
Extracting Equivalent SQL from Imperative Code in
Database Applications

K. Venkatesh Emani Karthik Ramachandra∗

Subhro Bhattacharya† S. Sudarshan

Indian Institute of Technology, Bombay
{venkateshek, sudarsha}@cse.iitb.ac.in, {karthik.s.ramachandra, subhro.bhattacharya}@gmail.com

ABSTRACT
Optimizing the performance of database applications is
an area of practical importance, and has received signif-
icant attention in recent years. In this paper we present
an approach to this problem which is based on extract-
ing a concise algebraic representation of (parts of) an
application, which may include imperative code as well
as SQL queries. The algebraic representation can then
be translated into SQL to improve application perfor-
mance, by reducing the volume of data transferred, as
well as reducing latency by minimizing the number of
network round trips. Our techniques can be used for
performing optimizations of database applications that
techniques proposed earlier cannot perform. The alge-
braic representations can also be used for other purposes
such as extracting equivalent queries for keyword search
on form results. Our experiments indicate that the tech-
niques we present are widely applicable to real world
database applications, in terms of successfully extract-
ing algebraic representations of application behavior, as
well as in terms of providing performance benefits when
used for optimization.

1. INTRODUCTION
Database applications are written using a mix of declar-

ative SQL queries and imperative code written in lan-
guages such as Java. Techniques that optimize across
the declarative and imperative parts of a database ap-
plication are referred to as holistic optimization tech-
niques. Such holistic techniques, which exploit pro-
gram analysis and rewriting in conjunction with query
rewriting, can perform optimizations that are beyond
the scope of a database query optimizer or an optimiz-
ing compiler for the imperative language.

∗Current affiliation: Microsoft Gray Systems Lab
†Current affiliation: Citrix Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882926

In this paper, we present a novel holistic optimiza-
tion technique which derives algebraic representations,
or expressions, for program variables in database appli-
cations. The algebraic representation (D-IR) captures
the effect of multiple program statements on a variable
as a single expression. D-IR is then translated into a
functional representation (F-IR) based on relational al-
gebra and fold. Various transformation rules are pre-
sented to optimize F-IR, which is then translated into
SQL. Our techniques have multiple applications, listed
below.

Optimization of database applications: Our techniques
allow many operations performed in imperative code in
database backed applications to be translated to SQL
queries making use of selections, joins, projections, and
aggregate operations. Our techniques can detect when
conditional execution, nested loops, and collection of re-
sults into an aggregate variable can be translated into
SQL, reducing data transfer and even the number of
queries executed.

There has been recent work by Cheung et al. [4] to
transform parts of application logic into SQL queries,
with a focus on database applications using Hibernate
[13]. They rely on program synthesis technology, which
is very resource intensive. Our techniques, on the other
hand, rely on static program analysis, which is cheaper.
For all programs that our techniques could successfully
optimize, our techniques extracted equivalent SQL in
much less time than [4], as shown by our experiments.
Radoi et al. [17] proposed techniques for translating im-
perative code into MapReduce programs. While we use
a functional representation which is similar to theirs, our
goal is to infer SQL queries, so the techniques we pro-
pose are different. A detailed comparison with [4, 17],
and other techniques for finding equivalent SQL queries,
is given in Section 6.

Enhancing applicability of existing techniques: When
the results of one query do not directly feed as param-
eters to another query, batching [11] is unable to com-
bine these two queries into a single query. Techniques in
this paper resolve assignments to intermediate variables
and allow query parameters to be expressed in terms
of program inputs or results of other queries. This en-
hances the applicability of batching as well as hybrid ap-
proaches proposed in [18], by combining related queries.

1781

Keyword Search: Keyword search systems such as [6] ac-
cept a manually extracted set of queries for each form,
along with mappings of form parameters to query pa-
rameters as input. Our algebraic representations can be
used to automate extraction of equivalent SQL queries
for keyword search.

Contributions: The key novel contributions of this
paper are as follows:

1. We present (in Section 3) a DAG based interme-
diate representation (D-IR) for application code,
that expresses the value of a variable at a point
in the program as an expression in terms of values
available at an earlier point in the program. D-
IR represents straight line and conditionally eval-
uated code algebraically, while loops have a non al-
gebraic representation (only cursor loops are con-
sidered). We present techniques for deriving D-IR
representations for program variables. Our tech-
niques are based on program regions (refer Section
3.1), and can be applied to complex programs that
include function calls.

2. We show (in Section 4) how to translate D-IR for
cursor loops into a functional representation which
uses fold along with relational algebra (we call
it fold intermediate representation, or F-IR). F-
IR is a convenient declarative representation for
imperative code.

3. We present (in Section 5) transformation rules for
F-IR, which help us in moving computation out of
cursor loops and generating equivalent SQL queries.
We then describe (in Section 5.2) how to rewrite
the source program to use equivalent SQL. Our
techniques are able to extract equivalent SQL par-
tially for some variables that are amenable to alge-
braic analysis, while leaving other parts of code in-
tact. Our techniques can translate many instances
of nested loops where the inner loop computes ag-
gregation for each value of the outer loop, into a
GROUP BY query; earlier techniques are unable to
perform such translations.

4. Our techniques have been implemented in the DBri-
dge [2] system, to analyze and optimize Java pro-
grams that use JDBC or Hibernate. (The tech-
niques themselves are not specific to any language
or API.)

5. We present (in Section 7) an experimental eval-
uation of the proposed techniques on real world
applications, which show the applicability of our
techniques and their impact on application perfor-
mance.

Section 2 presents an overview of our approach. We
discuss related work in Section 6, and conclude the pa-
per in Section 8.

2. OVERVIEW
An overview of our system is given in Figure 1. Given

the source program (fragment), we first construct our

Figure 1: System Overview

DAG-based intermediate representation (which we call
D-IR) for program variables. D-IR serves two purposes:
(i) it resolves intermediate variable assignments, so the
value of each variable at any program point is expressed
in terms of values of variables at the beginning of the
program, and (ii) it provides a semantic representation
of the program.

For a variable whose computation we wish to opti-
mize, its D-IR is translated into a functional representa-
tion using fold and relational algebra (F-IR), provided
the required preconditions are met. The motivations
behind translation of D-IR into F-IR are twofold: (i) F-
IR provides a convenient declarative representation of
the imperative program which is easy to translate into
SQL. (ii) Transformations on F-IR are easy to describe
and reason about, as F-IR uses higher order functions,
which have well established properties. This makes it
easy to prove correctness of transformation rules.

Rule based transformations are applied on the F-IR
to push computation into the relational algebra query
where possible; when no more transformations can be
done, the rewritten F-IR representation is translated
into SQL. The original program is then rewritten to de-
rive the value of that particular variable, using the ex-
tracted equivalent SQL. Parts of the original program
which are now rendered redundant/unused are removed.
Translation of imperative code into SQL can greatly re-
duce the number of queries executed, and the amount
of data transferred from the database, as compared to
the original program.

Consider the code fragment shown in Figure 2, which
is extracted from an open source gaming tournament
software [15]1. Variable types have not been displayed
in this code, for ease of presentation (we will stick to
this practice throughout the paper). It is part of a rank-
ing page generator which tries to find the highest score
across all tables in a round of the game Mahjong, where
there are four players per table. The original code also
finds the player who has the highest score along with

1Some changes have been made from the actual code for ease
of presentation: (i) queries are made explicit and (ii) schema of
the class Board has been simplified. Also, we use an abstract
syntax for queries, which uses the pseudo function executeQuery
that takes an SQL/HQL query, executes it and returns the result
set/list of objects. Our implementation uses the actual source
code.

1782

findMaxScore(){

boards = executeQuery("from Board as b

where b.rnd_id = 1");

scoreMax = 0;

for(t : boards) {

p1 = t.getP1();

p2 = t.getP2();

p3 = t.getP3();

p4 = t.getP4();

score = Math.max(p1, p2);

score = Math.max(score, p3);

score = Math.max(score, p4);

if(score > scoreMax)

scoreMax = score;

}

return scoreMax;

}

Figure 2: Code for highest score calculation

the score itself, for each round. Appendix B discusses
how to generate equivalent SQL for such cases.

The optimized SQL for the scoreMax is shown in Fig-
ure 3(d)2. Parts (a), (b) and (c) show the various inter-
mediate stages from the source code to optimized SQL,
each of which will be described in detail in future sec-
tions. In parts (b) and (c), max is a function which
returns the greatest of two elements.

The discussion in this paper targets loops that iterate
over a collection, which we call cursor loops. If the it-
erated collection can be inferred (directly or indirectly)
as equivalent to the result of a database query, we use
the query to represent the collection. Otherwise, it is
possible to create a temporary table at the database
with the contents of the collection, and use a query (Q)
on the temporary table to represent the collection. For
simplicity, in this paper, we focus on the former case.
For the latter case, we assume that Q is available. We
omit details.

Furthermore, our discussion focuses on aggregates/col-
lections built inside cursor loops. In addition to building
aggregates/collections, another common use of cursor
loops is to print values as they are computed in the loop.
In such cases, we preprocess the program to replace out-
put statements with appends to a (global) string (which
can be treated as an ordered collection), and print its
contents at the end of the program. The preprocessed
program is then optimized using our techniques. We
defer details to Appendix B.

Query execution calls are usually enclosed within ex-
ception handling code. Our implementation conserva-
tively considers code that lies within a try-catch block,
so that exception handling behavior is not altered due
to optimizations. We also assume that loops do not con-
tain unconditional exit statements like break, although
certain cases of loop exit can be handling by some more
engineering effort. Our experiments show that despite

2We illustrate using the GREATEST function of PostgreSQL. Trans-
lation into other dialects is possible using similar functions, or
using CASE..WHEN construct.

Figure 3: Walk-through of equivalent SQL
derivation. Q denotes the query σrnd id=1(Board)

these restrictions, techniques presented in this paper
have wide applicability. Inferring equivalent SQL across
multiple try-catch blocks is work in progress.

3. DAG BASED IR
The goal of the first intermediate representation we

use is to represent the values of program variables as
algebraic expressions. We use a DAG representation
that allows sharing of common sub-expressions between
multiple expressions. We refer to our DAG-based in-
termediate representation as D-IR. DAG representation
for basic blocks has been used in various code optimiza-
tion techniques in traditional compilers [1]. We extend
it to construct DAG representations for other program
regions (Section 3.3).

In this section, we first present a background on pro-
gram regions. We then discuss our D-IR representation
and describe an algorithm for D-IR construction.

3.1 Background
A Control Flow Graph (CFG) is a directed graph in

which nodes correspond to basic blocks in the program
and edges correspond to control flow [1]. There are
two specially designated nodes: the Start node, through
which control enters into the graph, and the End node,
through which all control flow leaves. CFGs are usually
built on intermediate representations such as Java byte-
code. Our techniques apply to any CFG; our implemen-
tation uses CFGs built on a representation called Jim-
ple, provided by the Soot optimization framework [25].

Regions represent structured fragments of programs
such as basic blocks, if-else blocks, loops, functions etc.
A region in a flow graph is a set of nodes that includes
a header that dominates all other nodes in the region,

1783

Figure 4: Types of regions

and has a single entry and exit. Regions are constructed
from the CFG using rules described in [12]. Alterna-
tively, it is possible to use an abstract syntax tree to
identify program regions.

In our work, we handle four types of regions: basic
block, sequential region, conditional region, and loop
region (see Figure 4). In Figure 4, R1, R2 and R3 rep-
resent constituent regions of a parent region.

• Basic Block Region: A basic block represents
a maximal group of consecutive statements that
are executed together with sequential control flow
between them. By definition, basic blocks cannot
contain conditional constructs (if-else), loops or
jumps of any sort. Regions R1, R2, R3 and R4 in
Figure 5(a) represent basic blocks.

• Sequential Region: Sequential regions are re-
gions composed of two sub-regions with sequen-
tial control flow between them (Figure 4(b)). In
Figure 5(a), R6 is a sequential region.

• Conditional Region: A conditional region is
comprised of three sub-regions (Figure 4(a)). The
first sub-region (R1) contains the condition. The
second sub-region (R2) is executed if the condition
evaluates to true, otherwise the third sub-region
(R3) is executed. We refer to R1 as the “condi-
tion region”, R2 as the “true region” and R3 as
the “false region”. In Figure 5(a), R5 is a condi-
tional region composed of the condition region R2,
true region R3 and false region R4.

• Loop Region: Loop regions are composed of two
regions (loop header and loop body) with a cycle,
as shown in Figure 4(c). Control flow starts at the
loop header which contains the looping condition.
If the condition evaluates to true, the loop body is
executed, and control returns to the loop header
to re-evaluate the condition. This is repeated un-
til the condition becomes false, and then the loop
exits.

By definition, regions compose other regions. We note
that the program as a whole is also a region.

3.2 D-IR
D-IR is an intermediate representation for imperative

code which may also contain database queries. It has
two components: equivalent expression DAG (ee-DAG)
and variable-expression map (ve-Map). Each region in

Figure 5: D-IR construction for a simple code
fragment

the program has an ee-DAG and its associated ve-Map.
We describe these data structures below.

3.2.1 ee-DAG
We define an equivalent expression DAG (ee-DAG) as

a directed acyclic graph in which each node represents
an expression. An expression (i) is a constant, a variable
or a query attribute (base case) (ii) consists of an oper-
ator and its operands; each operand can in turn be an
expression. The operator is connected to its operands
through directed edges.

Consider the code sample shown in Figure 5(a). The
ee-DAG for the program is shown in Figure 5(d). Cir-
cled numerals denote pointers to another part of the
ee-DAG (to avoid clutter).

Parameterized queries in the source program can be
treated as parameterized expressions in the multiset re-
lational algebra. All relational algebraic operators (pro-
ject (π), project (σ), join (1) etc.) are available in
ee-DAG. Note that in this paper, π denotes projec-
tion without duplicate elimination. We also include
extended relational algebraic operators for aggregation
(γ), sorting (τ) and eliminating duplicates (δ) [27]3.

Relational operators do not guarantee that the order
of input tuples is preserved in the output, unless explic-
itly sorted using τ . However, in this paper, we assume
that for the operator π (projection without duplicate
elimination), the input ordering is preserved in the out-
put.

All arithmetic operators (+, −, ∗, / etc.), and logi-
cal operators (<, >, ==, AND, OR etc.), are available

3Usage: GγAgg(E)(R) groups R on G and performs aggregations
in Agg (G could be empty), τL(R) sorts R on L, and δ(R) elim-
inates all duplicate rows from R.

1784

in the ee-DAG. In addition, we introduce the following
operators to enable representation of imperative code
constructs:

• Conditional evaluation (“?”): Its semantics are sim-
ilar to ternary operator or if-else in imperative lan-
guages like Java/C.

• Cursor loop (Loop): The Loop operator represents
computations inside cursor loops. It accepts two
operands.. The first operand is the relation or
query result over which the loop iterates. The
second operand represents the loop body. Unlike
other operators, the Loop operator does not repre-
sent a single value. In this sense, the Loop operator
is not algebraic. The loop body is represented by
enclosing it inside a dotted rectangle (refer Figure
3(a)). Expressions inside this rectangle correspond
to a single iteration of the loop.

Since our implementation can take imperative pro-
grams with rich language features as input, equivalent
ee-DAG operators are necessary to model semantics of
source program statements. We chose Java programs
to demonstrate the working of our tool, so equivalent
ee-DAG operators were created for the following Java
constructs:

• String operations, addition/deletion of elements
into/from collections (Array, List and Set), getter
and setter functions for object attributes

• Important library functions – for example, in Fig-
ure 2, our system understands that Math.max is a
function which returns the maximum of two num-
bers. This is modeled in D-IR using the max op-
erator. Adding support for more library functions
is not hard, and our ee-DAG can easily evolve as
needed.

In our ee-DAG, an operator is represented as a node,
and its operands are represented as children of the op-
erator node. For example, in Figure 5(c), the condition
y - x > 0 is represented by the node rooted at >, and
the operation y - x is represented by the node rooted
at −. Similarly, in Figure 3(c), the ee-DAG rooted at π
represents the query π max(max(max(p1,p2),p3),p4)(Q).

3.2.2 ve-Map
The ve-Map is a key-value data structure where a key

is the label of a program variable (v) and its value is
a pointer to a node e in the ee-DAG. The expression e
when evaluated gives the value of variable v, in terms
of values available at the beginning of the region. We
refer to this ee-DAG expression as the equivalent ee-
DAG expression (or simply the equivalent expression) of
the program variable. In the illustrations in this paper,
we denote ve-Map values (pointers) with dotted arrows.
Note that these dotted arrows are not part of the ee-
DAG edges. The ve-Map for the program in Figure 5(a)
is shown in Figure 5(d). In this paper, we skip showing
entries in the ve-Map for variables in which we are not
interested (to make diagrams more readable).

3.3 Algorithm for D-IR Construction
D-IR construction works on top of the region hier-

archy. Construction of regions was discussed in Section
3.1. We now outline a bottom up recursive algorithm for
D-IR construction for a region. Appendix D describes
the algorithm in full detail.

1. Construct D-IR (ee-DAG and ve-Map) for each
constituent region (sub-region). All leaves in the
ee-DAG which are variables are marked as region
inputs.

2. Merge D-IRs of sub-regions appropriately (depend-
ing on type of parent region) to obtain D-IR for
the parent region. The aim of merging is to re-
place region inputs with their ee-DAG expressions,
which are expressed terms of inputs to a preceding
region.

In the illustrations in this paper, region inputs are de-
noted by tagging them with a subscript 0, for example,
x0 and y0 in Figure 5(c).

The smallest sub-region in a program is a single state-
ment. Thus, D-IR construction for a program starts
by constructing D-IR for simple statements, which are
merged to get D-IR for basic blocks, which are merged
to get D-IR for other composite regions. This process
halts when the variable values are expressed in terms of
inputs to the outermost region of interest.

We consider each simple source program statement as
consisting of an expression (comprising of an operator
and its operands) whose value is assigned to an optional
target variable. For example, the statement sum = 5 +

10 consists of an addition operation involving the op-
erator + and its operands 5 and 10, with sum as the
target variable. A source language expression is rep-
resented in D-IR using an equivalent ee-DAG operator
and equivalent expressions for operands as its children.
Assignment is captured by adding an entry in ve-Map
for the target variable (or updating, if an entry already
exists), with its value as the ee-DAG expression.

We now outline the steps for D-IR construction for
each type of region.

For a sequential region R comprising of regions R1

and R2 such that R2 follows R1, the ee-DAG for R is
obtained by replacing each leaf variable (region input)
in the ee-DAG of R2, with the ee-DAG of the variable
from R1. For a conditional region R comprising of a
condition c, true region R1 and false region R2, the ee-
DAG for each variable in R is obtained by creating a
conditional evaluation node (“?”) with its three children
as c, ee-DAG of variable fromR1 and ee-DAG of variable
from R2. For a loop region, the ee-DAG is obtained by
creating a “Loop” parent node with its two children as
the looping query and the loop body. Two ve-Maps
are merged by creating a union of entries from both
ve-Maps. In case of duplicate keys, entries from the
following region are retained.

Consider the code sample shown in Figure 5(a). Fig-
ures 5(b), (c) and (d) show the step by step construction
of D-IR for the program. In Figure 5(c), the variables
x and y are leaves, so they are marked as region inputs

1785

(by tagging them with a subscript 0). These are re-
solved to constants in Figure 5(d), while merging with
the preceding basic block R1. Note that in the final
D-IR (Figure 5(d)), all intermediate variable references
have been resolved to inputs at the beginning of the
program. In order to efficiently check the existence of a
node in the ee-DAG, a composite id – comprising of id’s
of its operator and operands – is assigned to each node,
and a hash table is used for searching.

User defined functions/procedures are also handled by
our techniques. D-IR is separately constructed for a user
defined function/procedure. It is then merged with the
preceding region at the caller location, by considering
them to form a sequential region, taking into account
actual to formal parameter mapping. We defer details
to Appendix D.

4. F-IR REPRESENTATION
As we have described in Section 3.3, D-IR gives an

algebraic representation for computations in sequential
and conditional regions. However, the Loop operator
used to represent cursor loops in D-IR is not algebraic.
We now describe our second intermediate representa-
tion, which we call the fold intermediate representation
(F-IR). F-IR combines D-IR and fold function to en-
able algebraic/functional representation of cursor loops.
F-IR abstracts away details about imperative logic while
still retaining the result ordering, unlike relational alge-
bra. This allows easy translation from cursor loops to
F-IR. Our transformation rules then operate on F-IR
(Section 5). There has been earlier work on using fold

to represent loops [17].
We use the following textual notation to represent a

dag/tree. In general, M represents an ee-DAG, and e
represents an expression tree. We write op[c1, c2, . . .]
to describe an expression with root node as op, and
c1, c2, . . . as its children. Angular brackets 〈〉 denote
a parameter. Thus, op[c, 〈p〉] denotes that the second

child of op is a parameter p. Similarly, we use e〈p1〉,〈p2〉,...

to denote an expression, where values of some operands
in the expression are given by parameters p1, p2 etc. A
parameterized expression (say, f〈p1〉,〈p2〉) can be treated
as a function taking parameters (p1 and p2). These pa-
rameters are substituted when the expression is evalu-
ated with actual values. Parentheses are used to denote
invocation of a function or a parameterized expression
with actual values, for example, f(v1, v2) denotes a call
to function f with parameter values v1 and v2, and e(v)

denotes evaluating the parameterized expression e〈p〉 by
substituting p with v.

4.1 Fold
The fold function is a higher order function i.e., a

function which can take other functions as parameters
and can return functions as return values. fold takes
3 arguments: a folding function f, an identity element
(id) and a recursive data structure on which fold is to
be applied. In the context of lists, the fold function
processes each element in an input list and combines
the results into a single return value. The list elements
can be processed from first to last, or last to first, de-

pending on whether it is a left fold (foldl), or right
fold (foldr). In this paper, by fold, we mean foldl.
foldl is more suitable for representing computations on
lists in imperative programs, as the elements are usually
processed from first to last. fold on lists is defined re-
cursively, as follows:

fold [f, id, []] = id
fold [f, id, [a1]] = f(id, a1)
fold [f, id, [a1, .., an+1]] =

f(fold [f, id, [a1, .., an]], an+1)

Note that [and] are used both to denote lists, and to
enclose arguments to the higher order function fold.
(In the latter case, we could have used parentheses in
place of [], or omitted them altogether, as is customary
in the functional programming community, but we use
[] to improve readability of our transformation rules.)
For example, fold [+, 0, [1, 2, 3, 4, 5]] evaluates to

((((0 + 1) + 2) + 3) + 4) + 5 = 15.
The definition of fold can be easily extended to oper-
ate on results of queries, which are ordered/unordered
collections, instead of lists.

We extend ee-DAG to allow the use of a fold opera-
tor. We refer to D-IR extended with fold operator as
F-IR. The fold operator takes three arguments, corre-
sponding to each argument of a fold function. Note
that the first argument can be a parameterized expres-
sion, which is treated as a function. Input queries are ex-
pressed using extended relational algebra. For example,
the ee-DAG rooted at fold in Figure 3(c) is written as

fold [max, 0, Q′]
where max is the binary maximum function, and Q′ de-
notes π max(max(max(p1,p2),p3),p4)(σrnd id=1(Board)).

4.2 Converting Loops to Fold
In this section, we describe how to use fold to pre-

cisely represent cursor loops, in F-IR. Equivalent SQL
cannot be extracted for collections other than those con-
structed from query results (directly or indirectly), so
we focus on cursor loops. Our system currently supports
the following aggregations inside cursor loops: set/multi-
set insertion (insert), appending to list (append) or
scalar aggregation (min, max, sum).

Before we present the algorithm for D-IR to F-IR
translation (Figure 6), we describe a few terms com-
monly used in program analysis. A loop carried flow
dependency is said to exist between two statements S1

and S2 in a loop, if S2 follows S1 in the control flow,
and S2 writes to a location which is read by S1 in a
future iteration. An external dependency is said to ex-
ist between S1 and S2 if both the statements access the
same external location (file, database etc.), and at least
one of S1 or S2 writes to the external location. For the
purpose of dependence analysis, we conservatively treat
the entire database/file as a single location. This is re-
quired since writes to a relation may trigger updates on
another relation. Also, reading/writing an element in
a collection is treated as accessing the entire collection.
A data dependence graph(DDG) [16] of a program is a
directed multi-graph in which program statements are
nodes, and the edges represent data dependencies be-
tween the statements. Directions and labels on edges

1786

procedure toFIR(R):
R: A program region.

Let R. M be the ee-DAG for R, and R.M be its ve-Map.

begin

foreach sub-region C of R

toFIR(C)

if R is not a (cursor) loop region, return

else loopToFold(R)

end

procedure loopToFold(R):
R: A cursor loop region

begin

foreach variable v that is updated in R {
Let S = slice(R, l, v) represent a slice for v over R,

where l is the program point at the end of R

Let Sacc be the subset of statements from S updating v.

Let DS be the part of the data dependence graph for R

that corresponds to statements from S.

if all the preconditions below are satisfied in DS :

(P1) there should be a cycle of dependencies containing

Sacc and a loop carried flow dependence (lcfd) edge (E).

(P2) there should be no other lcfd edge apart from E and

the lcfd edge due to update of the loop cursor variable.

(P3) there should be no external dependencies.

{
Extract the expression tree e = Loop[Q, eacc] from the

ee-DAG given by R.M.lookup(v).

Let v0 be the initial value of v at beginning of the loop.

foldExpr = fold[e
′〈v〉,〈t〉
acc , v0, Q]

where, e′acc is obtained from eacc by replacing each refe-

rence to attributes of Q, with reference to corresponding

attributes of t (t is a new tuple variable).

Add foldEpr to R. M
Update the entry for v in R.M to point to foldEpr

Replace pointers to v in R.M with pointers to foldEpr

Insert statement(sfold) “v = foldExpr” at the end of R

updateDDG(R) /*reconstruct the DDG for R by

ignoring unused/dead code (see description)*/

}
}
end

Figure 6: Algorithm for Conversion to F-IR

identify the direction and type of dependence, respec-
tively. A program slice S = slice(P, n, v) is defined [26]
as the subset (S) of all statements and control predicates
of the program P that directly or indirectly affect the
value of a variable v at the program point n. For ex-
ample, in Figure 7(a), let the program point at the end
of line 7 be l7. Let P37 represent the loop, which con-
tains lines 3 to 7. Then, slice(P37, l7, agg) = {S3,S4}.
Similarly, slice(P37, l7, dummyVal) = {S3,S4,S6}. The
algorithm is given in Figure 6.

Given a program region R, the algorithm attempts to
translate all variables updated in R into F-IR. Updates
to variables in a loop are translated into fold using the
loopToFold procedure. The statement “v = foldExpr”
(labeled sfold) is a stub. The goal is to translate foldExpr

Figure 7: Demonstration of preconditions for
translation into F-IR

into SQL. However, for the purpose of dependence anal-
ysis, we treat foldExpr as an algebraic expression.

Dead code [5] refers to code whose results are not used
in any other computation. It may be transitive, i.e.,
identifying a part of the code as dead may reveal more
dead code. Let Sdead denote the set of all statements
which are rendered dead, due to insertion of sfold. The
actual decision of whether to use equivalent SQL (and
remove Sdead) or not, happens after F-IR transforma-
tions on foldExpr (Section 5.1). However, dependences
due to Sdead may cause preconditions to fail in an en-
closing region. The procedure updateDDG reconstructs
the DDG by ignoring statements in Sdead and including
sfold. Note that if the preconditions fail for a variable,
the algorithm proceeds to attempt F-IR translation for
other variables in the loop.

Theorem 1: Given a cursor loop region R, the value of
a variable v after termination of the loop is equivalent to
the result of foldExpr for v obtained by loopToFold(R),
when executed on the same input.
A proof sketch for this theorem is given in Appendix A.

Consider the code sample shown in Figure 7(a). Fi-
gure 7(b) shows that the loop body slice for agg at the
end of the loop satisfies the preconditions for translation
into F-IR. The F-IR representation for agg is given as:
fold [f, 0, Q] where f〈v〉,〈t〉 = + [v, t.x].

The slice for dummyVal, as shown in Figure 7(c) vio-
lates P2, due to the presence of an additional lcfd edge
from S4 to itself. Thus, the ee-DAG for dummyVal can-
not be translated into F-IR. We note that although
our preconditions disallow an F-IR representation for
dummyVal, in general, it is possible to represent dummyVal
as a fold, where the folding function aggregates a pair
of values (agg and dummyVal). However, SQL transla-
tion of dummyVal is not possible (without using a cus-
tom aggregation function), as it is dependent on agg. In
Appendix B, we describe how some cases of dependent
aggregations can be handled.

Note that the structure “if (expr OP v) then v =
expr” is often used to implement min and max aggrega-

1787

tions in a loop, where OP is one of <, >, <=, >=. This
structure is translated into v = OP1(v, expr) where OP1

is max for >, >=, and min for <, <=. If the program
uses v OP expr, then it can easily be translated to the
form expr OP v before applying the above translation.
Translation into F-IR is done after applying the above
translation.

5. F-IR TRANSFORMATIONS
In this section, we present a number of transforma-

tions on F-IR representation. Our transformations are
expressed as equivalence rules. Each rule has an input
F-IR which can be replaced by an equivalent output F-
IR by applying the rule. The aim of our transformations
is to obtain an optimized F-IR from the given F-IR. By
optimized F-IR, we mean an F-IR which when trans-
lated into SQL, reduces the number of queries and/or
data transferred as compared to the original F-IR.

5.1 Transformation Rules
We now present transformation rules. Many of these

rules specify a pattern for the relational algebra input
to fold. The actual input may not directly match this
pattern. However, standard relational algebra transfor-
mations can be used to bring the input query to the
required structure to apply transformations.

Rule T1 (Simplification): If append denotes the list ap-
pend operator, insert denotes the set insertion opera-
tor, and δ denotes the duplicate elimination operator,
fold[append, [], Q] = Q (Rule T1.1)
fold[insert, {}, Q] = δ(Q) (Rule T1.2)

Rule T2 (Predicate push):

If f〈v〉,〈t〉 = ?[pred(t), g], then
fold [f, id, πL(τZ(Q))]
≡ fold [g, id, πL(τZ(σpred(Q)))]

where pred(t) is a predicate expression parameterized
only on attributes of tuple t, and τ is the relational
sort operator (Section 3.2.1). Z can be empty, which
signifies absence of ordering on Q.

The selection predicate pred is obtained from pred(t)
by replacing references to attributes of t with corre-
sponding attributes of Q. We will use the terms pred(t)
and pred in similar contexts in other transformation
rules, without describing them again.

Rule T3 (Push scalar functions into the query):

If f〈v〉,〈t〉 = g(v, h(t.A)), then
fold [f, id, πA(Q)]
≡ fold [g, id, πh(A)(Q)]

This rule can easily be extended to the case when h op-
erates on more than one attribute of tuple t.

Rule T4 (Join identification)
(Rule T4.1 – list append):

If f〈v〉,〈t〉 = fold [append, v, πL(τZ2(σpred(t)(Q2)))],
then fold [f, [], τZ1(Q1)]
≡ πL(τZ1,Q1.K,Z2(Q1 1pred Q2))

provided Q1 has a unique key K, where append is the
list append operator. Z2 can be empty.

This rule is the same as the join identification rule
used by Cheung et al. [4], but the output should be
sorted on (Z1, Q1.K, Z2), and not just (Z1, Z2).
For insertion into a set, the result ordering does not
matter, but duplicates should be eliminated. Thus, the
rule can be given as follows.

(Rule T4.2 – set insertion):

If f〈v〉,〈t〉 = fold [insert, v, πL(τZ2(σpred(t)(Q2)))],
then
fold [f, {}, τZ1(Q1)] ≡ δ(πL(Q1 1pred Q2))

Z1 and Z2 can be empty. In the case of multiset insert,
duplicate elimination is not required, so the RHS would
simply be πL(Q1 1pred Q2) (Rule T4.3).

Rule T5 (Aggregations)

(Rule T5.1 – entire relation):

fold[op, id, πA(Q)] ≡ γop agg(A)(Q)

where op agg is the relational aggregation operator cor-
responding to the binary operator op, id is the identity
element for op. For op=+, op agg = sum; for op = max,
op agg = max; for op = min, op agg = min. Note that
we overloaded max to represent both binary and aggre-
gation operators.

(Rule T5.2 – group by):

If f〈v〉,〈t〉 = append[v, (t.B, γop agg(A)(σpred(t)(Q2)))],
then fold [f, [], Q1] ≡
πQ1.B, op agg(Q2.A)(Q1.∗γop agg(Q2.A) (Q1 ./pred Q2))

provided the order of Q1 is not deterministic, and Q1

has a key. This rule can be extended easily to handle
insert in the place of append.

Note that the above transformation works with stan-
dard SQL semantics for aggregates involving NULL val-
ues. The general case that Q1 may not have a key,
and may be ordered can be handled using extensions to
techniques for decorrelation of aggregate queries [7]. We
omit details for lack of space. In rules T5.1 and T5.2,
the initial variable value (second argument) passed to
fold was the identity element for the folding function.
In Appendix B, we discuss transformation rule T6 that
enables us to handle the case when the above assump-
tion does not hold.

Rule 5.2 is used to translate a common implementa-
tion of group by in imperative code, where there are two
nested cursor loops, the outer loop defines the groups,
and the inner loop performs aggregation of rows in the
group, and appends the aggregated result to a result list.
Appendix B describes how to handle another common
case where, in addition to the aggregated value, a tuple
of values from the row containing the aggregated value
is returned (for example, one may want the name of a
student who scored the highest marks in a test, along
with his/her marks).

We present some more transformation rules which are
used in our implementation, in Appendix B. Similar to
database query optimizer rules, more transformations

1788

can be added to exploit other opportunities for inferring
relational operations performed in imperative code.

5.2 Generating and Using Equivalent SQL
After a program has been translated into F-IR, we use

a top down traversal of its regions to rewrite the pro-
gram to use equivalent SQL, by processing the parent
region first, and then its sub-regions, as follows.

For a region R, we consider each statement (sfold)
“v = foldExpr” that is directly inside R (inserted during
F-IR translation), and apply transformations (Section
5.1) on foldExpr. Let transExpr denote the resultant
F-IR obtained after all transformations have been ap-
plied. If transExpr does not contain any folds (i.e., it
is a relational algebra expression), and all functions in
transExpr have equivalent SQL functions, then transla-
tion of transExpr into SQL is straight forward. In some
cases, if the folding function does not have an equivalent
SQL aggregate function, it is possible to use a custom
aggregation function (either as a user defined function
inside the database, or as a stored procedure defined in
the application source language, if the database allows
it). In other cases, SQL translation fails.

If an SQL query (Q) could be obtained from transExpr,
we replace the stub sfold with the statement (ssql) “v =
executeQuery(Q)”4. Parts of region R which are now
rendered dead due to ssql are removed by dead code
elimination. If SQL translation for transExpr fails, then
the assignment “v = foldExpr” is removed. The original
code for v remains intact.

Replacing the original source with SQL generated from
transformed F-IR is most often a good idea. However,
from an optimization view point, the decision to replace
should be taken in a cost based manner, in general, as
discussed in the next section.

5.3 Application of Transformation Rules
In our implementation, we apply transformation rules

in the left to right direction. Our transformation rules
match the LHS for a syntactic pattern, and replace it
with the RHS. We assume that translation into SQL is
always beneficial.

In case multiple transformation rules are applicable
for a given program fragment, we choose any one of
the applicable rules and proceed. In the current set of
rules (T1 through T7), a transformation from LHS to
RHS does not destroy any syntactic patterns in the LHS,
which are amenable for transformation by other rules.
So, the order of application of the competing rules does
not matter. Thus, the rule set is confluent. It can be
verified that our current set of rules always push compu-
tation from the folding function into the query, and not
in the other direction. Thus, infinite derivations are not
possible, and neither are cyclic derivations. Thus, our
current rule set always terminates. However, addition
of new transformation rules may result in cycles.

Translation into SQL may not be beneficial for all pro-
grams. For example, consider the code sample from Fig-
ure 7(a). Our techniques will extract a separate query

4executeQuery is a short form notation described earlier in foot-
note 1

for the aggregated variable agg, but the entire data still
has to be fetched to print other information with rich
formatting. In this case, the cost of an additional query
will outweigh the benefit of pushing aggregation into the
database.

For this particular case, a simple heuristic can be
used to decide whether or not to do the transforma-
tion: transform only if equivalent SQL could be ex-
tracted for all variables inside the loop that use query
results. However, in general, a cost based exploration
of the space of possible rewrites of the program is nec-
essary, to choose the best possible rewrite. This is an
important area of future work. We sketch an approach
to a cost based choice of rewriting which we plan to
implement, in Appendix C. This approach uses a top
down search algorithm using an AND-OR DAG, based
on the Volcano/Cascades query optimizer [9, 10].

5.4 Limitations
Our techniques focus on optimization of programs

that iterate over a query result, performing actions that
can be translated into SQL. Our system cannot handle
cases where there are language constructs that cannot
be represented in F-IR, like custom comparators, type
based selection, retrieving the i’th element in a list etc.
Expanding F-IR to address some of these cases is an
area of future work. We note, however, that other parts
of the program may still be amenable to optimization.

There are complex F-IR expressions that cannot be
translated into SQL. One such example where the order
of print statements needs to be preserved is discussed
in Appendix B. Often, data structures in imperative
programs are over-specified (for example, using a list
in place of a set). Respecting such over-specification
sometimes makes our transformation rules inapplicable.
Techniques for “weakening” the data structures (for ex-
ample, using a set instead of a list), which could make
our rules applicable, are part of future work.

6. RELATED WORK
Wiederman et al. [28] propose a source-to-source pro-

gram transformation technique that analyzes programs
using Hibernate to identify conditions under which re-
trieved data is used, and rewrites the program to use
explicit queries where the conditions are included in the
query. However, they do not extract queries for other
relational operations such as joins and aggregations ex-
pressed in imperative code.

There has also been recent work on inferring SQL
queries from procedural code using program synthesis
by Cheung et al. [4]. Their approach generates possi-
ble equivalent SQL queries and uses the Sketch frame-
work [24] to check for equivalence. This approach is
quite powerful, but, as evidenced by their results, can
be quite expensive. While Cheung et al. identify contin-
uous code fragments which can be replaced by an SQL
query, our techniques can also transform intermittent
fragments of code into SQL, thus enhancing their appli-
cability. Cheung et al. developed a Theory of Ordered
Relations (TOR) as an intermediate representation to
express loop invariants and post conditions before con-

1789

verting to SQL. Our intermediate representation (F-IR),
on the other hand, does not need a new algebra, and
makes use of fold and existing operators from extended
relational algebra.

Zhang et al. [30] propose techniques to infer queries,
using the output table and database schema information
by treating the source code (query) that generated the
result as a black box. However, with this approach,
guarantees for correctness of the query cannot be given
for all inputs, since test inputs may not be exhaustive.

Recently, Radoi et al. [17] have proposed an ap-
proach for automatic translation of sequential array-
based code into a parallel MapReduce framework. They
use a functional intermediate representation (IR) and
present rewrite rules that enable parallelism and trans-
late the IR into Scala MapReduce code. Although their
IR is similar to our F-IR based representation, their
goals are quite different from ours. Our transformation
rules are designed with the aim of inferring relational
operations from the IR, while they focus on enabling
parallelism and extracting map and reduce operations.
Also, the work of Radoi et al. is suited purely for batch
processing programs, while our work, in addition, con-
siders application code where data access is interspersed
with presentation (UI) logic, such as Web and mobile
applications.

Iu et al. [14] propose a syntax (JQS) through which
certain complex SQL queries can be expressed using nor-
mal (imperative) Java constructs. Similarly, Giorgidze
et al. [8] present a Haskell library which allows develop-
ers to express database queries using Haskell constructs.
However, an important difference of our techniques from
[14] and [8] is that our techniques automatically infer
which parts of imperative code can be pushed into the
database. In contrast, [14] and [8] require developers to
provide this information, in a syntax that uses source
language constructs. Some of the techniques of Ch-
eney et al. [3], for translating XQuery to SQL, could
be useful for handling print statements as discussed in
Appendix B. However, their goals and techniques are
otherwise very different from ours.

Shi et al. [22] propose the UniAD system to unify
execution of imperative code and queries at a single ex-
ecution engine. They target only ad-hoc data processing
tasks with small data sets, and use a custom database
engine, hence they cannot leverage the query optimiza-
tion capabilities of popular database systems.

Simhadri et al. [23] proposed techniques to algebraize
imperative constructs in user defined functions (UDFs).
Their aim was to extract a single relational algebra ex-
pression for the entire UDF body. Our techniques are
applicable over a much richer set of imperative con-
structs including objects and collections.

Guravannavar et al. [11] proposed program analysis
and transformation methods to exploit set oriented query
execution to improve performance of iterative execution
of parameterized queries. Ramachandra et al. [19] pro-
posed a technique to prefetch query results across func-
tion calls. As discussed in Section 1, our techniques can
be used in conjunction with the techniques of [11, 18,
19], to further enhance application performance.

7. EXPERIMENTAL EVALUATION
Our implementation is in Java. We used the Soot

framework [25] for program analysis, and we incorpo-
rated a region based analysis framework in Soot. Our
framework builds a hierarchical region tree over the CFG,
and provides the infrastructure for traversing through
regions, as well as merging the results of our analysis
across regions.

For evaluation, we used our tool on code samples
adapted from four real world applications namely, Wilos
[29] – an orchestration software, Matoso [15] – a rank-
ing software for Mahjong tournaments, AcadPortal and
JobPortal – two real world applications in production
use at IIT Bombay; and two benchmark applications
namely, RuBiS [21] – a bidding system modeled after
ebay.com, and RuBBoS [20] – a bulletin board like slash-
dot.org. Our experiments were run on a machine with
8GB RAM with Intel Core i7-3770, 3.40GHz CPU run-
ning Ubuntu Linux, with MySQL 5.5 database server.
The client was on the same machine.

We use EqSQL to refer to techniques in this paper,
and QBS to denote techniques by Cheung et al. [4].

7.1 Applicability
The techniques presented in this paper can be used

with any language and data access API. We have imple-
mented our techniques for database backed applications
written in Java. Our implementation supports applica-
tions using Hibernate for database access.

Experiment 1 (Comparison with Cheung et al. [4]):
Cheung et al. [4] reported the applicability of their tech-
niques for code samples extracted from Wilos, an open
source application that uses Hibernate. We tested our
implementation on the same code samples. The results
are shown in Table 1. The values in these columns de-
note time taken for equivalent SQL extraction in cases
where the system succeeded. The numbers for QBS have
been taken from [4]. “–” denotes that a particular code
sample could not be optimized due to limitations in the
techniques. Xdenotes that the code fragment can be
handled by the techniques we propose, although they
are not handled by our current implementation.

While QBS could automatically extract equivalent SQL
in 21/33 cases, our system succeeded in 17/33 cases, al-
though there are 7 further cases which can be handled
by our techniques, but are not handled by our current
implementation; we are working on extending our imple-
mentation to handle such cases. In 6 of the cases where
our current implementation is able to extract equivalent
SQL, QBS fails.

Techniques in [4] and those presented in this paper
do not handle database updates. However, while [4]
entirely rejects code fragments involving database up-
dates, our tool partially optimizes such code fragments
by keeping update statements intact, and extracting
equivalent SQL for other variables in the code fragment,
provided the update statements do not introduce a de-
pendency between other statements. Similar to [4],
our techniques fail for code samples 5 and 7 that con-
tain polymorphic type comparison and selection using
custom comparator, which are not handled in EqSQL.

1790

Sl. File (Line No.) QBS EqSQL
1 ActivityService (401) – < 1
2 ActivityService (328) – < 1
3 Guidance Service (140) – < 1
4 Guidance Service (154) – < 1
5 ProjectService (266) – –
6 ProjectService (297) 19 < 1
7 ProjectService (338) – –
8 ProjectService (394) 21 < 2
9 ProjectService (410) 39 < 1
10 ProjectService (248) 150 < 1
11 AffectedtoDao (13) 72 < 2
12 ConcreteActivityDao (139) – –
13 ConcreteActivityService (133) – X
14 ConcreteRoleAffectationService (55) 310 X
15 ConcreteRoleDescriptorService (181) 290 –
16 ConcreteWorkBreakdownElementService(55) – –
17 ConcreteWorkProductDescriptorService(236) 284 –
18 IterationService (103) – < 1
19 LoginService (103) 125 < 2
20 LoginService (83) 164 < 2
21 ParticipantBean (1079) 31 < 2
22 ParticipantBean (681) 121 –
23 ParticipantService (146) 281 X
24 ParticipantService (119 301 < 2
25 ParticipantService (266) 260 –
26 PhaseService (98) – < 2
27 ProcessBean (248) 82 < 2
28 ProcessManagerBean (243) 50 < 2
29 RoleDao (15) – –
30 RoleService (15) 150 X
31 WilosUserBean (717) 23 X
32 WorkProductsExpTableBean (990) 52 X
33 WorkProductsExpTableBean (974) 50 X

Table 1: Comparison of time taken (s) by
QBS (128GB RAM, 32 cores) and EqSQL (8GB
RAM, 8 cores) for SQL extraction

Experiment 2 (Comparison with [11, 18, 19]): Our
techniques can perform optimizations, which existing
holistic optimization techniques like batching [11], pre-
fetching of queries [19], and hybrid techniques [18] can-
not perform.

Batching is applicable only when there is parameter-
ized iterative query invocation from a loop. If the loop
iterates over a query result, batching is able to extract
a join query. In addition to the above case, EqSQL can
identify more optimization opportunities for pushing se-
lections, projections and aggregations into the database.
We examined all code samples from Wilos listed in Ta-
ble 1, and identified that batching is applicable in 7/33
cases, whereas EqSQL is applicable in 24/33 cases. In
4 cases where both batching and EqSQL are applica-
ble, EqSQL will perform better or same as batching.
This is because, in addition to extracting a join query,
EqSQL also pushes selections and projections into the
database, unlike batching. However, while techniques in
this paper are applicable only on cursor loops, batching
can handle while loops also, using loop split transfor-
mations. It is possible to extend our techniques, to be
used in conjunction with loop split transformations.

Prefetching is possible in all cases we examined. How-
ever, prefetching by itself does not push any computa-
tion from imperative code into SQL, so data transfer is
not reduced, although a hybrid technique described in
[18] can combine batching and prefetching.

Experiment 3 (Extraction of equivalent SQL for key-
word search systems): As mentioned in Section 1, key-
word search systems for form interfaces require an SQL
query, which would retrieve exactly the data printed by
the form interface. The form can contain imperative
code along with SQL queries. This was done manually
in [6]. In this set of experiments, our goal was to eval-
uate whether our techniques can automatically extract
equivalent SQL queries from servlets. One difference
from the earlier cases is that in keyword search systems,
ordering of data is not relevant.

We have analyzed the source code of three applica-
tions. The fraction of servlets where all queries were
extracted by our tool was 17/17 for RuBiS, 16/16 for
RuBBoS and 58/79 for AcadPortal. The cases where
we were not able to derive queries were mainly due to
limitations in our implementation such as the presence
of operations which are not yet supported.

We have compared the output of our tool with man-
ually extracted queries on the AcadPortal application
and found that in about 20% of the cases, the manually
extracted query was less precise than that extracted au-
tomatically by our tool, as the manual queries fetched
more data than what is printed by the form interface.

Approaches for batching and prefetching are not suit-
able for this purpose. QBS can be used, but we are
unable to give a comparison as we do not have access to
their source code.

7.2 Performance Impact
In this section, we first compare our tool with QBS [4]

based on time taken for optimization. We do not have
the queries generated by QBS, so we could not directly
compare the queries generated by our tool and QBS.
However, we manually verified that for each of these
cases, (i) queries generated by our system are correct,
(ii) whenever a code fragment could entirely be trans-
lated into SQL, our system succeeded in doing so.

Experiment 4 (Comparison of optimization time with
QBS): As shown in Table 1, for the code samples that
we could successfully optimize, our techniques extract
equivalent SQL in much less time than those of [4], even
when run on a less powerful machine. The significant
difference in time is because QBS relies on synthesis
technology, which is resource intensive, while our system
uses static program analysis, which is much cheaper.

The next three experiments present the impact of our
transformations on applications using Hibernate, in terms
of execution time and network data transfer.

Experiment 5 (Selection): We use code based on sam-
ple #6 from Table 1 which computes the list of unfin-
ished projects, where all tuples are fetched, and filtered
inside Java code. Our tool optimizes it to fetch only
the required tuples by pushing the predicate into the
query. The results, shown in Figure 8, indicate that the
transformed code not only runs faster, but also transfers
less data compared to the original code. We used 20%
selectivity for the query in this experiment. The perfor-
mance gain achieved is larger/smaller as the selectivity
of the query is less/more.

1791

Figure 8: Selection Figure 9: Join Figure 10: Aggregation

Performance impact of our transformations

Experiment 6 (Join): We consider code based on sam-
ple #30 from Table 1 (slightly simplified to be handled
by our current implementation). This code computes
a join of two tables WilosUser and Role (ratio of sizes
40:1), and projects the WilosUser entity, along with the
role name from Role. The original code fetches all rows
of both tables, and combines them using nested loops
in the application, based on a condition. It is rewrit-
ten using our transformations, into a join query. The
results are shown in Figure 9. The transformed code
performs faster than the original code, as the database
engine is allowed to choose the best join plan. How-
ever, the amount of data transferred is marginally more
in the transformed code, because attributes of Role get
replicated for each row of WilosUser.

Experiment 7 (Aggregation): We consider the code
sample from Figure 2 which is based on a ranking page
generator from Matoso. The results are shown in Fig-
ure 10. The data transferred for the optimized query is
constant, as only the single result value is transferred
in all cases. In contrast, data transfer for the original
query increases linearly with increase in table size.

Experiment 8 (Comparison with batching [11] and
prefetching [19]): In this experiment, we discuss the
improvements due to equivalent SQL extraction over
batching and prefetching. We extracted a code sample
from the JobPortal application where there is opportu-
nity for optimization by all three techniques, namely
prefetching, batching and equivalent SQL extraction.
This code fetches all relevant applicants for a job based
on a search criteria. It then iterates over the results of
the above query, and (conditionally) executes multiple
scalar queries to fetch relevant information about that
particular applicant. The pseudocode for this sample
is shown in Figure 12 of Appendix B. The results are
shown in Figure 11. In the figure, Batch refers to op-
timizations using techniques described in [11], Prefetch
refers to techniques in [19]. Though existing techniques
do lead to improved performance, they are limited in
their applicability, as discussed in Appendix B. EqSQL
enhances performance by upto two orders of magnitude
compared to the original program, and upto one order
of magnitude compared to other optimizations.

 1

 10

 100

 1000

 10000

10 100 500 1000
T

im
e
 (

in
 m

s
e

c
;
lo

g
 s

c
a

le
)

Number of iterations

Original
Batch

Prefetch
EqSQL

Figure 11: Comparison With Existing Tech-
niques

8. CONCLUSION AND FUTURE WORK
In this paper, we have described novel techniques

based on program regions, to translate imperative code
to SQL. We presented algorithms to translate the source
program into an algebraic/functional intermediate rep-
resentation (F-IR) that uses fold and extended rela-
tional algebra to represent cursor loops. Transformation
rules on F-IR identify relational operations performed
in imperative code, and translate them into equivalent
SQL. Our experiments show that techniques in this pa-
per are widely applicable and useful in real world ap-
plications, and provide performance improvements that
existing approaches cannot provide, on many programs.

Apart from addressing the limitations mentioned in
Section 5.4, future work includes extracting equivalent
SQL for database update operations performed in im-
perative code, and deciding in a cost-based manner,
whether to rewrite parts of the code into SQL, as sketch-
ed in Appendix C.

Acknowledgments
The work of K. Venkatesh Emani is supported by a fel-
lowship from Tata Consultancy Services. The work of
Karthik Ramachandra was supported by a fellowship
from Microsoft Research, India. We thank Uday Khed-
ker for his valuable guidance, Tarun Jain and Tejas
Deshpande for help with implementation, Prasanna Ku-
mar for his inputs, and Kunal Shah for his work which
motivated the techniques proposed in this paper.

1792

9. REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D.
Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 2006.

[2] M. Chavan, R. Guravannavar, K. Ramachandra,
and S. Sudarshan. Dbridge: A program rewrite
tool for set-oriented query execution. In ICDE,
pages 1284–1287, 2011.

[3] J. Cheney, S. Lindley, and P. Wadler. Query
shredding: Efficient relational evaluation of
queries over nested multisets. In SIGMOD, pages
1027–1038, 2014.

[4] A. Cheung, A. Solar-Lezama, and S. Madden.
Optimizing database-backed applications with
query synthesis. PLDI, pages 3–14, 2013.

[5] S. K. Debray, W. Evans, R. Muth, and
B. De Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst.,
22(2):378–415, Mar. 2000.

[6] C. Duda, G. Frey, D. Kossmann, and C. Zhou.
Ajaxsearch: crawling, indexing and searching web
2.0 applications. PVLDB, 1(2):1440–1443, 2008.

[7] C. A. Galindo-Legaria and M. Joshi. Orthogonal
optimization of subqueries and aggregation. In
SIGMOD, pages 571–581, 2001.

[8] G. Giorgidze, T. Grust, T. Schreiber, and
J. Weijers. Haskell boards the ferry. In
Implementation and Application of Functional
Languages, pages 1–18. Springer, 2011.

[9] G. Graefe. The cascades framework for query
optimization. IEEE Data Eng. Bull., 18(3):19–29,
1995.

[10] G. Graefe and W. J. McKenna. The volcano
optimizer generator: Extensibility and efficient
search. In Data Engineering, pages 209–218.
IEEE, 1993.

[11] R. Guravannavar and S. Sudarshan. Rewriting
Procedures for Batched Bindings. In Procs.
VLDB, pages 1107–1123, 2008.

[12] M. S. Hecht and J. D. Ullman. Flow graph
reducibility. STOC, pages 238–250, 1972.

[13] Hibernate http://www.hibernate.org.

[14] M.-Y. Iu, E. Cecchet, and W. Zwaenepoel. Jreq:
Database queries in imperative languages. In
R. Gupta, editor, Compiler Construction, volume
6011 of LNCS, pages 84–103. Springer, 2010.

[15] MAhjong TOurnament SOftware
https://code.google.com/p/matoso/.

[16] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[17] C. Radoi, S. J. Fink, R. Rabbah, and
M. Sridharan. Translating imperative code to
mapreduce. In OOPSLA, pages 909–927. ACM,
2014.

[18] K. Ramachandra, M. Chavan, R. Guravannavar,
and S. Sudarshan. Program transformations for
asynchronous and batched query submission.
TKDE, 27(2):531–544, 2015.

[19] K. Ramachandra and S. Sudarshan. Holistic

optimization by prefetching query results. In
SIGMOD, pages 133–144, 2012.

[20] ObjectWeb Consortium. Rice University bulletin
board system
http://jmob.objectweb.org/rubbos.html.

[21] ObjectWeb Consortium. Rice University bidding
system http://rubis.objectweb.org/.

[22] X. Shi, B. Cui, G. Dobbie, and B. C. Ooi.
Towards unified ad-hoc data processing. In
SIGMOD, pages 1263–1274, 2014.

[23] V. Simhadri, K. Ramachandra, A. Chaitanya,
R. Guravannavar, and S. Sudarshan.
Decorrelation of user defined function invocations
in queries. In ICDE, pages 532–543, March 2014.

[24] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia,
and V. Saraswat. Combinatorial sketching for
finite programs, 2006.

[25] Soot: A Java Optimization Framework
http://www.sable.mcgill.ca/soot (Oct 2014).

[26] F. Tip. A survey of program slicing techniques.
Technical report, 1994.

[27] J. D. Ullman and J. Widom. A First Course in
Database Systems. Pearson, 2007.

[28] B. Wiedermann, A. Ibrahim, and W. R. Cook.
Interprocedural query extraction for transparent
persistence. In OOPSLA, pages 19–36, 2008.

[29] Wilos Orchestration Software
http://www.ohloh.net/p/6390.

[30] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In SIGMOD, pages 809–820, 2013.

APPENDIX
A. PROOF SKETCH FOR

LOOP TO FOLD TRANSLATION
We now present a sketch of the proof of correctness

for theorem 1. We reuse the terms from Figure 6, with-
out describing them here again.

Theorem 1: Given a cursor loop region R, the value of a
variable v after termination of the loop is equivalent to
the result of foldExpr for v obtained by loopToFold(R),
when executed on the same input.

Proof Sketch: The proof is given in two parts. Part (a)
proves correctness in the case of a single loop, and part
(b) proves correctness in the presence of nested loops.

Part (a): Here, we prove that F-IR translation for a sin-
gle variable in a cursor loop using fold is correct. Since
loopToFold operates on one variable at a time, correct-
ness for multiple variables follows. We use induction on
the number of iterations of the loop (i.e., the number of
rows in the result set, in order).

The base case is 0 rows (empty result set). For the
inductive step, let Qk denote the top k rows of query Q,
vk denote the value of u after k iterations of the loop,
and tk denote the k’th record of Q. Assume correctness
for k iterations. We refer to preconditions P1 and P2
to claim that vk+1 depends only on vk and the current
tuple (tk+1). Thus,

1793

vk+1 = e′acc(vk, tk+1)
= e′acc(fold[e′acc v0 Qk], tk+1)
= fold[e′acc, v0, Qk+1] /* defn of fold */

Hence, proved.

Part (b): The procedure toFIR first translates all sub-
regions for a given region into F-IR, before translating
the region itself. In the case of a loop, all inner loops,
if any, are translated into F-IR before translation is at-
tempted for the loop. Thus, at any point of time, F-IR
translation happens only for a single loop, whose cor-
rectness was proved in Part (a). Hence, correctness for
nested loops follows.

B. MORE TRANSFORMATION RULES
In this section, we present some more transformation

rules that we used in our implementation apart from
those in Section 5.1, and then discuss some extensions
to handle common cases in database applications.

Rule T6 (fold with non-id): Consider an F-IR expres-
sion fold[f, x, Q]. In some cases, the initial value
passed to fold (x) may not be the identity element of
the folding function (f). This limits the applicability of
some of our transformation rules which assume that x
must be the identity element for f. The following trans-
formation rule allows fold to be expressed in terms of
the identity element (id) for f.

If f is associative and x 6= id,
then
fold [f, x, Q] ≡ f [x, fold [f, id, Q]]

Examples of associative functions include +, max, min,
append etc.

Before we present Rule T7, we describe the outer

apply construct. The outer apply construct [7], which
we denote by Q1 OApply Q2(t), accepts two arguments:
an outer query (Q1), and an inner query (or expression)
which is parameterized on the outer query (Q2(t)). For
each row t1 in Q1, OApply evaluates Q2(t1), and for
each tuple t2 in Q2(t1), it adds t1 concatenated with
t2 to the result. However, if Q2(t1) is empty, t1 con-
catenated with NULLs for attributes from Q2 is added
to the result. We use the outer apply syntax of SQL
Server in our SQL queries; this is equivalent to the left
outer join version of the lateral construct in SQL.

We now present Rule T7, which is used to extract a
query for a common pattern in database applications,
when the data is organized as a star schema. An exam-
ple is given in Figure 12 in Appendix B.

Rule T7 (Outer Apply):

If f〈v〉,〈t〉 = append[v, g(πs
L1

(Q2(t)), πs
L2

(Q3(t)))]
then fold[f, [], τZ1(Q1)] ≡
πg(L1,L2)(τZ1((Q1 OApply Q′2)

OApply Q′3))

where append is the list append operator, πs represents
scalar projection (single row), and Q2(t), Q3(t) are pa-
rameterized queries. Q′2 and Q′3 are obtained from Q2(t)
and Q3(t) respectively by replacing references to at-
tributes of t with reference to corresponding attributes

of Q1. This rule can also be used for insert (set inser-
tion operator), in place of append.

Extensions: As we mentioned in Section 5.1, similar to
database query optimizers, more transformation rules
can easily be added to our system to exploit other op-
portunities for inferring relational operations performed
in imperative code. We now discuss some extensions to
our rules presented so far, which can be used to handle
some common cases in database applications.

Checking for existence using cursor loops: So far,
the focus of our discussion was to extract equivalent
SQL from cursor loops that build the value of an ag-
gregate/collection. However, in some cases, a single
boolean value is conditionally assigned to a variable (v)
inside the cursor loop. For example, a variable v may
be initialized to false, and the loop may have a state-
ment of the form “if (pred(t)) then v=true”. Such an
assignment can be treated as v = v ∨ pred(t), which can
be handled using our techniques. Similarly, a variable
initialized to true and set conditionally to false can be
handled using v = v ∧ pred(t).

A common use of the above constructs is for checking
for existence/non-existence of a tuple in a table. Our
implementation contains transformation rules to infer
EXISTS and NOT EXISTS queries from the F-IR.

Sometimes, the loop can have an early exit, i.e., it
may return/break immediately after a value is assigned
once. Currently, we do not handle early exits. However,
if the only computation inside the loop is the boolean
value assignment, the return/break can potentially be
removed, and equivalent SQL can be extracted using
our techniques. We omit details.

Dependent Aggregations: In database applications,
especially in reporting contexts, it is a common require-
ment to return a tuple of values from the row containing
the aggregated value, along with the value itself. Specif-
ically, if the aggregating function is max or min, this is an
argmax/ argmin on a column for all rows in the relation.
For example, one may want the name of a student who
scored the highest marks in a test, along with his/her
marks.

However, our techniques, described thus far, disallow
conversion of D-IR to F-IR in the above case, because
the tuple of row attributes to be returned depends on
the aggregated value (causing a loop carried flow depen-
dence, refer Section 4.2). We relax this precondition as
follows.

If a variable v is being aggregated in a cursor loop,
and another variable w has a loop carried dependence
due to v, then the values of v and w after the loop can
be represented in F-IR, using a folding function which
returns a pair (v′, w′). This allows us to obtain an F-IR
from D-IR, which can then be transformed to optimized
F-IR, to extract optimized SQL.

In general, this fold can then be translated into SQL
using user defined aggregates. (Most databases today
allow users to define user defined aggregates that can re-
turn a tuple.) However, for the special case of argmax,
we can obtain an equivalent SQL query using any of
several techniques such as sub-query, a combination of

1794

ResultSet rs = fetchJobApplicants() //Q1

while(rs.next()) {

String id = rs.getString("applicantId");

String applnMode = rs.getString("applnMode");

fetchAndPrintPersonalDetails(id); //Q2

fetchAndPrintCommittee1Feedback(id); //Q3

fetchAndPrintCommittee2Feedback(id); //Q4

if(applnMode = "online")

fetchAndPrintEducationalQualifs(id); //Q5

}

Figure 12: Cursor loop with nested scalar
queries

ORDER BY and LIMIT, or using a construct like SQL’s
RANK if the SQL dialect supports it. We omit details.

Handling Output Ordering : It is not uncommon to
find cases in database applications, that avoid interme-
diate collections by printing values as they are com-
puted, in loops. In such cases, we preprocess the pro-
gram to replace output statements with appends to a
(global) string (which can be treated as an ordered col-
lection), and print its contents at the end of the pro-
gram. The preprocessed program is then optimized us-
ing our techniques.

When all output statements are present in the same
level of loop nesting, this is straight forward. We now
discuss optimization of database applications in the case
where output statements may be distributed across dif-
ferent nesting levels of multiply nested loops. This ap-
proach can also be used for collection variables, when
there is an ordering requirement on the contents of a
collection.

Consider the sample program shown in Figure 12.
This code is extracted from an administrative portal
in production use at our organization. It fetches a list
of job applicants (Q1), and for each applicant, it (con-
ditionally) fetches and prints further information about
the applicant using parameterized scalar queries (Q2,
Q3, Q4, and Q5). We note that this is a frequent oc-
currence when data is organized as a star schema.

Although batching and prefetching techniques are ap-
plicable to this program, benefit due to batching is lim-
ited because of the overhead of creating four parameter
tables, while prefetching is unable to chain queries Q1
and Q5, since parameters from Q1 feed into Q5 through
the condition applnMode == "online". However, using
techniques described in this paper (Rule T7), a single
SQL query can be extracted to fetch the required data
for this code sample. The query is shown in Figure 13.
As all the queries inside the cursor loop of Q1 in Figure
12 are scalar queries, Rule T7 is applicable. The source
program is rewritten to refer to corresponding attributes
from the extracted query, instead of attributes from the
original queries (Q1 to Q5).

If some queries inside the cursor loop can return mul-
tiple rows, then combining them using the apply con-
struct can result in cross products of the results of the

((((Q1 outer apply Q2 on Q1.applicantId

= Q2.applicantId)

outer apply Q3 on Q1.applicantId=Q3.applicantId)

outer apply Q4 on Q1.applicantId=Q4.applicantId)

outer apply Q5 on Q1.applicantId=Q5.applicantId

and Q1.applnMode = ’online’)

Figure 13: Optimized query for data access in
Figure 12

sub-queries. This would be very inefficient, and not pre-
serve ordering. In such cases, it is still possible to re-
trieve the data with proper ordering using techniques
borrowed from [3]. Implementation of these techniques
is part of future work. We note that batching and
prefetching techniques may be applicable to such pro-
grams, even if our techniques are not applicable.

C. COST BASED APPLICATION OF
TRANSFORMATIONS

We briefly sketch an approach that we are currently
exploring for cost-based application of transformations.

Our approach is based on the Volcano/Cascades frame-
work [10] for optimization of algebraic expressions, which
is based on equivalence rules. This framework allows
the optimizer implementor to specify rules that state
the equivalence of two algebraic expressions; examples
of such rules include join commutativity and join asso-
ciativity.

One of the key ideas underlying the framework is
an AND-OR DAG representation of the space of alter-
native expressions. Each OR-node can have multiple
children representing alternative ways of computing the
same result, while each AND-node represents the root
operator of a tree that computes the result. The chil-
dren of an OR-node can only be AND-nodes, and vice
versa.

The framework allows transformations to be applied
on an expression, and retains the old and all new ex-
pressions in the AND-OR DAG framework; as a result,
the order in which transformations are applied is im-
material. Efficient techniques for detecting duplicate
derivations of an expression are also a key part of the
framework.

Although designed to deal with algebraic represen-
tations, the Volcano/Cascades framework can be used
with the region-based representation that we use. Each
region can be thought of as logically taking in input vari-
ables, and returning values for output variables; there
are many ways of computing the same result. Thus,
a region is mapped to an OR-node (also called equiva-
lence node) in the AND-OR representation. Each way
to compute the results in a region can be modeled as an
operation node (AND node) in the Volcano/Cascades
framework, with the children of the operation node be-
ing the child regions.

Similarly, an expression in the F-IR representation
represents a specific way of computing a logical result.
The logical result is represented by an OR-node; for each
logically equivalent way of computing the result, which

1795

may be initially present or generated by transformation
rules, the top-level operation is represented as a child
operation node of the OR-node. Implementation of this
approach is an area of future work.

D. D-IR CONSTRUCTION
In Section 3.3, we gave an outline of D-IR construc-

tion for various types of regions. We now describe the
algorithms for D-IR construction in detail.

D.1 Simple Statement
Let s be a simple source language statement, with

op being the operator of the contained source language
expression, and n1, n2 etc. being its operands. The
ee-DAG for s is a node with the equivalent ee-DAG op-
erator for op as the root, and equivalent ee-DAGs for
n1, n2 etc., as children. A ve-Map is created with a
single entry, with key as the target variable, and value
as a pointer to the ee-DAG root.

D.2 Basic Block
A basic block is treated as a special case of a sequen-

tial region (which we describe next) with each statement
being a sub-region. Initially, the first two statements
are merged to form a sequential region, and the result
is merged with the next statement repeatedly, until the
entire block results in a single region.

D.3 Sequential Region
Given two regions r1 and r2, with eeDag1 and eeDag2

being their corresponding ee-DAGs, veMap1 and veMap2
being their corresponding ve-Maps, such that r1 and r2
(in order) form a sequential region r, the ee-DAG and
ve-Map for r are obtained using the following algorithm.

• For each leaf in eeDag2 that is a 0 subscripted
variable (i.e., initial value), check and if present,
replace it with ee-DAG obtained from a lookup in
veMap1 with the variable as key.

• The ee-DAG for r is the single ee-DAG obtained
after step 1. In case eeDag1 and eeDag2 are dis-
joint after step 1, we combine them into a single
ee-DAG using the NOP operator.

• Create a new map that is a union of entries from
veMap1 and veMap2. In case of duplicate keys, the
entry from veMap2 is retained. This map consti-
tutes the ve-Map for r.

D.4 Conditional Region
Consider three regions rc, rt and rf that form a con-

ditional region r, with rc containing the condition c,
rt being the true region, and rf being the false region,
eeDag-t and eeDag-f being the ee-DAGs, and veMap-t
and veMap-f being the ve-Maps for rt and rf respec-
tively, the ee-DAG and ve-Map for r are obtained using
the following algorithm.

• Create a new ee-DAG and ve-Map for r.

• For each non local variable v modified inside r,
create a conditional evaluation expression with c
as the condition, expression for v in eeDag-t as its

true operand, and expression for v in eeDag-f as its
false operand (obtained by looking up in respective
ve-Maps). Add this node to the ee-DAG of r.

• If there is no entry for v in one of veMap1 or
veMap2, then use its value at the beginning of the
region (v0).

• After creating the conditional evaluation expres-
sion, make an entry in the ve-Map of r with v as
the key and a pointer to the conditional evaluation
expression as its value.

D.5 Loop Region
The ee-DAG for a loop region can be created as fol-

lows:

• Create a Loop node with the looping query and the
loop body as its two children.

• For each variable v that is a key in the ve-Map of
the loop body and is also live at the program point
immediately after the loop, add an entry (v, ND)
to the ve-Map of the loop region.

Here, ND stands for not yet determined. Uses of v af-
ter the loop region will point to ND temporarily, until
an expression for v over all iterations of the loop is ob-
tained.

D.6 Functions
We classify functions into the following categories.

Library functions: Library functions that have an
equivalent ee-DAG operator are represented using that
operator. If there is so such operator, then D-IR con-
struction fails for the target variable (v) of that state-
ment, and target variables of statements which read the
value of v after this assignment.

User defined functions: For a user defined function,
we use the following approach:

1. Create the IR separately for the function. Let e de-
note the ee-DAG expression for the return value of
the function. If an unknown statement is encoun-
tered inside the function, fail. Formal parameters
are region inputs, so their initial values are denoted
by appending a 0 subscript to the variable name.

2. If the above step succeeds, merge the function with
its preceding region at the caller location, by con-
sidering them to form a sequential region. We up-
date the value of the target variable (which is as-
signed the return value of the function, if any) in
the ve-Map of the caller region to point to e. For-
mal parameters are mapped to actual parameters
and resolved during the merge.

User defined procedures: User defined procedures,
in addition to returning a value, can also modify the
input parameters such that the change in their values
is reflected at the caller location. They can be handled
similar to functions, with the following additional step.

3. Remove all entries for local variables in the ve-Map
for the procedure. Now, merge the procedure with
its preceding region at the caller location, by con-
sidering them to form a sequential region (as de-
scribed in Section D.3).

1796

