormal proessing.Also, when an operation pre-ommits, the undolog reords for its suboperations/updates are deletedfrom the transation's undo log and a logial undo logreord ontaining the undo desription for the oper-ation is appended. In-memory undo logs of transa-tions that have pre-ommitted are deleted sine theyare not required again. Loks aquired by an opera-tion/transation are released one they pre-ommit.The system log is ushed to disk when a transa-tion deides to ommit. Pages updated by every redolog reord written to disk are marked dirty in the dirtypage table, dpt, by the ushing proedure. In our re-overy sheme, update ations do not obtain latheson pages { instead region loks ensure that updatesdo not interfere with eah other1. In addition, ation-s that are normally taken on page lathing, suh assetting of dirty bits for the page, are now performedbased on log reords written to the redo log. The redolog is used as a single unifying resoure to oordinate1In ases when region sizes hange, ertain additional regionloks on storage alloation strutures may need to be obtained.For example, in a page based system, if an update auses thesize of a tuple to hange, then in addition to a region lok on thetuple, an Xmode region lok on the storage alloation strutureson the page must be obtained.

the appliations interation with the reovery system,and this approah has proven very useful.2.5 Ping-pong ChekpointingConsistent with the terminology in main-memorydatabases, we use the term hekpoint to mean a opyof main-memory, stored on disk, and hekpointingrefers to the ation of reating a hekpoint. This ter-minology di�ers slightly from the terminology used,for example, in ARIES [MHL+92℄.Traditional reovery shemes implement write-ahead logging (WAL), whereby all undo logs for up-dates on a page are ushed to disk before the page isushed to disk. To guarantee the WAL property, alath on the page (or possibly on the system log) isheld while opying the page to disk. In our reoverysheme, we eliminate lathes on pages during updates,sine lathing an signi�antly inrease aess osts inmain-memory. It an also interfere with normal pro-essing, as well as inrease programming omplexity.However, as a result it is not possible to enfore thewrite-ahead logging poliy, sine pages may be updat-ed even as they are being written out.For orretness, in the absene of write-ahead log-ging, two opies of the database image are stored ondisk, and alternate hekpoints write dirty pages to al-ternate opies. This strategy, alled ping-pong hek-pointing (see, e.g., [SGM90b℄), permits a hekpointthat is being reated to be temporarily inonsistent;i.e., updates may have been written out without orre-sponding undo reords having been written. However,after writing out dirty pages, suÆient redo and undolog information is written out to bring the hekpointto a onsistent state. Even if a failure ours whilereating one hekpoint, the other hekpoint is stillonsistent and an be used for reovery.Keeping two opies of a main-memory database ondisk for ping-pong hekpointing does not have a veryhigh spae penalty, sine disk spae is muh heaperthan main-memory. As we shall see later, there is anI/O penalty in that dirty pages have to be writtenout to both hekpoints even if there was only oneupdate on the page. However, this penalty is smallfor hot pages, and the bene�ts outweigh the I/O ostfor typial main-memory database appliations.Before writing any dirty data to disk, the hek-point notes the urrent end of the stable log in thevariable end of stable log, whih will be stored withthe hekpoint. This is the start point for sanningthe system log when reovering from a rash usingthis hekpoint. Next, the ontents of the (in-memory)kpt dpt are set to those of the dpt and the dpt is ze-roed (noting of end of stable log and zeroing of dpt are

done atomially with respet to ushing). The pageswritten out are the pages that were either dirty in thekpt dpt of the last ompleted hekpoint, or dirty inthe urrent (in-memory) kpt dpt, or in both. In oth-er words, all pages that were modi�ed sine the ur-rent hekpoint image was last written, namely, pagesthat were dirtied sine the last-but-one hekpoint, arewritten out. This is neessary to ensure that updatesdesribed by log reords preeding the urrent hek-point's end of stable log have made it in the databaseimage in the urrent hekpoint.Chekpoints write out dirty pages without obtain-ing any lathes and thus without interfering with nor-mal operations. This fuzzy hekpointing is possiblesine physial redo log reords are generated by all up-dates; these are used during restart reovery and theire�ets are idempotent. For any unommitted updatewhose e�ets have made it to the hekpoint image,undo log reords would be written out to disk after thedatabase image has been written. This is performedby hekpointing the ATT after hekpointing the da-ta; the hekpoint of the ATT writes out undo logreords, as well as some other status information.At the end of hekpointing, a log ush must bedone before delaring the hekpoint ompleted (andonsistent) by toggling ur kpt to point to the newhekpoint, for the following reason. Undo logs aredeleted on transation/operation pre-ommit, whihmay happen before the hekpoint of the ATT. If thehekpoint ompletes, and the system then fails beforea log ush, then the hekpoint may ontain unom-mitted updates for whih there is no undo information.The log ush ensures that the transation/operationhas ommitted, and so the updates will not have to beundone (exept perhaps by a ompensating operation,for whih undo information will be present in the log).2.6 Abort ProessingWhen a transation aborts, that is, does not su-essfully omplete exeution, updates/operations de-sribed by log reords in the transation's undo log areundone by traversing the undo log sequentially fromthe end. Transation abort is arried out by exeut-ing, in reverse order, every undo reord just as if theexeution were part of the transation.Following the philosophy of repeating history[MHL+92℄, new physial redo log reords are reatedfor eah physial undo reord enountered during theabort. Similarly, for eah logial undo reord enoun-tered, a new \ompensation" or \proxy" operation isexeuted based on the undo desription. Log reordsfor updates performed by the operation are generat-ed as during normal proessing. Furthermore, when

the proxy operation ommits, all its undo log reordsare deleted along with the logial undo reord for theoperation that was undone. The ommit reord forthe proxy operation serves a purpose similar to thatserved by ompensation log reords (CLRs) in ARIES{ during restart reovery, when it is enountered, thelogial undo log reord for the operation that was un-done is deleted from the transation's undo log, thuspreventing it from being undone again.2.7 ReoveryRestart reovery, after initializing the ATT andtransation undo logs with the ATT and undo logsstored in the most reent hekpoint, loads thedatabase image and sets dpt to zero. As part of thehekpoint operation, the end of the system log ondisk is noted before the database image is hekpoint-ed, and beomes the \begin-reovery-point" for thishekpoint one the hekpoint has ompleted. Allupdates desribed by log reords preeding this pointare guaranteed to be reeted in the hekpointeddatabase image. Thus, during restart reovery, on-ly redo log reords following the begin-reovery-pointfor the last ompleted hekpoint of the database areapplied (appropriate pages in dpt are set to dirty foreah log reord). During the appliation of redo logreords, neessary ations are taken to keep the hek-pointed image of the ATT onsistent with the log asit is applied. These ations mirror the ations takenduring normal proessing. For example, when an op-eration ommit log reord is enountered, lower levellog reords in the transation's undo log for the oper-ation are replaed by a higher level undo desription.One all the redo log reords have been applied,the ative transations are rolled bak. To do this, allompleted operations that have been invoked diretlyby the transation, or have been diretly invoked byan inomplete operation have to be rolled bak. How-ever, the order in whih operations of di�erent trans-ations are rolled bak is very important, so that anundo at level Li sees data strutures that are onsis-tent [Lom92℄. First, all operations (aross all transa-tions) at L0 that must be rolled bak are rolled bak,followed by all operations at level L1, then L2 and soon.Note that for ertain unommitted updates presentin the redo log, undo log reords may not have beenreorded during the hekpoint { this ould happenfor instane when an operation exeutes and ommitsafter the hekpoint, and the ontaining transationhas not ommitted. However, this is not a problem s-ine the undo desription for the operation would havebeen found in operation ommit log reords during the

forward pass over the system log earlier during reov-ery. Any redo log reords for updates performed byan operation whose ommit log reord is not found inthe system log are ignored (sine these must be due toa rash during ush and are at the tail of the systemlog).3 Client-Server Reovery ShemeOther than integration with our multi-level reov-ery sheme, a key feature of the lient-server sheme is�ne-grained onurreny ontrol for regions. Our algo-rithms hinge on the simple assumption that a regionis ontrolled by a lok, thus may easily be adaptedto reord-oriented or objet-oriented database model-s. The support of �ne-grained onurreny, present inour Invalidate-on-Lok sheme for ahe ohereny, ispartiularly important for distributed main-memoryappliations where the ost of network aess due tofalse sharing will be proportionally higher (i.e. as om-pared to a few memory aesses).In this approah, we assume a single server withaess to stable storage that is responsible for o-ordinating all the logging, and for performing hek-points and reovery. Multiple lients (with or withoutdisks) are onneted to the server. For simpliity ofpresentation, the network is assumed to be FIFO andreliable, but all our shemes an be easily modi�ed ifthis is not the ase. Eah lient and the server has itsown opy of the database in main memory. A transa-tion exeutes at a single lient and updates/aessesthe opy of the database at the lient. As a result,database pages updated by a lient may not be ur-rent at some other lient. Our sheme maintains stateinformation at eah lient about eah database page.A page at a lient is in one of two states { valid orinvalid. Invalid pages ontain stale versions of ertaindata, and are refreshed on aess by obtaining the lat-est opy of the page from the server.In our lient-server sheme, log reords for updatesgenerated by a transation at a lient site are stored inthat site's ATT as in the entralized ase. Client sitesdo not maintain a system log on disk, but keep a sys-tem log tail in memory and append log reords fromthe loal redo logs to this tail when operations om-mit/abort. Furthermore, on the ourrene of ertainevents (e.g., transation ommit, lok release from asite), log reords in the system log are shipped by thelient to the server (note that pages are shipped on-ly from the server to lients). The shipped redo logreords are used to update the server's opy of thea�eted pages, ensuring that pages shipped to lientsfrom the server are urrent. This enables our shemeto support onurrent updates to a single page at mul-

tiple lients sine re-applying the updates at the serv-er auses them to be merged (this approah is alsoadopted in [CDF+94℄). Shipping the log reords willusually be heaper than shipping pages, and the ostof applying the log reords themselves is small sine, inour main-memory database ontext, the server will nothave to read the a�eted pages from disk. The serv-er maintains all the data strutures desribed for theentralized ase.2 Chekpointing is performed solelyat the server, and follows the same proedure as theentralized ase.Transations follow the allbak loking sheme[LLOW91, CFZ94℄ when obtaining and releasing lok-s. Eah site has a loal lok manager (LLM) whihahes loks and a global lok manager (GLM) atthe server keeps trak of loks ahed at the variouslients. Transation requests for loks ahed loal-ly are handled at the lient itself. However, requestsfor loks not ahed loally are forwarded to the glob-al lok manager whih alls bak the lok from otherlients that may have ahed the lok in a onit-ing mode (before granting the lok request). A lientrelinquishes a lok in response to a allbak if no trans-ation exeuting at the lient is urrently holding thelok.In addition, the LLM at a lient provides supportfor assoiating a point in the system log at the lientwith eah lok; the purpose of this support will beomelear later.3.1 Basi OperationsWe now desribe the features whih distinguishthe lient-server sheme from the entralized ase, interms of ations performed at the lient and the serv-er at spei� points in proessing. We present twovariations for maintaining page state information, or-responding to \eager" versus \lazy" refresh. In bothtehniques, we allow two sites to onurrently updatethe same page when di�erent loks over di�erent re-gions on the page. We begin with ations ommon toboth methods.� Page Aess: In ase a lient aesses a pagethat is valid, it simply goes ahead without om-muniating with the server. Else, if the page isinvalid (ertain data on the page may be stale),then the lient refreshes the page by 1) obtain-ing the most reent version of the page from theserver, and 2) applying to the newly reeived pageany loal updates whih have not been sent to theserver (this step merges loal updates with up-dates from other sites). It then marks the page2We assume there is a one-to-one mapping between ATTentries at the lient sites and the server.

as valid. The server keeps trak of lients thathave the page in a valid state.� Operation/Transation Commit: At thelient, redo log reords are moved to the systemlog, a ommit reord is appended, and appropri-ate ations are performed on the transation's un-do log in the ATT as desribed for the entralizedase. In ase of a transation ommit, however,the log reords in the system log are shipped tothe server, and further ations are delayed untilthe server has aknowledged that the log reordshave been ushed to disk.Finally, all the loks aquired by the opera-tion/transation are released loally.� Lok Release: For eah X mode region lok andoperation lok that is released by a transation,the end of the lient system log is noted and s-tored with the lok. Thus, for any region lok, allredo log reords in the system log a�eting thatregion preede the point in the log stored withthe lok. Similarly, for an operation lok, all logreords relating to the operation (inluding oper-ation ommit) preede the point in the system logstored with the lok. This loation in the log islient-site-spei�.Before a lient site relinquishes an X mode regionlok or operation lok to the server due to theall-bak desribed above, it ships to the serverat least the portion of the system log whih pre-edes the log pointer stored with the lok. Thisensures that the next lok will not be aquired onthe region until the server's opy is up to date,and the history of the update is in plae in theserver's logs. For X region loks, this ush en-sures repeating of history on regions, while foroperation loks this ush ensures that the serverreeives the logial undo desriptors in the oper-ation ommit log reords for the operation whihreleased the loks. Thus, if the server aborts atransation after a site failure, the abort of thisoperation will take plae at the logial level of theloks still held for it at the server.� Log Reord Proessing: At the server, for eahphysial redo log reord (reeived from a lient),the undo log reord is generated by reading theurrent ontents of the page at the server. Thenew log reord is then appended to the undo logfor this transation in the server's ATT. Next theupdate desribed by the redo log reord is ap-plied, following whih the log reord is appended

to the redo log for the transation in the server'sATT. Operation/transation ommit and abortlog reords reeived from the lient are proessedby performing the same ations as in the entral-ized ase when the log reords were generated.The exeptions are lok release, whih is drivenby the lient, operation ommit, where the logialundo desriptor is extrated from the ommit logreord, and transation ommit, where the lientwhose transation ommitted is noti�ed after thelog ush to disk sueeds.By applying all the physial updates desribed inthe physial log reords to its pages, the serverensures that it always ontains the latest updateson regions for loks whih have been released to itfrom the lients. The e�et of the logging sheme,as far as data updates are onerned, is just as ifthe lient transation atually ran at the serversite.� Transation Abort/Site Failures: If a lientsite deides to abort a transation, it proessesthe abort (as in the entralized ase) using theundo logs for the transation in the lient's ATT.If the lient site itself fails, the server will aborttransations that were ative at the lient usingundo logs for the transation in it's ATT. (Sinethe lient annot ommit without ommuniatingwith the server, in ase of partition, a deision toabort is is enforeable by the server.) If the serverfails, then the omplete system is brought down,and restart reovery is performed at the server asdesribed in Setion 2.7.We now omplete our lient-server sheme by p-resenting two methods, invalidate-on-update, andinvalidate-on-lok, for ensuring that data aessed bya lient is up-to-date. All ations desribed so far areused in ommon by both shemes, and both shemesfollow the rule that all log reords are ushed to theserver before the lok whih overed these updates isreleased from the site. Sine the server would haveapplied the log reords to its opy of the data, thisensures that when the server grants a lok, it has theurrent version of all pages ontaining data overed bythat lok. However, it is possible that the opy of oneor more pages involved in the region for whih the lokwas obtained are not up-to-date at the lient. Eahsheme, by invalidating pages at the lient, ensuresthat lients do not aess stale data. The shemespermit regions to span multiple pages and do not re-quire the pages spanned by a region to be known.

3.2 Invalidate-On-UpdateThe �rst invalidation sheme, based on updates,is simple, and is similar to the invalidation protoolsfollowed in multi-proessor mahines in order to keepahes oherent. It is an eager protool sine a pageat a lient is invalidated whenever any update is madeto the page at the server. The seond sheme, in thenext subsetion, redues these invalidation messagesby traking per-lok information at the server.When the server reeives log reords from a lient,it does the following. For eah page that it updates,it sends invalidate messages to lients (other than thelient that updated the page) that may have the pagemarked as valid. For all lients other than the lien-t that updated the page, the server notes that thelient does not have the page marked valid. Clients,on reeiving the invalidate message, mark their pageas invalid.For example, onsider two sites updating the samepage onurrently under two di�erent region loks.Whihever site ushes its updates to the server �rstwill ause the server to send an invalidate message tothe other site, whih will then re-read the page fromthe server. However, if this site aesses the same pageagain under the same lok, then the invalidate was notneessary, sine the data in the region it has loked hasnot hanged. The following sheme takes advantage ofthis observation.3.3 Invalidate-On-LokThe invalidate-on-lok sheme attempts to dereaseunneessary invalidations and the overhead of sendinginvalidation messages by assoiating with the lok fora region information about updates to that region.Furthermore, pages ontaining updated portions of aregion are invalidated only when the lok on the re-gion is obtained by a lient. As a result, if two lientsare updating di�erent regions on the same page, noinvalidation messages are sent to either lient. Ad-ditionally, by piggybaking invalidation messages forupdated pages on lok grant messages from the server,the overhead of sending separate invalidation messagesin the previous sheme is eliminated.In the sheme, when updates desribed by a physi-al redo reord are applied to pages at the server, theupdated pages are assoiated with the lok for the up-dated region. Thus, the sheme requires that it bepossible to determine the region lok from the redoreord. This ould be ahieved by requiring that thelok for a region be spei�ed by the user when theregion is updated, whih should be trivial sine all up-dates must be made holding a region lok. The lokname an then be inluded in the redo log reord.

This sheme also requires that the server assoiatea Log Sequene Number (LSN), with eah log reord,whih reets both the order in whih the reord wasapplied to the server's opy of the page and the orderin whih it was added to the system log. For eahpage, the server stores the LSN of the most reent logreord that updated the page, and the identity of thelient whih issued it. In addition, for eah lient, theserver maintains in a lient page table (pt), the stateof the page at the lient (valid/invalid), along withthe LSN for the page when it was last shipped to thelient.The server also maintains for eah region lok a listof pages that are dirty due to updates to the region.For eah page in the list, we store the LSN of the mostreent log reord reeived by the server that reordedan update to the part of the region on this page, andthe lient whih performed the update. Thus, whena lient is granted a region lok, if, for a page in thelok list, the LSN is greater than the LSN for the pagewhen it was last shipped to the lient, then the lientpage ontains stale data for the region and must beinvalidated.The additional ations for this sheme are as fol-lows:� Log apply: When the server applies to a page Pa redo log reord, LR, generated at lient C underregion lok L, it takes the following ations. First,the LSN for P is set to the LSN for LR. Seond,the entry for P in the list of dirty pages for L isupdated (or reated), setting the lient to C, andthe LSN to the LSN for LR.� Lok grant: A set of invalidate messages ispassed bak to the lient with the lok aquisi-tion. The invalidate messages are for pages in thelist assoiated with the lok being aquired thatmeet three riteria: 1) the page is ahed at thelient in the valid state, 2) the LSN of the pagein the pt for the lient is smaller than the LSNof the page in the lok list, and 3) the lient a-quiring the lok was not the last to update thepage under this lok. The invalidated pages aremarked invalid in the pt for the lient and at thelient site.� Page refresh: When the server sends a page toa lient (page refresh), at the server, the page ismarked valid in the pt for the lient and the LSNfor the page in the pt is updated to be the LSNfor the page at the server.� Lok list leanup: We are interested in keeping

the list of pages with every lok as small as possi-ble. This an be ahieved by periodially deletingpages P from the list of lok L suh that the follow-ing ondition holds, where C is the lient noted inthe list of pages for L as the last lient to updateP: Every lient other than C has the pageahed either in an invalid state or withLSN greater than or equal to the LSNfor the page in the list for lok L.The rationale for this rule is that the purpose ofregion loks lists is to determine pages that mustbe invalidated. However, if for a page in a lient'spt, the LSN is greater than the LSN for the pagein the lok list, then the lient has the most reentupdate to the region on the page, and thus thepage will not need to be sent in any invalidatelist.4 Shared Disk Reovery ShemeIn the shared disk approah, there is no server; ev-ery site has diret aess to disks over a fast network.The shared disk environment is used in many systems,suh as the DEC VAXlusters, and provides bene�tsover a shared nothing arhiteture, suh as fast om-muniation and fault tolerane. As in our lient-serversheme, in addition to areful onsideration of the in-teration with multi-level reovery, our main onernis minimizing false sharing through �ne-grained on-urreny ontrol. This allows, for example, read-onlytransations with a fully ahed working set to pro-eed at main-memory speeds, an important propertyfor our intended appliations.In our shared disk model, eah site maintains itsown opy of the database and its own system log ondisk. Sites obtain loks from a GLM; the funtionof the lok manager ould be distributed for speedand reliability, but this is orthogonal to our disussion.Sites ahe loks, and relinquish loks based on theall bak loking mehanism desribed in Setion 3.For simpliity of presentation, we assume the networkis FIFO and reliable; however, the shemes an beextended if this were not the ase.We are interested in allowing multiple onurrentreaders and writers of the same page at di�erent sites,as long as the same region lok is not required by twosites in oniting mode. A result of this is that opiesof a page at di�erent sites may ontain a di�erent setof updates, whih must be merged before the page iswritten to disk. Unlike the lient-server ase, there isno server to arry out the task of merging updates.

cur_ckpt

Ckpt A

Ckpt B

Site 1 DB

ATTDPT 1 A []

Sys Log Tail

Stable Sys Log

DB

ATT
DPT

Sys Log Tail

Stable Sys Log

A []2

Site 2

Memory Memory

Shared Disk
Logs

Checkpoint
 DPTDatabase Image

1 2 3 ...

Site N

N

Checkpoints

1
1

2
2

End of Stable log

CA array (TS_ctrs)

ATT
(undo logs)Figure 2: The Shared Disk ArhitetureTo solve the above problems, in our sheme, logreords generated at a site are broadast to all othersites, so the updates an be arried out there. Sinelog reords are shipped, there is no need to ship pages.The sheme ensures that every time a site obtains aregion lok, the most reent version of the region isguaranteed to be aessed at the site. More preise-ly, it guarantees that every time a site obtains anylok (whether an operation lok or a region lok), alllog reords generated by all operations whih held thesame lok in a oniting mode have been applied tothe loal page images.The idea of broadasting log reords leads to anarhiteture that essentially implements distributedshared memory, without the overhead of shippingpages. Note that the overhead of broadasting logreords to all the sites may not be too severe if updaterates are not too high. Also, in some network arhi-tetures (e.g., ethernet), the ost of sending a messageto a single site may not be very di�erent from the ostof a broadast to all sites.Finally, we note that although we have presenteddi�erent shemes for the lient-server and shared diskarhitetures (based on page invalidation for lient-server, and based on log broadasting for shared-disk),both shemes should be appliable to either arhi-teture (perhaps with di�erent performane tradeo�-s, and with di�erent requirements on onurrent up-daters). For lak of spae, we have not explored thesealternatives here.4.1 Data StruturesAn overview of data strutures used for our shareddisk sheme is given in Figure 2. At eah site, aglobal timestamp ounter TS tr is maintained, anda timestamp obtained from this ounter is stored ineah physial redo log reord for an update. At everysite j, an array of TS trs (one TS tr per site), Aj ismaintained in memory. Aj [i℄ stores the timestamp of

the latest update from site i that has been applied tothe database at site j.Separate undo and redo logs are maintained for ev-ery transation as desribed in the earlier shemes.Eah site maintains its own version of the dirty pagetable dpt, system log, and an ATT whih stores infor-mation relating to transations that exeute at thatsite.A single pair of hekpointed images is maintainedon disk for the database. A hekpoint image onsist-s of an image of the database, the dirty page tablekpt dpt, and for every site:1. end of stable log { the point in the site's systemlog from whih the system log must be sannedduring reovery.2. the TS tr following whih redo log reords fromthe site must be applied to the database. Colle-tively these ounters are referred to as AC .3. a opy of the ATT at the site (ontaining undologs).The LLM at a site stores a point in the system logwith eah lok as in the lient-server sheme. Both theLLM and GLM also store a timestamp with eah re-gion lok, and the GLM notes whih site most reentlyheld the lok in X mode.4.2 Normal ProessingWe desribe below the ations taken during normalproessing to support distributed onurreny ontroland reovery. Reovery from system and site failure isdesribed in subsequent setions.� Log Reords: Every time a physial redo logreord is moved from a transation's loal redolog to the system log, TS tr is inremented by 1and stored in the log reord. The timestamps areused to order log reords that desribe onitingupdates.� System Log Flush: When the system log atsite i is ushed to stable storage, eah redo logreord whih has hit the disk is also broadast tothe other sites. The sending site i, also sets Ai[i℄to the timestamp in the log reord. Flushing ofa sequene of log reords is ompleted one everylog reord has been written to disk as well as sentto the remaining sites.� Log Reord Reeipt: A site j proesses an up-date broadast to it from site i as follows (updatesare proessed in the order in whih they are re-eived). On reeiving a broadast log reord, the

site applies the update to its loal opy of thea�eted page(s), and sets the appropriate bits inits dpt. After updating the appropriate pages, thesite sets Aj [i℄ to the timestamp ontained in theupdate (redo log reord).� Lok Release: The lok managers aid orret-ness in two ways. First, similar to the lient-server ase, the urrent loal end-of-log is not-ed when an operation or a region lok is released,and the LLM ensures that the log is ushed to thispoint before releasing the lok from the site. Thisaids in reovery by ensuring that history is repeat-ed, and when lower level loks are released, thelogial undo ations whih aompany the higherlevel loks have made it to disk. Sine logs arebroadast on ush, it helps ensure that anothersite will reeive the neessary log reords beforegetting the same lok in a oniting mode. Notethat this ould require no log ushes if the logreords have already been ushed earlier due toanother lok release or some other transation'sommit.Seond, when a transation releases an X moderegion lok, the timestamp for the lok is set tothe urrent value of TS tr at the site. When thislok is alled bak by the GLM, this value is alsosent and is assoiated with the lok by the GLM.When reeived by another site, the timestamp isused to ensure that log reords for oniting a-tions overed by this lok have inreasing times-tamp values. As an optimization, the site identi-�er an also be sent with the lok to the GLM;the purpose will beome lear in the next point.� Lok Aquisition: When a site reeives an Xmode region lok from the GLM, it bumps up itsown TS tr to be the maximum of its urrent T-S tr and the timestamp assoiated with the lok(reeived for the GLM). Further, the lok is grant-ed to a loal transation only after all outstanding(unapplied) updates at the time of aquiring thelok have been applied to the page. This is toensure that data aessed at a site is always themost reent version of the data.As an optimization, if a site identi�er is providedwith the lok by the GLM, it suÆes to proesslog reords up to (and inluding) the log reordfrom the site with the timestamp provided.4.3 ChekpointingChekpointing is initiated by a site, whih oor-dinates the operation. The hekpointing operation

onsists, as for the entralized ase, of three steps |1) writing the database image by the o-ordinator, 2)writing the ATT at eah site and 3) �nally ommit-ting the hekpoint. The main di�erene from theentralized ase lies in how eah step is arried out.We desribe eah step below:1. The oordinator announes the beginning of thehekpoint, at whih time all other sites zero theirdpts, and report their urrent end of stable logvalues. Note that zeroing dpt and reordingend of stable log is done atomially with respetto ushes. The oordinator applies all outstand-ing updates, then atomially (with respet to pro-essing further log reords and ushing) reordsits end of stable log, notes AC from it's own Aj ,and kpt dpt from its dpt, and then zeroes its owndpt. The oordinator then writes to the hek-point image the kpt dpt, the end of stable logsfor eah site, and the timestamp array AC .Applying outstanding updates at the oordina-tor before noting kpt dpt and AC ensures that1) updates preeding end of stable log reportedby other sites have been applied to the databasepages, and 2) the pages are marked dirty inkpt dpt and thus, it is safe to zero dpts atsites when end of stable log is noted. Also, s-ine eah site notes end of stable log independent-ly, it is possible that for a redo log reord af-ter end of stable log at one site, a oniting re-do log reord generated after it may be beforeend of stable log noted at a di�erent site. As aresult, during restart reovery, applying every up-date after end of stable log in the system log for asite ould result in the latter update being lost. S-toring AC in the hekpoint and during restart re-overy, applying only redo reords at site i whosetimestamps are greater than AC [i℄ eliminates theabove problem sine timestamps for both updateswould be smaller than the orresponding TS trvalues for the sites in AC .2. Next, the database image is written out by theoordinator in the same fashion as in the entral-ized ase, writing out not only pages dirty in thishekpoint interval (in kpt dpt), but also pagesdirtied in the previous hekpoint interval (in thekpt dpt stored in the previous hekpoint).3. One the oordinator has written out thedatabase image, it instruts eah site to write outits ATT. Note that, as in the single site algorith-m, writing the ATT at a site auses the system

log at the site to be ushed. Multiple sites anbe onurrently writing out their ATTs.4. One every site has reported to the oordinatorthat its ATT has been written out, the databasehekpoint is ommitted by toggling ur kpt asin the entralized ase.4.4 ReoveryRestart reovery in ase of a system wide failure(where all sites have to be reovered) an be performedas follows by an arbitrary site j in the system. Thedatabase image and the hekpointed timestamp ar-ray AC are read, and for eah site, the ATT and theend of stable log reorded in the hekpoint are read.Redo log reords in the system logs for the varioussites are then applied to the database image by on-urrently sanning the various system logs. Eah site'ssystem log is sanned in parallel, starting from theend of stable log reorded for the site in the hek-point. At eah point, if the next log reord to beonsidered in any of the system logs is not a redolog reord, then it is proessed and the ATT for itssite is modi�ed as desribed for the entralized asein Setion 2.7. On the other hand, if the next reordto be onsidered in all the system logs is a redo logreord, then the log reord onsidered next is the one(among all the system logs on disk being onsidered)with the lowest timestamp value. For every redo logreord enountered in the system log for a site, i, witha timestamp greater than AC [i℄, the update is appliedand the a�eted pages are marked as dirty in j's dpt.One all the system logs have been sanned, TS trat site j is set to the largest timestamp ontained in aredo log reord. In-progress and post-ommit opera-tions in the ATTs for the various sites are then rolledbak and exeuted, respetively, at site j against thedatabase at site j, beginning with level L0 and thenonsidering suessive levels L1; L2 and so on (as de-sribed in Setion 2.7). When an operation in an ATTentry for a site is being proessed, ations are per-formed on the undo and redo logs for the entry. Fur-thermore, when an operation pre-ommits/aborts, logreords from the redo log are appended to the systemlog for the site and the timestamp for eah redo logreord appended is obtained by inrementing TS trat site j.Finally, every site's system logs are ushed ausingappropriate pages in j's dpt to be marked dirty (up-dates are not broadast, however), and the TS tr atevery site and Ak[i℄ for all sites k and i are set to theTS tr value at site j. The database image at everysite is set equal to the database image at site j, the

dpt for eah site is opied from the dpt at site j, andreovery is ompleted.For lak of spae we omit a proof of orretness, buta sketh of the proof is provided in the appendix.4.5 Reovery from Site FailureOur reovery algorithm an also be extended to dealwith a site failure without performing a omplete sys-tem restart, so long as the GLM data has not beenlost, or an be regenerated from the other sites. If thisis not the ase, a full system reovery is performedinstead. Reovery from site failure, as with regularsystem reovery, has a redo pass, followed by rollbakof in-progress operations.Before beginning the redo reovery pass, the re-overing site, say j, retrieves from the most reenthekpoint the database image, the ATT for site j,the timestamp array AC and the end of stable log foreah site. It then informs other sites that it is up, andrequests from eah site i, that site's end of stable logvalue, and the value of Ai[j℄. At this point, other sitesstart sending log reords to j; these are bu�ered andproessed later. The redo pass is then performed bysanning all the system logs as desribed in the previ-ous subsetion exept that 1) only the pages in the dptfor site j are marked dirty, 2) only ations on the ATTfor site j are performed, and 3) the system log for asite is sanned until the end of stable log returned bythat site at the beginning of this reovery.Also, log reords in the tail end of the log of thereovering site may not have made it to other sites {sine a log reord is broadast after it is ushed. Foreah site i (other than the reovering site, j) all logreords in site i's system log that have timestampsgreater than Ai[j℄ are broadast to site i as they areproessed. One the redo pass is ompleted, Aj [i℄ isset to the maximum timestamp in a redo log reordenountered during the redo pass in the system log forsite i. Also, TS tr at site j is set to the maximum ofAj [i℄ for all sites i. At this point, site j an begin ap-plying updates desribed by log reords reeived fromother sites, as during normal proessing, in the orderreeived, and hekpoints an again be taken as nor-mal.Before rolling bak in-progress operations, the loksthat were ahed at site j at the time it rashed are re-obtained by the lok manager at site j by onsultingthe GLM. These loks are all speially marked | noneof these loks will be returned on all bak until un-marked sine they may have been held by some trans-ations at the loal site at the time of the failure. Asdesribed in Setion 2.7, rollbak is performed level bylevel, with additional loks requested as is done during

normal proessing (see Setion 4.2). Thus, TS tr atsite j is bumped up and outstanding updates are ap-plied when a new lok is obtained, TS tr is inrement-ed when a redo log reord is appended to the systemlog, and log ushes are performed when operation/Xmode region loks are released by site j. Also, level Lioperation loks at site j are unmarked one all ativeoperations at level Li+1 have been rolled bak. Thespeial treatment of marked loks, along with level-by-level rollbak, ensures that an in-progress operationwhih held a lok will in fat be proteted by the lokheld on behalf of the site.5 Connetion to Related WorkMulti-level reovery and variants thereof, primari-ly for disk-based systems, have been proposed in theliterature [WHBM90, Lom92, MHL+92℄. Like theseshemes, our shemes repeat history, generate logreords during undo proessing and log operation om-mits when undo operations omplete (similar to CLRsdesribed in [MHL+92℄). Also, as in [Lom92℄, trans-ation rollbak at rash reovery is performed levelby level. Some of the main-memory features of oursheme whih impat the distributed shemes are1. No physial undo logs are written out to the glob-al log exept during hekpoints.2. Separate undo logs are maintained in memory forative transations. A result is that transationrollbak does not need to aess the global log,part of whih ould be on disk.3. Our sheme does not require lathing of pagesduring updates, whih is inonvenient and expen-sive in either a main-memory DB or an OODBsetting. Ations that are normally taken on pagelathing, suh as setting of dirty bits for the page,are eÆiently performed based on physial redolog reords written to the global log.4. Our sheme uses transient undo logging whih re-dues the disk I/O.In the ARIES-SD [MN91℄ family of shemes for re-overy in the shared disk environment, eah site main-tains a separate log, and pages are shipped betweensites. Our sheme does not ship pages, but insteadbroadasts log reords, taking advantage of heap ap-pliation of these log reords in main-memory, andpermitting onurrent updates at a smaller than pagegranularity. In our sheme, log ushes are driven bythe release of a lok from a site, in order to sup-port repeating of history and orret rollbak of multi-level ations during rash reovery. The \super fast"

method of ARIES-SD [MN91℄ does not desribe ush-es to protet the early release of loks, making it un-lear how that sheme supports logial undo and high-onurreny index operations.In [Rah91℄, the authors propose reovery shemesfor the shared disk environment whih assume page-level onurreny ontrol and the NO-STEAL pagewrite poliy { neither of whih are assumptions madein our shemes.In [MN94℄, the authors show how the ARIES reov-ery algorithm desribed in [MHL+92℄ an be extend-ed to a lient-server environment. In ontrast to oursheme, the sheme desribed here involves the lientsas well as the server in the hekpointing proess. Wealso support onurrent updates to a page by di�erentlients, whih is not supported in [MN94℄.In [CFZ94℄, objet-level as well as adaptive lok-ing and replia management are disussed, but reov-ery onsiderations are not extensively addressed. In[FZT+92℄, the lient-server reovery sheme for theExodus storage manager (ESM-CS) is desribed. Thisreovery sheme, based on ARIES [MHL+92℄, requirespage-level loking until end of transation (for exam-ple, the Commit Dirty Page List).6 Conluding RemarksIn this paper, we showed how our multi-level re-overy algorithm [BPR+96℄ an be extended to adistributed data-shipping system while maintainingmany of the original bene�ts of the single-site algorith-m. The �rst sheme presented supports lient-serverproessing in whih a entral system ontrols logs andhekpoints. In the seond sheme, suitable for a lus-ter of omputers with a shared disk, sites partiipatesymmetrially in transation proessing ativities. Wedesribed the details of reovery after the failure oflients or the server in the lient-server ase and fromsingle site and system-wide failure in the shared diskase. Our sheme allows onurrent updates at mul-tiple lients in a lient-server environment or multiplesites of the shared disk environment. By allowing �ne-grained and exible onurreny ontrol, our shemesare appliable to a range of distributed, main-memoryappliations whih need transational aess to data.Our distributed shemes are based on a multi-levelsheme for reovery in main-memory databases whihhas been implemented in the Dali Main Memory S-torage Manager [JLR+94℄. Thus, the bene�ts of thisalgorithm are extended to the distributed shemes, in-luding fuzzy, dirty-page only hekpointing, relianeon the log for funtions whih are typially page based,low overhead logging with undo reords written onlydue to a hekpoint, and per-transation logs for low

ontention.We plan to explore the performane of theseshemes through experimentation, and then build adistributed, data-shipping version of Dali based onthese algorithms.Referenes[BPR+96℄ P. Bohannon, J. Parker, R. Rastogi,S. Seshadri, and S. Sudarshan. Distributedmulti-level reovery in main-memory databas-es. Tehnial Report 112530-96-02-27-01TM,Luent Tehnologies, Bell Laboratories, Febru-ary 1996.[CDF+94℄ M. J. Carey, D. J. DeWitt, M. J. Franklin,N. E. Hall, M. L. MAuli�e, J. F. Naughton,D. T. Shuh, M. H. Solomon, C. K. Tan, O. G.Tsatalos, S. J. White, and M. J. Zwilling.Shoring up persistent appliations. In Pro-eedings of ACM-SIGMOD 1994 Internation-al Conferene on Management of Data, Min-neapolis, Minnesota, pages 383{394, May 1994.[CFZ94℄ M. J. Carey, M. J. Franklin, and M. Zahari-oudakis. Fine-grained sharing in a page serverOODBMS. In Proeedings of ACM-SIGMOD1994 International Conferene on Managementof Data, Minneapolis, Minnesota, pages 359{370, May 1994.[DKO+84℄ D. J. DeWitt, R. Katz, F. Olken,D. Shapiro, M. Stonebraker, and D. Wood.Implementation tehniques for main memorydatabase systems. Pro. ACM-SIGMOD 1984Int'l Conf. on Management of Data, pages 1{8,June 1984.[FZT+92℄ M. J. Franklin, M. J. Zwilling, C. K. Tan,M. J. Carey, and D. J. DeWitt. Crash reov-ery in lient-server EXODUS. In Proeedings ofACM-SIGMOD 1992 International Confereneon Management of Data, San Diego, Califor-nia, pages 165{174, June 1992.[GMS92℄ H. Garia-Molina and K. Salem. Main mem-ory database systems: An overview. IEEETransations on Knowledge and Data Engi-neering, 4(6):509{516, Deember 1992.[Hag86℄ Robert B. Hagmann. A rash reoverysheme for a memory-resident database sys-tem. IEEE Transations on Computers, C-35(9):839{847, September 1986.

[JLR+94℄ H.V. Jagadish, Dan Lieuwen, Rajeev Ras-togi, Avi Silbershatz, and S. Sudarshan. Dal-i: A high performane main-memory storagemanager. In Pros. of the International Conf.on Very Large Databases, 1994.[JSS93℄ H.V. Jagadish, Avi Silbershatz, and S. Su-darshan. Reovering from main-memory laps-es. In Pros. of the International Conf. on VeryLarge Databases, 1993.[LLOW91℄ C. Lamb, G. Landis, J. Orenstein, andD. Weinreb. The objetstore database system.Communiations of the ACM, 34(10), Otober1991.[Lom92℄ D. Lomet. MLR: A reovery method formulti-level systems. In Proeedings of ACM-SIGMOD 1992 International Conferene onManagement of Data, San Diego, California,pages 185{194, 1992.[LSC92℄ T. Lehman, E. J. Shekita, and L. Cabrera.An evaluation of Starburst's memory residen-t storage omponent. IEEE Transations onKnowledge and Data Engineering, 4(6):555{566, Deember 1992.[MHL+92℄ C. Mohan, D. Haderle, B. Lindsay, H. Pi-rahesh, and P. Shwarz. ARIES: A transationreovery method supporting �ne-granularityloking and partial rollbaks using write-aheadlogging. ACM Transations on Database Sys-tems, 17(1):94{162, Marh 1992.[MN91℄ C. Mohan and I. Narang. Reovery andohereny-ontrol protools for fast intersys-tem page transfer and �ne-granularity lok-ing in a shared disks transation environmen-t. In Proeedings of the Seventeenth Inter-national Conferene on Very Large Databases,Barelona, pages 193{207, September 1991.[MN94℄ C. Mohan and I. Narang. ARIES/CSA:a method for database reovery in lient-server arhitetures. In Proeedings of ACM-SIGMOD 1994 International Conferene onManagement of Data, Minneapolis, Minneso-ta, pages 55{66, May 1994.[Rah91℄ E. Rahm. Reovery onepts for data shar-ing systems. In Proeedings of the Twenty �rstInternational Conferene on Fault-TolerantComputing (FTCS-21), Montreal, pages 109{123, June 1991.

[SGM90a℄ K. Salem and H. Garia-Molina. Sys-tem M: A transation proessing testbed formemory resident data. IEEE Transations onKnowledge and Data Engineering, 2(1):161{172, Marh 1990.[SGM90b℄ K. Salem and H. Garia-Molina. Sys-tem M: A transation proessing testbed formemory resident data. IEEE Transations onKnowledge and Data Engineering, 2(1):161{172, 1990.[WHBM90℄ G. Weikum, C. Hasse, P. Broessler, andP. Muth. Multi-level reovery. In Proeedings ofthe Nineth ACM SIGACT-SIGMOD-SIGARTSymposium on Priniples of Database Systems,Nashville, pages 109{123, June 1990.A Corretness of Shared Disk Algo-rithmsThe basi idea behind the proof of orretness isto treat the ombined system logs oneptually asa single log, merged aording to the timestamps.The hekpointed timestamp array AC is essentiallya pointer into this logial log, and onstitutes the log-ial log restart reovery point. We show orretnessof the shared disk reovery and ahe ohereny algo-rithms by showing the following:1. For every update written out during the hek-point operation, and that had not ommitted be-fore the end of hekpointing, the undo log reorddesribing the update is also written out.2. All updates desribed by log reords before thelogial log restart point (array AC) noted in thehekpoint have made it to the database image.3. History is repeated as a onsequene of applyingthe redo log reords during restart reovery.Point 1 is ensured sine the ATTs are hekpoint-ed after an update ompleted, and every system logis ushed to disk before the hekpoint ompletes, sothat all pre-ommitted updates get ommitted. Thus,the undo log for any unommitted update is guaran-teed to be written to disk.Point 2 holds sine when a page is written to diskduring a hekpoint at site j, updates preeding Aj [i℄have made it to the image of the page at site j (due tothe algorithm for appliation of inoming log reords),and this page is dirty in j's dpt (beause the dpt isnoted atomially with AC).Point 3 is ensured due to the following reasons {

1. All physial log reords are applied during reov-ery in timestamp order { immediate from the re-overy algorithm.2. For a given region, the order of log reord times-tamps reets the order of updates whih gener-ated the log reords. For every log reord, L, (inthe system log of a site) desribing an update,the log reord, L0 for the preeding (oniting)update is also in some site's stable log with times-tamp less than the timestamp for this log reord.The reason for this is that before a region lok isreleased by a site, updates overed by the regionlok are appended to the system log, ushed todisk, and broadast to the network. TS tr at thereeiving site is bumped up and so must be larg-er than the timestamp ontained in L0 when logreord L is moved to the system log and assigneda timestamp.3. If a timestamp ontained in a log reord for site iis less than or equal to Aj [i℄, then the log reord'se�ets must have made it to the opy of thedatabase at site j.4. Finally, we show that if a log reord, L1, from sitei is applied to a page during reovery, then a on-iting log reord, L2, from another site, j, withtimestamp higher than the L1's timestamp, willalso be applied. In other words, the timestamp ofthe seond log reord is greater than AC [j℄.Suppose log reord L1 is applied during reov-ery, and it desribes an update at site i. Supposefurther that the update for L1 preedes anotherupdate at site j, desribed by L2. Then, at the o-ordinator site for the last ompleted hekpoint,L2's timestamp is larger than the timestamp ar-ray entry for j. The reason for this is that L1is �rst broadast before loks are released, andonly later is L2 broadast to all the sites. SineL1 is applied, its timestamp must be greater thanAC [i℄, whih means the broadast of L1 did notreah the last site that did the hekpoint. Butthen neither ould the broadast of L2 { so thetimestamp AC [j℄ must be less than the timestampof L2, and L2 would be exeuted as well.

