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Abstract In recent years there has been a good deal of reable speeds even on large databases with a significant num-
search in the area of keyword search on structured and sentier of forms.

structured data. Most of this body of work has a significant

limitation in the context of enterprise data, since it iggsr

the application code that has often been carefully designeg | ntroduction

to present data in a meaningful fashion to users. In this work

we consider how to perform keyword search on enterprisgeyword search has been extremely successful in the con-
applications, which provide a number of forms that can takgext of Web search. There has been a good deal of research
parameters; parameters may be explicit, or implicit such agn applying keyword search to structured data over the past
the identifier of the user. In the context of such application decade, for example [3], [10] and [1], with a number of sys-
the goal of keyword search is, given a set of keywords, tqems built to support keyword search. However, these sys-
retrieve forms along with corresponding parameter valuesems have thus far not seen wide adoption. A primary reason
such that result of each retrieved form executed on the cofs that they expose the underlying schema to users, which is
responding retrieved parameter values will contain the-spe not appropriate for lay users. Even expert users would find it
ified keywords. Some earlier work in this area was based ORard to deal with the complexity of the schema in large ERP
creating keyword indices on form results, but there are probsystems. Thus, users of database-backed applications typi
lems in maintaining such indices in the face of updates. Itally only interact with the database through (Web) form in-
contrast, we propose techniques based on creating invert@stfaces, where they can fill in parameter values (with some
SQL queries from the SQL queries in the forms. Unlike earvalues, such as the current user’s identifier, automagicall
lier work, our techniques do not require any special purposeiled in) and view the result of executing the form. Such
indices, and instead make use of standard text indices sufsrm based interfaces are ubiquitous, with ERP systems be-
ported by most database systems. We have implemented GHg a classic example of a mission critical system based on
techniques and show that keyword search can run at reasofgrm interfaces.

Form-based interfaces allow users to retrieve required
information in a convenient manner. However, enterprise ap
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first find the student ID using the search form, then navigateelate Silberschatz and database, then no form will be re-
to another form that provides desired information, andgastturned if (as expected) the keyword terms “Silberschatd’ an
the student ID in that form, which can be rather tedious.  “database” do not appear in the descriptive text of any form.
Keyword search is a promising alternative for retrieving ~ An approach that provides the functionality we desire
information from such form-based applications. In a form-is to materialize form results for each possible parameter
based setting, the goal of keyword search is to retrievespormvalue, and building an index on the materialized resuksittr
along with associated parameter values, such that exgcutiing each result as a document. An optimized version of this
the retrieved form on the retrieved parameter values wouldpproach is described in Duda et al. [7]. This approach can
return a result containing the specified keywords. When thelee expensive in a setting where there are a large number of
can be multiple answers (whether multiple forms, or multi-forms, each of which can take a large number of different pa-
ple different parameter values for a form), there is an assaameter values, resulting in a large number of materialized
ciated need to rank answers, and present the highest rankftm results. Although disk size is no longer a limitatiom fo
ones to users. many systems these days, the bigger problem lies in main-
Consider the query ‘Silberschatz course’, where the godRining the materialized results in the face of updates.
is to find courses that Silberschatz teaches. A form thastake Ideally, materialized results should be maintained incre-
an instructor ID as parameter and returns the name of the imrentally; in this case, in the face of an update, the sys-
structor and the courses taught by the instructor may returtem must identify which (form, parameter-value) combina-
a result with the above keywords, given the ID of instruc-tions are affected. This problem is not addressed by Duda et
tor Silberschatz (we assume the keyword “course” matcheal. [7], but the keyword-independent query inversion tech-
metadata, or static words in a form). Even if there is noniques we describe can in fact be used to create material-
form as above in the system, a form that takes a departzed views that help in the above task. However, our experi-
ment ID as a parameter and returns the names of instructonsental results show that even such incremental maintenance
and courses they teach may return the above answer, wittan be very expensive given a large number of materialized
the CS department as the parameter value. Our goal is form queries. For systems where keyword queries are used
retrieve such (form, parameter-value) pairs. There may bkess frequently than normal form interfaces, the overhdéad o
other more specific forms that return instructor/course inview maintenance is imposed on every update, but benefits
formation for specified semesters, or less restrictive formonly the occasional keyword query, which is not a reason-
that return instructor/course information for all courées able tradeoff. The problem of keyword search on virtual
the university. It is important to be able to rank such forms;(that is, non-materialized) XML views was addressed by
for example, ranking could be based on the length of th&hao et al. [14]. Their approach is not applicable to SQL,
form result. does not consider parameterized queries, and does not have
As another example, consider the query ‘Programmingny equivalent of our notion of query inversion. See Sec-
Languages Database Systems’. If there is a form that returri®n 2 for more details on related work.
the courses taken by a specified student (identified by ID), Moreover, support for incremental view maintenance on
a form search system can return such a form along witlmost database systems is restricted to simple types ofegueri
the IDs of students for whom the form result contains allQueries used in forms are often more complicated, and can-
the keywords, i.e. they have taken both courses. The quenot be maintained incrementally; recomputation requires e
would also return other form results as well, such as profesecuting the form queries on a very large number of param-
sors who have taught both courses, departments that offeter values, and would be unreasonably expensive. In con-
both courses, and so on. trast, our approach does not require any materialization or
Some enterprise applications support keyword based sedew maintenance.
rch for retrieving relevant forms, but these are restri¢ted We address the keyword search on forms problem in the
search on text that describes the form, rather than on tefollowing setting. Each form contains one or more underly-
in form results. For example, if we search for ‘professoring queries (hereby defined as form queries) which are exe-
course’, the system should return the form that describesuted when the form is submitted; the form result consists of
which professors teach which courses, as long as the meta-static textual part, and a dynamic part based on the results
data of the form contains the terms “professor” and “course”of the queries. For simplicity, we assume initially thatteac
However, parameter values, such as the IDs of instructor dorm contains only one query, but later in Sections 7 and 9.2
department names, which are required to execute the formwe deal with forms having more than one query. Each form
are not returned by such systems. Moreover, if we phraskas an associated set of (zero or more) parameters for which
our query as “Silberschatz course”, with the goal of find-values must be provided; we assume that all parameters are
ing what courses are taught by Silberschatz, or as “Silbemandatory, and do not consider the case of optional parame-
schatz database”, with the goal of finding what form resultgers. We assume that these values are directly provideé to th
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queries, and the results of the queries are returned ditectl e Although our algorithm descriptions are in terms of re-
the form result. Thus, technically speaking, we address the lational algebra, we have implemented our algorithms
problem of keyword search on parameterized queries. on SQL queries. We present (in Section 10) results of a

Unlike earlier work based on materializing form results ~ Performance study using a real academic database appli-
and indexing the materialized results, our approach works cation from [IT Bombay. The performance study, using
directly on the queries and the underlying database. As are- PostgreSQL and SQL Server to evaluate inverted SQL
sult, there is no need to create and maintain form results. dueries, demonstrates the practicality of our proposed
However, we face the challenge of “inverting” parameter- techniques, and their benefits over the alternative of ma-
ized queries; norma”y the query is executed, with the given terialiZing form results. The Study also demonstrates the
values for its parameters, to get a result. In our context, fo ~ Scalability of our techniques with respect to number of
a given query, and a given set of keywords, we need to find keywords and number of forms, and compares the alter-
parameter values that would generate a result containeng th ~ hative algorithms that we have proposed.

specified keywords. The rest of the paper is organized as follows. Related
The contributions of this paper are as follows: work is described in Section 2, while Section 3 presents the
system model, and some assumptions we make. Section 4
e In some cases, given a parameterized qdgand a set addresses the issue of safety of query inversion. Section 5
of keywords K, it is possible to have an infinite num- describes how to invert simple queries with select, project
ber of parameter values, each of which would generatand join, while Section 6 covers safe queries using other
a result containing the specified keywords. To deal withrelational algebra operations. Section 7 describes two ap-
this problem, we introduce the notion of safety of queryproaches to handling forms with multiple queries (which
inversion, and provide conditions that guarantee safetyiesult in unsafe union operations), including several-vari
in Section 4. ants and optimizations of the two approaches. Section 8
e We then present (in Sections 5 and 6) a two-step algodescribes how to rank the results in case there are multi-
rithm for inverting parameterized queries. Given a pa-ple results. Section 9 outlines implementation detailsi; op
rameterized query and a set of keywords, Step 1 of thenizations and extensions. In Section 10, we present results
inversion process creates an inverted query disregardingf our performance study, while Section 11 concludes the
the keywords, while Step 2 adds keyword conditions topaper and describes directions for future work.
the result of Step 1. Execution of the final inverted query
generates the result parameter values. The query inver-
sion approach handles safe queries defined using rel@-Related Work
tional operations such as select, project, join, aggrega-
tion, outerjoins and set operations. The problem of keyword search on form interfaces was ad-
Step 1 of our query inversion algorithm can also be usedressed earlier by Duda et al. [7]; their approach is based
to create a materialized view which can be used, giveron indexing materialized form results, but with an optimiza
an update, to identify the parameter values for which thdion called predicate-based indexing. They do not provide
form result is affected by the relation update. Our tech-details on how to incrementally maintain the index in the
nique does not need this feature, but it can be used fdace of updates. There has been work on database search
incremental maintenance in case form results are matén the enterprise search industry; however we are not aware
rialized using the approach of Duda et al. [7]. of any publicly revealed approaches other than crawling the
e Forms often output results from multiple queries; suchapplication forms and applying text indexing on the crawled
forms can be modeled as containing a single query deesult.
fined as the outer-union of the individual queries. How-  Combining keyword search with databases has been an
ever, when the parameters to the queries are not identactive area of research, including systems such as BANKS
cal, inversion of the resultant outer-union query is un{3], DBXPlorer [1], DISCOVER [10], and algorithms pro-
safe. In Section 7 we present details of two approachegosed by [6], [12] and [11]. However, the goal of these pa-
for inversion of such unsafe union queries, which we callpers is fundamentally different from our application in two
the keyword-at-a-time (KAT) approach, and the query-major aspects. First, the above body of work deals directly
at-a-time (QAT) approach. We also describe several variwith the database data and schema, and does not have any
ants and optimizations of these two approaches. concept of forms, or form queries. Some of the above work
e With certain keywords, there may be large number ofactually generates SQL queries from the given keywords;
results (a result is a form-id,parameter(s) pair). We dishowever, the generated SQL queries are basically join quer-
cuss (in Section 8) how to rank results in a meaningfuies that help to find connections between tuples contain-
fashion. ing the keywords, and there is no notion of parameters. In
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contrast, form queries can be quite different; for exampleform f; when executed on parameter valgeseturns a re-

a form may contain a query that selects all courses taugtsult that contains all keywords ii’; the metrics for ranking

by an instructor, without a join. A keyword query on forms answers are discussed later.

which returns the above form can also be executed as a key- We assume initially that each form is defined by a sin-

word query on the underlying data, and could be satisfiegle parameterized query, which uses all the form parameters

by a self join query, with the instructor identifier as thenjoi later, in Section 7, we discuss how to handle forms with mul-

attribute. However, the results would not be presented in #iple queries which may each use a subset of the parameter

manner that is intuitive to users, and the keyword query mayalues.

return connections that are meaningless to lay users. We also assume initially that the result of a form exe-
The notion of QUnits was proposed by [13] to makecuted with given values for the parameters contains exactly

keyword query results more relevant by defining (paramethe result of the query executed on the given parameter val-

terized) queries that gather related information, and kvhic ues; extensions to allow static text in the form result are

can be subsequently queried; however [13] do not provideiscussed later in Section 9.2. Some applications cortstruc

algorithms for answering keyword queries. QUnits can inform queries dynamically, based on which of several op-

fact be considered as forms, and our techniques can be agenal parameter values are provided by a user; we do not

plied to perform keyword queries on QUnits. handle such dynamically constructed queries, and require
A somewhat different version of form search is addressethat queries in a form be statically fixed.

by [5,2]; in contrast to our work, they assume that a schema  We use the ternquery inversiorto refer to the follow-

is given, but forms do not exist a-priori, and have to be gening task: given a query and a set of keywords, retrieve all

erated by the system. They generate a space of forms basgéssible tuples of parameter values such that the query re-

on SQL queries. The main contribution is to find a form thatsult with each tuple of parameter values contains the given

may be relevant to a given set of keywords; however, thekeywords! Although we present our techniques using rela-

do not generate parameter values, and further do not eveional algebra, our actual implementation is based on SQL;

guarantee that there exists a parameter value for a redrievéhe translation from relational algebra to SQL is straightf

form, whose result would contain the given keywords. As anyard.

example of the limitation of that approach, if a form takes  \We use the following university schema as a running ex-

an employee ID and returns the name, a keyword search @fimple in this paper:

name would retrieve the form, but not provide the employee

ID; without that value, the user would have no idea how to ® Prof(ID,name dep)

use the form. (Technically, in the approach of [5], paramete ® COUrs€¢CID title,dep)

values are optional, but if the employee ID is omitted, the ® t€achedD,CID year, sen)

form would return names of all employees.) _ Hereteache@D) and teache&CID) are foreign keys refer-
The problem of keyword search on virtual (that is, NON-gncingprof (ID) and courséCID) respectively.
materialized) XML views was addressed by Shao et al. [14].

Their solution creates a subset of the original datasdegtal
a pruned document tree, or PDT) making use of path inzr Unsafe Queries
dices, on which the original XML view is executed; their

approach guarantees that the result of the view is iderureal There are certain queries for which the solution set for the

the original document tree and the PDT. In addition, in@rte 5.5 meters is infinite. As an example, assume that the rela-
indices are used to add keyword-containment annotationg, , prof contains two records:

to the PDT which are used during actual query evaluation (1,-30hn’,'CS") and (2,'Bob’,‘EE’)

to generate only results containing the required keywordsand consider the following parameterized quéxy
Their approach is not applicable to SQL, does not consider
parameterized queries, and does not have any equivalent gfn
our notion of query inversion.

ame(Udept< >$Dept (prof))

If the keyword query is ‘John’, then the result parameter
3 System Model values for@ are all strings except ‘CS’. The result includes
even values that are not valid departments, since the clause

We assume that the system at hand has a set of férms “dept <> $Dept” will always evaluate to true as long as
{fi. f2,- -~ f}, and each fornf; € F takes a set of param- Dept is not ‘CS’. Thus, the solution set for this query is un-
etersP;. Formally, the goal of our application is as follows: Pounded.

given a set of keyword& = {k1, ks, ..., ky,}, to return a 1 The idea of query inversion arose out of conversations withjura
ranked list of (form, parameter-value) pairs, p,) such that  Chaudhuri.
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Formally, a parameterized query is considered tafe which does satisfy the syntactic safety condition. As an-
safeif it returns a non-empty result for an unbounded num-other example, SQL queries containing subqueries can be
ber of parameter values, including values that are not lerewritten before checking for syntactic safety; such cggeri
gal database values. This principle is similar to the cohcepcan be represented in relational algebra using semijoin or
of domains and safety in tuple relational calculus (see, e.@ntijoin, or in some more complex cases, by using an “ap-
[15]). There are a number of reasons why a query may bply” operator [8]. A variety of decorrelation techniquegar
unsafe, including parameters used only in inequality condiavailable for such queries, which can be used to remove sub-
tions (e.g.P.name < $N1); parameters used only in dis- queries (or apply operators, if subqueries are represeisted
junctive conditions (e.g.P.dept= $D1V P.ID = $D2"); ing the apply operator), and syntactic safety can be checked
parameters used only in the right hand input of set differon the rewritten query. To handle such queries, we assume
ence or antijoinx (corresponding to not-in or not-exists sub- they have been rewritten to satisfy the syntactic condition
queries in SQL); parameters used only in the right input of  Another sufficient semantic condition, which exploits kn-
a left outer join EX), and symmetrically, left input of a right owledge of the application that uses the parameterizegquer
outer join (<), and either input of a full outer joinr¥C—), is that every parameter can only take on values from a finite
and parameters used only in one input of a uniondpera-  domain; in such cases, for a paraméten the query can
tion. be rewritten a§) x o p—_gp1 Dp, WhereDp is a relation with

A sufficient syntactic condition for safatf/a parameteri- a single attribute?, containing all values that parametet
zed query, defined recursively, is as follows. An expressioran take. It should be clear that the rewritten query is syn-
E is syntactically saféf one of the following is true: tactically safe with respect to parame$é?1.

) o o While such a rewriting can be useful in many cases, it
e Eis arelation instance (this is the base case) could be very inefficient if the domain @t is large. Later in
e Theroot of 7 is a selectiond) or join () operation, and he naner we show how to handle inversion of certain cases

(@) the children of the root operation are safe, and (b}t nsafe queries more efficiently, by using a special value

ywth _the selection/join conditiof expressed as a cpn- (“+”) which represents the set of all possible values.

junction 61 A 65 A ... A By, for every paramete$ Pi Consider a query that takes as parameters a low and a

that OCCL_”S in the cond|tFon, there is a conjuiicof the high price, and displays items whose price falls within the

form_$Pz :_Rk'Am’ which equates the parameter to aspecified range. Such a query is unsafe since the parame-
relation attribute. _ ters are not equated to any relation attribute. Such queries
e The root ofEis a project operator{) or an grouping/- 4y in fact commonly used in product search applications,
aggregation operator), and (a) the children of the root 4, 410w users to specify ranges on a variety of attributes.
operation are safe, and (b) no parameter is used in anyqever, for the purpose of keyword search such an unsafe
expression that appears in the projectionlist. 4,61y can be replaced by one which takes an exact value and
e The root of £’ is a left outerjoin £) or a right outerjoin a4, ng jtems whose price is equal to the specified price; the

(>C), the children of the root operation are safe, and eVigpiacement query could be safe even though the original

ery param_eteﬁ;Pz that oceurs InE 6_“30 occurs in the is not. Although such a replacement query is not equivalent

mput.that is preserved, i.e., the leftinput for, and the  y; e original one, it would permit keyword search on the
right input forb<-. query result, and the resultant parameter values can in fact

Note that the above condition rules out parameters that onl§€ used for (both low and high values of) the range in the
occur as arguments to a function, suchfags Dept), since  original form.
arbitrary functions cannot be inverted (and may be unsafe).
The above syntactic conditions for safety are revisited ) : _
and (in some cases) extended when we cover inversion C"}Tlnvertmg Simple Queries

the union, set difference, semi-join and antijoin opestor . . . . .
Section 6. In the rest of the paper, unless otherwise sp@,cifieln this section we consider how to handle simple queries
: ' %ontainingo, 11, X, and x. We consider other relational al-

we assume that queries satisfy the above syntactic safe . . .
condition a fy y g)(/abra operations later, in Section 6.

. . - : In general, inversion is done in two steps:
A sufficient semantic condition for safésythat the query 9 P
can be rewritten to a form that satisfies the above syntactid. The first step is independent of the keyword query; it

conditions. For example, given a query takes as input the given query, and gives as output an-
(o3p1=r.a(1)) X (0gp1>s.5(S)) other query which we call the keyword-independent in-

where the subqueryspi~ . p(s) fails the syntactic safety verted query. This step can be done as part of prepro-

condition, we can rewrite it as cessing, before any keyword queries are submitted to the

O$P1=r.AN$P1>s.B(T X 5) system.
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2. The second step uses the keyword-independent invertede assume that parameter names are the same as the names
query, along with the given keywords, to form a queryof the attribute that they are equated to.
that gives the keyword search result, i.e., parameter val-  |f any of the parameter attributg3i can take on a null
ues, corresponding to the original query. value, we need to add an extra conjufBti is not null) to

Given multiple forms (for now, assuming each has only athe selection conditiofy, for each suctBi. This is required,

single query) the same process is applied to each query. 3';32 ;;@Iumull for parametePi will not equal a null
1.

We can also relax the condition that no parameter occurs
more than once if as follows. Each parameter must occur
in at least one conjunct of the forld: = $P: due to the

Overall, the goal of keyword-independent inversion is &s fo "eduirement of safety; we pick one such conjunct for each
lows: given a parameterized quegy, create a query (the parametef Pi, and callBi the parameter attrlbuteDf $Pi.
inverted query INVQ(Q) which has as attributes all the pa- Let 6, be the result of deleting fror the conjuncts chosen

rameters as well as all the attributes of the original query2P0ve for all parameters. No#; may contain occurrences

further, INVQ(Q) must be defined in such a way that for Of SOme parametefs”i; we define, as the result of replac-
each parameter bindingthat leads to a non-empty query "9 6, all occurrence 0% Pi by its parameter attributBi,
result RQ,, there is a tuple in the result 8RVQ(Q) cor-  [OF €very parametes 1i.

responding to each tuple iRQ), with the valueb in the

5.1 Keyword-Independent Inversion

parameter attributes, and vice versa. Example 1Suppose we are given the query

Given any query using only the selett project (7), Iameitie (O dept=$peptrsem=ssent Prof X teachesx coursg)
join (X) and Cartesian produck( operations, we rewrite it - Although this query uses natural join, the rewriting is iden
into the canonical form tical to the case described above, where the relations have

Iy, am(og(r1 X 72 X ..o X Ty)) a Cartesian product. The resultant keyword-independent in

and then apply the keyword inversion technique describegerted query is
below. Hdeptas Dept, semas Sem nametitle(pmf M teachesx COUI’SQ

Given a safe querg) of the following form, withk pa-  Note that the selection condition in this rewritten query is
rameters: empty, i.e., true, so the selection has been omitted.

ITq,....am(og(r1 X g X ... X 1))
where parameterized predicétes of the formB1 = $P1A
B2 =8P2A ... A Bk = $Pk) A 0y, whered, is a predicate
that does not contain any parametdsg, is the column to
which the paramete¥P; is bound, and no parameter occurs
more than once i (we relax this last condition shortly).
Then the keyword-independent inverted quBMyYQ(Q) is
defined as follows:

It is worth noting that the keyword-independent inverted
query can be stored as a materialized view, which can be
used to maintain a materialized form index such as the one
proposed in Duda et al. [7]. Specifically, the materialized
view can be used to find which (form, parameter) values are
affected by a database update. If a particular (form, param-
eter) value is affected, then one of the rows in the corre-
sponding materialized view, with that parameter valuel, wil
be affected by the update (i.e., inserted, deleted, or epjlat
Form results for such parameter values must be recomputed

The idea is that the query generates all possible paramé\nd reindexed. Note that [7] does not address how to main-
ter values that could have given a non-empty result. As of@in the index.
now, there is no restriction on the keywords, these restric-
tions will be added subsequently as selections on the query.
We keep track of the source of each attribute in the output
of INVQ(Q), i.e., whether it is a parameter or an original 5.2 Keyword-Specific Query Inversion
projection attribute.

For simplicity of presentation, where the attribute nameTo process a given keyword query on a given form query,
Bi and the parameter name&P: are identical, we replace we first invert the form query, and then add selections based
Bi as$Pi by just Bi in the projection list; in other cases, on the given keywords to the inverted query. The selections
we omit the “$” symbol from the parameter name, assumingnsure that the given keywords occur in the result. We first
there is no name conflict between parameters and attributésindle the case of keyword queries having only a single key-
in the query. In the rest of the paper, for simplicity of prese word, and then address the more general case of queries with
tation, when we describe how inverted queries are createaiultiple keywords.

Il assp1, B2as$P2,..., Bk as$Pk, Al,..., Am(

00, (11 X T2 X ... X Ty))
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5.2.1 Inversion for the Single-Keyword Case of two queries
I B1 B2(0containg(A1,B1),x1) (K1Q))
Given a queryQ, its keyword-independent inverted query U ITp1,B2(0containg (A2,B2), k1) (KI1Q))

INVQ(Q), and a single keywor& 1, the resulting keyword-

specific inverted querfNVQ(Q, K1) is defined as follows:
Example 3For the query from Example 1, which has at-

IIB1,Bo,... BK(TContains((B1,..., Bk, A1,..., Am), K1) ( tributes that come from relationsof, course andteaches
INVQ(Q))) the inverted query can be expressed as
HDept,Sen{UPlvP2vP3(J))
where predicat€ontaing(B1, ..., Bk, Al,..., Am), K1)  whereJ denotes the keyword-independent inverted query
checks that keyword(1 is contained in at least one of the from Example 1, and’1, P2, and P3 denote, respectively,
attributesB1, ..., Bk, Al, ..., Am. Contains((name, Dept),' JohnTContains((Sem),'Johngnd
Note that we need to add the parameter attribuils (  Contains((title),"John’)
..., Bk) to theContainspredicate even if they are not part Alternatively, the keyword-specific inverted query can be
of the original query result, since many applications otitpuexpressed as
parameter values directly to the form result, without (redu Ilpeptser{op1(J)) U Ipeptsen{op2(J))
dantly) retrieving the value of the corresponding paramete U Ilpeptsen{op3(J)) 0
attribute B7 in the query. Adding th&3i’s ensures that pa-

rameter binding results from such forms are included in the N Practise, we found the formulation using union was
inverted query result. faster on both PostgreSQL and SQL Server, and we use this

version in our performance study.
Example 2Given the inverted query from Example 1, and a
keyword ‘John’, the inverted query taking the keyword into5.2.2 Inversion with Multiple Keywords
account is

Ipeptsen{ T containg (Dept Semnametitie) < John') (J)) Keyword queries using multiple keywords can be handled in
where J denotes the keyword-independent inverted queng straightforward manner for safe queries as follows. Given
from Example 1, namely a query@, and keywordsk'1, ..., Kn, the inverted query

HdeptasDept,semasSemnametitle(prOf M teachesx coursg INVQ(Q, K1, K2,...,Kn)is defined as

. INVQ(Q, K1) N INVQ(Q, K2) N... N INVQ(Q, Kn)

Forthe casewherB1, ..., Bk, Al,..., Am are attribu- . . . .
Handling multiple-keyword queries is more complicated

tes of a single relation, the Containspredicate can be ef- in cases where some operations such as unipmfe used
ficiently evaluated, provided a text index has been built on P

. . . which may result in unsafe queries; we will see how to han-
all attributes of relatiom (or at least those that appear in the . : .
. : . dle some such unsafe queries later in Section 7.
inverted query result). Théontainspredicate syntax shown

is modeled on SQL Server, where the predicate can be W”Example 4Continuing with our earlier form query exam-

tenas _ ple, if the keyword query weréAvi, database}, the in-
containg(B1,..., Bk, AL, ..., Am), K1) > 0 verted query would be as follows:
but other databases such as PostgreSQL offer equivalent fea 1 (ccrveaves()) NI (ceacsves ()

tures. See Section 9.4 for implementation details related there .7 denotes the keyword-independent inverted query
the Containspredicate. from Example 1,
However, in the above example txntainspredicate 1 genotedDept Sem
involves attributes from multiple relations. None of the-cu 1 genotesContains ((name, Dept), Avi))
rently available database systems supports text indices @¥) genotesContains ((Sem), ‘Avi})
Contains(or equivalent) predicates that span multiple rela-c'3 genotesContains ((title),Avi)
tions. As a result, whe®1,. .., Bk, Al,..., Am contain 4 denotesContains ((Sem), 'database’)

attributes from more than one relation, tBentainspredi- 5 denotesContains((name, Dept),'databasesnd
cate must be split into on€ontainspredicate per relation, g denotesContains ((title),'database’)

which are combined disjunctively. For example, SUPPOS&\|ternatively, the query can be expressed as:

the above set of attributes 131, B2, A1, A2, whereAl, B1 (IT,(0c (J) U T (00 (J) U I (0c3 ()
are fromrl and A2, B2 are fromr2; then the predicate can N (I (oca(J) UL (ocs(J) UL (0cg(J)) O
be written as
Containg(Al, B1), K1) v Containg(A2, B2), K1) As a special case, if the query result is guaranteed to

Equivalently, the inverted query can be shown as the uniohave at most one result for a parameter binding, instead of
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intersecting two queries, we use a conjunction of@mm-  whereINVQ(FE) denotes the inverted query generated from
tainspredicates. For example if (unrealistically) eadeift  E.
sem combination had exactly one result above, the query Observe that by adding the parameter attributes to the

would be group-by list, the rewritten query returns the same aggeega
I (o c1veaves)acavesves) (J)) result for any particular binding of values to the parameter

where L, J and theC'i are as defined earlier. We call the attributes as the original query with the specific parameter

above optimization thprimary keyoptimization. binding. This property holds even if some of the parameter

attributes are used in the aggregation operation (for a spe-
cific parameter binding, these would be constants).

6 Inversion of Other Relational Operations

We now consider the problem of computing the keyword-6.2 Intersection Operation
independent inversion of queries containing relationarop . _ .
ations other than select, project and join. These operators W& now consider how to perform keyword-independent in-
clude aggregation, intersection, union, set differenemis ~ Version for the intersection operation)( Let@ = Q1N Q2.
join, and antijoin (semijoin and antijoin are used to trates| N €@seQ1 and@2 have identical parameteifjVQ(Q) can
nested subqueries into relational algebra). be defined in a straightforward manner as

For the case of queries using only the basic operations INVQ(_QD n INVQ_(QQ) _
o, IT and X, it was easy to rewrite the queries to get the However, in general different parameters may be used in

parameter attribute in the result of the inverted querysThi 8ach of the inputs, leading to different parameter atteibut

task is more complicated with other relational operationsP€ing presentin the inverted forms@ft and@2, and a di-

and we consider those operations in this section. rect intersection is not possible. When the intersection is a

Once the keyword-independent inverted query has beetft intersection (the default in SQL) an alternative is ® us
generated, the task of adding the keyword conditions can i Natural join in place of mtersectlo'n. Specifically, given
done as described earlier in Section 5.2, since that step doBUeTY @ = Q1N Q2 where the attribute names of corre-
not depend on the structure of either the original query oPPONding attributes ap1 andQ2 are identical, the inverted
the keyword-independent inverted query. queryINVQ(Q) is simply

In this section we only deal with safe queries, where the INVQ(Q1) M INVQ(.Q2) . .
result of inversion is finite. However, there are many unsafgvhere each oQ1 andQ2 is inverted with respect to just the

queries where the result can be represented in a finite mannidgrameters that occur in it. Note that if each parameter oc-

by using a special value “*" representing the set of all pOS_curs in only one of)1 or )2, the natural join above would

sible values. In Section 7 we discuss extensions to hand%quate only the original attributes @fl andQ2, but if any

some special cases of unsafe queries, which are important'ﬂ"f‘rameter appears in baj1 and)2, the natural join would
ensure that both have the same value. If the attribute names

practice. . : :
of Q1 and@2 are not identical, they should be appropriately
renamed.

6.1 Aggregation Operations Example 5For example, given the query

. . . . . . HID(Uname:’Mike/ (prOf)) m]Y|D(Usem:$5’sm (teaChe$)
As discussed earlier, for the case of queries with projestio ihe inverted query is

at t_he top, we added. the parameter attributes to the PrO- I (0namearike (PIOf) X ITip senfteaches O
jection list. However, if there is an aggregate operation on

top of the projection, adding parameter attributes to a pro- The above inversion may change the number of dupli-
jection can change the number of duplicates. But the moreates with a given parameter value, as compared to the orig-
important question is, how to make parameter attribute valinal query running on a given parameter value. The duplicate
ues available above an aggregation operation. We solve botlount matters if the operation is part of an expression with
problems as outlined below. an aggregation operation above it.

Consider an aggregation operatigf, gy rns(4) (£) whe- We can solve the above problem by defining a version of
re G denotes the group-by attributes, amglyfns(A) de-  the multiset join operation whose duplicate semantics matc
notes the aggregation functions and the attributes they aes that of the intersection operation. This can be done by
applied on. Suppose that the set of parameter attributes froadding to each tuple an extra attribute recording the dupli-
expressiont are B1, ..., Bn. We then rewrite the expres- cation count of that tuple, and replacing all duplicates by a
sion as single tuple with an appropriate count; this can be done eas-

G,B1,...,.BnYaggfns(A) INVQ(E)) ily by a aggregation operation. The count associated with a
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tuplet in the result of a join operation X s would then be (It is possible, however, that for specific pairs of keywords

the minimum of the counts of the tuplésandt,, if tuples K1, K2, the query is not unsafe.)

t, andt, joined to give tuple. All operations further up in If we know that the parameters that are present in only
the query tree would have to be modified to correspondinglyne of the inputs to the union come from a finite domain, we

take the count attribute into account. We omit details,einc can rewrite each input by adding a cross product with the
the approach of replacing duplicate tuples by using an exdomain of those parameters that are missing from that input,
tra count attribute, and defining multiset relational atgeb as described in Section 4. For example, if paramgfet

operations based on the count attribute, is well known. is not present iQ1, we rewrite@Q1 as@Q1 x op_gp1 Dp,
There is an alternative solution which has the followingwhere Dp is a relation with a single attribut®1, contain-
two steps ing all values that parametét1 can take. However, such a

dd ib N q rewriting would be rather inefficient if the domain is large.
1. Add extra parameter aftributes to each¥Q(1) an A more efficient (and more general) approach is to use a

INVQ(Q2), so they have the same schema. The value Ogpecial value “*” to represent the set of all possible param-

the parameter attributes added thus is set to the valu&er values. For example, @1 has parametesP1 and Q2

", which matches W'th every concrete value. has parametet P2, if keyword k1 is present in the result of
2. The query is then rewritten as Q1 with $P1 = 4, then the inverted result @ = Q1 U Q2

INVQ(QD m INV_Q(QQ) i with respect tok1 would contain a tuplé4, ), indicating

where the inverted queries have.the extrg attrlbu.tes add(i:ﬁl(,ﬂk1 is present in the result ap invoked with$P1 set

as ak?ove, and .whem de"‘q?tes intersection taking the to 4, with $P2 set to any possible value. We explore this

special semantics of the **” value. approach in more detail in Section 7.
Such an operation is, however, not supported by any database The outer-union operation is an extension of the union
we are aware of. It is worth noting that the result of thep- operation, that allows the operands to have different sehem
eration will not have a “*” value in the above case, since thelhe outer-union operation first pads the input tuples with ex
value of each parameter attribute will be non-“*" in at leasttra attributes to bring them to a common schema (contain-
one of the two inputs. ing the union of all the attributes of the input relations); f
each tuple, the values of the attributes added above are set
to null. After bringing the inputs to a common schema, the
outer-union operation performs a regular union operation.
The outer-union operation is important in practice, sirice i

The case of union operations is more complicated, since fdf€rmits us to model a form that contains multiple queries

a particular parameter binding some of the keywords maf?!: - -»@n @s a form containing a single query defined as

be present only in one input to the union, and others may b€ outer-union of all the)is.

present only in the other input. Additionally, as in the case Since the outer-union operation can be expressed in terms

intersection, some parameters may be used in one input afél Projection and union, it can be inverted using the inver-

others in the other input, complicating the task of inversio Sion techniques we have seen earlier (as well as those which
Suppose) = Q1 U Q2. If each subquery)i has the W€ will see later in Section 7) for the union and projection

same set of parameters, the result of the inver@rig sim- ~ OPerations.
ply INVQ(Q1)UINVQ(Q2), whereINVQ(Q) is the keyword-
independent inverted query correspondin@ioln this case, . _
where both subqueries have the same set of parameters,eaél Set Difference Operation
long as the subqueri€gl and(2 are safe, so i§). . .
However, if the subqueries have different sets of param—leen the expressio = Q1 — (2
eters, the problem is more complicated. Suppose@hat 1. Ifthe parameters @1 and@?2 are identical, the inverted
Q1 U Q2 has parameter$B1, $B2 and$B3, and suppose query is

6.3 Union and Outer Union Operations

that@1 has parameteisB1 and$ B2, while Q2 has param- INVQ(Q1) — INVQ(Q2)

eters$ B2 and$B3. The output of the inverted form @p1 2. More generally, as long as all parameters usegirare
would contain attribute®1 and B2, while that of)2 would also used irQ1, the inverted query is

containB2 and B3. INVQ(Q1)x INVQ(Q2)

The query in the above example is in fact unsafe even wherex denotes the natural anti-semijoin.
with respect to a single keyword query;/if1 is contained 3. Finally, we consider the case where some of the parame-
in an answer fof)1, then the value 03 B3 is irrelevant, and ters used Y2 are not used i) 1. Let these parameters
it can take any possible value, whileffl is contained in an be $P1,$P2,...,$Pk. In this case, in general, there
answer forQ2, then the value o$B1 is similarly irrelevant. is a possibility of the query being unsafe, since there
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may be an infinite number of values for these paramepresent inQ1, the inverted form of@ is INVQ(Q1) X
ters for which the query result may contain a particu-INVQ(Q2). (In caseR = Q1 24, @2, the inverted query is
lar keyword; at the same time there may be some vallNVQ(Q1) Mgy INVQ(Q2), where predicate equates all
ues for these parameters, for which the query result dogsarameters that appear in bolivQ(Q1) andINVQ(Q2).)

not contain the keyword. Therefore, to ensure safety, we However, if some parameters usedjnare not present
require that any such parameter must also be equatéd Q1, Q can be unsafe. For example, suppose parameter
to an attribute of some other (finite) relation. We canP1 is used inQ1, and P2 in Q2. If the given keywords are
then rewriteQ1 as follows, along the lines described in presentinQ1 for a particular value of)1, then that”1 value
Section 4. Let us denote such a relation correspondingombined with any arbitrary value fd?2 (represented by a
to parametePi as BindRel(P1i), and letBV (Pi) de-  “*” value) would be an answer. We address the inversion of
noteo p;—sp; (IIp;(BindRel(Pi))), and letBV denote  some cases of unsafe outer joins later, in Section 7.4.

(BV(P1) x BV(P2) x ... x BV(Pk)) Then the in- As an alternative, if the domain d?2 is finite we can
verted query is introduce parameteP2 into Q1 by rewriting @1 to Q1 x
(BV x INVQ(Q1))x INVQ(Q2) BV (P2), whereBYV is as defined in Section 6.4, and then

Inversion using thé< does not, however, preserve the Perform inversion. However, in case the domainif is

count of duplicates. If the count of duplicates needs to béarge, the above query can be inefficient.

preserved, we can use modified forms of the techniques de- The case ok—is symmetric to the case oK. The case
scribed in Section 6.2 for intersection. of full outerjoin 2 can be handled similar to the case of

X by the expression
INVQ(Q1) U (INVQ(Q1) X INVQ(Q2)) U INVQ(Q2)

6.5 Semijoin and Antijoin provided that)1 and@2 have the same set of parameters.

Uncorrelated where clause subqueries in SQL lead to semi-
joins and antijoins in the relational algebra represeniati 7 Inversion of Unsafe Union Queries
Correlated subqueries can be modeled using the apply op-

erator [8]; but as shown in Elhemali et al. [8], decorrelatio |, s section we focus on inversion of union operations, fo
techniques can be used to replace the apply operator byiae case where the inputs to the union are safe queries, but
join, seml!om, or ant|.10|n. . L L ) may have different parameters. Such union queries are used
Inversion of queries with a semijoin/antijoin is straight- to model forms that output results from multiple queries,
forward for parameters that appear in the leftinput, sihee t \nich are quite commonly used in practice. As discussed
corresponding parameter attributes are already preséte in in Section 6.3, such union queries are unsafe, even though

result. ) o ) ) the subqueries are safe. Thus, in this section we address in-
However, inversion is harder if parameters appear in th%ersion of a special case of unsafe queries

right hand side input, since the corresponding attributes d In the rest of this section we assume that the given query
not appear in the result, and cannot be directly added. Th@ is a union of querie§1 U ..U Qn, where eacli is a

solutign for the case of semijoins is to use decorrelatiorgmce query (i.e., safe with respect to the parameters used in
j[e.chnlqu'es. such as those pro'posed by, [8] to reP'ace senb-z.). We assume that the union operation is at the top level
joins by joins. The decorrelation technique can in fact beOf the query (in other words, we assume that the result of

simplified in the absence of aggregat!on, since we do n%eyword-independent inversion @fis not used as the input
care about the number of duplicates in the inverted query - inverting a higher-level operation)

result. We omit details for IfaCk of space. . The general case of handling unsafe queries is beyond
Parameters appearing in the right input of antijoins (cor-

. . . . the scope of this paper, although in Section 7.4 we briefl
responding to not-in or not-exists subqueries) are haaler t P pap g y

handle. The safet . tin thi ires that discuss how to handle certain unsafe outerjoin operations,
andie. The safety requirement in this case requires ba a%nd to remove the restriction of unsafe operations ocayirrin
such parameter must also be equated to an attribute of some
- . . - only at the top of the query.
other (finite) relation. We can use techniques similar ta¢ho
described for set difference in Section 6.4 to handle this

case.
7.1 Motivation and Intuition Behind Our Approaches

6.6 Outer Joins Recall from Section 6.3 that if the inpufgi to a union op-
erator all have exactly the same parameters, and are individ

We first consider the case of left outerjoin. Consider a queryally safe, the union quer§ is safe, but if the)): have dif-

Q = Q1 X Q2. If all the parameters used i are also ferent parameters, the union qué&pyis unsafe. Forms often
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have multiple queries, with different queries having diffe (‘A, *) respectively from two relations being intersected
ent parameters; for example, a form that takes a student Iieir result on intersection would be (‘A, ‘B’). Similarl-

and a year/semester may have two queries, with the first takersecting (*, ‘B’) and (*,'B") would result in (*,'B’).

ing the student ID as parameter and fetching and displaying  Unfortunately, database systems do not support the spe-
the students name, and the second taking student ID, yegfal “don’t care” value “*” when performing intersection or
and semester as parameters, and fetching and displaying ffagn (for union, the value “*” can be treated as a normal
students academic performance in that year/semester. (Thglue). Intersection or join taking “*” values into account
different queries may have different output columns, but agan be done in application code, but efficiency would still
discussed in Section 6.3, the union operation in this case ise an issue, since standard techniques for intersectioh, su

really an outer-union operation, which adds extra columngs sorting, cannot be applied in a straightforward manner in
to each of the inputs to bring them to the same schema, anfle presence of the “*” value.

sets the values for these added columns to null.) Another closely related problem is that if the query has
Thus, this case of unsafe queries does occur commonlysme other operations such as a join, above the union op-
in practice, and must be handled. To handle such unsafgation, in the inverted query those operations too mugt dea
queries, we use a special value ™ to represent the set Qith the “* value. Although it is possible to define extended
all possible parameter values, allowing an infinite numbeesions of all relational operators taking the semantics o
of parameter bindings to be represented efficiently in agfinit o “* \51ue into account, such an extension is beyond the
manner. scope of this paper. To avoid this problem, as stated earlier
For example, if)1 has paramete¥P1 and@2 has pa-  \ye assume that such a union operation is the top-level oper-

rameter$ P2, if keyword k1 is present in the result ap1
with $P1 = 4, then the inverted result @) = Q1 U Q2
with respect tok1 would contain a tuplé€4, x), indicating
thatk1 is present in the result @ invoked with$ P1 set to
4, with $ P2 set to any possible value.

More formally, saying that4, «) is an inverted query
result is equivalent to sayingX < domain$P2, (4, X)
is an inverted query result. Note that we use the symbol “*”
for notational convenience; an implementation could use th
SQL null value instead of “*”. We also assume for simplicity
that the literal value “*” does not appear in inverted query
results; if it could, our query rewriting mechanisms can be
modified to introduce suitable escape characters.

Keyword-independent inversion is performed f@ras
follows:

e EachQ: is inverted individuallyjNVQ(Q:) has columns
corresponding to each of the parameters use&gijrbut
not for parameters used in other subquet)gs

e If paramete$ By, is not present in subqueryi, we add
a column corresponding tB), to INVQ(Q+), with the
special value “*”. Thus, the schema of all inverted sub-
queries of a union becomes the same.

e INVQ(Q) is then simply the union of th&NVQ(Qi) mod-
ified as above.

Keyword-specific inversion of the resultilVQ(Q) is
straightforward for the case of single-keyword queries, ex
cept that the result may contain the special value “*” for one
or more parameters.

However, a problem arises when we need to process a
multi-keyword query, since the intersection of the resfats
each keyword, whether implemented using intersection or
join, is made more complicated by the presence of the spe-
cial “*" value. For example, given two tuples (*, ‘B’) and

ation of the query.

We present two alternative solutions to handle the key-

word-specific inversion of such queries, for the case of mul-
tiple keywords; both techniques allow the inverted query to
be processed efficiently, entirely in the database.

1. The first solution, which we call thHéeyword-at-a-time

(KAT) implementation, is described in Section 7.2. This
approach first computes, for each keywdtd, the set

of parameters that result in the keyword being present in
the result of at least one of th@;. The approach then
combines the results across the keywords to get the final
answer, by using intersection of the parameter values.
The approach is complicated by the presence of the “*”
value in the result of single keyword inversion.

The basic idea behind handling intersection in the pres-
ence of the “*” values is to partition the parameter bind-
ings based on which subset of attributes have a “*" value.
Intersection of each pair of partitions can then be imple-
mented by a join on the partitions, equating only non-"“*"
attributes, followed by projection of appropriate non-**”
attributes. Finally, the results of the joins are combined
by a regular union operation. Details are given in Sec-
tion 7.2.

. The second solution, which we call tQeiery-at-a-time

(QAT) approach, is described in Section 7.3. The QAT
approach solves each query with all the keywords, but
allows bindings for which the query result contains only
a subset of keywords, using a bitmap to record which
keywords are present. It then merges the intermediate
results of all queries to find bindings that contain all the
keywords. This is in contrast to the keyword-at-a-time
approach, which computes parameter values that satisfy
one keyword, across the union of subqueries, and merges
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the intermediate results from each of keywords to getthe as a non-materialized view; eaéh is defined as a non-

final solution. materialized view, in both variants.
The QAT approach also has to deal with the presence o2. The next step computes the logical intersection of the
“*” values, and details are presented in Section 7.3. R;’s, using a series of join steps instead of intersections.

The result relatiorresult is first set toR;, and stepi
computes the logical intersection esultwith R, ;.

The logical intersection of two relatiomsands that con-
tain tuples with the “*” value can be computed using the

Later, in Section 10 we present an experimental comparison
of the two alternatives.

7.2 Keyword at a Time (KAT) Implementation pattern approachas follows:

(a) First, bothr and s are partitioned into groups, such
As mentioned in Section 6.3, theyword-at-a-timgKAT) that each group has an identical pattern of *'s, i.e.,
approach is one of the two approaches we propose for han- all group members have a * in the same attributes.
dling queries with a union, where different inps to the Let the resultant partitions of ands be denoted as
union may use different subsets of the query parameters. In- ri ands;.
tuitively, the KAT approach first computes the inversion re-  (b) Eachr; is then logically intersected with each,
sult for each keyword’i, that is, the set of parameters that by computing/I;,(r; Xp s;), whereP equates ev-
result in the keyword being present in the result of at least ery column ofr with the column ofs for the same
one of the@;. The approach then combines the inversion parameter, provided that attribute does not have the
results across the different keywords by intersecting tteem value * in bothr; ands; (all tuples inr; have the
get the final answer. same * pattern, and similarly so do all tuplessiy).

The approach is complicated by the fact that different The projection listL is defined as follows: for each
queries may have different parameters; to represent the fac parametemp, if r; has a * forp, but s; does not,
that a particular querg); does not use a particular parame- the kth attribute ofL is s;.p;, otherwise the:th at-
ter Pi, we invert quenyQ; as usual, but add an extra attribute tribute of K is r;.px.. Thus, if bothr; ands; have the
namedPi to INVQ(Qj, Ki), with the special value “*” to value *, so would the result; if only one of them has
denote that all values for that parameter are valid results. the value *, the result would contain the other value,
We call the above query aB; ;. The normal intersection while if both are not *, the result would contain the
operator cannot be used in this situation. common value (forced to be equal by the join condi-

We now outline how we can modify the approach to use tion).
standard database joins, without requiring special suppor Thus each tuple in the join result corresponds to a
for the “*” value. This can be done in two ways, one which pair of tuples that agree on all non-* attributes, and
we call the KAT with patterns (KATP) approach, and one would have thus been part of the logical intersection;
which we call the KAT with is-null (KATIN) approach. attributes that are non-* in at least one relation are set

appropriately.
7.2.1 KAT using Patterns (KATP) (c) We create separate queries for each group in each
intermediateresult the queries for the final state of
We now describe thKAT using patterngKATP) approach. resultare combined by a union to get the final result.

There are three variants of the KATP approach: KATP with

N|9 I\/Ita te”aK“AZ_?SOIr,\]A(KAT dPKI\,lA';A'I)D KAtI]PFW:ThNIlmtt'a_I I\I/_Iattta_n— ant, the intermediate resu#sultat each step (other than the
alization ( -IM) an with =u g.enalza lon very first step, where we uge, directly, and the last step,
(KATP-FM). Except where otherwise specified, the tech-

. . , whose result is output to the user) is materialized for use in
niques described below are the same for all three variants.

The followi the kev st in the KATP h the next step. The result is partitioned based on the “*” pat-
€ following are the key steps in the approach. tern, and each partition is joined separately, using thiepat

1. As mentioned earlier, the KATP approach inverts eaclapproach described above.

query in the union with respect to each keyword, and In the other two variants (KATP-NM and KATP-IM),
then adds extra attributes corresponding to form-parametistead of materializingesultat each iteration, we create a
ers that are not used in the query, with the value set taew result query, using the result query of the previousiter
“*"_Let the inverted query corresponding to keyword tion, as follows. The result query at the beginning of araiter
K and queryQ@j, with extra attributes added as abovetion is, in general, a union of multiple queries, with po$sib
beR; ;. We then defing?; asUj{Riyj}. different patterns. To perform the logical intersectiore w
In the two materialized variants, KATP-IM and KATP- group all queries having the same result pattern (i.e. s
FM, each of these relatiorf®; ; is materialized as atem- in the same positions), and define their uniomesilt;. In
porary table, while in KATP-NM, eacl®; ; is defined iterationi we compute the join oR; with result; for eachy.

In the KATP with Full Materialization (KATP-FM) vari-
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The query generated in the final iteration is executed to gefl. First consider each quety: separately and do the fol-

the required result.

7.2.2 KAT using Is-Null (KATIN)

The joins required to compute the logical intersection can b
computed in another way, using tteenull approachwhich
we describe below. We call this method tKAT using Is-
Null (KATIN) approach. Here, we use null values to repre-
sent the “*” value, and do not partition thresult relation.
Unlike with KATP, we do not add extra attributes to the in-
verted queries; ;, and thusk; ; contains as attributes only
the subset of parameters tliat uses. The relatioR; is now
defined as the outer union &% ; across all thg values. The
logical intersection ofesultwith R; is done by a join fol-
lowed by a projection, with the join condition and projectio
list defined as follows:

1. LetP1,..., Pk be the set of all query parameters. Then,
0 =C1A...NCk,whereC} is defined as

resultPj = R;.Pj

if Pjis presentin all the queries (and therefore will not
take the “*” value, represented here by null); otherwise
C}j is defined as

(result Pj = R;.Pjvresult Pjisnull VR;.Pjisnull)

Intuitively, the predicate ensures that either the corre-

sponding parameters have the same value, or at least one

of them represents the “*” value.

2. Theith attribute in the projection list is defined esale-
sce(resultPy, R;.Pj): the coalesceoperation picks the
non-null value if either one of the two inputs is null, and
picks the first value otherwise (in this case both values
would be the same).

As we did for KATP, we define three variants of the KATIN
approach: without materialization (KATIN-NM), with ini-
tial materialization (KATIN-IM), and with full materialia-
tion (KATIN-FM). These are identical to the corresponding
KATP variants in terms of what intermediate results they
materialize.

7.3 Query at a Time (QAT) Implementation

We now give details of thquery-at-a-timgQAT) approach.
This approach first computes those parameter bindings for
each query that contain at least one of the given keywords,
along with a bitmap indicating which keywords are present
for a given parameter binding. Then, the bitmaps from dif-
ferent queries for each relevant parameter binding are com-
bined, to find the final answers.

The query-at-a-time (QAT) implementation carries out
the following steps:

lowing:

(a) For each keyword;, find the parameter values for
Qi whose result contains that keyword, i.e., invert
the query with respect t&’;.

Take the union of the parameter values, across all
keywords K ;, but with each parameter value addi-
tionally annotated with the set of keywords present
in the query result with that parameter value; a bitmap
is used to represent this set. (This step can be imple-
mented by a minor extension of the union operation,
or by a straightforward extended aggregation opera-
tion.)

The result of this step is represented as a relalipfor
eachQ@i, with one attribute per parameter @f;, plus

an attribute storing the bitmap; the name of the bitmap
attribute is set td;, so it is unique taR;. Note that dif-
ferent queries can have different parameters.

In the QAT variants with initial materialization (IM) and
with full materialization (FM), the resulk; is materi-
alized, and the materialized result is used in subsequent
steps. In contrast, in the no materialization (NM) variant,
the query definingz; is used in further processing.

(b)

2. The next step is to find parameter value combinations

that are common across queries. If all queries had the
same parameters, this could be done by a union of the
R;’'s followed by a grouping step. The basic intuition for
handling the general case of different parameters is to do
a join of theR;’s on their shared attributes.

By joining the results of the previous step using an in-
ner join, we would ensure that all tuples in the join re-
sult agree on the join attributes. However, an inner join
would eliminate parameter values from one inverted que-
ry that do not occur in another inverted query; such pa-
rameter values can still contribute to the final result.

To work around this problem, we use an outer union
operation, as outlined below. We ugeto denote the
SQL outer union operation, which brings all inputs to
a common schema by adding required attributes, with
their values set to null.

Thus, to combine the results across all quefiegve run

the following pseudocode.

result= R,
fori=2,...,n{
result=resultUR; U(resultXy, R;)
/* See below for details on handling bitmaps */

}

The conditiord; should equate parameters that occur in
bothresultand R,. However, computingresult Xy, R;)

is not trivial, since bothresultand R; may contain null
values representing the “*” value. We discuss how to
perform the join later in this section.
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Note that eachR?; has a bitmap,. We have a single subsumed by an existing equal or more general binding
bitmap attributeb in result In the above union, in the generating the same keywords.
term R;, we rename; to b. In the term(result¥y, R;), Subsumed results of the above form can be eliminated
we generate the value of attribuieas the bit-wise OR by adding a join condition which checks that the bit-wise
of the attribute of resultand attributé; of R;. In some OR of the two bitmaps is a strict superset of the individ-

R;

1.

. We note thatresult contains tuples with different “*”
patterns, with “*” represented as a null value due to theoute
union operatow. There are two ways of performing the join.

cases described later, where we use an outerjoin instead ual bitmaps. This optimization can reduce the number of
of a join, one of the);’s may be null; such a bitmap is results generated significantly.

treated as equivalent to the bitmap with all zeros. It is worth noting that using a full outerjoin aksult

- The final step is to select only tuples framsultfor  \yith R, appears to be an alternative to usiegultu R; U

which the bitmag has all bits set td; these are the pa- (result Xy, R;). While this approach works in some spe-
rameter values for which the result contains all the givensia| cases described later, in general it may lead to loss of
keywords. information. For example given queri€d andQ2 with pa-
rameters (A,B) and (B,C), it is possible th@l on a partic-
ular (A,B) combination, say (al, bl) returns keyworg$

and K2, so for a keyword quer'1, K2, C' should be don’t
care. A full outerjoin would lose this informationj2 with
parameters (b1, cl) contains one or more of the keywords;
One option for computing the join is to partitioesult  the (outer)join would then contain only the tuple (al, bl,
based on the pattern of null values, and use different1l). Now suppose quer§3 with parameters (B,C) set to
predicates for the different partitions. This option, whic (b1, c2) contains keyword(3, and the keyword query is
we call QAT using Patterns (QATP), is discussed in SecK1, K2, K3. Then even a full outerjoigR1 =X R2) 32X

tion 7.3.1. R3 would not contain the correct answer (al, b1, c2). Our

We now return to the issue of how to jomesult with

. Another option to enforce the semantics that “*” matchesolution of using the outer union avoids this problem.

all possible values, is to use a join condition that ex-
plicitly checks for null values; this option, which we 7.3.1 QAT using Patterns (QATP)

call QAT with Is-Null (QATIN), is discussed in Section
7.3.2. In the QAT using Pattern§QATP) approach, we compute

. o . the joins using the patterns approach, instead of the is-nul
The QAT algorithm can be optimized using the follow- gpproach. The basic idea of joins using patterns is the same

ing two (related) optimizations: as in KATP, although some implementation details vary. For

1.

example, in the QAT version, the “*” value is represented by
the null value.

The implementation details of QATP vary depending on
the version we use.

If all parameterd’;j present inQi are also present in all
queries already joined intesult, and vice versa, instead
of settingresultto the outer union ofesult R;, and the
join result, we setesult=result=2x— R;, using a natural
full outer join on the shared parameter attributes. Thisl. In the QATP version with no materialization (QATP-

condition was in fact satisfied in most cases of forms ~ NM), none of the queries (including tie;) are materi-
with multiple queries in our example application. alized, and as in KATP with no materialization (KATP-

. For a keyword query having only one keyword, there is  NM), at each iteratiorresultis a query defined as the

no need to include the joins of the inverted subqueries; union of queries, each with a different pattern.
in other words, we can drop the ter(mesu“: Mg, Rz) It 2. The QATP version with initial materialization (QATP-

suffices to useesultUR;, since we do not have to worry IM) differs only in that the inverted queriek; are ma-
about situations where one of the queries contains one terialized initially, and the stored results are used in-sub
keyword, and the other contains the other keyword. sequent queries. Sinde; occurs multiple times in the

. We need to include a tuple frofresult Xy R;) in the subsequent queries, materialization avoids the overhead

result only if it contains a strict superset of the keywords ~ Of recomputation. _ . S
that the constituent tuples frorasultandR; contained. 3. In the QATP version with full materialization (QATP-

For examp|e1 suppose for a parameter bin(ﬂfag, *) FM), in addition to materialiZing thé%i, in each itera-

result contained the keyword&'1 and K2, while with tion resultis materialized (but with the tuples partitioned
binding (v1,v2) R; contained onlyk 2; then there is no based on the “*” pattern). As in KATP, we do not mate-
need to add a result tuple with bindifgl, v2) with key- rialize the initial value ofresult, since it is the same as

wordsK'1 andK 2 since there is a more general result tu-  the already materialize,, and the final value alesult
ple with binding(v1, ¥) containing the same keywords. since it is consumed immediately to find the final results,
In other words, the binding that is generated would be and is not reused subsequently.
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7.3.2 QAT using Is-Null (QATIN) If the unsafe outerjoin is the top-level operation of the
query, only keyword-specific inversion for the multipleyke

We now describe th@AT using Is-Null(QATIN) option  word case needs to handle the semantics of the “*” value.

for defining the join condition; the basic procedure of com-The different variants of the KAT and the QAT techniques

bining results across queries is as described earlier in Seghich we saw earlier can be used to perform keyword-specific

tion 7.3. LetP1,.. ., Pk be the set of all query parameters; inversion.

eachR; has all or some subset of the parameteks Then, However, if there are other operations above the unsafe
6 = C1 A...A\Ck, whereCj is defined agresult Pj =  union or outerjoin, keyword-independent inversion of #hos
R;.Pj Vv resultPjisnull v R;.Pjisnull ), if bothresult  operations needs take the semantics of the “*” value into ac-
andR; containPj, andC}j is true otherwise. count. Although such an extension is possible for many op-

The above disjunction allows matching in case eithekrations such as select, project, join, union and inteimgct
value is the null value, representing “*”. The value Bf details are beyond the scope of this paper.
projected in the result is null i?; is null in both input tu-
ples, and is set to the non-null value otherwise.

The join condition containing thés null disjunctions 8 Ranking and Presenting Results

can result in poor execution plans, so we make use of the
following optimizations: In general, a keyword query can have multiple answers, and

ranking the answers is an important task. For a given form,
we display the set of all result parameter bindings together
. ) ) ) R , to avoid mixing up results corresponding to different forms

junction, sinceP;j cannot be null in either input. Thus, the ranking problem is broken up into two problems:

2. For t_h_e jomn .ofresult and Ry, We can drop thes null _ranking forms, and ranking parameter values within each
conditions, since none of the attributes can be null at th'?orm

step.

In the QATIN variant with full materialization (QATIN-
FM), theresultrelation at each iteration is materialized, and8-1 Ranking Techniques with Single Queries
used in subsequent iterations. In the variants with no rmater ) ) ) )
alization (QATIN-NM), and initial materialization (QATIN e first consider the case of forms with a single query, and
IM), each iteration defines a query using the query from thdater consider forms with multiple queries. We experimente

previous iteration. The query generated in the final iterati With two variants of form ranking.

is executed to get the required result. 1. The first variant, which we call AVG, is based on form
result length, favoring forms with short results since they
tend to contain more specific information. For example,
given a form F1 which retrieves course/instructor infor-
mation for a specified department, and a form F2 that re-
trieves courses of a specified instructor, form F2 is likely
to have a much smaller size on average. Given a key-
word query such as ‘Silberschatz database’, the form F2
would rank higher and the inverted query for F2 would
be executed first.

g. The second variant, which we call AVGMULT, multiples

the average form result length with the number of differ-

ent parameter values returned as answers to the given

query. This helps lower the ranking of forms for which

the keyword query result contains a large number of dif-

ferent parameter values.

1. If a parametelP; is present in all ofR; ... R;, we de-
fined Cj as justresult Pj = R;.Pj, omitting the dis-

7.4 Extensions to Handle Other Unsafe Operations

Consider a querg) = Q1 X Q2. If some parameters used
in @ are not present iQ1, @ can be unsafe. For example,
suppose parametédtl is used inQ1, and P2 in Q2. If the
given keywords are present (@1 for a particular value of
P1, then thatP1 value combined with any arbitrary value
for P2 (represented by a “*” value) would be an answer.
To handle the above problem, the keyword-independen
inversion can be defined as
INVQ(Q1) U INVQ(Q1) X INVQ(Q2)
whereU denotes the outer union operation of SQL, which
brings all inputs to a common schema by adding required
attributes, with their value set to null. Here, null values f
parameters represent the “*” value, which denotes the set of In the case of AVG, in cases where the higher ranked
all possible values. In effect, outerjoin has been tramséat  forms provide sufficient answers, inverted queries may not
into union, and inversion performed on the union query.  even need to be executed for lower ranked forms. For AVG-
The case of right outerjoin is symmetric with left outer- MULT, we cannot use this optimization.
join, while keyword-independent inversion of full outdrjo The exact length of a form result depends on the specific
can be defined as parameter values, which can again be expensive to compute,
INVQ(Q1) UINVQ(Q2) WINVQ(Q1) X INVQ(Q2)  sowe instead use statistics on average form result sizen For
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result size is in turn estimated as the sum of the average reser is given higher preference, if the parameter value is a
sult size of the queries contained in the form; average quergepartment, the department that the current user belongs to
result sizes can be precomputed and stored in the databasegiven higher preference, and so on.

and need only periodic maintenance. Computing the aver-

age query result size can be done either by executing the

query on a sample of parameter bindings, or by executing

the keyword-independent inverted query, and aggregating i3-4 Result Presentation

its result to find the number of tuples for each binding (by

grouping on the parameter attributes), and then taking th& our implementation, results are displayed as hyperlinks

average. We used the latter approach. and pointing at/clicking on a result causes the correspandi
form to be executed with the parameter values, and the form

result is displayed to the user. Our inversion techniquegs ma
8.2 Ranking Techniques with Multiple Queries return don’t care (*) values for certain parameters. If the ¢
responding parameters are mandatory for the form, we can

For forms with multiple queries, if in some form result a use domain knowledge of the application to select a mean-
keyword occurs in the result of an earlier query, that form reingful set of values for such parameters, and replace each
sult could be counted as more important than one where thenswer containing one or more *'s by a set of answers with
keyword only appears in the result of a later query. For exthe *'s replaced by the above values.
ample a form displaying student information may first show
the name and other key information about the student, and
then show the grades obtained by the student. We would like
to give higher importance to the occurrence of a keyword ir? | mplementation Details, Optimizations and
the first query than in the second, when ranking the form. EXxtensions

One simple way of giving more importance to keyword
occurrences in earlier queries is to treat a mu|ti_quermfor In this section we describe implementation details, such as
with queriesgi, ..., ¢, as a set ofr forms, with form F; how we handle SQL queries and certain form constructs.
containing queries,, . . ., g;. The ranking methods describ- We also outline some optimizations which we have imple-
ed earlier are applied on eaéh and the best rank is chosen. mented.
We have currently implemented the above scheme manually.

An alternative is to modify the queries to track, for each
parameter binding in the query result, which queries con- ) i
tained each of the keywords. The occurrence of a keywora'1 Handling SQL Queries
in an earlier occurring query can be viewed as providing a o ) o
higher TF to that keyword in that form. Similarly, statistic Although our description of query inversion is in terms of

about keyword occurrences in the overall database (avaiT—elat'Onal algebra operations, any practical implemésmat

able from the text index) can be used as a rough estima@aS to support inversion of SQL queries. SQL queries which

of the IDF (with form results treated as documents) of eaclfa" be translated directly into relational algebra usiegt

query keyword. From these statistics, a TFIDF measure caficl Project, join/outerjoin, aggregation and set operet

be computed for each parameter binding, and used to rarfign be handled using the techniques for relational algebra
the bindings for a given form inversion. Inverted relational algebra queries can bestran

lated back to SQL for execution. SQL queries, including

those with subqueries, can be translated into relatioget-al
8.3 Other Ranking Issues bra queries by using techniques such as those described by

Elhemali et al. [8]. In essence, the techniques of Elhemali
We have assumed the AND semantics for keywords, but ouperform query decorrelation. We note that the translation
techniques can be modified to support a fuzzy AND, allow-0f some complex SQL queries that cannot be decorrelated
ing some keywords to be omitted, assigning a lower score tegquires the use of an extended relational algebra operator
partially matching results. The QAT technique can be easilgalled the “Apply” operator, which is described in [8]; we
modified to implement such a scoring scheme. do not currently handle the Apply operator.

For ranking of parameter values within a single form,  Our actual implementation works directly on SQL queries,
we found that application specific heuristics seem to beequitwithout going through a relational algebra translationwho
effective. For example, if the parameter is a year or semesteever, the techniques underlying our implementation are ex-
the current year/semester is given higher preferencegif thactly the same as those we have described for relational al-
parameter is a user identifier, the identifier of the currengebra.
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9.2 Handling Other Form Constructs then the inverted query fdr; should only includg“Silber-

schatz”, “database?, while that for F» should include the
In this section we consider extensions to handle a largekeywords{“Professor”, “Silberschatz”, “database”. O
class of forms with inter-related queries and static text.

So far all of our examples have dealt with forms con- ~ Another special case is form queries that do not take
taining only a single query. However, there are instancegny parameter values. Such a form would be an answer to
of forms that contain multiple queries. For example, a forma keyword query if the keywords are part of the form result.
can be used to access information about a particular studefhecking this is no different from the usual case, excefit tha
(query S1) as well as a list of courses that the student haghe output of the inverted query does not have any parame-
taken (queryC1); such a form can be represented by twoter values; a constant value such as 1 can be used to ensure
separate SQL queries. that the output has at least one attribute. Also, we do not

In Section 7 we considered how to handle forms withneed to execute the inverted query completely, we just need
multiple queries, which can be modeled by using an outerto ensure that its answer is non-empty.
union of the queries; we had (implicitly) assumed that the
queries are independent, that is they can be evaluated inde-
pendently using the form parameter values. 9.3 Pruning

In some forms, however, the result of one query is used ) S )
as a parameter to a second query. For example, a student réff implemented a pruning optimization, which does the fol-
number may be used to retrieve a unique student identifidPWing- Many of the keywords are present in only some of
by means of a query Q1, and the identifier may then be usdge relatlong, and are absent in others;_ befqre exe_cutmg in
to execute a second query Q2. This situation can be hayerted queries, for each keyword we first find which rela-
dled by rewriting the second query by adding a join with thefions contain the keyword, by accessing the corresponding
first query, and replacing the parameter by a reference to tHgXt indices. Using this information, we prune out a form if
value from the first query result. the set of relations yvhqse attributes appear in the SEL.ECT

Another common case is where a query Q1 has mumphglauses of the queries in a form do not together co_ntam all
results, and a loop iterates over these results and invokde query keywords. Similarly, we prune out subqueries con-

query Q2 with parameters set to attributes in the result of@ining the Conditio'ﬁ;ontains(Ri.Al, - ,.Ri.An.), Kj).if
Q1. This case can be handled by replacing the loop by %€ have found thaRi does not contait ;. Pruning is par-

single query which in effect performs a join of Q1 and Q2 ticularly important as the number of forms increases, since
as described for example in [4,9]. it can potentially help keep the number of inverted query

Forms often have static text inserted by the applicatiof£X€cutions under control. In our experiments, the pruning

program, which does not depend on database content or @ptimization was turned on by default.
form parameters. We assume that application code that gen-
erates the forms has been analyzed, and static text that ap- . ,
pear in forms has been indexed; for each keyword, the pos .4 Text Indexing Details
ing list in such an index contains the identifiers of the forms .

9 . .. . .Both SQL Server and PostgreSQL allow a text index to be
where the keyword appears as static text. In addition it is ted ltiole attribut | imol tai
often useful to annotate forms with metadata describing theeated on .mu 'P € atirioutes. .n our imp emgn ation, we
created a single index per relation, on all attributes of the

purpose and description of the form, which can be used wher . . . o
searching for forms, relation. If aContainspredicate specifies only some of the

Static text is handled as follows: before executing a keygttrlbutes involved in the index, the result of the text ide

word query on the queries in a form, all query keywords tha{OOKLIp has tq be flltert_ad to remove cases where the !(_ey
. : . ._word occurs in an attribute other than the ones specified
appear in static text in that form are removed from the list . . S T
- in the Containspredicate. Such filtering is done implicitly
of keywords, and the remaining keywords are actually use .
for querying. In a special case, all the keywords in the quer)'/n SQL Server, whereas in PostgreSQL the query needs to
i ecify the index to be used, as well as the extra predicates

. . . . S
may appear in static text, in which case the form parameterrsp e .
don't actually matter. We can use the special value * to delor filtering as above. We found that using the PostgreSQL

note that all possible values for a corresponding parameté‘?xt mdgxmg syntax for filtering was expensive, smced q'.
stemming on the fly. We therefore used a case insensitive

are answers. . . . .
substring match of the attributes with the keyword, to im-

Example 6For example, suppose we have fofinwith sta-  plement the filtering step.

tic text {“Professor”, “Course”, “Teach” } and form F% Attributes with non-text types, such as integer or date,

with static text{“Student”, “Course”, “Take” }. Ifthe query  can be included in a full-text index by casting to text type

keywords are{“Professor”, “Silberschatz”, “database”, in PostgreSQL. SQL Server does not support text indexing



18 Aditya Ramesh et al.

of non-text types (whether directly or using casting), so in that in this case the view need not actually be materialized,
stead for each such non-text column we add a (persistedjnce Lucene does not insist that the actual documents it in-
computed column of text/varchar type containing the tex-dexes be retained after they have been indexed. However,
tual representation of the non-text value. The text index ishe underlying inverted queries still need to be matemaliz
then built on text columns, including the computed columndor incremental view maintenance.
generated above. As an alternative to adding such attsbute The implementation we used for our performance test-
to the full-text index, they can be handled by adding separating used a variant of the first approach, but omitted the com-
predicates in the inverted query, but doing so would in@easbination across forms as well as across tuples in a given
the query overheads. form result. Thus, the textindex was built directly on the in

Another issue with SQL Server text indices was the reverted query results. This approach underestimates the cos
quirement that a table on which a text index is defined musbf maintenance since the combined index would require more
contain a single column unique key. To satisfy this require-effort to maintain, and thus our overhead measurements are
ment, for tables that had multi-column primary keys we hadactually conservative.
to add a new column defined as an identity type; SQL Server
automatically generates unique values for such columns.

9.6 Extensions to Handle Access Control

9.5 Materializing Form Results To provide access control, applications need to have a mod-
i o ) ule that takes a user identifier, a form identifier, and, aptio
The approach of [7]’, which materializes a'nd indexes fprnb”y' parameter values, and can decide if the user is autho-
results for each po§5|blg parameter value, is an altesnativ rized to execute the specified form with the specified param-
our approach. While this approach may be faster than Oulgers This module can be used to filter query results to re-

for answering queries, it would have a significant time overy, o)y authorized results. In many authorization system
head for mamtalnlng the |nd|ces._The issue of mcrenjenta,blome query parameter values, such as the user-identifier in
index maintenance for the materialized form results is nof, query, are taken from session parameters such as the user-
addressed by [7]. Hovyever, as men_tloned In Section 5.1, W ntifier of the authenticated user. Such parameters can be
caq use the keyword—mdepend.ent inverted QUWQ@) replaced by the corresponding constant values in the form
to find parameter values for which the materialized form re-queries before the queries are inverted. Our implementati

sultis aﬁected, given an update to the databqse. supports such replacement of parameters by session param-
We did not measure the cost of processing a keywor%terS before query inversion

query using the approach of [7]; it is reasonable to assume
that the approach of [7] would be faster than our approach.
Instead we focused on the cost of maintenance of the indejg Experimental Results
on form results, when the database is updated.
To estimate the view maintenance overheads of using this section we present the results of a study of the per-
this approach, we materialized the keyword-independent irformance of our techniques.
version of each form query. Standard techniques for view
maintenance such as those described in Silberschatz et al.
[15] (Chapter 13) can be used to compute the changes to the®.1 Experimental Setup
form query result when an underlying relation is updated,
and the index must be updated correspondingly. The code for our system is written in Java, and currently
There are at least two ways to build a full-text index onworks on PostgreSQL and SQL Server databases. Our per-
the result. The first way is to create and materialize a vieformance study is based on a real database application, used
FormiIndexformid, parameters, allTupleAttyswith one tu-  to handle all academic information at IIT Bombay, with about
ple per parameter binding for each form. The view contains & GB of data, and 90 form interfaces. The application runs
form-id attribute, and all parameter attributes are comtin on the PostgreSQL database. Each form had a short descrip-
into one single view attribute by concatenating them (withtion, which was treated as static text for the form.
suitable delimiters). The attributd TupleAttrscontains the For the bulk of our performance tests, we used Post-
concatenation of all attribute values from all tuples iniie  greSQL 9.1 as the database, on a machine with an Intel
sult of that formid with that parameter binding. A full-text Core i5-2500K, 3.30 GHz processor, with 16 GB of RAM,
index can be built on the resultant materialized view. running Ubuntu with a Linux 3.0.0-14-generic kernel. The
The second way is to directly use an existing full-textapplication and the database ran on the same machine. We
index such as Lucene, and create a (virtual) document coreport numbers using a 1 TB 7200 rpm hard disk (Seagate
responding to each tuple in the preceding merged view. Not8 T31000524AS), as well as with a Intel SSDSA2M080 80
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GB solid state disk (SSD) with an eSATA interface (which
we refer to as flash disk here on).
We also ported our data and form queries to SQL Serve
and present some results using SQL Server 2008 runnir
on Windows 7, which itself ran as a virtual machine (with
Ubuntu as the host OS) on the same hardware as above, w
2 GB of memory allocated to the virtual machine.
We used a set of 12 keyword queries to study the qual .
ity of ranking as well as performance. We cannot give all avg max
the actual keyword queries since the database we use cc.. . .
tains confidential data which cannot be made public, but thglg' 1 Quality study on Academic database.
queries modeled common information needs, which were as
follows: (a) Given a student identifier (roll number), or a
student name, find overall academic information about thd0.2 Effectiveness of Keyword Search on Forms
student. (b) As above, but find just the grades. (c) Given a
course identifier or keywords from the course title, find in-The first set of experiments studied the effectiveness of key
formation about the course. (d) As in (c), but find the stu-word querying in retrieving desired forms. We compared the
dents registered for the course, and find if a specified stifollowing form ranking methods: (a) ordered (in ascending
dent identifier took the course. (e) Given identifiers of tWOorder) by average form result size (AVG), and (b) ordered (in
courses, find students who have taken both courses, usiagcending order) by average form result size multiplied by
two different sets of descriptive keywords. The number ofthe number of parameter values in the result for that form
keywords in these queries ranged from 1 to 4. (AVGMULT) (we stopped once we found 500 parameter
To study scalability of execution time with number of values).
keywords, we used another set of keyword queries based We measure the quality of the results returned as fol-

on an Qverall set of kengrdK; for- each numbfar of key- lows. For each task, we identified a particular form as the
wordsi, the keyword queries consisted of all sizeubsets &‘

BAVG
EAVGMULT

Form position

7
6
5
4
3
2
1
0

f K and we took th i Il th K esired result. We then manually examined the results of
ot J¢, and we fook the average time across afl these kKEyworg, o corresponding keyword queries for that task, and found

queries. We chose the keywords such that all the keywor e position at which the desired form was present. Figure 1

?huetrles Ik(;ad atltl‘?aSt c:jr_lf? anstwir. _Therefbky we ago;de%_?'%ﬁows that across all the keyword queries, the average po-
atcou’d resut from difierent choices ot Keyworas 1ordil giinn at which the desired form was present was 2.42 for

ferenti. We call the above set of keyword queries sitala- AVG and 1.83 for AVGMULT. The maximum positions of

bility queries the desired form were 6 and 3 for AVG and AVGMULT.
We present numbers for cold cache (CC) and warm cache

(WC). Cold cache results were generated by forcing the data- 1here are of course other ways of ranking form results,
base to drop all clean buffers, which we enforced by restarfor €xample based on term frequency and inverse document
ing PostgreSQL after clearing Linux file system buffers byfrequency of keywords, and on (inverse of) document length.
using the command “echo 3 /proc/sys/vm/drogaches”. The AVG technique provides, in effect, an estimate of docu-
(The command “DBCC DROPCLEANBUFFERS” achieves Mment length for (form, parameter) combinations, while AVG-
the same effect in the context of SQL Server.) However, iMULT provides a similar estimate for a form, summed up
our context, we run not just one inverted query, but severafCross all result parameter values. We have also found that
for a given keyword query, and it is fine for the later invertedhen a form has multiple queries, it makes sense to give
queries to exploit data brought into buffer by earlier gesri higher weightage to terms in the results of queries that oc-
Therefore we flush the buffer only once for a single keywordcur earlier in the form. For example, in a form showing the
query, instead of once per form query. academic records of a student, the first query is likely to
For both warm and cold cache, the numbers reporte{ftrie"? the name of the student, while later queries may re-
are the averages computed from 6 runs, with the lowest arl#€Ve titles of courses taken by the student. Such a ranking

highest numbers dropped before computing the average §s similar to the standard technique of giving higher weigh-
the remaining numbers. tage to terms that appear in the document title or early in the

Other than the full-text indices, we used exactly the Samgocument text.
set of indices as were present in the live database, which in- Exploration of alternative ranking techniques is certainl
cluded primary/foreign-key indices and a few more manu-an important area of future work, although our results above
ally chosen indices. A single full-text index is built forda show that the AVGMULT technique gives good results for
relation, covering all attributes of the relation. the set of tasks we considered.
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Fig. 3 Performance of KATP and QATP on PostgreSQL with Hard Disk (a)fiVeache and (b) Cold Cache.
10.3 Query Execution Time: Basic Results ization, indicating that materialization of intermediate

sults did not have a significant impact in these experiments.

Using the same set of 12 keyword queries, we measured thehis was because the -IM and -FM variants are identical for
average execution time across all the keyword queries, userms with only two queries (since there are no intermediate
ing variants of the QAT using patterns (QATP) and KAT results for -FM to materialize), and we had only a few forms
using patterns (KATP) methods on cold and warm cachewith more than two queries in this set of forms.
The variants we study are QATP with Initial Materializa- Figure 2 also shows that the variants of QATP perform
tion (QATP-IM), QATP with Full materialization (QATP-  slightly better than all the variants of KATP. The differenc
FM), QATP with No Materialization (QATP-NM), KATP s quite small since most of the forms had only one single
with Initial Materialization (KATP-IM), KATP with Full Ma-  query using only selection, projection, join and aggremsti
terialization (KATP-FM), and KATP with No Materializa- and for such forms all the variants of KATP and QATP per-
tion (KATP-NM). form exactly the same actions. To highlight the performance

The results with all 90 forms from the academic databaseljfferences between the variants better, in Section 10.6 we
running on PostgreSQL, using flash disk, are shown in Figpresent results using a smaller set of forms with multiple
ure 2 (a) and (b), for warm cache and cold cache respecgueries, and discuss the relative performance of the differ
tively. The first point to note is that overall performance onent KAT and QAT versions using those results.
flash disk, with average execution time under 2 seconds, The results using hard disk, running on PostgreSQL, are
is clearly good enough for interactive use; cold cache pershown in Figure 3 (a) and (b) for warm cache and cold cache
formance is at least 50% slower than warm cache perforrespectively. For warm cache, there is hardly any diffeeenc
mance, but the average execution time of under 3 secondsthe flash and hard disk timings, since data is memory res-
with QATP-IM and QATP-FM is still quite acceptable. ident. However, with cold cache all the variants took about 7

The results in Figure 2 show that initial materializationto 8 seconds on average, which is significantly more than the
(-IM), i.e. the materialization of the initial inverted ques  time taken with warm cache, and with cold cache on flash.
reduces the execution time compared to no-materializatioe believe the reason is that query execution plans for the
(-NM) for all KATP and QATP variants, for both warm and inverted queries usually involve keyword index lookup as
cold cache. In both cases the initial inverted queries agd us well as indexed nested loops joins, both of which require a
multiple times, making their materialization worthwhikull  good deal of random 10 if the cache is cold; and random 10
materialization (-FM) performed similar to initial mateli  on flash is much faster than random IO on hard disk.
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Fig. 4 Scalability of KATP and QATP with number of keywords (with Fig. 5 Scalability with number of keywords on Hard Disk and Flash
Flash). (with QATP-IM).

Again, the QAT variants are slightly better than the KAT queries is based on a set of 5 keywords, and for gach
variants. Interestingly, Figure 3 shows that for hard diskjts sizei-subsets together form the set of queries using
cold cache timing for non-materialization variants (QATP-keywords. We report the average time for each valué of
NM and KATP-NM) are better than the materialized vari- We used the QATP-IM and KATP-IM methods for these
ants, which is the opposite of the case with hard disk warnexperiments. The results for the case of forms on the aca-
cache, and with flash warm and cold cache. This result wagemic database, running on PostgreSQL, using flash disk,
surprising, and on investigation we found that the reasen beare shown in Figure 4, with separate numbers for cold cache
hind this was that just creating a materialized table on har¢CC) and warm cache (WC).
disk for cold cache in PostgreSQL was around 4 times more As can also be seen from the Figure 4, both KATP-IM
expensive than for warm cache and around 3-4 times mor@nd QATP-IM scale slightly sub-linearly with the number
expensive than flash (for cold and warm cache respectivelypf keywords, for both cold and warm cache, and QATP-IM
We believe that for a production system, where the cachperforms slightly better than KATP-IM. One reason for sub-
will be warm at least for metadata, the materialized vasantlinear performance could be that the pruning optimization
are likely to outperform the non-materialized variants. described in Section 9.3 eliminates more forms as the num-

We also performed the above experiments using SQlber of keywords increases, as we will see shortly. Another
Server to execute the inverted queries. The results are vergason could be that our system has some initializatiors cost
similar to those for PostgreSQL on average, although resultrelated to reading and parsing form queries, which are inde-
did vary for individual queries with SQL Server taking less pendent of the number of keywords.
time than PostgreSQL for some queries, and more time for We also compared the performance on hard disk versus
others. flash, using the QATP-IM method, with an increasing num-

Overall, the results show that keyword search runs wittber of keywords, using the same scalability query set. The
performance good enough for interactive use with flash diskiesults are shown in Figure 5. Similar to the results we saw
even with cold cache, although performance is not quite afr the original set of 12 keyword queries, cold cache num-
good on hard disk with cold cache. Given current hardwarésers on hard disk are relatively high, but warm cache and
trends it is quite reasonable to assume that enterprisé appflash (both warm and cold cache) numbers are quite good.
cation data will fit on flash disk for all but the very largest Again the time taken scales sublinearly with number of key-
enterprises; as a result, we believe search performante wivords, for the same reasons we saw earlier.
be quite acceptable in such settings. Next we studied scalability with an increasing number of

forms. For this experiment we used only the first 80 out of

the 90 forms. For a given number of formswe partitioned
10.4 Scalability the overall set of 80 forms into partitions of sizeand took

the average execution time across these partitions. We used
The next sets of experiments studies the scalability (imser the same set of 12 queries described earlier for quality of
of query execution time) of our approach with respect to theanking experiments, and ran the experiments on flash disk.
number of keywords, and to the number of forms. Figure 6 shows how the time taken increases with num-

The first set of experiments addresses the issue of scdter of forms. The results for cold cache (bar labeled CC)
ability with number of keywords. For these experiments weand warm cache (bar labeled WC) appear to indicate that
used the scalability queries described in Section 10.h witthe time taken grows highly sub-linearly with number of
the number of keywords varying from 1 to 5. This set offorms, with a 20 fold increase in number of forms result-
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Fig. 6 Scalability with number of forms on Academic database (set offig. 7 Effect of pruning of forms on Academic database with varying
12 queries, using QATP-IM). number of keywords (scalability queries, using QATP-IM).

ing in less than 2 fold increase in time. However, there iSyisses (we verified that the total of hits and misses were the
a significant fixed overhead for pruning, which checks, forsame across all buffer sizes). With cold cache, the number
each keyword, which tables contain the keyword. To quanat pyffer misses was the same at 128 MB and 1228 MB for
tify this effect we measured the time taken for the pruningy| the queries. The number of misses was also the same for
step, shown in bars CC-P and WC-P for the cold cache ang\tfer sizes of 128 MB and 24 MB for 8 out of 12 of the
warm cache cases; as can be seen from the figure these nUgyord queries; the ones where there was a difference were
bers do notincrease with the number of forms. We also megp e that used frequently occurring keywords. The worst
sured the post-pruning time, that is, the time taken after thc,se increase in buffer misses when going from 128 MB to
pruning step, and show these times in bars CC-PP and WGy \1g puffer size was by a factor of 3, while the average
PP (for the cold cache and warm cache cases). It can nOiycrease across all keyword queries was by a factor of 2.
be seen that the growth is no longer as highly sublinear age further stressed our system by considering a new set of
earlier, with the post-pruning time increasing by 6-10 foldg keyword queries, each of which contained one or more
(for cold/warm cache resp.) when the number of forms wenfequent keywords; even then, the average increase was less
up 20 fold from 5 to 80 forms. Thus, the growth remainsynan a factor of 5 when buffer size changed from 128 MB
sub-linear even in this case, but less remarkably so. to 24 MB. Thus, we believe our techniques will work well

Given that our database has a total size of 1 GB, whilgyen with database sizes that are significantly larger than
available main memory is significantly larger, warm CaChememory.

numbers basically reflect completely in-memory query eval-

uation, while the cold cache numbers do not reflect the po-

tential for repeated fetches of the same data. Thus, another

scalability related issue is: “how will the techniques réin i 10.5 Effect of Optimizations
the database size is larger than memory?”

We could not create a larger dataset, nor could we actuNext, we studied the advantage of enabling the pruning opti-
ally decrease the memory capacity of the system we use#hization described in Section 9.3, using the academic datab
Instead, we kept the database size fixed and reduced tio@ PostgreSQL, using a flash disk, and the QATP-IM method,
PostgreSQL buffer size. By default, PostgreSQL uses a verysing the same set of keywords used earlier for testing scal-
small buffer, leaving the job of buffering primarily to the ability with number of keywords.

OS file system cache, and most PostgreSQL buffer misses Figure 7 shows the time for the same keyword queries,
do not result in actual 10. Thus, the buffer misses do not gewvith and without pruning, with different numbers of key-

reflected in execution time changes. Therefore, instead afords. Itis clear that pruning has a significant effect bath o

studying the execution time variation, we studied the variacold and on warm cache, reducing the execution time by 20
tion in the number of buffer misses reported by PostgreSQLto 30 % compared to the no-pruning version, with the ben-
as the buffer size is varied. In a system where the amount @ffit roughly the same with the number of keywords ranging
real memory corresponds to the PostgreSQL buffer size (drom 1 to 5. Figure 8 shows the average number of forms
where file system buffering is turned off) these buffer mésse for which inverted queries had to be executed (i.e. the aver-
would corresponding to actual 10 operations. age number of forms that were not pruned), with different

Specifically, we ran the inverted queries on PostgreSQlnumbers of keywords. Although each form takes longer to
with shared buffer size set to 24 MB, 128 MB and 1228process with increasing number of keywords, there are fewer
MB respectively. We measured the number of buffer hits andorms to process.
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40— To study the effect of the variants, we added 4 new forms
5 - each containing 3 queries with different parameters. We use
% 30 B the original set of 12 keyword queries, augmented with 7
3> more keyword queries for which the new forms would gen-
§ 2 erate answers.
s 15
§ 10 Figure 9 (a) and (b) show the performance of all the

5 materialization variants (-NM, -IM and -FM) of the QATP,

of T . . QATIN, KATP and KATIN approaches on cold cache for

flash and hard disk respectively, on the 4 new forms. Fig-
) _ _ ~ure 10 (a) and (b) show the same results as Figure 9 (a) and
Fig. 8 Pruning of forms against number of keywords on Academlc(b) but using SQL Server instead of PostgreSQL. We omit
database (scalability queries). ’ . L. ’

warm cache numbers since they are similar to the cold cache
numbers with flash. Although the raw numbers are better

We now consider the effect of subsumption checkingWith SQL Server than with PostgreSQL, our goal here is not
which we implemented in the QAT approach as described if0 compare results across the two databases, but rather to
Section 7.3. Subsumption can only happen in case of formgompare the alternative techniques on both systems.

with more than one query, with different sets of parameters, Figure 9 shows that with PostgreSQL the QATIN vari-

when more than one keyword is specmed._As an anecgioénts are about 2 times more expensive than the QATP vari-
tal example of the importance of subsumption, we consid-

. . : . nts with QATP-IM performing th t overall, and QATIN-
ered one of the forms with two queries, with. having pa- ans Q berto g the best overall, and Q

rameters academic year, semester and department code %'}4 performing the worst amongst the QAT alternatives. We
year, P ' also studied the best case and worst case ratios of QATP ver-

Q2 having parameters academic year, semester, and coulsss QATIN performance across individual keyword queries
code. With the keywords “CS631” and “database”, the in- . yw '

. We found that QATP variants were never worse than QATIN
verted query of)1 returned 250 results, the inverted query

) e ¢ variants, while QATIN variants performed 2.5 to 3 times
of Q2 returned 9 results; each of these results have “*” for orse than QATP-IM on several queries. Figure 10 shows

one parameter. The logical intersection of the two inverte k&at the pattern is similar with SOL Server, although the dif
queries returned 679 results, but all of these were subsum .
erences are more marked with SQL Server on flash.

by the original set of 259 results. Thus, far fewer results ha
to be returned to the user. Checking subsumption is more With both PostgreSQL and SQL Server, the KATIN vari-
complicated in the KAT approach since it cannot be doneints were also somewhat more expensive than the corre-
as part of the join condition, and has not been implementedponding KATP variants, with one exception: KATP-NM
currently. performed significantly worse than all other KAT variants.
We believe this is because in KATP the initial inverted qegri
get repeated multiple times, and the no-materialization ve
sion evaluates the same query multiple times leading to poor
performance. In contrast with QATP, the number of rep-

. . . I . etitions is less, so while QATP-NM performs worse than
The earlier experiments did not highlight the difference bethe other QATP variants, the difference is not as marked.

tween the different KAT and QAT variants since most 0vaeraII, KATP-IM is the best amongst the KAT variants.

the forms in the IITB academic application had just asingleCom aring the performance ratios for individual queries. w
query. And out of the 22 forms with more than one query, paring e p a :

20 had the same parameters in all queries, and as a res]:ﬂ'émd that KATP-IM was never worse than the best KATIN

. . variants by more than a very small value, whereas in some
QATP and QATIN are identical, and KATP and KATIN are y very
- : . . cases all the KATIN variants performed 50% worse than
similarly identical, on these forms. The remaining 2 forms
o KATP-IM.
had queries with different parameters, but they both hagl onl
two queries; with only two queries, again QATP and QATIN  Although not explicitly shown in our results, across all
are identical. the forms (the original forms as well as the newly added
In particular, there is a potential for poor performance offorms), we found that performance was relatively slow with
the KATIN and QATIN approaches in cases with more thanPostgreSQL for queries where some keyword was present in
2 queries, where there is no parameter common across élie results of some form for a very large number of different
the forms. In such cases there would be no join conditioparameter values, resulting in very large results for same i
free of theis null disjunct, and as a result the plans couldverted queries. How to optimize such queries to avoid com-
require nested loops joins. puting large intermediate results is an area of future work.

No. of keywords

10.6 Comparison of KAT and QAT Variants
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Fig. 10 Performance with newly added forms on SQL Server (a) on Flasligneth Hard Disk (with cold cache)

10.7 Comparison with Materializing and Indexing Form  date even if keyword queries are used only occasionally. It

Results also worth noting that some updates may cause a very large
number of form results to be recomputed. Even worse, many

The approach of Duda et al. [7], which is an alternative todueries cannot even be maintained incrementally (most data

ours, is to materialize form results, and build a text indexpases which support view maintenance have significant re-

on the materialized results. For queries that can be incretrictions on the queries supported) and may require fell re

mentally maintained, we can implement indexing and viewcomputation.

maintenance as described in Section 9.5, by creating a mate- Thus, we believe our approach is better suited for pro-

rialized view for each form query. To test the overheads, wéluction systems where keyword queries are likely to be less

implemented a simplified form of materialization and view common than updates, insertions and deletions.

maintenance, which materializes and maintains inverted fo

queries; we also created text indices on the materialized re

lations. For the academic database, the total size of the rd1 Conclusionsand Future Work

sultant materialized views along with indices was 1431 MB,

on a 1GB database. The problem of keyword search on the results of form inter-
. . faces is of importance, since such interfaces provide infor
We measured the view maintenance performance onan_.. . . )

mation in a form fit for human consumption. We have pre-

update that added 9 course registrations for one studeat, me
. ented an approach to keyword search on form results, based
sured on a cold cache. View maintenance took 2.7 secong’s

with a hard disk, and 500 milliseconds with a flash disk, for> "Vering database queries, to return parameter bisding
.for which the form result contains the given keywords. We

an update that normally takes a few tens of milliseconds; thi S . .
. . .’ " "have proposed several optimizations of our basic technique
is an unacceptable overhead for the academic application. .

and presented a performance study which shows that the

actual cost, since (a) we did not create a merged index acrogged databases.

forms, which would require extra effort to maintain, and (b)  ag part of future work, we plan to improve the efficiency
some of the form queries were too complex for the simplgyy query processing by caching inverted queries, creating a
view maintenance algorithm we used, so we did not mainmerged text index which will avoid the need for separate
tain them. keyword lookups on each table, and caching mappings of
Further, the view maintenance overhead increases witWwhich keywords are present in which tables. Another im-
the number of form queries, and has to be paid for every upportant area of future work lies in dealing with keywords
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that are present in a very large number of form results with5. A. Silberschatz, H. F. Korth, and S. Sudarsh@atabase System
different parameter bindings. Concepts McGraw-Hill, sixth edition, 2010.
We also plan to extend our implementation to work with
a larger class of SQL queries. In particular we need to gen-
erate rewritings that extend operators to work with mudtipl
input partitions, each with a different set of parameterts wi
the “*” value; such an extension would allow us to handle,
for example, outerjoins which are not at the top level of the

query.
We also need to handle complex application code with
conditional execution of queries. A possible approach te ha
dling such forms is to create a separate logical form for each
possible execution path, with associated conditions under
which each of the logical forms will be executed. We also
plan to address the form ranking problem in more detail.
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