Distributed Multi-Level Recovery in Main-Memory Databases

Philip Bohannon*
James Parker*
Rajeev Rastogi*
S. Seshadrif
Avi Silberschatz*
S. Sudarshan'
x Bell Laboratories, Murray Hill, NJ
{plbohannon,rastogi,avi}@bell-labs.com
parker@lucent.com
T Indian Institute of Technology, Bombay, India
{seshadri,sudarsha}@Qcse.iitb.ernet.in

Abstract

In this paper, we present two schemes for concurren-
cy control and recovery in distributed main-memory
databases. In the client-server scheme, clients ship
log records to the server, which applies the updates to
its database copy. In the shared disk scheme, each site
broadcasts its updates to other sites. The above en-
able our schemes to support concurrent updates to the
same page at different sites.

Both schemes support an explicit multi-level recov-
ery abstraction for high concurrency, reduced disk I/0
by writing only redo log records to disk during normal
processing, and use of per-transaction redo and un-
do logs to reduce contention. Further, we use a fuzzy
checkpointing scheme that writes only dirty pages to
disk, yet minimally interferes with normal processing,
not requiring updaters to even acquire a latch before
updating a page.

1 Introduction

A large number of applications (e.g., call routing
and switching in telecommunications, financial appli-
cations, automation control) require high performance
access to data with response time requirements of the
order of a few milliseconds to tens of milliseconds. Tra-
ditional disk-based database systems are incapable of
meeting the high performance needs of such applica-
tions due to the latency of accessing data that is disk-
resident. An attractive approach to providing applica-
tions with low (and predictable) response times is to

TThe work of these authors was performed in part while they
were at Bell Labs.

load the entire database into main-memory. Databas-
es for such applications are often of the order of tens or
hundreds of megabytes, which can easily be supported
in main-memory. Further, machines with main mem-
ories of 8 gigabytes or more are already available, and
with the falling price of RAM, machines with such
large main memories will become cheaper and more
common.

One approach for implementing such high perfor-
mance databases is to provide a large buffer-cache
to a traditional disk-based system. In contrast,
in a main-memory database system (MMDB) (see,
e.g., [GMS92, LSC92, JLR*94, DKO'84]), the en-
tire database can be directly mapped into the virtu-
al address space of the process and locked in mem-
ory. Data can be accessed either directly by virtual
memory pointers, or indirectly via location indepen-
dent database offsets that can be quickly translated
to memory addresses. During data access, there is no
need to interact with a buffer manager, either for lo-
cating data, or for fetching/pinning buffer pages. Al-
so, objects larger than the system’s page size can be
stored contiguously, thereby simplifying retrieval or
in-place use. Thus, data access using a main-memory
database is very fast compared to using disk-based s-
torage managers, even when the disk-based manager
has sufficient memory to cache all data pages.

Further performance improvements can be ob-
tained for a number of applications by employing a dis-
tributed architecture in which several machines con-
nected by a fast network perform database accesses
and updates in parallel. This is especially the case in
applications in which transactions are predominant-

ly read-only and update rates are low (e.g., number
translation and call routing in telecommunications).
As a result, each machine can locally access data
cached in memory, thus avoiding network communi-
cation which could be fairly expensive. A very differ-
ent example is CAD processing, in which locality of
reference is very high, update transactions are long,
and interactive response time is very important. Fi-
nally, distribution also enhances fault tolerance, which
is required in many mission-critical applications even
if data fits easily in main-memory. In this case, espe-
cially with low update rates, a distributed database is
preferable to a hot-spare since load can be distribut-
ed in the non-failure case leading to improved perfor-
mance.

The goal of the work described here was to ex-
tend the main-memory recovery scheme presented in
[JSS93, BPRT96] to the distributed case, maintaining
the efficiencies of the single-site scheme, and support-
ing the applications described above. For example, we
can make use of the MMDB optimization called tran-
sient undo logging, originally proposed in [JSS93], in
which undo log records are kept in memory and on-
ly written to disk as required for checkpointing. This
reduces the size of the log written to disk, and per-
haps more importantly, the size of the log sent across
network links in distributed protocols.

We present two distinct but related distributed re-
covery schemes, the first for client-server architectures
and the second for shared disk architectures. These
are both “data-shipping” schemes (e.g., [FZT92]) in
which a transaction executes at a single site, fetching
data (pages) as required from other sites. Distribut-
ed commit protocols are not needed as in “function-
shipping” environments. While shared disk architec-
tures have traditionally been closely tied to hardware
platforms (e.g., VAXCluster), UNIX-based shared
disk platforms and network of workstation architec-
tures with similar performance characteristics are be-
coming more common.

A key property of our schemes is that concurren-
t updates are possible at granularities smaller than a
page-size, minimizing false-sharing (and thus needless
network accesses). In addition to the transient redo
logging optimization described above, our algorithms
provide advanced features such as explicit multi-level
recovery (e.g., [WHBM90, MN94, Lom92]), and fuzzy
checkpointing [SGM90a, Hag86]. Site or global recov-
ery requires only a single pass over the system log,
starting from the end of the system log recorded dur-
ing the most recent checkpoint. As mentioned earli-
er, objects in the system can span one or more page

boundaries.

The remainder of the paper is organized as follows.
We present background on multi-level recovery and
the single-site algorithm on which the present work is
based in Section 2. We present our client-server recov-
ery algorithm in Section 3, and the shared disk algo-
rithm in Section 4. Related work and our conclusions
are presented in Sections 5 and 6, respectively.

2 Overview of Main-Memory Recov-
ery

In this section we present a review of multi-level
recovery concepts and an overview of our single-
site main-memory recovery scheme. Our centralized
scheme extends the scheme presented in [JSS93] with
multi-level recovery, and a fuzzy checkpointing scheme
that only writes dirty pages. Low-level details of our
scheme are described in [BPR*96].

In our scheme, data is logically organized into re-
gions. A region can be a tuple, an object, or an arbi-
trary data structure like a list or a tree. Each region
has a single associated lock with exclusive (X) and
shared (S) modes, referred to as the region lock, that
guards accesses and updates to the region.

2.1 Multi-Level Recovery

Multi-level recovery [WHBM90, MHL*92, Lom92]
provides recovery support for enhanced concurrency
based on the semantics of operations. Specifically, it
permits the use of weaker operation locks in place of
stronger shared/exclusive region locks.

A common example is index management, where
holding physical locks until transaction commit leads
to unacceptably low levels of concurrency. If undo log-
ging has been done physically (e.g. recording exactly
which bytes were modified to insert a key into the in-
dex) then the transaction management system must
ensure that these physical undo descriptions are valid
until transaction commit. Since the descriptions refer
to specific updates at specific positions, this typically
implies that the region locks on the updated index n-
odes be held to ensure correct recovery, in addition to
considerations for concurrent access to the index.

The multi-level recovery approach is to replace
these low-level physical undo log records with high-
er level logical undo log records containing undo de-
scriptions at the operation level. Thus, for an insert
operation, physical undo records would be replaced by
a logical undo record indicating that the inserted key
must be deleted. Once this replacement is made, the
region locks may be released and only (less restrictive)
operation locks are retained. For example, region lock-
s on the particular nodes involved in an insert can be

Redo Log
Database Undo Log Dirty Page
Table
Trans. Local

Logs

Active Trans.
Table

End of
Stable Log

System Log Tail I'n Main Menory
1
N
Stable System Lol On Disk End of
Y 9 —! ot /// Stable log
cour_ckp ' Database
@ Ckpt A ckpt_dpt
Ckpt B ~ Active Trans
~ Table (ATT)
NG | (undo logs)

Figure 1: Overview of Recovery Structures

released, while an operation lock on the newly insert-
ed key that prevents the key from being accessed or
deleted is held.

2.2 System Overview

Figure 1 gives an overview of the structures used
for recovery. The database (a sequence of fixed size
pages) is mapped into the address space of each pro-
cess and is in main memory, with (two) checkpoint im-
ages Ckpt_A and Ckpt_B on disk. Also stored on disk
are 1) cur_ckpt, an “anchor” pointing to the most re-
cent valid checkpoint image for the database, and 2) a
single system log containing redo information, with its
tail in memory. The variable end_of_stable_log stores a
pointer into the system log such that all records prior
to the pointer are known to have been flushed to the
stable system log.

There is a single active transaction table (ATT) that
stores separate redo and undo logs for active transac-
tions. A dirty page table, dpt, is maintained in mem-
ory which records the pages that have been updated
since the last checkpoint. The ATT (with undo logs)
and the dirty page table are also stored with each
checkpoint. The dirty page table in a checkpoint is
referred to as ckpt_dpt.

2.3 Transactions and Operations

Transactions, in our model, consist of a sequence of
operations. Similar to [Lom92], we assume that each
operation has a level L; associated with it. An opera-
tion at level L; can consist of a sequence of operations
at level L;_;. Transactions, assumed to be at level
L,, call operations at level L,,_;. Physical updates
to regions are level Ly operations. For transactions,
we distinguish between pre-commit, when the commit
record enters the system log in memory establishing
a point in the serialization order, and commit when
the commit record hits the stable log. We use the

same terminology for operations, where only the pre-
commit point is meaningful, though this is sometimes
referred to as “operation commit” in the paper.

Each transaction obtains an operation lock before
an operation executes (the lock is granted to the op-
eration if it commutes with other operation locks held
by active transactions), and Lo operations must ob-
tain region locks. The locks on the region are released
once the L; operation pre-commits; however, an op-
eration lock at level L; is held until the transaction or
the containing operation (at level L;y1) pre-commits.
Thus, all the locks acquired by a transaction are re-
leased once it pre-commits.

2.4 Logging Model

The recovery algorithm maintains separate undo
and redo logs in memory for each transaction. These
are stored as a linked list off an entry for the trans-
action in the ATT. Each update (to a part of a re-
gion) generates physical undo and redo log records
that are appended to the transaction’s undo and redo
logs respectively. When a transaction/operation pre-
commits, all the redo log records for the transaction
in its redo log are appended to the system log, and the
logical undo description for the operation is included
in the operation commit log record in the system log.
Thus, with the exception of logical undo descriptors,
only redo records are written to the system log during
normal processing.

Also, when an operation pre-commits, the undo
log records for its suboperations/updates are deleted
from the transaction’s undo log and a logical undo log
record containing the undo description for the oper-
ation is appended. In-memory undo logs of transac-
tions that have pre-committed are deleted since they
are not required again. Locks acquired by an opera-
tion/transaction are released once they pre-commit.

The system log is flushed to disk when a transac-
tion decides to commit. Pages updated by every redo
log record written to disk are marked dirty in the dirty
page table, dpt, by the flushing procedure. In our re-
covery scheme, update actions do not obtain latches
on pages — instead region locks ensure that updates
do not interfere with each other!. In addition, action-
s that are normally taken on page latching, such as
setting of dirty bits for the page, are now performed
based on log records written to the redo log. The redo
log is used as a single unifying resource to coordinate

n cases when region sizes change, certain additional region
locks on storage allocation structures may need to be obtained.
For example, in a page based system, if an update causes the
size of a tuple to change, then in addition to a region lock on the
tuple, an X mode region lock on the storage allocation structures
on the page must be obtained.

the applications interaction with the recovery system,
and this approach has proven very useful.
2.5 Ping-pong Checkpointing

Consistent with the terminology in main-memory
databases, we use the term checkpoint to mean a copy
of main-memory, stored on disk, and checkpointing
refers to the action of creating a checkpoint. This ter-
minology differs slightly from the terminology used,
for example, in ARIES [MHL"92].

Traditional recovery schemes implement write-
ahead logging (WAL), whereby all undo logs for up-
dates on a page are flushed to disk before the page is
flushed to disk. To guarantee the WAL property, a
latch on the page (or possibly on the system log) is
held while copying the page to disk. In our recovery
scheme, we eliminate latches on pages during updates,
since latching can significantly increase access costs in
main-memory. It can also interfere with normal pro-
cessing, as well as increase programming complexity.
However, as a result it is not possible to enforce the
write-ahead logging policy, since pages may be updat-
ed even as they are being written out.

For correctness, in the absence of write-ahead log-
ging, two copies of the database image are stored on
disk, and alternate checkpoints write dirty pages to al-
ternate copies. This strategy, called ping-pong check-
pointing (see, e.g., [SGMI0b]), permits a checkpoint
that is being created to be temporarily inconsistent;
i.e., updates may have been written out without corre-
sponding undo records having been written. However,
after writing out dirty pages, sufficient redo and undo
log information is written out to bring the checkpoint
to a consistent state. Even if a failure occurs while
creating one checkpoint, the other checkpoint is still
consistent and can be used for recovery.

Keeping two copies of a main-memory database on
disk for ping-pong checkpointing does not have a very
high space penalty, since disk space is much cheaper
than main-memory. As we shall see later, there is an
I/O penalty in that dirty pages have to be written
out to both checkpoints even if there was only one
update on the page. However, this penalty is small
for hot pages, and the benefits outweigh the I/O cost
for typical main-memory database applications.

Before writing any dirty data to disk, the check-
point notes the current end of the stable log in the
variable end_of_stable_log, which will be stored with
the checkpoint. This is the start point for scanning
the system log when recovering from a crash using
this checkpoint. Next, the contents of the (in-memory)
ckpt_dpt are set to those of the dpt and the dpt is ze-
roed (noting of end_of_stable_log and zeroing of dpt are

done atomically with respect to flushing). The pages
written out are the pages that were either dirty in the
ckpt-dpt of the last completed checkpoint, or dirty in
the current (in-memory) ckpt-dpt, or in both. In oth-
er words, all pages that were modified since the cur-
rent checkpoint image was last written, namely, pages
that were dirtied since the last-but-one checkpoint, are
written out. This is necessary to ensure that updates
described by log records preceding the current check-
point’s end_of_stable_log have made it in the database
image in the current checkpoint.

Checkpoints write out dirty pages without obtain-
ing any latches and thus without interfering with nor-
mal operations. This fuzzy checkpointing is possible
since physical redo log records are generated by all up-
dates; these are used during restart recovery and their
effects are idempotent. For any uncommitted update
whose effects have made it to the checkpoint image,
undo log records would be written out to disk after the
database image has been written. This is performed
by checkpointing the ATT after checkpointing the da-
ta; the checkpoint of the ATT writes out undo log
records, as well as some other status information.

At the end of checkpointing, a log flush must be
done before declaring the checkpoint completed (and
consistent) by toggling cur_ckpt to point to the new
checkpoint, for the following reason. Undo logs are
deleted on transaction/operation pre-commit, which
may happen before the checkpoint of the ATT. If the
checkpoint completes, and the system then fails before
a log flush, then the checkpoint may contain uncom-
mitted updates for which there is no undo information.
The log flush ensures that the transaction/operation
has committed, and so the updates will not have to be
undone (except perhaps by a compensating operation,
for which undo information will be present in the log).

2.6 Abort Processing

When a transaction aborts, that is, does not suc-
cessfully complete execution, updates/operations de-
scribed by log records in the transaction’s undo log are
undone by traversing the undo log sequentially from
the end. Transaction abort is carried out by execut-
ing, in reverse order, every undo record just as if the
execution were part of the transaction.

Following the philosophy of repeating history
[MHL™*92], new physical redo log records are created
for each physical undo record encountered during the
abort. Similarly, for each logical undo record encoun-
tered, a new “compensation” or “proxy” operation is
executed based on the undo description. Log records
for updates performed by the operation are generat-
ed as during normal processing. Furthermore, when

the proxy operation commits, all its undo log records
are deleted along with the logical undo record for the
operation that was undone. The commit record for
the proxy operation serves a purpose similar to that
served by compensation log records (CLRs) in ARIES
— during restart recovery, when it is encountered, the
logical undo log record for the operation that was un-
done is deleted from the transaction’s undo log, thus
preventing it from being undone again.

2.7 Recovery

Restart recovery, after initializing the ATT and
transaction undo logs with the ATT and undo logs
stored in the most recent checkpoint, loads the
database image and sets dpt to zero. As part of the
checkpoint operation, the end of the system log on
disk is noted before the database image is checkpoint-
ed, and becomes the “begin-recovery-point” for this
checkpoint once the checkpoint has completed. All
updates described by log records preceding this point
are guaranteed to be reflected in the checkpointed
database image. Thus, during restart recovery, on-
ly redo log records following the begin-recovery-point
for the last completed checkpoint of the database are
applied (appropriate pages in dpt are set to dirty for
each log record). During the application of redo log
records, necessary actions are taken to keep the check-
pointed image of the ATT consistent with the log as
it is applied. These actions mirror the actions taken
during normal processing. For example, when an op-
eration commit log record is encountered, lower level
log records in the transaction’s undo log for the oper-
ation are replaced by a higher level undo description.

Once all the redo log records have been applied,
the active transactions are rolled back. To do this, all
completed operations that have been invoked directly
by the transaction, or have been directly invoked by
an incomplete operation have to be rolled back. How-
ever, the order in which operations of different trans-
actions are rolled back is very important, so that an
undo at level L; sees data structures that are consis-
tent [Lom92]. First, all operations (across all transac-
tions) at Lo that must be rolled back are rolled back,
followed by all operations at level Ly, then Ly and so
on.

Note that for certain uncommitted updates present
in the redo log, undo log records may not have been
recorded during the checkpoint — this could happen
for instance when an operation executes and commits
after the checkpoint, and the containing transaction
has not committed. However, this is not a problem s-
ince the undo description for the operation would have
been found in operation commit log records during the

forward pass over the system log earlier during recov-
ery. Any redo log records for updates performed by
an operation whose commit log record is not found in
the system log are ignored (since these must be due to
a crash during flush and are at the tail of the system

log).

3 Client-Server Recovery Scheme

Other than integration with our multi-level recov-
ery scheme, a key feature of the client-server scheme is
fine-grained concurrency control for regions. Our algo-
rithms hinge on the simple assumption that a region
is controlled by a lock, thus may easily be adapted
to record-oriented or object-oriented database model-
s. The support of fine-grained concurrency, present in
our Invalidate-on-Lock scheme for cache coherency, is
particularly important for distributed main-memory
applications where the cost of network access due to
false sharing will be proportionally higher (i.e. as com-
pared to a few memory accesses).

In this approach, we assume a single server with
access to stable storage that is responsible for co-
ordinating all the logging, and for performing check-
points and recovery. Multiple clients (with or without
disks) are connected to the server. For simplicity of
presentation, the network is assumed to be FIFO and
reliable, but all our schemes can be easily modified if
this is not the case. Each client and the server has its
own copy of the database in main memory. A transac-
tion executes at a single client and updates/accesses
the copy of the database at the client. As a result,
database pages updated by a client may not be cur-
rent at some other client. Our scheme maintains state
information at each client about each database page.
A page at a client is in one of two states — valid or
invalid. Invalid pages contain stale versions of certain
data, and are refreshed on access by obtaining the lat-
est copy of the page from the server.

In our client-server scheme, log records for updates
generated by a transaction at a client site are stored in
that site’s ATT as in the centralized case. Client sites
do not maintain a system log on disk, but keep a sys-
tem log tail in memory and append log records from
the local redo logs to this tail when operations com-
mit/abort. Furthermore, on the occurrence of certain
events (e.g., transaction commit, lock release from a
site), log records in the system log are shipped by the
client to the server (note that pages are shipped on-
ly from the server to clients). The shipped redo log
records are used to update the server’s copy of the
affected pages, ensuring that pages shipped to clients
from the server are current. This enables our scheme
to support concurrent updates to a single page at mul-

tiple clients since re-applying the updates at the serv-
er causes them to be merged (this approach is also
adopted in [CDF*94]). Shipping the log records will
usually be cheaper than shipping pages, and the cost
of applying the log records themselves is small since, in
our main-memory database context, the server will not
have to read the affected pages from disk. The serv-
er maintains all the data structures described for the
centralized case.? Checkpointing is performed solely
at the server, and follows the same procedure as the
centralized case.

Transactions follow the callback locking scheme
[LLOW91, CFZ94] when obtaining and releasing lock-
s. Each site has a local lock manager (LLM) which
caches locks and a global lock manager (GLM) at
the server keeps track of locks cached at the various
clients. Transaction requests for locks cached local-
ly are handled at the client itself. However, requests
for locks not cached locally are forwarded to the glob-
al lock manager which calls back the lock from other
clients that may have cached the lock in a conflict-
ing mode (before granting the lock request). A client
relinquishes a lock in response to a callback if no trans-
action executing at the client is currently holding the
lock.

In addition, the LLM at a client provides support
for associating a point in the system log at the client
with each lock; the purpose of this support will become
clear later.

3.1 Basic Operations

We now describe the features which distinguish
the client-server scheme from the centralized case, in
terms of actions performed at the client and the serv-
er at specific points in processing. We present two
variations for maintaining page state information, cor-
responding to “eager” versus “lazy” refresh. In both
techniques, we allow two sites to concurrently update
the same page when different locks cover different re-
gions on the page. We begin with actions common to
both methods.

e Page Access: In case a client accesses a page
that is valid, it simply goes ahead without com-
municating with the server. Else, if the page is
invalid (certain data on the page may be stale),
then the client refreshes the page by 1) obtain-
ing the most recent version of the page from the
server, and 2) applying to the newly received page
any local updates which have not been sent to the
server (this step merges local updates with up-
dates from other sites). It then marks the page

2We assume there is a one-to-one mapping between ATT
entries at the client sites and the server.

as valid. The server keeps track of clients that
have the page in a valid state.

Operation/Transaction Commit: At the
client, redo log records are moved to the system
log, a commit record is appended, and appropri-
ate actions are performed on the transaction’s un-
do log in the ATT as described for the centralized
case. In case of a transaction commit, however,
the log records in the system log are shipped to
the server, and further actions are delayed until
the server has acknowledged that the log records
have been flushed to disk.

Finally, all the locks acquired by the opera-
tion/transaction are released locally.

Lock Release: For each X mode region lock and
operation lock that is released by a transaction,
the end of the client system log is noted and s-
tored with the lock. Thus, for any region lock, all
redo log records in the system log affecting that
region precede the point in the log stored with
the lock. Similarly, for an operation lock, all log
records relating to the operation (including oper-
ation commit) precede the point in the system log
stored with the lock. This location in the log is
client-site-specific.

Before a client site relinquishes an X mode region
lock or operation lock to the server due to the
call-back described above, it ships to the server
at least the portion of the system log which pre-
cedes the log pointer stored with the lock. This
ensures that the next lock will not be acquired on
the region until the server’s copy is up to date,
and the history of the update is in place in the
server’s logs. For X region locks, this flush en-
sures repeating of history on regions, while for
operation locks this flush ensures that the server
receives the logical undo descriptors in the oper-
ation commit log records for the operation which
released the locks. Thus, if the server aborts a
transaction after a site failure, the abort of this
operation will take place at the logical level of the
locks still held for it at the server.

Log Record Processing: At the server, for each
physical redo log record (received from a client),
the undo log record is generated by reading the
current contents of the page at the server. The
new log record is then appended to the undo log
for this transaction in the server’s ATT. Next the
update described by the redo log record is ap-
plied, following which the log record is appended

to the redo log for the transaction in the server’s
ATT. Operation/transaction commit and abort
log records received from the client are processed
by performing the same actions as in the central-
ized case when the log records were generated.
The exceptions are lock release, which is driven
by the client, operation commit, where the logical
undo descriptor is extracted from the commit log
record, and transaction commit, where the client
whose transaction committed is notified after the
log flush to disk succeeds.

By applying all the physical updates described in
the physical log records to its pages, the server
ensures that it always contains the latest updates
on regions for locks which have been released to it
from the clients. The effect of the logging scheme,
as far as data updates are concerned, is just as if
the client transaction actually ran at the server
site.

¢ Transaction Abort/Site Failures: If a client
site decides to abort a transaction, it processes
the abort (as in the centralized case) using the
undo logs for the transaction in the client’s ATT.
If the client site itself fails, the server will abort
transactions that were active at the client using
undo logs for the transaction in it’s ATT. (Since
the client cannot commit without communicating
with the server, in case of partition, a decision to
abort is is enforceable by the server.) If the server
fails, then the complete system is brought down,
and restart recovery is performed at the server as
described in Section 2.7.

We now complete our client-server scheme by p-
resenting two methods, invalidate-on-update, and
invalidate-on-lock, for ensuring that data accessed by
a client is up-to-date. All actions described so far are
used in common by both schemes, and both schemes
follow the rule that all log records are flushed to the
server before the lock which covered these updates is
released from the site. Since the server would have
applied the log records to its copy of the data, this
ensures that when the server grants a lock, it has the
current version of all pages containing data covered by
that lock. However, it is possible that the copy of one
or more pages involved in the region for which the lock
was obtained are not up-to-date at the client. Each
scheme, by invalidating pages at the client, ensures
that clients do not access stale data. The schemes
permit regions to span multiple pages and do not re-
quire the pages spanned by a region to be known.

3.2 Invalidate-On-Update

The first invalidation scheme, based on updates,
is simple, and is similar to the invalidation protocols
followed in multi-processor machines in order to keep
caches coherent. It is an eager protocol since a page
at a client is invalidated whenever any update is made
to the page at the server. The second scheme, in the
next subsection, reduces these invalidation messages
by tracking per-lock information at the server.

When the server receives log records from a client,
it does the following. For each page that it updates,
it sends invalidate messages to clients (other than the
client that updated the page) that may have the page
marked as valid. For all clients other than the clien-
t that updated the page, the server notes that the
client does not have the page marked valid. Clients,
on receiving the invalidate message, mark their page
as invalid.

For example, consider two sites updating the same
page concurrently under two different region locks.
Whichever site flushes its updates to the server first
will cause the server to send an invalidate message to
the other site, which will then re-read the page from
the server. However, if this site accesses the same page
again under the same lock, then the invalidate was not
necessary, since the data in the region it has locked has
not changed. The following scheme takes advantage of
this observation.

3.3 Invalidate-On-Lock

The invalidate-on-lock scheme attempts to decrease
unnecessary invalidations and the overhead of sending
invalidation messages by associating with the lock for
a region information about updates to that region.
Furthermore, pages containing updated portions of a
region are invalidated only when the lock on the re-
gion is obtained by a client. As a result, if two clients
are updating different regions on the same page, no
invalidation messages are sent to either client. Ad-
ditionally, by piggybacking invalidation messages for
updated pages on lock grant messages from the server,
the overhead of sending separate invalidation messages
in the previous scheme is eliminated.

In the scheme, when updates described by a physi-
cal redo record are applied to pages at the server, the
updated pages are associated with the lock for the up-
dated region. Thus, the scheme requires that it be
possible to determine the region lock from the redo
record. This could be achieved by requiring that the
lock for a region be specified by the user when the
region is updated, which should be trivial since all up-
dates must be made holding a region lock. The lock
name can then be included in the redo log record.

This scheme also requires that the server associate
a Log Sequence Number (LSN), with each log record,
which reflects both the order in which the record was
applied to the server’s copy of the page and the order
in which it was added to the system log. For each
page, the server stores the LSN of the most recent log
record that updated the page, and the identity of the
client which issued it. In addition, for each client, the
server maintains in a client page table (cpt), the state
of the page at the client (valid/invalid), along with
the LSN for the page when it was last shipped to the
client.

The server also maintains for each region lock a list
of pages that are dirty due to updates to the region.
For each page in the list, we store the LSN of the most
recent log record received by the server that recorded
an update to the part of the region on this page, and
the client which performed the update. Thus, when
a client is granted a region lock, if, for a page in the
lock list, the LSN is greater than the LSN for the page
when it was last shipped to the client, then the client
page contains stale data for the region and must be
invalidated.

The additional actions for this scheme are as fol-
lows:

e Log apply: When the server applies to a page P
a redo log record, LR, generated at client C under
region lock L, it takes the following actions. First,
the LSN for P is set to the LSN for LR. Second,
the entry for P in the list of dirty pages for L is
updated (or created), setting the client to C, and
the LSN to the LSN for LR.

e Lock grant: A set of invalidate messages is
passed back to the client with the lock acquisi-
tion. The invalidate messages are for pages in the
list associated with the lock being acquired that
meet three criteria: 1) the page is cached at the
client in the valid state, 2) the LSN of the page
in the cpt for the client is smaller than the LSN
of the page in the lock list, and 3) the client ac-
quiring the lock was not the last to update the
page under this lock. The invalidated pages are
marked invalid in the cpt for the client and at the
client site.

e Page refresh: When the server sends a page to
a client (page refresh), at the server, the page is
marked valid in the cpt for the client and the LSN
for the page in the cpt is updated to be the LSN
for the page at the server.

e Lock list cleanup: We are interested in keeping

the list of pages with every lock as small as possi-
ble. This can be achieved by periodically deleting
pages P from the list of lock L such that the follow-
ing condition holds, where C is the client noted in
the list of pages for L as the last client to update
P:

Every client other than C has the page
cached either in an invalid state or with
LSN greater than or equal to the LSN
for the page in the list for lock L.

The rationale for this rule is that the purpose of
region locks lists is to determine pages that must
be invalidated. However, if for a page in a client’s
cpt, the LSN is greater than the LSN for the page
in the lock list, then the client has the most recent
update to the region on the page, and thus the
page will not need to be sent in any invalidate
list.

4 Shared Disk Recovery Scheme

In the shared disk approach, there is no server; ev-
ery site has direct access to disks over a fast network.
The shared disk environment is used in many systems,
such as the DEC VAXclusters, and provides benefits
over a shared nothing architecture, such as fast com-
munication and fault tolerance. As in our client-server
scheme, in addition to careful consideration of the in-
teraction with multi-level recovery, our main concern
is minimizing false sharing through fine-grained con-
currency control. This allows, for example, read-only
transactions with a fully cached working set to pro-
ceed at main-memory speeds, an important property
for our intended applications.

In our shared disk model, each site maintains its
own copy of the database and its own system log on
disk. Sites obtain locks from a GLM; the function
of the lock manager could be distributed for speed
and reliability, but this is orthogonal to our discussion.
Sites cache locks, and relinquish locks based on the
call back locking mechanism described in Section 3.
For simplicity of presentation, we assume the network
is FIFO and reliable; however, the schemes can be
extended if this were not the case.

We are interested in allowing multiple concurrent
readers and writers of the same page at different sites,
as long as the same region lock is not required by two
sites in conflicting mode. A result of this is that copies
of a page at different sites may contain a different set
of updates, which must be merged before the page is
written to disk. Unlike the client-server case, there is
no server to carry out the task of merging updates.

Site N

DPT, ATT]E Al
— [amm}

Menory Sys Log Tail

i

DPT, ATT, ALl
— ZE mma|

Menory Sys Log Tail
i

v
ISlable Sys Log Shared Di sk

123 . N @
~[End of Stable log

ATT
(undo logs)
Acarray (TS_ctrs)

v
Logs |Stable Sys Log l]

cur_ckpt| 7

Checkpoints | CkptA

Ckpt B

Checkpoint
DPT

N Database Image ‘

Figure 2: The Shared Disk Architecture

To solve the above problems, in our scheme, log
records generated at a site are broadcast to all other
sites, so the updates can be carried out there. Since
log records are shipped, there is no need to ship pages.
The scheme ensures that every time a site obtains a
region lock, the most recent version of the region is
guaranteed to be accessed at the site. More precise-
ly, it guarantees that every time a site obtains any
lock (whether an operation lock or a region lock), all
log records generated by all operations which held the
same lock in a conflicting mode have been applied to
the local page images.

The idea of broadcasting log records leads to an
architecture that essentially implements distributed
shared memory, without the overhead of shipping
pages. Note that the overhead of broadcasting log
records to all the sites may not be too severe if update
rates are not too high. Also, in some network archi-
tectures (e.g., ethernet), the cost of sending a message
to a single site may not be very different from the cost
of a broadcast to all sites.

Finally, we note that although we have presented
different schemes for the client-server and shared disk
architectures (based on page invalidation for client-
server, and based on log broadcasting for shared-disk),
both schemes should be applicable to either archi-
tecture (perhaps with different performance tradeoff-
s, and with different requirements on concurrent up-
daters). For lack of space, we have not explored these
alternatives here.

4.1 Data Structures

An overview of data structures used for our shared
disk scheme is given in Figure 2. At each site, a
global timestamp counter TS_ctr is maintained, and
a timestamp obtained from this counter is stored in
each physical redo log record for an update. At every
site j, an array of TS_ctrs (one TS_ctr per site), A; is
maintained in memory. A;[i] stores the timestamp of

the latest update from site i that has been applied to
the database at site j.

Separate undo and redo logs are maintained for ev-
ery transaction as described in the earlier schemes.
Each site maintains its own version of the dirty page
table dpt, system log, and an ATT which stores infor-
mation relating to transactions that execute at that
site.

A single pair of checkpointed images is maintained
on disk for the database. A checkpoint image consist-
s of an image of the database, the dirty page table
ckpt_dpt, and for every site:

1. end_of stable_log — the point in the site’s system
log from which the system log must be scanned
during recovery.

2. the TS_ctr following which redo log records from
the site must be applied to the database. Collec-
tively these counters are referred to as A¢.

3. a copy of the ATT at the site (containing undo
logs).

The LLM at a site stores a point in the system log
with each lock as in the client-server scheme. Both the
LLM and GLM also store a timestamp with each re-
gion lock, and the GLM notes which site most recently
held the lock in X mode.

4.2 Normal Processing

We describe below the actions taken during normal
processing to support distributed concurrency control
and recovery. Recovery from system and site failure is
described in subsequent sections.

e Log Records: Every time a physical redo log
record is moved from a transaction’s local redo
log to the system log, TS_ctr is incremented by 1
and stored in the log record. The timestamps are
used to order log records that describe conflicting
updates.

e System Log Flush: When the system log at
site 4 is flushed to stable storage, each redo log
record which has hit the disk is also broadcast to
the other sites. The sending site i, also sets A;[i]
to the timestamp in the log record. Flushing of
a sequence of log records is completed once every
log record has been written to disk as well as sent
to the remaining sites.

e Log Record Receipt: A site j processes an up-
date broadcast to it from site 7 as follows (updates
are processed in the order in which they are re-
ceived). On receiving a broadcast log record, the

site applies the update to its local copy of the
affected page(s), and sets the appropriate bits in
its dpt. After updating the appropriate pages, the
site sets A;[i] to the timestamp contained in the
update (redo log record).

e Lock Release: The lock managers aid correct-
ness in two ways. First, similar to the client-
server case, the current local end-of-log is not-
ed when an operation or a region lock is released,
and the LLM ensures that the log is flushed to this
point before releasing the lock from the site. This
aids in recovery by ensuring that history is repeat-
ed, and when lower level locks are released, the
logical undo actions which accompany the higher
level locks have made it to disk. Since logs are
broadcast on flush, it helps ensure that another
site will receive the necessary log records before
getting the same lock in a conflicting mode. Note
that this could require no log flushes if the log
records have already been flushed earlier due to
another lock release or some other transaction’s
commit.

Second, when a transaction releases an X mode
region lock, the timestamp for the lock is set to
the current value of TS_ctr at the site. When this
lock is called back by the GLM, this value is also
sent and is associated with the lock by the GLM.
When received by another site, the timestamp is
used to ensure that log records for conflicting ac-
tions covered by this lock have increasing times-
tamp values. As an optimization, the site identi-
fier can also be sent with the lock to the GLM;
the purpose will become clear in the next point.

e Lock Acquisition: When a site receives an X
mode region lock from the GLM, it bumps up its
own TS_ctr to be the maximum of its current T-
S_ctr and the timestamp associated with the lock
(received for the GLM). Further, the lock is grant-
ed to a local transaction only after all outstanding
(unapplied) updates at the time of acquiring the
lock have been applied to the page. This is to
ensure that data accessed at a site is always the
most recent version of the data.

As an optimization, if a site identifier is provided
with the lock by the GLM, it suffices to process
log records up to (and including) the log record
from the site with the timestamp provided.

4.3 Checkpointing

Checkpointing is initiated by a site, which coor-

dinates the operation. The checkpointing operation

consists, as for the centralized case, of three steps —
1) writing the database image by the co-ordinator, 2)
writing the ATT at each site and 3) finally commit-
ting the checkpoint. The main difference from the
centralized case lies in how each step is carried out.
We describe each step below:

1. The coordinator announces the beginning of the
checkpoint, at which time all other sites zero their
dpts, and report their current end_of_stable_log
values. Note that zeroing dpt and recording
end_of stable_log is done atomically with respect
to flushes. The coordinator applies all outstand-
ing updates, then atomically (with respect to pro-
cessing further log records and flushing) records
its end_of_stable_log, notes A¢ from it’s own A;,
and ckpt_dpt from its dpt, and then zeroes its own
dpt. The coordinator then writes to the check-
point image the ckpt_dpt, the end_of stable_logs
for each site, and the timestamp array Ac.

Applying outstanding updates at the coordina-
tor before noting ckpt_dpt and A¢ ensures that
1) updates preceding end_of_stable_log reported
by other sites have been applied to the database
pages, and 2) the pages are marked dirty in
ckpt-dpt and thus, it is safe to zero dpts at
sites when end_of _stable_log is noted. Also, s-
ince each site notes end_of_stable_log independent-
ly, it is possible that for a redo log record af-
ter end_of stable_log at one site, a conflicting re-
do log record generated after it may be before
end_of_stable_log noted at a different site. As a
result, during restart recovery, applying every up-
date after end_of_stable_log in the system log for a
site could result in the latter update being lost. S-
toring A¢ in the checkpoint and during restart re-
covery, applying only redo records at site ¢ whose
timestamps are greater than Aq[i] eliminates the
above problem since timestamps for both updates
would be smaller than the corresponding TS_ctr
values for the sites in Aq.

2. Next, the database image is written out by the
coordinator in the same fashion as in the central-
ized case, writing out not only pages dirty in this
checkpoint interval (in ckpt_dpt), but also pages
dirtied in the previous checkpoint interval (in the
ckpt_dpt stored in the previous checkpoint).

3. Once the coordinator has written out the
database image, it instructs each site to write out
its ATT. Note that, as in the single site algorith-
m, writing the ATT at a site causes the system

log at the site to be flushed. Multiple sites can
be concurrently writing out their ATTs.

4. Once every site has reported to the coordinator
that its ATT has been written out, the database
checkpoint is committed by toggling cur_ckpt as
in the centralized case.

4.4 Recovery

Restart recovery in case of a system wide failure
(where all sites have to be recovered) can be performed
as follows by an arbitrary site j in the system. The
database image and the checkpointed timestamp ar-
ray A¢ are read, and for each site, the ATT and the
end_of stable_log recorded in the checkpoint are read.
Redo log records in the system logs for the various
sites are then applied to the database image by con-
currently scanning the various system logs. Each site’s
system log is scanned in parallel, starting from the
end_of stable_log recorded for the site in the check-
point. At each point, if the next log record to be
considered in any of the system logs is not a redo
log record, then it is processed and the ATT for its
site is modified as described for the centralized case
in Section 2.7. On the other hand, if the next record
to be considered in all the system logs is a redo log
record, then the log record considered next is the one
(among all the system logs on disk being considered)
with the lowest timestamp value. For every redo log
record encountered in the system log for a site, i, with
a timestamp greater than A¢[i], the update is applied
and the affected pages are marked as dirty in j’s dpt.

Once all the system logs have been scanned, TS _ctr
at site j is set to the largest timestamp contained in a
redo log record. In-progress and post-commit opera-
tions in the ATTs for the various sites are then rolled
back and executed, respectively, at site j against the
database at site j, beginning with level Ly and then
considering successive levels Ly, Ly and so on (as de-
scribed in Section 2.7). When an operation in an ATT
entry for a site is being processed, actions are per-
formed on the undo and redo logs for the entry. Fur-
thermore, when an operation pre-commits/aborts, log
records from the redo log are appended to the system
log for the site and the timestamp for each redo log
record appended is obtained by incrementing TS_ctr
at site j.

Finally, every site’s system logs are flushed causing
appropriate pages in j’s dpt to be marked dirty (up-
dates are not broadcast, however), and the TS_ctr at
every site and Ag[i] for all sites k and 7 are set to the
TS_ctr value at site j. The database image at every
site is set equal to the database image at site j, the

dpt for each site is copied from the dpt at site j, and
recovery is completed.

For lack of space we omit a proof of correctness, but
a sketch of the proof is provided in the appendiz.

4.5 Recovery from Site Failure

Our recovery algorithm can also be extended to deal
with a site failure without performing a complete sys-
tem restart, so long as the GLM data has not been
lost, or can be regenerated from the other sites. If this
is not the case, a full system recovery is performed
instead. Recovery from site failure, as with regular
system recovery, has a redo pass, followed by rollback
of in-progress operations.

Before beginning the redo recovery pass, the re-
covering site, say j, retrieves from the most recent
checkpoint the database image, the ATT for site j,
the timestamp array Ac and the end_of_stable_log for
each site. It then informs other sites that it is up, and
requests from each site i, that site’s end_of _stable_log
value, and the value of A4;[j]. At this point, other sites
start sending log records to j; these are buffered and
processed later. The redo pass is then performed by
scanning all the system logs as described in the previ-
ous subsection except that 1) only the pages in the dpt
for site j are marked dirty, 2) only actions on the ATT
for site j are performed, and 3) the system log for a
site is scanned until the end_of stable_log returned by
that site at the beginning of this recovery.

Also, log records in the tail end of the log of the
recovering site may not have made it to other sites —
since a log record is broadcast after it is flushed. For
each site i (other than the recovering site, j) all log
records in site ¢’s system log that have timestamps
greater than A;[j] are broadcast to site i as they are
processed. Once the redo pass is completed, A;[é] is
set to the maximum timestamp in a redo log record
encountered during the redo pass in the system log for
site 4. Also, TS_ctr at site j is set to the maximum of
A;[i] for all sites i. At this point, site j can begin ap-
plying updates described by log records received from
other sites, as during normal processing, in the order
received, and checkpoints can again be taken as nor-
mal.

Before rolling back in-progress operations, the locks
that were cached at site j at the time it crashed are re-
obtained by the lock manager at site j by consulting
the GLM. These locks are all specially marked — none
of these locks will be returned on call back until un-
marked since they may have been held by some trans-
actions at the local site at the time of the failure. As
described in Section 2.7, rollback is performed level by
level, with additional locks requested as is done during

normal processing (see Section 4.2). Thus, TS_ctr at
site 7 is bumped up and outstanding updates are ap-
plied when a new lock is obtained, TS_ctr is increment-
ed when a redo log record is appended to the system
log, and log flushes are performed when operation/X
mode region locks are released by site j. Also, level L;
operation locks at site j are unmarked once all active
operations at level L;11 have been rolled back. The
special treatment of marked locks, along with level-by-
level rollback, ensures that an in-progress operation
which held a lock will in fact be protected by the lock
held on behalf of the site.

5 Connection to Related Work

Multi-level recovery and variants thereof, primari-
ly for disk-based systems, have been proposed in the
literature [WHBM90, Lom92, MHL"92]. Like these
schemes, our schemes repeat history, generate log
records during undo processing and log operation com-
mits when undo operations complete (similar to CLRs
described in [MHL"92]). Also, as in [Lom92], trans-
action rollback at crash recovery is performed level
by level. Some of the main-memory features of our
scheme which impact the distributed schemes are

1. No physical undo logs are written out to the glob-
al log except during checkpoints.

2. Separate undo logs are maintained in memory for
active transactions. A result is that transaction
rollback does not need to access the global log,
part of which could be on disk.

3. Our scheme does not require latching of pages
during updates, which is inconvenient and expen-
sive in either a main-memory DB or an OODB
setting. Actions that are normally taken on page
latching, such as setting of dirty bits for the page,
are efficiently performed based on physical redo
log records written to the global log.

4. Our scheme uses transient undo logging which re-
duces the disk I/0.

In the ARIES-SD [MNO1] family of schemes for re-
covery in the shared disk environment, each site main-
tains a separate log, and pages are shipped between
sites. Our scheme does not ship pages, but instead
broadcasts log records, taking advantage of cheap ap-
plication of these log records in main-memory, and
permitting concurrent updates at a smaller than page
granularity. In our scheme, log flushes are driven by
the release of a lock from a site, in order to sup-
port repeating of history and correct rollback of multi-
level actions during crash recovery. The “super fast”

method of ARIES-SD [MN91] does not describe flush-
es to protect the early release of locks, making it un-
clear how that scheme supports logical undo and high-
concurrency index operations.

In [Rah91], the authors propose recovery schemes
for the shared disk environment which assume page-
level concurrency control and the NO-STEAL page
write policy — neither of which are assumptions made
in our schemes.

In [MN94], the authors show how the ARIES recov-
ery algorithm described in [MHL"92] can be extend-
ed to a client-server environment. In contrast to our
scheme, the scheme described here involves the clients
as well as the server in the checkpointing process. We
also support concurrent updates to a page by different
clients, which is not supported in [MN94].

In [CFZ94], object-level as well as adaptive lock-
ing and replica management are discussed, but recov-
ery considerations are not extensively addressed. In
[FZT*92], the client-server recovery scheme for the
Exodus storage manager (ESM-CS) is described. This
recovery scheme, based on ARIES [MHL™92], requires
page-level locking until end of transaction (for exam-
ple, the Commit Dirty Page List).

6 Concluding Remarks

In this paper, we showed how our multi-level re-
covery algorithm [BPR'96] can be extended to a
distributed data-shipping system while maintaining
many of the original benefits of the single-site algorith-
m. The first scheme presented supports client-server
processing in which a central system controls logs and
checkpoints. In the second scheme, suitable for a clus-
ter of computers with a shared disk, sites participate
symmetrically in transaction processing activities. We
described the details of recovery after the failure of
clients or the server in the client-server case and from
single site and system-wide failure in the shared disk
case. Our scheme allows concurrent updates at mul-
tiple clients in a client-server environment or multiple
sites of the shared disk environment. By allowing fine-
grained and flexible concurrency control, our schemes
are applicable to a range of distributed, main-memory
applications which need transactional access to data.

Our distributed schemes are based on a multi-level
scheme for recovery in main-memory databases which
has been implemented in the Dali Main Memory S-
torage Manager [JLRT94]. Thus, the benefits of this
algorithm are extended to the distributed schemes, in-
cluding fuzzy, dirty-page only checkpointing, reliance
on the log for functions which are typically page based,
low overhead logging with undo records written only
due to a checkpoint, and per-transaction logs for low

contention.

We plan to explore the performance of these
schemes through experimentation, and then build a
distributed, data-shipping version of Dali based on
these algorithms.

References

[BPRT96] P. Bohannon, J. Parker, R. Rastogi,
S. Seshadri, and S. Sudarshan. Distributed
multi-level recovery in main-memory databas-
es. Technical Report 112530-96-02-27-01TM,
Lucent Technologies, Bell Laboratories, Febru-
ary 1996.

[CDF*94] M. J. Carey, D. J. DeWitt, M. J. Franklin,
N. E. Hall, M. L. McAuliffe, J. F. Naughton,
D. T. Schuh, M. H. Solomon, C. K. Tan, O. G.
Tsatalos, S. J. White, and M. J. Zwilling.
Shoring up persistent applications. In Pro-
ceedings of ACM-SIGMOD 199 Internation-
al Conference on Management of Data, Min-
neapolis, Minnesota, pages 383-394, May 1994.

[CFZ94] M. J. Carey, M. J. Franklin, and M. Zahari-
oudakis. Fine-grained sharing in a page server
OODBMS. In Proceedings of ACM-SIGMOD
1994 International Conference on Management
of Data, Minneapolis, Minnesota, pages 359—
370, May 1994.

[DKO'84] D. J. DeWitt, R. Katz, F. Olken,
D. Shapiro, M. Stonebraker, and D. Wood.
Implementation techniques for main memory
database systems. Proc. ACM-SIGMOD 198/
Int’l Conf. on Management of Data, pages 1-8,
June 1984.

[FZT+92] M. J. Franklin, M. J. Zwilling, C. K. Tan,
M. J. Carey, and D. J. DeWitt. Crash recov-
ery in client-server EXODUS. In Proceedings of
ACM-SIGMOD 1992 International Conference
on Management of Data, San Diego, Califor-
nia, pages 165-174, June 1992.

[GMS92] H. Garcia-Molina and K. Salem. Main mem-
ory database systems: An overview. IEEE
Transactions on Knowledge and Data Engi-
neering, 4(6):509-516, December 1992.

[Hag86] Robert B. Hagmann. A crash recovery
scheme for a memory-resident database sys-
tem. [EEE Transactions on Computers, C-
35(9):839-847, September 1986.

[JLR*94] H.V. Jagadish, Dan Lieuwen, Rajeev Ras-
togi, Avi Silberschatz, and S. Sudarshan. Dal-
i A high performance main-memory storage
manager. In Procs. of the International Conf.
on Very Large Databases, 1994.

[JSS93] H.V. Jagadish, Avi Silberschatz, and S. Su-
darshan. Recovering from main-memory laps-
es. In Procs. of the International Conf. on Very
Large Databases, 1993.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and
D. Weinreb. The objectstore database system.
Communications of the ACM, 34(10), October
1991.

[Lom92] D. Lomet. MLR: A recovery method for
multi-level systems. In Proceedings of ACM-
SIGMOD 1992 International Conference on
Management of Data, San Diego, California,
pages 185-194, 1992.

[LSC92] T. Lehman, E. J. Shekita, and L. Cabrera.
An evaluation of Starburst’s memory residen-
t storage component. IEEE Transactions on
Knowledge and Data Engineering, 4(6):555—
566, December 1992.

[MHL*92] C. Mohan, D. Haderle, B. Lindsay, H. Pi-
rahesh, and P. Schwarz. ARIES: A transaction
recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead
logging. ACM Transactions on Database Sys-
tems, 17(1):94-162, March 1992.

[MN91] C. Mohan and I. Narang. Recovery and
coherency-control protocols for fast intersys-
tem page transfer and fine-granularity lock-
ing in a shared disks transaction environmen-
t. In Proceedings of the Seventeenth Inter-
national Conference on Very Large Databases,
Barcelona, pages 193—-207, September 1991.

[MN94] C. Mohan and I. Narang. ARIES/CSA:
a method for database recovery in client-
server architectures. In Proceedings of ACM-
SIGMOD 1994 International Conference on
Management of Data, Minneapolis, Minneso-
ta, pages 55-66, May 1994.

[Rah91] E. Rahm. Recovery concepts for data shar-
ing systems. In Proceedings of the Twenty first
International Conference on Fault- Tolerant
Computing (FTCS-21), Montreal, pages 109-
123, June 1991.

[SGM90a] K. Salem and H. Garcia-Molina. Sys-
tem M: A transaction processing testbed for
memory resident data. IEEE Transactions on
Knowledge and Data Engineering, 2(1):161—
172, March 1990.

[SGM90b] K. Salem and H. Garcia-Molina. Sys-
tem M: A transaction processing testbed for
memory resident data. IEEFE Transactions on
Knowledge and Data Engineering, 2(1):161—
172, 1990.

[WHBM90] G. Weikum, C. Hasse, P. Broessler, and
P. Muth. Multi-level recovery. In Proceedings of
the Nineth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
Nashville, pages 109-123, June 1990.

A Correctness of Shared Disk Algo-
rithms

The basic idea behind the proof of correctness is
to treat the combined system logs conceptually as
a single log, merged according to the timestamps.
The checkpointed timestamp array Ac is essentially
a pointer into this logical log, and constitutes the log-
ical log restart recovery point. We show correctness
of the shared disk recovery and cache coherency algo-
rithms by showing the following;:

1. For every update written out during the check-
point operation, and that had not committed be-
fore the end of checkpointing, the undo log record
describing the update is also written out.

2. All updates described by log records before the
logical log restart point (array A¢) noted in the
checkpoint have made it to the database image.

3. History is repeated as a consequence of applying
the redo log records during restart recovery.

Point 1 is ensured since the ATTs are checkpoint-
ed after an update completed, and every system log
is flushed to disk before the checkpoint completes, so
that all pre-committed updates get committed. Thus,
the undo log for any uncommitted update is guaran-
teed to be written to disk.

Point 2 holds since when a page is written to disk
during a checkpoint at site j, updates preceding A;[i]
have made it to the image of the page at site j (due to
the algorithm for application of incoming log records),
and this page is dirty in j’s dpt (because the dpt is
noted atomically with A¢).

Point 3 is ensured due to the following reasons —

1. All physical log records are applied during recov-

ery in timestamp order — immediate from the re-
covery algorithm.

. For a given region, the order of log record times-

tamps reflects the order of updates which gener-
ated the log records. For every log record, L, (in
the system log of a site) describing an update,
the log record, L' for the preceding (conflicting)
update is also in some site’s stable log with times-
tamp less than the timestamp for this log record.
The reason for this is that before a region lock is
released by a site, updates covered by the region
lock are appended to the system log, flushed to
disk, and broadcast to the network. TS_ctr at the
receiving site is bumped up and so must be larg-
er than the timestamp contained in L' when log
record L is moved to the system log and assigned
a timestamp.

. If a timestamp contained in a log record for site i

is less than or equal to A;[i], then the log record’s
effects must have made it to the copy of the
database at site j.

. Finally, we show that if a log record, L1, from site

1 is applied to a page during recovery, then a con-
flicting log record, L2, from another site, j, with
timestamp higher than the L1’s timestamp, will
also be applied. In other words, the timestamp of
the second log record is greater than Ac[j].

Suppose log record L1 is applied during recov-
ery, and it describes an update at site i. Suppose
further that the update for L1 precedes another
update at site j, described by L2. Then, at the co-
ordinator site for the last completed checkpoint,
L2’s timestamp is larger than the timestamp ar-
ray entry for j. The reason for this is that L1
is first broadcast before locks are released, and
only later is L2 broadcast to all the sites. Since
L1 is applied, its timestamp must be greater than
Ac[i], which means the broadcast of L1 did not
reach the last site that did the checkpoint. But
then neither could the broadcast of L2 — so the
timestamp Ac[j] must be less than the timestamp
of L2, and L2 would be executed as well.

