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Abstract In recent years there has been a good deal of re-
search in the area of keyword search on structured and semi-
structured data. Most of this body of work has a significant
limitation in the context of enterprise data, since it ignores
the application code that has often been carefully designed
to present data in a meaningful fashion to users. In this work,
we consider how to perform keyword search on enterprise
applications, which provide a number of forms that can take
parameters; parameters may be explicit, or implicit such as
the identifier of the user. In the context of such applications,
the goal of keyword search is, given a set of keywords, to
retrieve forms along with corresponding parameter values,
such that result of each retrieved form executed on the cor-
responding retrieved parameter values will contain the spec-
ified keywords. Some earlier work in this area was based on
creating keyword indices on form results, but there are prob-
lems in maintaining such indices in the face of updates. In
contrast, we propose techniques based on creating inverted
SQL queries from the SQL queries in the forms. Unlike ear-
lier work, our techniques do not require any special purpose
indices, and instead make use of standard text indices sup-
ported by most database systems. We have implemented our
techniques and show that keyword search can run at reason-

Aditya Ramesh
Stanford University (work done while visiting IIT Bombay)
E-mail: aramesh1@stanford.edu

S. Sudarshan
IIT Bombay
E-mail: sudarsha@cse.iitb.ac.in

Purva Joshi
Sybase, Pune (work done while at IIT Bombay)
E-mail: purvaj28@gmail.com

Manisha Naik Gaonkar
IIT Bombay
E-mail: gaonkar.mani@gmail.com

able speeds even on large databases with a significant num-
ber of forms.

1 Introduction

Keyword search has been extremely successful in the con-
text of Web search. There has been a good deal of research
on applying keyword search to structured data over the past
decade, for example [3], [10] and [1], with a number of sys-
tems built to support keyword search. However, these sys-
tems have thus far not seen wide adoption. A primary reason
is that they expose the underlying schema to users, which is
not appropriate for lay users. Even expert users would find it
hard to deal with the complexity of the schema in large ERP
systems. Thus, users of database-backed applications typi-
cally only interact with the database through (Web) form in-
terfaces, where they can fill in parameter values (with some
values, such as the current user’s identifier, automatically
filled in) and view the result of executing the form. Such
form based interfaces are ubiquitous, with ERP systems be-
ing a classic example of a mission critical system based on
form interfaces.

Form-based interfaces allow users to retrieve required
information in a convenient manner. However, enterprise ap-
plications today typically have a very large number of forms,
and it is not trivial for a user to even find out what forms
exist and what information they provide. Even if the user
knows what forms are available, it is not possible in general
to know what parameter values would lead to results con-
taining the desired keywords; as an example, a form may
take a student ID and return the name and other informa-
tion, but given the name of a student, there is no way for a
user to find the student ID, unless a search form is created
for that purpose. Even if such a search form were available,
to get information about a student, the user would have to
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first find the student ID using the search form, then navigate
to another form that provides desired information, and paste
the student ID in that form, which can be rather tedious.

Keyword search is a promising alternative for retrieving
information from such form-based applications. In a form-
based setting, the goal of keyword search is to retrieve forms,
along with associated parameter values, such that executing
the retrieved form on the retrieved parameter values would
return a result containing the specified keywords. When there
can be multiple answers (whether multiple forms, or multi-
ple different parameter values for a form), there is an asso-
ciated need to rank answers, and present the highest ranked
ones to users.

Consider the query ‘Silberschatz course’, where the goal
is to find courses that Silberschatz teaches. A form that takes
an instructor ID as parameter and returns the name of the in-
structor and the courses taught by the instructor may return
a result with the above keywords, given the ID of instruc-
tor Silberschatz (we assume the keyword “course” matches
metadata, or static words in a form). Even if there is no
form as above in the system, a form that takes a depart-
ment ID as a parameter and returns the names of instructors
and courses they teach may return the above answer, with
the CS department as the parameter value. Our goal is to
retrieve such (form, parameter-value) pairs. There may be
other more specific forms that return instructor/course in-
formation for specified semesters, or less restrictive forms
that return instructor/course information for all coursesin
the university. It is important to be able to rank such forms;
for example, ranking could be based on the length of the
form result.

As another example, consider the query ‘Programming
Languages Database Systems’. If there is a form that returns
the courses taken by a specified student (identified by ID),
a form search system can return such a form along with
the IDs of students for whom the form result contains all
the keywords, i.e. they have taken both courses. The query
would also return other form results as well, such as profes-
sors who have taught both courses, departments that offer
both courses, and so on.

Some enterprise applications support keyword based sea-
rch for retrieving relevant forms, but these are restrictedto
search on text that describes the form, rather than on text
in form results. For example, if we search for ‘professor
course’, the system should return the form that describes
which professors teach which courses, as long as the meta-
data of the form contains the terms “professor” and “course”.
However, parameter values, such as the IDs of instructor or
department names, which are required to execute the forms,
are not returned by such systems. Moreover, if we phrase
our query as “Silberschatz course”, with the goal of find-
ing what courses are taught by Silberschatz, or as “Silber-
schatz database”, with the goal of finding what form results

relate Silberschatz and database, then no form will be re-
turned if (as expected) the keyword terms “Silberschatz” and
“database” do not appear in the descriptive text of any form.

An approach that provides the functionality we desire
is to materialize form results for each possible parameter
value, and building an index on the materialized results, treat-
ing each result as a document. An optimized version of this
approach is described in Duda et al. [7]. This approach can
be expensive in a setting where there are a large number of
forms, each of which can take a large number of different pa-
rameter values, resulting in a large number of materialized
form results. Although disk size is no longer a limitation for
many systems these days, the bigger problem lies in main-
taining the materialized results in the face of updates.

Ideally, materialized results should be maintained incre-
mentally; in this case, in the face of an update, the sys-
tem must identify which (form, parameter-value) combina-
tions are affected. This problem is not addressed by Duda et
al. [7], but the keyword-independent query inversion tech-
niques we describe can in fact be used to create material-
ized views that help in the above task. However, our experi-
mental results show that even such incremental maintenance
can be very expensive given a large number of materialized
form queries. For systems where keyword queries are used
less frequently than normal form interfaces, the overhead of
view maintenance is imposed on every update, but benefits
only the occasional keyword query, which is not a reason-
able tradeoff. The problem of keyword search on virtual
(that is, non-materialized) XML views was addressed by
Shao et al. [14]. Their approach is not applicable to SQL,
does not consider parameterized queries, and does not have
any equivalent of our notion of query inversion. See Sec-
tion 2 for more details on related work.

Moreover, support for incremental view maintenance on
most database systems is restricted to simple types of queries.
Queries used in forms are often more complicated, and can-
not be maintained incrementally; recomputation requires ex-
ecuting the form queries on a very large number of param-
eter values, and would be unreasonably expensive. In con-
trast, our approach does not require any materialization or
view maintenance.

We address the keyword search on forms problem in the
following setting. Each form contains one or more underly-
ing queries (hereby defined as form queries) which are exe-
cuted when the form is submitted; the form result consists of
a static textual part, and a dynamic part based on the results
of the queries. For simplicity, we assume initially that each
form contains only one query, but later in Sections 7 and 9.2
we deal with forms having more than one query. Each form
has an associated set of (zero or more) parameters for which
values must be provided; we assume that all parameters are
mandatory, and do not consider the case of optional parame-
ters. We assume that these values are directly provided to the
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queries, and the results of the queries are returned directly to
the form result. Thus, technically speaking, we address the
problem of keyword search on parameterized queries.

Unlike earlier work based on materializing form results
and indexing the materialized results, our approach works
directly on the queries and the underlying database. As a re-
sult, there is no need to create and maintain form results.
However, we face the challenge of “inverting” parameter-
ized queries; normally the query is executed, with the given
values for its parameters, to get a result. In our context, for
a given query, and a given set of keywords, we need to find
parameter values that would generate a result containing the
specified keywords.

The contributions of this paper are as follows:

• In some cases, given a parameterized queryQ and a set
of keywordsK, it is possible to have an infinite num-
ber of parameter values, each of which would generate
a result containing the specified keywords. To deal with
this problem, we introduce the notion of safety of query
inversion, and provide conditions that guarantee safety,
in Section 4.

• We then present (in Sections 5 and 6) a two-step algo-
rithm for inverting parameterized queries. Given a pa-
rameterized query and a set of keywords, Step 1 of the
inversion process creates an inverted query disregarding
the keywords, while Step 2 adds keyword conditions to
the result of Step 1. Execution of the final inverted query
generates the result parameter values. The query inver-
sion approach handles safe queries defined using rela-
tional operations such as select, project, join, aggrega-
tion, outerjoins and set operations.
Step 1 of our query inversion algorithm can also be used
to create a materialized view which can be used, given
an update, to identify the parameter values for which the
form result is affected by the relation update. Our tech-
nique does not need this feature, but it can be used for
incremental maintenance in case form results are mate-
rialized using the approach of Duda et al. [7].

• Forms often output results from multiple queries; such
forms can be modeled as containing a single query de-
fined as the outer-union of the individual queries. How-
ever, when the parameters to the queries are not identi-
cal, inversion of the resultant outer-union query is un-
safe. In Section 7 we present details of two approaches
for inversion of such unsafe union queries, which we call
the keyword-at-a-time (KAT) approach, and the query-
at-a-time (QAT) approach. We also describe several vari-
ants and optimizations of these two approaches.

• With certain keywords, there may be large number of
results (a result is a form-id,parameter(s) pair). We dis-
cuss (in Section 8) how to rank results in a meaningful
fashion.

• Although our algorithm descriptions are in terms of re-
lational algebra, we have implemented our algorithms
on SQL queries. We present (in Section 10) results of a
performance study using a real academic database appli-
cation from IIT Bombay. The performance study, using
PostgreSQL and SQL Server to evaluate inverted SQL
queries, demonstrates the practicality of our proposed
techniques, and their benefits over the alternative of ma-
terializing form results. The study also demonstrates the
scalability of our techniques with respect to number of
keywords and number of forms, and compares the alter-
native algorithms that we have proposed.

The rest of the paper is organized as follows. Related
work is described in Section 2, while Section 3 presents the
system model, and some assumptions we make. Section 4
addresses the issue of safety of query inversion. Section 5
describes how to invert simple queries with select, project
and join, while Section 6 covers safe queries using other
relational algebra operations. Section 7 describes two ap-
proaches to handling forms with multiple queries (which
result in unsafe union operations), including several vari-
ants and optimizations of the two approaches. Section 8
describes how to rank the results in case there are multi-
ple results. Section 9 outlines implementation details, opti-
mizations and extensions. In Section 10, we present results
of our performance study, while Section 11 concludes the
paper and describes directions for future work.

2 Related Work

The problem of keyword search on form interfaces was ad-
dressed earlier by Duda et al. [7]; their approach is based
on indexing materialized form results, but with an optimiza-
tion called predicate-based indexing. They do not provide
details on how to incrementally maintain the index in the
face of updates. There has been work on database search
in the enterprise search industry; however we are not aware
of any publicly revealed approaches other than crawling the
application forms and applying text indexing on the crawled
result.

Combining keyword search with databases has been an
active area of research, including systems such as BANKS
[3], DBXPlorer [1], DISCOVER [10], and algorithms pro-
posed by [6], [12] and [11]. However, the goal of these pa-
pers is fundamentally different from our application in two
major aspects. First, the above body of work deals directly
with the database data and schema, and does not have any
concept of forms, or form queries. Some of the above work
actually generates SQL queries from the given keywords;
however, the generated SQL queries are basically join quer-
ies that help to find connections between tuples contain-
ing the keywords, and there is no notion of parameters. In



4 Aditya Ramesh et al.

contrast, form queries can be quite different; for example,
a form may contain a query that selects all courses taught
by an instructor, without a join. A keyword query on forms
which returns the above form can also be executed as a key-
word query on the underlying data, and could be satisfied
by a self join query, with the instructor identifier as the join
attribute. However, the results would not be presented in a
manner that is intuitive to users, and the keyword query may
return connections that are meaningless to lay users.

The notion of QUnits was proposed by [13] to make
keyword query results more relevant by defining (parame-
terized) queries that gather related information, and which
can be subsequently queried; however [13] do not provide
algorithms for answering keyword queries. QUnits can in
fact be considered as forms, and our techniques can be ap-
plied to perform keyword queries on QUnits.

A somewhat different version of form search is addressed
by [5,2]; in contrast to our work, they assume that a schema
is given, but forms do not exist a-priori, and have to be gen-
erated by the system. They generate a space of forms based
on SQL queries. The main contribution is to find a form that
may be relevant to a given set of keywords; however, they
do not generate parameter values, and further do not even
guarantee that there exists a parameter value for a retrieved
form, whose result would contain the given keywords. As an
example of the limitation of that approach, if a form takes
an employee ID and returns the name, a keyword search on
name would retrieve the form, but not provide the employee
ID; without that value, the user would have no idea how to
use the form. (Technically, in the approach of [5], parameter
values are optional, but if the employee ID is omitted, the
form would return names of all employees.)

The problem of keyword search on virtual (that is, non-
materialized) XML views was addressed by Shao et al. [14].
Their solution creates a subset of the original dataset (called
a pruned document tree, or PDT) making use of path in-
dices, on which the original XML view is executed; their
approach guarantees that the result of the view is identicalon
the original document tree and the PDT. In addition, inverted
indices are used to add keyword-containment annotations
to the PDT which are used during actual query evaluation
to generate only results containing the required keywords.
Their approach is not applicable to SQL, does not consider
parameterized queries, and does not have any equivalent of
our notion of query inversion.

3 System Model

We assume that the system at hand has a set of formsF =

{f1, f2, · · · fn}, and each formfi ∈ F takes a set of param-
etersPi. Formally, the goal of our application is as follows:
given a set of keywordsK = {k1, k2, . . . , km}, to return a
ranked list of (form, parameter-value) pairs(fi, pj) such that

form fi when executed on parameter valuespj returns a re-
sult that contains all keywords inK; the metrics for ranking
answers are discussed later.

We assume initially that each form is defined by a sin-
gle parameterized query, which uses all the form parameters;
later, in Section 7, we discuss how to handle forms with mul-
tiple queries which may each use a subset of the parameter
values.

We also assume initially that the result of a form exe-
cuted with given values for the parameters contains exactly
the result of the query executed on the given parameter val-
ues; extensions to allow static text in the form result are
discussed later in Section 9.2. Some applications construct
form queries dynamically, based on which of several op-
tional parameter values are provided by a user; we do not
handle such dynamically constructed queries, and require
that queries in a form be statically fixed.

We use the termquery inversionto refer to the follow-
ing task: given a query and a set of keywords, retrieve all
possible tuples of parameter values such that the query re-
sult with each tuple of parameter values contains the given
keywords.1 Although we present our techniques using rela-
tional algebra, our actual implementation is based on SQL;
the translation from relational algebra to SQL is straightfor-
ward.

We use the following university schema as a running ex-
ample in this paper:

• prof(ID,name, dept)
• course(CID,title,dept)
• teaches(ID,CID,year, sem)

Here teaches(ID) and teaches(CID) are foreign keys refer-
encingprof(ID) andcourse(CID) respectively.

4 Unsafe Queries

There are certain queries for which the solution set for the
parameters is infinite. As an example, assume that the rela-
tion prof contains two records:

(1,‘John’,‘CS’) and (2,‘Bob’,‘EE’)
and consider the following parameterized queryQ:

Πname(σdept<>$Dept(prof))

If the keyword query is ‘John’, then the result parameter
values forQ are all strings except ‘CS’. The result includes
even values that are not valid departments, since the clause
“dept <> $Dept” will always evaluate to true as long as
Dept is not ‘CS’. Thus, the solution set for this query is un-
bounded.

1 The idea of query inversion arose out of conversations with Surajit
Chaudhuri.
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Formally, a parameterized query is considered to beun-
safeif it returns a non-empty result for an unbounded num-
ber of parameter values, including values that are not le-
gal database values. This principle is similar to the concept
of domains and safety in tuple relational calculus (see, e.g.
[15]). There are a number of reasons why a query may be
unsafe, including parameters used only in inequality condi-
tions (e.g.P.name< $N1); parameters used only in dis-
junctive conditions (e.g. “P.dept= $D1 ∨ P.ID = $D2”);
parameters used only in the right hand input of set differ-
ence or antijoin⋉ (corresponding to not-in or not-exists sub-
queries in SQL); parameters used only in the right input of
a left outer join (––✶), and symmetrically, left input of a right
outer join (✶––), and either input of a full outer join (––✶––),
and parameters used only in one input of a union (∪) opera-
tion.

A sufficient syntactic condition for safetyof a parameteri-
zed query, defined recursively, is as follows. An expression
E is syntactically safeif one of the following is true:

• E is a relation instance (this is the base case)
• The root ofE is a selection (σ) or join (✶) operation, and

(a) the children of the root operation are safe, and (b)
with the selection/join conditionθ expressed as a con-
junction θ1 ∧ θ2 ∧ . . . ∧ θn, for every parameter$Pi

that occurs in the condition, there is a conjunctθj of the
form $Pi = Rk.Am, which equates the parameter to a
relation attribute.

• The root ofE is a project operator (Π) or an grouping/-
aggregation operator (γ), and (a) the children of the root
operation are safe, and (b) no parameter is used in any
expression that appears in the projection list.

• The root ofE is a left outerjoin (––✶) or a right outerjoin
(✶––), the children of the root operation are safe, and ev-
ery parameter$Pi that occurs inE also occurs in the
input that is preserved, i.e., the left input for––✶, and the
right input for✶––.

Note that the above condition rules out parameters that only
occur as arguments to a function, such asfn($Dept), since
arbitrary functions cannot be inverted (and may be unsafe).

The above syntactic conditions for safety are revisited
and (in some cases) extended when we cover inversion of
the union, set difference, semi-join and antijoin operators in
Section 6. In the rest of the paper, unless otherwise specified,
we assume that queries satisfy the above syntactic safety
condition.

A sufficient semantic condition for safetyis that the query
can be rewritten to a form that satisfies the above syntactic
conditions. For example, given a query

(σ$P1=r.A(r)) ✶ (σ$P1>s.B(s))
where the subqueryσ$P1>s.B(s) fails the syntactic safety
condition, we can rewrite it as

σ$P1=r.A∧$P1>s.B(r ✶ s)

which does satisfy the syntactic safety condition. As an-
other example, SQL queries containing subqueries can be
rewritten before checking for syntactic safety; such queries
can be represented in relational algebra using semijoin or
antijoin, or in some more complex cases, by using an “ap-
ply” operator [8]. A variety of decorrelation techniques are
available for such queries, which can be used to remove sub-
queries (or apply operators, if subqueries are representedus-
ing the apply operator), and syntactic safety can be checked
on the rewritten query. To handle such queries, we assume
they have been rewritten to satisfy the syntactic conditions.

Another sufficient semantic condition, which exploits kn-
owledge of the application that uses the parameterized query,
is that every parameter can only take on values from a finite
domain; in such cases, for a parameter$P1 the queryQ can
be rewritten asQ×σP=$P1DP , whereDP is a relation with
a single attributeP , containing all values that parameterP1

can take. It should be clear that the rewritten query is syn-
tactically safe with respect to parameter$P1.

While such a rewriting can be useful in many cases, it
could be very inefficient if the domain ofP is large. Later in
the paper we show how to handle inversion of certain cases
of unsafe queries more efficiently, by using a special value
(“∗”) which represents the set of all possible values.

Consider a query that takes as parameters a low and a
high price, and displays items whose price falls within the
specified range. Such a query is unsafe since the parame-
ters are not equated to any relation attribute. Such queries
are in fact commonly used in product search applications,
to allow users to specify ranges on a variety of attributes.
However, for the purpose of keyword search such an unsafe
query can be replaced by one which takes an exact value and
returns items whose price is equal to the specified price; the
replacement query could be safe even though the original
is not. Although such a replacement query is not equivalent
to the original one, it would permit keyword search on the
query result, and the resultant parameter values can in fact
be used for (both low and high values of) the range in the
original form.

5 Inverting Simple Queries

In this section we consider how to handle simple queries
containingσ,Π, ✶, and×. We consider other relational al-
gebra operations later, in Section 6.

In general, inversion is done in two steps:

1. The first step is independent of the keyword query; it
takes as input the given query, and gives as output an-
other query which we call the keyword-independent in-
verted query. This step can be done as part of prepro-
cessing, before any keyword queries are submitted to the
system.
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2. The second step uses the keyword-independent inverted
query, along with the given keywords, to form a query
that gives the keyword search result, i.e., parameter val-
ues, corresponding to the original query.

Given multiple forms (for now, assuming each has only a
single query) the same process is applied to each query.

5.1 Keyword-Independent Inversion

Overall, the goal of keyword-independent inversion is as fol-
lows: given a parameterized queryQ, create a query (the
inverted query) INVQ(Q) which has as attributes all the pa-
rameters as well as all the attributes of the original query;
further, INVQ(Q) must be defined in such a way that for
each parameter bindingb that leads to a non-empty query
resultRQb, there is a tuple in the result ofINVQ(Q) cor-
responding to each tuple inRQb, with the valueb in the
parameter attributes, and vice versa.

Given any query using only the selectσ, project (Π),
join (✶) and Cartesian product (×) operations, we rewrite it
into the canonical form

ΠA1,...,Am(σθ(r1 × r2 × . . . × rn))
and then apply the keyword inversion technique described
below.

Given a safe queryQ of the following form, withk pa-
rameters:

ΠA1,...,Am(σθ(r1 × r2 × . . . × rn))

where parameterized predicateθ is of the formB1 = $P1∧
B2 = $P2∧ ...∧Bk = $Pk)∧ θ0, whereθ0 is a predicate
that does not contain any parameters,Bj is the column to
which the parameter$Pj is bound, and no parameter occurs
more than once inθ (we relax this last condition shortly).
Then the keyword-independent inverted queryINVQ(Q) is
defined as follows:

ΠB1 as $P1, B2 as $P2,...,Bk as $Pk, A1,...,Am(

σθ0
(r1 × r2 × . . . × rn))

The idea is that the query generates all possible parame-
ter values that could have given a non-empty result. As of
now, there is no restriction on the keywords, these restric-
tions will be added subsequently as selections on the query.
We keep track of the source of each attribute in the output
of INVQ(Q), i.e., whether it is a parameter or an original
projection attribute.

For simplicity of presentation, where the attribute name
Bi and the parameter name of$Pi are identical, we replace
Bi as$Pi by just Bi in the projection list; in other cases,
we omit the “$” symbol from the parameter name, assuming
there is no name conflict between parameters and attributes
in the query. In the rest of the paper, for simplicity of presen-
tation, when we describe how inverted queries are created

we assume that parameter names are the same as the names
of the attribute that they are equated to.

If any of the parameter attributesBi can take on a null
value, we need to add an extra conjunct(Bi is not null) to
the selection conditionθ0, for each suchBi. This is required,
since a valuenull for parameter$Pi will not equal a null
value inBi.

We can also relax the condition that no parameter occurs
more than once inθ as follows. Each parameter must occur
in at least one conjunct of the formBi = $Pi due to the
requirement of safety; we pick one such conjunct for each
parameter$Pi, and callBi theparameter attributeof $Pi.
Let θ1 be the result of deleting fromθ the conjuncts chosen
above for all parameters. Now,θ1 may contain occurrences
of some parameters$Pi; we defineθ0 as the result of replac-
ing in θ1 all occurrence of$Pi by its parameter attributeBi,
for every parameter$Pi.

Example 1Suppose we are given the query
Πname,title(σdept=$Dept∧sem=$Sem(prof ✶ teaches✶ course))

Although this query uses natural join, the rewriting is iden-
tical to the case described above, where the relations have
a Cartesian product. The resultant keyword-independent in-
verted query is

Πdeptas Dept, semas Sem, name,title(prof ✶ teaches✶ course)
Note that the selection condition in this rewritten query is
empty, i.e., true, so the selection has been omitted.✷

It is worth noting that the keyword-independent inverted
query can be stored as a materialized view, which can be
used to maintain a materialized form index such as the one
proposed in Duda et al. [7]. Specifically, the materialized
view can be used to find which (form, parameter) values are
affected by a database update. If a particular (form, param-
eter) value is affected, then one of the rows in the corre-
sponding materialized view, with that parameter value, will
be affected by the update (i.e., inserted, deleted, or updated).
Form results for such parameter values must be recomputed
and reindexed. Note that [7] does not address how to main-
tain the index.

5.2 Keyword-Specific Query Inversion

To process a given keyword query on a given form query,
we first invert the form query, and then add selections based
on the given keywords to the inverted query. The selections
ensure that the given keywords occur in the result. We first
handle the case of keyword queries having only a single key-
word, and then address the more general case of queries with
multiple keywords.
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5.2.1 Inversion for the Single-Keyword Case

Given a queryQ, its keyword-independent inverted query
INVQ(Q), and a single keywordK1, the resulting keyword-
specific inverted queryINVQ(Q,K1) is defined as follows:

ΠB1,B2,...,Bk(σContains((B1,...,Bk,A1,...,Am),K1)(

INVQ(Q)))

where predicateContains((B1, . . . , Bk,A1, . . . , Am),K1)
checks that keywordK1 is contained in at least one of the
attributesB1, . . . , Bk,A1, . . . , Am.

Note that we need to add the parameter attributes (B1,

. . . , Bk) to theContainspredicate even if they are not part
of the original query result, since many applications output
parameter values directly to the form result, without (redun-
dantly) retrieving the value of the corresponding parameter
attributeBi in the query. Adding theBi’s ensures that pa-
rameter binding results from such forms are included in the
inverted query result.

Example 2Given the inverted query from Example 1, and a
keyword ‘John’, the inverted query taking the keyword into
account is

ΠDept,Sem(σContains((Dept,Sem,name,title),‘John′)(J))

whereJ denotes the keyword-independent inverted query
from Example 1, namely

Πdeptas Dept,semas Sem,name,title(prof ✶ teaches✶ course)
✷

For the case whereB1, . . . , Bk,A1, . . . , Am are attribu-
tes of a single relationr, theContainspredicate can be ef-
ficiently evaluated, provided a text index has been built on
all attributes of relationr (or at least those that appear in the
inverted query result). TheContainspredicate syntax shown
is modeled on SQL Server, where the predicate can be writ-
ten as

contains((B1, . . . , Bk,A1, . . . , Am),K1) > 0
but other databases such as PostgreSQL offer equivalent fea-
tures. See Section 9.4 for implementation details related to
theContainspredicate.

However, in the above example theContainspredicate
involves attributes from multiple relations. None of the cur-
rently available database systems supports text indices or
Contains(or equivalent) predicates that span multiple rela-
tions. As a result, whenB1, . . . , Bk,A1, . . . , Am contain
attributes from more than one relation, theContainspredi-
cate must be split into oneContainspredicate per relation,
which are combined disjunctively. For example, suppose
the above set of attributes isB1, B2, A1, A2, whereA1, B1

are fromr1 andA2, B2 are fromr2; then the predicate can
be written as

Contains((A1, B1),K1) ∨ Contains((A2, B2),K1)

Equivalently, the inverted query can be shown as the union

of two queries
ΠB1,B2(σContains((A1,B1),K1)(KIQ))

∪ ΠB1,B2(σContains((A2,B2),K1)(KIQ))

Example 3For the query from Example 1, which has at-
tributes that come from relationsprof, course, andteaches,
the inverted query can be expressed as

ΠDept,Sem(σP1∨P2∨P3(J))
whereJ denotes the keyword-independent inverted query
from Example 1, andP1, P2, andP3 denote, respectively,
Contains((name, Dept),‘John’), Contains((Sem),‘John’)and
Contains((title),‘John’).
Alternatively, the keyword-specific inverted query can be
expressed as

ΠDept,Sem(σP1(J)) ∪ ΠDept,Sem(σP2(J))
∪ ΠDept,Sem(σP3(J)) ✷

In practise, we found the formulation using union was
faster on both PostgreSQL and SQL Server, and we use this
version in our performance study.

5.2.2 Inversion with Multiple Keywords

Keyword queries using multiple keywords can be handled in
a straightforward manner for safe queries as follows. Given
a queryQ, and keywordsK1, . . . ,Kn, the inverted query
INVQ(Q,K1,K2, . . . ,Kn) is defined as

INVQ(Q,K1) ∩ INVQ(Q,K2) ∩ . . . ∩ INVQ(Q,Kn)

Handling multiple-keyword queries is more complicated
in cases where some operations such as union (∪) are used
which may result in unsafe queries; we will see how to han-
dle some such unsafe queries later in Section 7.

Example 4Continuing with our earlier form query exam-
ple, if the keyword query were{Avi, database}, the in-
verted query would be as follows:

ΠL(σC1∨C2∨C3(J)) ∩ ΠL(σC4∨C5∨C6(J))
whereJ denotes the keyword-independent inverted query
from Example 1,
L denotesDept, Sem,
C1 denotesContains ((name, Dept),‘Avi’),
C2 denotesContains ((Sem), ‘Avi’),
C3 denotesContains ((title),‘Avi’),
C4 denotesContains ((Sem),‘database’),
C5 denotesContains((name, Dept),‘database’), and
C6 denotesContains ((title),‘database’).
Alternatively, the query can be expressed as:

(ΠL(σC1(J) ∪ ΠL(σC2(J) ∪ ΠL(σC3(J))

∩ (ΠL(σC4(J) ∪ ΠL(σC5(J) ∪ ΠL(σC6(J)) ✷

As a special case, if the query result is guaranteed to
have at most one result for a parameter binding, instead of
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intersecting two queries, we use a conjunction of theCon-
tainspredicates. For example if (unrealistically) each (dept,
sem) combination had exactly one result above, the query
would be

ΠL(σ(C1∨C2∨C3)∧(C4∨C5∨C6)(J))
whereL, J and theCi are as defined earlier. We call the
above optimization theprimary keyoptimization.

6 Inversion of Other Relational Operations

We now consider the problem of computing the keyword-
independent inversion of queries containing relational oper-
ations other than select, project and join. These operatorsin-
clude aggregation, intersection, union, set difference, semi-
join, and antijoin (semijoin and antijoin are used to translate
nested subqueries into relational algebra).

For the case of queries using only the basic operations
σ,Π and ✶, it was easy to rewrite the queries to get the
parameter attribute in the result of the inverted query. This
task is more complicated with other relational operations,
and we consider those operations in this section.

Once the keyword-independent inverted query has been
generated, the task of adding the keyword conditions can be
done as described earlier in Section 5.2, since that step does
not depend on the structure of either the original query or
the keyword-independent inverted query.

In this section we only deal with safe queries, where the
result of inversion is finite. However, there are many unsafe
queries where the result can be represented in a finite manner
by using a special value “*” representing the set of all pos-
sible values. In Section 7 we discuss extensions to handle
some special cases of unsafe queries, which are important in
practice.

6.1 Aggregation Operations

As discussed earlier, for the case of queries with projections
at the top, we added the parameter attributes to the pro-
jection list. However, if there is an aggregate operation on
top of the projection, adding parameter attributes to a pro-
jection can change the number of duplicates. But the more
important question is, how to make parameter attribute val-
ues available above an aggregation operation. We solve both
problems as outlined below.

Consider an aggregation operationGγaggfns(A)(E) whe-
re G denotes the group-by attributes, andaggfns(A) de-
notes the aggregation functions and the attributes they are
applied on. Suppose that the set of parameter attributes from
expressionE areB1, . . . , Bn. We then rewrite the expres-
sion as

G,B1,...,Bnγaggfns(A)(INVQ(E))

whereINVQ(E) denotes the inverted query generated from
E.

Observe that by adding the parameter attributes to the
group-by list, the rewritten query returns the same aggregate
result for any particular binding of values to the parameter
attributes as the original query with the specific parameter
binding. This property holds even if some of the parameter
attributes are used in the aggregation operation (for a spe-
cific parameter binding, these would be constants).

6.2 Intersection Operation

We now consider how to perform keyword-independent in-
version for the intersection operation (∩). LetQ = Q1∩Q2.
In caseQ1 andQ2 have identical parameters,INVQ(Q) can
be defined in a straightforward manner as

INVQ(Q1) ∩ INVQ(Q2)

However, in general different parameters may be used in
each of the inputs, leading to different parameter attributes
being present in the inverted forms ofQ1 andQ2, and a di-
rect intersection is not possible. When the intersection is a
set intersection (the default in SQL) an alternative is to use
a natural join in place of intersection. Specifically, givena
queryQ = Q1 ∩ Q2 where the attribute names of corre-
sponding attributes ofQ1 andQ2 are identical, the inverted
queryINVQ(Q) is simply

INVQ(Q1) ✶ INVQ(Q2)
where each ofQ1 andQ2 is inverted with respect to just the
parameters that occur in it. Note that if each parameter oc-
curs in only one ofQ1 or Q2, the natural join above would
equate only the original attributes ofQ1 andQ2, but if any
parameter appears in bothQ1 andQ2, the natural join would
ensure that both have the same value. If the attribute names
of Q1 andQ2 are not identical, they should be appropriately
renamed.

Example 5For example, given the query
ΠID(σname=′Mike′(prof))∩ΠID(σsem=$Sem(teaches))

the inverted query is
ΠID(σname=′Mike′(prof)) ✶ ΠID,sem(teaches) ✷

The above inversion may change the number of dupli-
cates with a given parameter value, as compared to the orig-
inal query running on a given parameter value. The duplicate
count matters if the operation is part of an expression with
an aggregation operation above it.

We can solve the above problem by defining a version of
the multiset join operation whose duplicate semantics match-
es that of the intersection operation. This can be done by
adding to each tuple an extra attribute recording the dupli-
cation count of that tuple, and replacing all duplicates by a
single tuple with an appropriate count; this can be done eas-
ily by a aggregation operation. The count associated with a
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tuplet in the result of a join operationr ✶ s would then be
the minimum of the counts of the tuplestr andts, if tuples
tr andts joined to give tuplet. All operations further up in
the query tree would have to be modified to correspondingly
take the count attribute into account. We omit details, since
the approach of replacing duplicate tuples by using an ex-
tra count attribute, and defining multiset relational algebra
operations based on the count attribute, is well known.

There is an alternative solution which has the following
two steps

1. Add extra parameter attributes to each ofINVQ(Q1) and
INVQ(Q2), so they have the same schema. The value of
the parameter attributes added thus is set to the value
“*”, which matches with every concrete value.

2. The query is then rewritten as
INVQ(Q1) ⋓ INVQ(Q2)

where the inverted queries have the extra attributes added
as above, and where⋓ denotes intersection taking the
special semantics of the “*” value.

Such an operation is, however, not supported by any database
we are aware of. It is worth noting that the result of the⋓ op-
eration will not have a “*” value in the above case, since the
value of each parameter attribute will be non-“*” in at least
one of the two inputs.

6.3 Union and Outer Union Operations

The case of union operations is more complicated, since for
a particular parameter binding some of the keywords may
be present only in one input to the union, and others may be
present only in the other input. Additionally, as in the caseof
intersection, some parameters may be used in one input and
others in the other input, complicating the task of inversion.

SupposeQ = Q1 ∪ Q2. If each subqueryQi has the
same set of parameters, the result of the invertingQ is sim-
ply INVQ(Q1)∪INVQ(Q2), whereINVQ(Qi) is the keyword-
independent inverted query corresponding toQi. In this case,
where both subqueries have the same set of parameters, as
long as the subqueriesQ1 andQ2 are safe, so isQ.

However, if the subqueries have different sets of param-
eters, the problem is more complicated. Suppose thatQ =
Q1 ∪ Q2 has parameters$B1, $B2 and$B3, and suppose
thatQ1 has parameters$B1 and$B2, while Q2 has param-
eters$B2 and$B3. The output of the inverted form ofQ1

would contain attributesB1 andB2, while that ofQ2 would
containB2 andB3.

The query in the above example is in fact unsafe even
with respect to a single keyword query; ifK1 is contained
in an answer forQ1, then the value of$B3 is irrelevant, and
it can take any possible value, while ifK1 is contained in an
answer forQ2, then the value of$B1 is similarly irrelevant.

(It is possible, however, that for specific pairs of keywords
K1, K2, the query is not unsafe.)

If we know that the parameters that are present in only
one of the inputs to the union come from a finite domain, we
can rewrite each input by adding a cross product with the
domain of those parameters that are missing from that input,
as described in Section 4. For example, if parameter$P1

is not present inQ1, we rewriteQ1 asQ1 × σP=$P1DP ,
whereDP is a relation with a single attributeP1, contain-
ing all values that parameterP1 can take. However, such a
rewriting would be rather inefficient if the domain is large.

A more efficient (and more general) approach is to use a
special value “*” to represent the set of all possible param-
eter values. For example, ifQ1 has parameter$P1 andQ2
has parameter$P2, if keywordk1 is present in the result of
Q1 with $P1 = 4, then the inverted result ofQ = Q1 ∪Q2

with respect tok1 would contain a tuple(4, ∗), indicating
that k1 is present in the result ofQ invoked with$P1 set
to 4, with $P2 set to any possible value. We explore this
approach in more detail in Section 7.

The outer-union operation is an extension of the union
operation, that allows the operands to have different schema.
The outer-union operation first pads the input tuples with ex-
tra attributes to bring them to a common schema (contain-
ing the union of all the attributes of the input relations); for
each tuple, the values of the attributes added above are set
to null. After bringing the inputs to a common schema, the
outer-union operation performs a regular union operation.
The outer-union operation is important in practice, since it
permits us to model a form that contains multiple queries
Q1, . . . , Qn as a form containing a single query defined as
the outer-union of all theQis.

Since the outer-union operation can be expressed in terms
of projection and union, it can be inverted using the inver-
sion techniques we have seen earlier (as well as those which
we will see later in Section 7) for the union and projection
operations.

6.4 Set Difference Operation

Given the expressionQ = Q1 − Q2

1. If the parameters ofQ1 andQ2 are identical, the inverted
query is

INVQ(Q1) − INVQ(Q2)

2. More generally, as long as all parameters used inQ2 are
also used inQ1, the inverted query is

INVQ(Q1)⋉ INVQ(Q2)

where⋉ denotes the natural anti-semijoin.
3. Finally, we consider the case where some of the parame-

ters used inQ2 are not used inQ1. Let these parameters
be $P1, $P2, . . . , $Pk. In this case, in general, there
is a possibility of the query being unsafe, since there
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may be an infinite number of values for these parame-
ters for which the query result may contain a particu-
lar keyword; at the same time there may be some val-
ues for these parameters, for which the query result does
not contain the keyword. Therefore, to ensure safety, we
require that any such parameter must also be equated
to an attribute of some other (finite) relation. We can
then rewriteQ1 as follows, along the lines described in
Section 4. Let us denote such a relation corresponding
to parameterPi asBindRel(Pi), and letBV (Pi) de-
noteσPi=$Pi(ΠPi(BindRel(Pi))), and letBV denote
(BV (P1) × BV (P2) × . . . × BV (Pk)) Then the in-
verted query is

(BV × INVQ(Q1))⋉ INVQ(Q2)

Inversion using the⋉ does not, however, preserve the
count of duplicates. If the count of duplicates needs to be
preserved, we can use modified forms of the techniques de-
scribed in Section 6.2 for intersection.

6.5 Semijoin and Antijoin

Uncorrelated where clause subqueries in SQL lead to semi-
joins and antijoins in the relational algebra representation.
Correlated subqueries can be modeled using the apply op-
erator [8]; but as shown in Elhemali et al. [8], decorrelation
techniques can be used to replace the apply operator by a
join, semijoin, or antijoin.

Inversion of queries with a semijoin/antijoin is straight-
forward for parameters that appear in the left input, since the
corresponding parameter attributes are already present inthe
result.

However, inversion is harder if parameters appear in the
right hand side input, since the corresponding attributes do
not appear in the result, and cannot be directly added. The
solution for the case of semijoins is to use decorrelation
techniques such as those proposed by [8] to replace semi-
joins by joins. The decorrelation technique can in fact be
simplified in the absence of aggregation, since we do not
care about the number of duplicates in the inverted query
result. We omit details for lack of space.

Parameters appearing in the right input of antijoins (cor-
responding to not-in or not-exists subqueries) are harder to
handle. The safety requirement in this case requires that any
such parameter must also be equated to an attribute of some
other (finite) relation. We can use techniques similar to those
described for set difference in Section 6.4 to handle this
case.

6.6 Outer Joins

We first consider the case of left outerjoin. Consider a query
Q = Q1 ––✶ Q2. If all the parameters used inQ are also

present inQ1, the inverted form ofQ is INVQ(Q1) ––✶
INVQ(Q2). (In caseQ = Q1 ––✶θ Q2, the inverted query is
INVQ(Q1) ––✶θ∧γ INVQ(Q2), where predicateγ equates all
parameters that appear in bothINVQ(Q1) andINVQ(Q2).)

However, if some parameters used inQ are not present
in Q1, Q can be unsafe. For example, suppose parameter
P1 is used inQ1, andP2 in Q2. If the given keywords are
present inQ1 for a particular value ofQ1, then thatP1 value
combined with any arbitrary value forP2 (represented by a
“*” value) would be an answer. We address the inversion of
some cases of unsafe outer joins later, in Section 7.4.

As an alternative, if the domain ofP2 is finite we can
introduce parameterP2 into Q1 by rewriting Q1 to Q1 ×
BV (P2), whereBV is as defined in Section 6.4, and then
perform inversion. However, in case the domain ofP2 is
large, the above query can be inefficient.

The case of✶–– is symmetric to the case of––✶. The case
of full outerjoin ––✶–– can be handled similar to the case of
––✶ by the expression

INVQ(Q1) ⋒ (INVQ(Q1) ✶ INVQ(Q2)) ⋒ INVQ(Q2)

provided thatQ1 andQ2 have the same set of parameters.

7 Inversion of Unsafe Union Queries

In this section we focus on inversion of union operations, for
the case where the inputs to the union are safe queries, but
may have different parameters. Such union queries are used
to model forms that output results from multiple queries,
which are quite commonly used in practice. As discussed
in Section 6.3, such union queries are unsafe, even though
the subqueries are safe. Thus, in this section we address in-
version of a special case of unsafe queries.

In the rest of this section we assume that the given query
Q is a union of queriesQ1 ∪ . . . ∪ Qn, where eachQi is a
safe query (i.e., safe with respect to the parameters used in
Qi). We assume that the union operation is at the top level
of the query (in other words, we assume that the result of
keyword-independent inversion ofQ is not used as the input
for inverting a higher-level operation).

The general case of handling unsafe queries is beyond
the scope of this paper, although in Section 7.4 we briefly
discuss how to handle certain unsafe outerjoin operations,
and to remove the restriction of unsafe operations occurring
only at the top of the query.

7.1 Motivation and Intuition Behind Our Approaches

Recall from Section 6.3 that if the inputsQi to a union op-
erator all have exactly the same parameters, and are individ-
ually safe, the union queryQ is safe, but if theQi have dif-
ferent parameters, the union queryQ is unsafe. Forms often
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have multiple queries, with different queries having differ-
ent parameters; for example, a form that takes a student ID
and a year/semester may have two queries, with the first tak-
ing the student ID as parameter and fetching and displaying
the students name, and the second taking student ID, year
and semester as parameters, and fetching and displaying the
students academic performance in that year/semester. (The
different queries may have different output columns, but as
discussed in Section 6.3, the union operation in this case is
really an outer-union operation, which adds extra columns
to each of the inputs to bring them to the same schema, and
sets the values for these added columns to null.)

Thus, this case of unsafe queries does occur commonly
in practice, and must be handled. To handle such unsafe
queries, we use a special value “*” to represent the set of
all possible parameter values, allowing an infinite number
of parameter bindings to be represented efficiently in a finite
manner.

For example, ifQ1 has parameter$P1 andQ2 has pa-
rameter$P2, if keyword k1 is present in the result ofQ1

with $P1 = 4, then the inverted result ofQ = Q1 ∪ Q2
with respect tok1 would contain a tuple(4, ∗), indicating
thatk1 is present in the result ofQ invoked with$P1 set to
4, with $P2 set to any possible value.

More formally, saying that(4, ∗) is an inverted query
result is equivalent to saying∀X ∈ domain$P2, (4,X)

is an inverted query result. Note that we use the symbol “*”
for notational convenience; an implementation could use the
SQL null value instead of “*”. We also assume for simplicity
that the literal value “*” does not appear in inverted query
results; if it could, our query rewriting mechanisms can be
modified to introduce suitable escape characters.

Keyword-independent inversion is performed forQ as
follows:

• EachQi is inverted individually;INVQ(Qi) has columns
corresponding to each of the parameters used inQi, but
not for parameters used in other subqueriesQj.

• If parameter$Bk is not present in subqueryQi, we add
a column corresponding toBk to INVQ(Qi), with the
special value “*”. Thus, the schema of all inverted sub-
queries of a union becomes the same.

• INVQ(Q) is then simply the union of theINVQ(Qi) mod-
ified as above.

Keyword-specific inversion of the resultingINVQ(Q) is
straightforward for the case of single-keyword queries, ex-
cept that the result may contain the special value “*” for one
or more parameters.

However, a problem arises when we need to process a
multi-keyword query, since the intersection of the resultsfor
each keyword, whether implemented using intersection or
join, is made more complicated by the presence of the spe-
cial “*” value. For example, given two tuples (*, ‘B’) and

(‘A’, *) respectively from two relations being intersected,
their result on intersection would be (‘A’, ‘B’). Similarlyin-
tersecting (*, ‘B’) and (*,‘B’) would result in (*,‘B’).

Unfortunately, database systems do not support the spe-
cial “don’t care” value “*” when performing intersection or
join (for union, the value “*” can be treated as a normal
value). Intersection or join taking “*” values into account
can be done in application code, but efficiency would still
be an issue, since standard techniques for intersection, such
as sorting, cannot be applied in a straightforward manner in
the presence of the “*” value.

Another closely related problem is that if the query has
some other operations such as a join, above the union op-
eration, in the inverted query those operations too must deal
with the “*” value. Although it is possible to define extended
versions of all relational operators taking the semantics of
the “*” value into account, such an extension is beyond the
scope of this paper. To avoid this problem, as stated earlier,
we assume that such a union operation is the top-level oper-
ation of the query.

We present two alternative solutions to handle the key-
word-specific inversion of such queries, for the case of mul-
tiple keywords; both techniques allow the inverted query to
be processed efficiently, entirely in the database.

1. The first solution, which we call theKeyword-at-a-time
(KAT) implementation, is described in Section 7.2. This
approach first computes, for each keywordKi, the set
of parameters that result in the keyword being present in
the result of at least one of theQj. The approach then
combines the results across the keywords to get the final
answer, by using intersection of the parameter values.
The approach is complicated by the presence of the “*”
value in the result of single keyword inversion.
The basic idea behind handling intersection in the pres-
ence of the “*” values is to partition the parameter bind-
ings based on which subset of attributes have a “*” value.
Intersection of each pair of partitions can then be imple-
mented by a join on the partitions, equating only non-“*”
attributes, followed by projection of appropriate non-“*”
attributes. Finally, the results of the joins are combined
by a regular union operation. Details are given in Sec-
tion 7.2.

2. The second solution, which we call theQuery-at-a-time
(QAT) approach, is described in Section 7.3. The QAT
approach solves each query with all the keywords, but
allows bindings for which the query result contains only
a subset of keywords, using a bitmap to record which
keywords are present. It then merges the intermediate
results of all queries to find bindings that contain all the
keywords. This is in contrast to the keyword-at-a-time
approach, which computes parameter values that satisfy
one keyword, across the union of subqueries, and merges
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the intermediate results from each of keywords to get the
final solution.
The QAT approach also has to deal with the presence of
“*” values, and details are presented in Section 7.3.

Later, in Section 10 we present an experimental comparison
of the two alternatives.

7.2 Keyword at a Time (KAT) Implementation

As mentioned in Section 6.3, thekeyword-at-a-time(KAT)
approach is one of the two approaches we propose for han-
dling queries with a union, where different inputsQj to the
union may use different subsets of the query parameters. In-
tuitively, the KAT approach first computes the inversion re-
sult for each keywordKi, that is, the set of parameters that
result in the keyword being present in the result of at least
one of theQj. The approach then combines the inversion
results across the different keywords by intersecting themto
get the final answer.

The approach is complicated by the fact that different
queries may have different parameters; to represent the fact
that a particular queryQj does not use a particular parame-
terPi, we invert queryQj as usual, but add an extra attribute
namedPi to INVQ(Qj,Ki), with the special value “*” to
denote that all values for that parameter are valid results.
We call the above query asRi,j . The normal intersection
operator cannot be used in this situation.

We now outline how we can modify the approach to use
standard database joins, without requiring special support
for the “*” value. This can be done in two ways, one which
we call the KAT with patterns (KATP) approach, and one
which we call the KAT with is-null (KATIN) approach.

7.2.1 KAT using Patterns (KATP)

We now describe theKAT using patterns(KATP) approach.
There are three variants of the KATP approach: KATP with
No Materialization (KATP-NM), KATP with Initial Materi-
alization (KATP-IM) and KATP with Full Materialization
(KATP-FM). Except where otherwise specified, the tech-
niques described below are the same for all three variants.

The following are the key steps in the KATP approach.

1. As mentioned earlier, the KATP approach inverts each
query in the union with respect to each keyword, and
then adds extra attributes corresponding to form-paramet-
ers that are not used in the query, with the value set to
“*”. Let the inverted query corresponding to keyword
Ki and queryQj, with extra attributes added as above
beRi,j . We then defineRi as

⋃
j{Ri,j}.

In the two materialized variants, KATP-IM and KATP-
FM, each of these relationsRi,j is materialized as a tem-
porary table, while in KATP-NM, eachRi,j is defined

as a non-materialized view; eachRi is defined as a non-
materialized view, in both variants.

2. The next step computes the logical intersection of the
Ri’s, using a series of join steps instead of intersections.
The result relationresult is first set toR1, and stepi
computes the logical intersection ofresultwith Ri+1.
The logical intersection of two relationsr ands that con-
tain tuples with the “*” value can be computed using the
pattern approach, as follows:
(a) First, bothr ands are partitioned into groups, such

that each group has an identical pattern of *’s, i.e.,
all group members have a * in the same attributes.
Let the resultant partitions ofr ands be denoted as
ri andsj .

(b) Eachri is then logically intersected with eachsj ,
by computingΠL(ri ✶P sj), whereP equates ev-
ery column ofr with the column ofs for the same
parameter, provided that attribute does not have the
value * in bothri andsj (all tuples inri have the
same * pattern, and similarly so do all tuples insj).
The projection listL is defined as follows: for each
parameterpk, if ri has a * forpk but sj does not,
thekth attribute ofL is sj .pk, otherwise thekth at-
tribute ofK is ri.pk. Thus, if bothri andsj have the
value *, so would the result; if only one of them has
the value *, the result would contain the other value,
while if both are not *, the result would contain the
common value (forced to be equal by the join condi-
tion).
Thus each tuple in the join result corresponds to a
pair of tuples that agree on all non-* attributes, and
would have thus been part of the logical intersection;
attributes that are non-* in at least one relation are set
appropriately.

(c) We create separate queries for each group in each
intermediateresult; the queries for the final state of
resultare combined by a union to get the final result.

In the KATP with Full Materialization (KATP-FM) vari-
ant, the intermediate resultresultat each step (other than the
very first step, where we useR1 directly, and the last step,
whose result is output to the user) is materialized for use in
the next step. The result is partitioned based on the “*” pat-
tern, and each partition is joined separately, using the pattern
approach described above.

In the other two variants (KATP-NM and KATP-IM),
instead of materializingresultat each iteration, we create a
new result query, using the result query of the previous itera-
tion, as follows. The result query at the beginning of an itera-
tion is, in general, a union of multiple queries, with possibly
different patterns. To perform the logical intersection, we
group all queries having the same result pattern (i.e., “*”’s
in the same positions), and define their union asresultj . In
iterationi we compute the join ofRi with resultj for eachj.



Keyword Search on Form Results 13

The query generated in the final iteration is executed to get
the required result.

7.2.2 KAT using Is-Null (KATIN)

The joins required to compute the logical intersection can be
computed in another way, using theis-null approachwhich
we describe below. We call this method theKAT using Is-
Null (KATIN) approach. Here, we use null values to repre-
sent the “*” value, and do not partition theresult relation.
Unlike with KATP, we do not add extra attributes to the in-
verted queriesRi,j , and thusRi,j contains as attributes only
the subset of parameters thatQj uses. The relationRi is now
defined as the outer union ofRi,j across all thej values. The
logical intersection ofresult with Ri is done by a join fol-
lowed by a projection, with the join condition and projection
list defined as follows:

1. LetP1, . . . , Pk be the set of all query parameters. Then,
θ = C1 ∧ . . . ∧ Ck, whereCj is defined as

result.P j = Ri.P j

if Pj is present in all the queries (and therefore will not
take the “*” value, represented here by null); otherwise
Cj is defined as

(result.P j = Ri.P j∨result.P j is null ∨Ri.P j is null )

Intuitively, the predicate ensures that either the corre-
sponding parameters have the same value, or at least one
of them represents the “*” value.

2. Theith attribute in the projection list is defined ascoale-
sce(result.P j, Ri.P j): thecoalesceoperation picks the
non-null value if either one of the two inputs is null, and
picks the first value otherwise (in this case both values
would be the same).

As we did for KATP, we define three variants of the KATIN
approach: without materialization (KATIN-NM), with ini-
tial materialization (KATIN-IM), and with full materializa-
tion (KATIN-FM). These are identical to the corresponding
KATP variants in terms of what intermediate results they
materialize.

7.3 Query at a Time (QAT) Implementation

We now give details of thequery-at-a-time(QAT) approach.
This approach first computes those parameter bindings for
each query that contain at least one of the given keywords,
along with a bitmap indicating which keywords are present
for a given parameter binding. Then, the bitmaps from dif-
ferent queries for each relevant parameter binding are com-
bined, to find the final answers.

The query-at-a-time (QAT) implementation carries out
the following steps:

1. First consider each queryQi separately and do the fol-
lowing:
(a) For each keywordKj , find the parameter values for

Qi whose result contains that keyword, i.e., invert
the query with respect toKj .

(b) Take the union of the parameter values, across all
keywordsKj , but with each parameter value addi-
tionally annotated with the set of keywords present
in the query result with that parameter value; a bitmap
is used to represent this set. (This step can be imple-
mented by a minor extension of the union operation,
or by a straightforward extended aggregation opera-
tion.)

The result of this step is represented as a relationRi for
eachQi, with one attribute per parameter ofQi, plus
an attribute storing the bitmap; the name of the bitmap
attribute is set tobi, so it is unique toRi. Note that dif-
ferent queries can have different parameters.
In the QAT variants with initial materialization (IM) and
with full materialization (FM), the resultRi is materi-
alized, and the materialized result is used in subsequent
steps. In contrast, in the no materialization (NM) variant,
the query definingRi is used in further processing.

2. The next step is to find parameter value combinations
that are common across queries. If all queries had the
same parameters, this could be done by a union of the
Ri’s followed by a grouping step. The basic intuition for
handling the general case of different parameters is to do
a join of theRi’s on their shared attributes.
By joining the results of the previous step using an in-
ner join, we would ensure that all tuples in the join re-
sult agree on the join attributes. However, an inner join
would eliminate parameter values from one inverted que-
ry that do not occur in another inverted query; such pa-
rameter values can still contribute to the final result.
To work around this problem, we use an outer union
operation, as outlined below. We use⋒ to denote the
SQL outer union operation, which brings all inputs to
a common schema by adding required attributes, with
their values set to null.
Thus, to combine the results across all queriesRi we run
the following pseudocode.

result= R1

for i = 2, . . . , n {

result= result⋒Ri ⋒(result✶θi
Ri)

/* See below for details on handling bitmaps */
}

The conditionθi should equate parameters that occur in
bothresultandRi. However, computing(result✶θi

Ri)
is not trivial, since bothresult andRi may contain null
values representing the “*” value. We discuss how to
perform the join later in this section.
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Note that eachRi has a bitmapbi. We have a single
bitmap attributeb in result. In the above union, in the
termRi, we renamebi to b. In the term(result✶θi

Ri),
we generate the value of attributeb as the bit-wise OR
of the attributeb of resultand attributebi of Ri. In some
cases described later, where we use an outerjoin instead
of a join, one of thebi’s may be null; such a bitmap is
treated as equivalent to the bitmap with all zeros.

3. The final step is to select only tuples fromresult for
which the bitmapb has all bits set to1; these are the pa-
rameter values for which the result contains all the given
keywords.

We now return to the issue of how to joinresult with
Ri. We note thatresult contains tuples with different “*”
patterns, with “*” represented as a null value due to the outer
union operator⋒. There are two ways of performing the join.

1. One option for computing the join is to partitionresult
based on the pattern of null values, and use different
predicates for the different partitions. This option, which
we call QAT using Patterns (QATP), is discussed in Sec-
tion 7.3.1.

2. Another option to enforce the semantics that “*” matches
all possible values, is to use a join condition that ex-
plicitly checks for null values; this option, which we
call QAT with Is-Null (QATIN), is discussed in Section
7.3.2.

The QAT algorithm can be optimized using the follow-
ing two (related) optimizations:

1. If all parametersPj present inQi are also present in all
queries already joined intoresult, and vice versa, instead
of settingresult to the outer union ofresult, Ri, and the
join result, we setresult= result––✶–– Ri, using a natural
full outer join on the shared parameter attributes. This
condition was in fact satisfied in most cases of forms
with multiple queries in our example application.

2. For a keyword query having only one keyword, there is
no need to include the joins of the inverted subqueries;
in other words, we can drop the term(result✶θi

Ri). It
suffices to useresult⋒Ri, since we do not have to worry
about situations where one of the queries contains one
keyword, and the other contains the other keyword.

3. We need to include a tuple from(result ✶θi
Ri) in the

result only if it contains a strict superset of the keywords
that the constituent tuples fromresultandRi contained.
For example, suppose for a parameter binding(v1, ∗)

result contained the keywordsK1 andK2, while with
binding(v1, v2) Ri contained onlyK2; then there is no
need to add a result tuple with binding(v1, v2) with key-
wordsK1 andK2 since there is a more general result tu-
ple with binding(v1, ∗) containing the same keywords.
In other words, the binding that is generated would be

subsumed by an existing equal or more general binding
generating the same keywords.
Subsumed results of the above form can be eliminated
by adding a join condition which checks that the bit-wise
OR of the two bitmaps is a strict superset of the individ-
ual bitmaps. This optimization can reduce the number of
results generated significantly.

It is worth noting that using a full outerjoin ofresult
with Ri appears to be an alternative to usingresult⋒ Ri ⋒

(result ✶θi
Ri). While this approach works in some spe-

cial cases described later, in general it may lead to loss of
information. For example given queriesQ1 andQ2 with pa-
rameters (A,B) and (B,C), it is possible thatQ1 on a partic-
ular (A,B) combination, say (a1, b1) returns keywordsK1

andK2, so for a keyword queryK1,K2, C should be don’t
care. A full outerjoin would lose this information ifQ2 with
parameters (b1, c1) contains one or more of the keywords;
the (outer)join would then contain only the tuple (a1, b1,
c1). Now suppose queryQ3 with parameters (B,C) set to
(b1, c2) contains keywordK3, and the keyword query is
K1,K2,K3. Then even a full outerjoin(R1 ––✶–– R2) ––✶––
R3 would not contain the correct answer (a1, b1, c2). Our
solution of using the outer union avoids this problem.

7.3.1 QAT using Patterns (QATP)

In the QAT using Patterns(QATP) approach, we compute
the joins using the patterns approach, instead of the is-null
approach. The basic idea of joins using patterns is the same
as in KATP, although some implementation details vary. For
example, in the QAT version, the “*” value is represented by
the null value.

The implementation details of QATP vary depending on
the version we use.

1. In the QATP version with no materialization (QATP-
NM), none of the queries (including theRi) are materi-
alized, and as in KATP with no materialization (KATP-
NM), at each iterationresult is a query defined as the
union of queries, each with a different pattern.

2. The QATP version with initial materialization (QATP-
IM) differs only in that the inverted queriesRi are ma-
terialized initially, and the stored results are used in sub-
sequent queries. SinceRi occurs multiple times in the
subsequent queries, materialization avoids the overhead
of recomputation.

3. In the QATP version with full materialization (QATP-
FM), in addition to materializing theRi, in each itera-
tion resultis materialized (but with the tuples partitioned
based on the “*” pattern). As in KATP, we do not mate-
rialize the initial value ofresult, since it is the same as
the already materializedR1, and the final value ofresult
since it is consumed immediately to find the final results,
and is not reused subsequently.
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7.3.2 QAT using Is-Null (QATIN)

We now describe theQAT using Is-Null(QATIN) option
for defining the join condition; the basic procedure of com-
bining results across queries is as described earlier in Sec-
tion 7.3. LetP1, . . . , Pk be the set of all query parameters;
eachRi has all or some subset of the parametersPk. Then,
θ = C1 ∧ . . . ∧ Ck, whereCj is defined as(result.P j =
Ri.P j ∨ result.P j is null ∨ Ri.P j is null ), if both result
andRi containPj, andCj is trueotherwise.

The above disjunction allows matching in case either
value is the null value, representing “*”. The value ofPj

projected in the result is null ifPj is null in both input tu-
ples, and is set to the non-null value otherwise.

The join condition containing theis null disjunctions
can result in poor execution plans, so we make use of the
following optimizations:

1. If a parameterPj is present in all ofR1 . . . Ri, we de-
fined Cj as justresult.P j = Ri.P j, omitting the dis-
junction, sincePj cannot be null in either input.

2. For the join ofresult andR2, we can drop theis null
conditions, since none of the attributes can be null at this
step.

In the QATIN variant with full materialization (QATIN-
FM), theresultrelation at each iteration is materialized, and
used in subsequent iterations. In the variants with no materi-
alization (QATIN-NM), and initial materialization (QATIN-
IM), each iteration defines a query using the query from the
previous iteration. The query generated in the final iteration
is executed to get the required result.

7.4 Extensions to Handle Other Unsafe Operations

Consider a queryQ = Q1 ––✶ Q2. If some parameters used
in Q are not present inQ1, Q can be unsafe. For example,
suppose parameterP1 is used inQ1, andP2 in Q2. If the
given keywords are present inQ1 for a particular value of
P1, then thatP1 value combined with any arbitrary value
for P2 (represented by a “*” value) would be an answer.

To handle the above problem, the keyword-independent
inversion can be defined as

INVQ(Q1) ⋒ INVQ(Q1) ✶ INVQ(Q2)
where⋒ denotes the outer union operation of SQL, which
brings all inputs to a common schema by adding required
attributes, with their value set to null. Here, null values for
parameters represent the “*” value, which denotes the set of
all possible values. In effect, outerjoin has been transformed
into union, and inversion performed on the union query.

The case of right outerjoin is symmetric with left outer-
join, while keyword-independent inversion of full outerjoin
can be defined as

INVQ(Q1)⋒ INVQ(Q2)⋒ INVQ(Q1) ✶ INVQ(Q2)

If the unsafe outerjoin is the top-level operation of the
query, only keyword-specific inversion for the multiple-key-
word case needs to handle the semantics of the “*” value.
The different variants of the KAT and the QAT techniques
which we saw earlier can be used to perform keyword-specific
inversion.

However, if there are other operations above the unsafe
union or outerjoin, keyword-independent inversion of those
operations needs take the semantics of the “*” value into ac-
count. Although such an extension is possible for many op-
erations such as select, project, join, union and intersection,
details are beyond the scope of this paper.

8 Ranking and Presenting Results

In general, a keyword query can have multiple answers, and
ranking the answers is an important task. For a given form,
we display the set of all result parameter bindings together,
to avoid mixing up results corresponding to different forms.
Thus, the ranking problem is broken up into two problems:
ranking forms, and ranking parameter values within each
form.

8.1 Ranking Techniques with Single Queries

We first consider the case of forms with a single query, and
later consider forms with multiple queries. We experimented
with two variants of form ranking.

1. The first variant, which we call AVG, is based on form
result length, favoring forms with short results since they
tend to contain more specific information. For example,
given a form F1 which retrieves course/instructor infor-
mation for a specified department, and a form F2 that re-
trieves courses of a specified instructor, form F2 is likely
to have a much smaller size on average. Given a key-
word query such as ‘Silberschatz database’, the form F2
would rank higher and the inverted query for F2 would
be executed first.

2. The second variant, which we call AVGMULT, multiples
the average form result length with the number of differ-
ent parameter values returned as answers to the given
query. This helps lower the ranking of forms for which
the keyword query result contains a large number of dif-
ferent parameter values.

In the case of AVG, in cases where the higher ranked
forms provide sufficient answers, inverted queries may not
even need to be executed for lower ranked forms. For AVG-
MULT, we cannot use this optimization.

The exact length of a form result depends on the specific
parameter values, which can again be expensive to compute,
so we instead use statistics on average form result size. Form
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result size is in turn estimated as the sum of the average re-
sult size of the queries contained in the form; average query
result sizes can be precomputed and stored in the database,
and need only periodic maintenance. Computing the aver-
age query result size can be done either by executing the
query on a sample of parameter bindings, or by executing
the keyword-independent inverted query, and aggregating on
its result to find the number of tuples for each binding (by
grouping on the parameter attributes), and then taking the
average. We used the latter approach.

8.2 Ranking Techniques with Multiple Queries

For forms with multiple queries, if in some form result a
keyword occurs in the result of an earlier query, that form re-
sult could be counted as more important than one where the
keyword only appears in the result of a later query. For ex-
ample a form displaying student information may first show
the name and other key information about the student, and
then show the grades obtained by the student. We would like
to give higher importance to the occurrence of a keyword in
the first query than in the second, when ranking the form.

One simple way of giving more importance to keyword
occurrences in earlier queries is to treat a multi-query form
with queriesq1, . . . , qn as a set ofn forms, with formFj

containing queriesq1, . . . , qj . The ranking methods describ-
ed earlier are applied on eachFi, and the best rank is chosen.
We have currently implemented the above scheme manually.

An alternative is to modify the queries to track, for each
parameter binding in the query result, which queries con-
tained each of the keywords. The occurrence of a keyword
in an earlier occurring query can be viewed as providing a
higher TF to that keyword in that form. Similarly, statistics
about keyword occurrences in the overall database (avail-
able from the text index) can be used as a rough estimate
of the IDF (with form results treated as documents) of each
query keyword. From these statistics, a TFIDF measure can
be computed for each parameter binding, and used to rank
the bindings for a given form.

8.3 Other Ranking Issues

We have assumed the AND semantics for keywords, but our
techniques can be modified to support a fuzzy AND, allow-
ing some keywords to be omitted, assigning a lower score to
partially matching results. The QAT technique can be easily
modified to implement such a scoring scheme.

For ranking of parameter values within a single form,
we found that application specific heuristics seem to be quite
effective. For example, if the parameter is a year or semester,
the current year/semester is given higher preference, if the
parameter is a user identifier, the identifier of the current

user is given higher preference, if the parameter value is a
department, the department that the current user belongs to
is given higher preference, and so on.

8.4 Result Presentation

In our implementation, results are displayed as hyperlinks,
and pointing at/clicking on a result causes the corresponding
form to be executed with the parameter values, and the form
result is displayed to the user. Our inversion techniques may
return don’t care (*) values for certain parameters. If the cor-
responding parameters are mandatory for the form, we can
use domain knowledge of the application to select a mean-
ingful set of values for such parameters, and replace each
answer containing one or more *’s by a set of answers with
the *’s replaced by the above values.

9 Implementation Details, Optimizations and
Extensions

In this section we describe implementation details, such as
how we handle SQL queries and certain form constructs.
We also outline some optimizations which we have imple-
mented.

9.1 Handling SQL Queries

Although our description of query inversion is in terms of
relational algebra operations, any practical implementation
has to support inversion of SQL queries. SQL queries which
can be translated directly into relational algebra using the se-
lect, project, join/outerjoin, aggregation and set operations
can be handled using the techniques for relational algebra
inversion. Inverted relational algebra queries can be trans-
lated back to SQL for execution. SQL queries, including
those with subqueries, can be translated into relational alge-
bra queries by using techniques such as those described by
Elhemali et al. [8]. In essence, the techniques of Elhemali
perform query decorrelation. We note that the translation
of some complex SQL queries that cannot be decorrelated
requires the use of an extended relational algebra operator
called the “Apply” operator, which is described in [8]; we
do not currently handle the Apply operator.

Our actual implementation works directly on SQL queries,
without going through a relational algebra translation; how-
ever, the techniques underlying our implementation are ex-
actly the same as those we have described for relational al-
gebra.
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9.2 Handling Other Form Constructs

In this section we consider extensions to handle a larger
class of forms with inter-related queries and static text.

So far all of our examples have dealt with forms con-
taining only a single query. However, there are instances
of forms that contain multiple queries. For example, a form
can be used to access information about a particular student
(queryS1) as well as a list of courses that the student has
taken (queryC1); such a form can be represented by two
separate SQL queries.

In Section 7 we considered how to handle forms with
multiple queries, which can be modeled by using an outer-
union of the queries; we had (implicitly) assumed that the
queries are independent, that is they can be evaluated inde-
pendently using the form parameter values.

In some forms, however, the result of one query is used
as a parameter to a second query. For example, a student roll
number may be used to retrieve a unique student identifier
by means of a query Q1, and the identifier may then be used
to execute a second query Q2. This situation can be han-
dled by rewriting the second query by adding a join with the
first query, and replacing the parameter by a reference to the
value from the first query result.

Another common case is where a query Q1 has multiple
results, and a loop iterates over these results and invokes
query Q2 with parameters set to attributes in the result of
Q1. This case can be handled by replacing the loop by a
single query which in effect performs a join of Q1 and Q2,
as described for example in [4,9].

Forms often have static text inserted by the application
program, which does not depend on database content or on
form parameters. We assume that application code that gen-
erates the forms has been analyzed, and static text that ap-
pear in forms has been indexed; for each keyword, the post-
ing list in such an index contains the identifiers of the forms
where the keyword appears as static text. In addition it is
often useful to annotate forms with metadata describing the
purpose and description of the form, which can be used when
searching for forms.

Static text is handled as follows: before executing a key-
word query on the queries in a form, all query keywords that
appear in static text in that form are removed from the list
of keywords, and the remaining keywords are actually used
for querying. In a special case, all the keywords in the query
may appear in static text, in which case the form parameters
don’t actually matter. We can use the special value * to de-
note that all possible values for a corresponding parameter
are answers.

Example 6For example, suppose we have formF1 with sta-
tic text {“Professor”, “Course”, “Teach” } and form F2

with static text{“Student”, “Course”, “Take” }. If the query
keywords are{“Professor”, “Silberschatz”, “database”},

then the inverted query forF1 should only include{“Silber-
schatz”, “database”}, while that forF2 should include the
keywords{“Professor”, “Silberschatz”, “database”}. ✷

Another special case is form queries that do not take
any parameter values. Such a form would be an answer to
a keyword query if the keywords are part of the form result.
Checking this is no different from the usual case, except that
the output of the inverted query does not have any parame-
ter values; a constant value such as 1 can be used to ensure
that the output has at least one attribute. Also, we do not
need to execute the inverted query completely, we just need
to ensure that its answer is non-empty.

9.3 Pruning

We implemented a pruning optimization, which does the fol-
lowing. Many of the keywords are present in only some of
the relations, and are absent in others; before executing in-
verted queries, for each keyword we first find which rela-
tions contain the keyword, by accessing the corresponding
text indices. Using this information, we prune out a form if
the set of relations whose attributes appear in the SELECT
clauses of the queries in a form do not together contain all
the query keywords. Similarly, we prune out subqueries con-
taining the conditionContains((Ri.A1, . . . , Ri.An),Kj), if
we have found thatRi does not containKj. Pruning is par-
ticularly important as the number of forms increases, since
it can potentially help keep the number of inverted query
executions under control. In our experiments, the pruning
optimization was turned on by default.

9.4 Text Indexing Details

Both SQL Server and PostgreSQL allow a text index to be
created on multiple attributes. In our implementation, we
created a single index per relation, on all attributes of the
relation. If aContainspredicate specifies only some of the
attributes involved in the index, the result of the text index
lookup has to be filtered to remove cases where the key-
word occurs in an attribute other than the ones specified
in the Containspredicate. Such filtering is done implicitly
in SQL Server, whereas in PostgreSQL the query needs to
specify the index to be used, as well as the extra predicates
for filtering as above. We found that using the PostgreSQL
text indexing syntax for filtering was expensive, since it did
stemming on the fly. We therefore used a case insensitive
substring match of the attributes with the keyword, to im-
plement the filtering step.

Attributes with non-text types, such as integer or date,
can be included in a full-text index by casting to text type
in PostgreSQL. SQL Server does not support text indexing
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of non-text types (whether directly or using casting), so in-
stead for each such non-text column we add a (persisted)
computed column of text/varchar type containing the tex-
tual representation of the non-text value. The text index is
then built on text columns, including the computed columns
generated above. As an alternative to adding such attributes
to the full-text index, they can be handled by adding separate
predicates in the inverted query, but doing so would increase
the query overheads.

Another issue with SQL Server text indices was the re-
quirement that a table on which a text index is defined must
contain a single column unique key. To satisfy this require-
ment, for tables that had multi-column primary keys we had
to add a new column defined as an identity type; SQL Server
automatically generates unique values for such columns.

9.5 Materializing Form Results

The approach of [7], which materializes and indexes form
results for each possible parameter value, is an alternative to
our approach. While this approach may be faster than ours
for answering queries, it would have a significant time over-
head for maintaining the indices. The issue of incremental
index maintenance for the materialized form results is not
addressed by [7]. However, as mentioned in Section 5.1, we
can use the keyword-independent inverted queryINVQ(Q)
to find parameter values for which the materialized form re-
sult is affected, given an update to the database.

We did not measure the cost of processing a keyword
query using the approach of [7]; it is reasonable to assume
that the approach of [7] would be faster than our approach.
Instead we focused on the cost of maintenance of the index
on form results, when the database is updated.

To estimate the view maintenance overheads of using
this approach, we materialized the keyword-independent in-
version of each form query. Standard techniques for view
maintenance such as those described in Silberschatz et al.
[15] (Chapter 13) can be used to compute the changes to the
form query result when an underlying relation is updated,
and the index must be updated correspondingly.

There are at least two ways to build a full-text index on
the result. The first way is to create and materialize a view
FormIndex(formid, parameters, allTupleAttrs), with one tu-
ple per parameter binding for each form. The view contains a
form-id attribute, and all parameter attributes are combined
into one single view attribute by concatenating them (with
suitable delimiters). The attributeallTupleAttrscontains the
concatenation of all attribute values from all tuples in there-
sult of that formid with that parameter binding. A full-text
index can be built on the resultant materialized view.

The second way is to directly use an existing full-text
index such as Lucene, and create a (virtual) document cor-
responding to each tuple in the preceding merged view. Note

that in this case the view need not actually be materialized,
since Lucene does not insist that the actual documents it in-
dexes be retained after they have been indexed. However,
the underlying inverted queries still need to be materialized
for incremental view maintenance.

The implementation we used for our performance test-
ing used a variant of the first approach, but omitted the com-
bination across forms as well as across tuples in a given
form result. Thus, the textindex was built directly on the in-
verted query results. This approach underestimates the cost
of maintenance since the combined index would require more
effort to maintain, and thus our overhead measurements are
actually conservative.

9.6 Extensions to Handle Access Control

To provide access control, applications need to have a mod-
ule that takes a user identifier, a form identifier, and, option-
ally, parameter values, and can decide if the user is autho-
rized to execute the specified form with the specified param-
eters. This module can be used to filter query results to re-
turn only authorized results. In many authorization systems,
some query parameter values, such as the user-identifier in
a query, are taken from session parameters such as the user-
identifier of the authenticated user. Such parameters can be
replaced by the corresponding constant values in the form
queries, before the queries are inverted. Our implementation
supports such replacement of parameters by session param-
eters before query inversion.

10 Experimental Results

In this section we present the results of a study of the per-
formance of our techniques.

10.1 Experimental Setup

The code for our system is written in Java, and currently
works on PostgreSQL and SQL Server databases. Our per-
formance study is based on a real database application, used
to handle all academic information at IIT Bombay, with about
1 GB of data, and 90 form interfaces. The application runs
on the PostgreSQL database. Each form had a short descrip-
tion, which was treated as static text for the form.

For the bulk of our performance tests, we used Post-
greSQL 9.1 as the database, on a machine with an Intel
Core i5-2500K, 3.30 GHz processor, with 16 GB of RAM,
running Ubuntu with a Linux 3.0.0-14-generic kernel. The
application and the database ran on the same machine. We
report numbers using a 1 TB 7200 rpm hard disk (Seagate
ST31000524AS), as well as with a Intel SSDSA2M080 80
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GB solid state disk (SSD) with an eSATA interface (which
we refer to as flash disk here on).

We also ported our data and form queries to SQL Server,
and present some results using SQL Server 2008 running
on Windows 7, which itself ran as a virtual machine (with
Ubuntu as the host OS) on the same hardware as above, with
2 GB of memory allocated to the virtual machine.

We used a set of 12 keyword queries to study the qual-
ity of ranking as well as performance. We cannot give all
the actual keyword queries since the database we use con-
tains confidential data which cannot be made public, but the
queries modeled common information needs, which were as
follows: (a) Given a student identifier (roll number), or a
student name, find overall academic information about the
student. (b) As above, but find just the grades. (c) Given a
course identifier or keywords from the course title, find in-
formation about the course. (d) As in (c), but find the stu-
dents registered for the course, and find if a specified stu-
dent identifier took the course. (e) Given identifiers of two
courses, find students who have taken both courses, using
two different sets of descriptive keywords. The number of
keywords in these queries ranged from 1 to 4.

To study scalability of execution time with number of
keywords, we used another set of keyword queries based
on an overall set of keywordsK; for each number of key-
wordsi, the keyword queries consisted of all size-i subsets
of K, and we took the average time across all these keyword
queries. We chose the keywords such that all the keyword
queries had at least one answer. Thereby we avoided bias
that could result from different choices of keywords for dif-
ferenti. We call the above set of keyword queries thescala-
bility queries.

We present numbers for cold cache (CC) and warm cache
(WC). Cold cache results were generated by forcing the data-
base to drop all clean buffers, which we enforced by restart-
ing PostgreSQL after clearing Linux file system buffers by
using the command “echo 3> /proc/sys/vm/dropcaches”.
(The command “DBCC DROPCLEANBUFFERS” achieves
the same effect in the context of SQL Server.) However, in
our context, we run not just one inverted query, but several,
for a given keyword query, and it is fine for the later inverted
queries to exploit data brought into buffer by earlier queries.
Therefore we flush the buffer only once for a single keyword
query, instead of once per form query.

For both warm and cold cache, the numbers reported
are the averages computed from 6 runs, with the lowest and
highest numbers dropped before computing the average of
the remaining numbers.

Other than the full-text indices, we used exactly the same
set of indices as were present in the live database, which in-
cluded primary/foreign-key indices and a few more manu-
ally chosen indices. A single full-text index is built for each
relation, covering all attributes of the relation.

Fig. 1 Quality study on Academic database.

10.2 Effectiveness of Keyword Search on Forms

The first set of experiments studied the effectiveness of key-
word querying in retrieving desired forms. We compared the
following form ranking methods: (a) ordered (in ascending
order) by average form result size (AVG), and (b) ordered (in
ascending order) by average form result size multiplied by
the number of parameter values in the result for that form
(AVGMULT) (we stopped once we found 500 parameter
values).

We measure the quality of the results returned as fol-
lows. For each task, we identified a particular form as the
desired result. We then manually examined the results of
the corresponding keyword queries for that task, and found
the position at which the desired form was present. Figure 1
shows that across all the keyword queries, the average po-
sition at which the desired form was present was 2.42 for
AVG and 1.83 for AVGMULT. The maximum positions of
the desired form were 6 and 3 for AVG and AVGMULT.

There are of course other ways of ranking form results,
for example based on term frequency and inverse document
frequency of keywords, and on (inverse of) document length.
The AVG technique provides, in effect, an estimate of docu-
ment length for (form, parameter) combinations, while AVG-
MULT provides a similar estimate for a form, summed up
across all result parameter values. We have also found that
when a form has multiple queries, it makes sense to give
higher weightage to terms in the results of queries that oc-
cur earlier in the form. For example, in a form showing the
academic records of a student, the first query is likely to
retrieve the name of the student, while later queries may re-
trieve titles of courses taken by the student. Such a ranking
is similar to the standard technique of giving higher weigh-
tage to terms that appear in the document title or early in the
document text.

Exploration of alternative ranking techniques is certainly
an important area of future work, although our results above
show that the AVGMULT technique gives good results for
the set of tasks we considered.
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Fig. 2 Performance of KATP and QATP on PostgreSQL with Flash (a) Warm Cache and (b) Cold Cache

Fig. 3 Performance of KATP and QATP on PostgreSQL with Hard Disk (a) Warm cache and (b) Cold Cache.

10.3 Query Execution Time: Basic Results

Using the same set of 12 keyword queries, we measured the
average execution time across all the keyword queries, us-
ing variants of the QAT using patterns (QATP) and KAT
using patterns (KATP) methods on cold and warm cache.
The variants we study are QATP with Initial Materializa-
tion (QATP-IM), QATP with Full materialization (QATP-
FM), QATP with No Materialization (QATP-NM), KATP
with Initial Materialization (KATP-IM), KATP with Full Ma-
terialization (KATP-FM), and KATP with No Materializa-
tion (KATP-NM).

The results with all 90 forms from the academic database,
running on PostgreSQL, using flash disk, are shown in Fig-
ure 2 (a) and (b), for warm cache and cold cache respec-
tively. The first point to note is that overall performance on
flash disk, with average execution time under 2 seconds,
is clearly good enough for interactive use; cold cache per-
formance is at least 50% slower than warm cache perfor-
mance, but the average execution time of under 3 seconds
with QATP-IM and QATP-FM is still quite acceptable.

The results in Figure 2 show that initial materialization
(-IM), i.e. the materialization of the initial inverted queries
reduces the execution time compared to no-materialization
(-NM) for all KATP and QATP variants, for both warm and
cold cache. In both cases the initial inverted queries are used
multiple times, making their materialization worthwhile.Full
materialization (-FM) performed similar to initial material-

ization, indicating that materialization of intermediatere-
sults did not have a significant impact in these experiments.
This was because the -IM and -FM variants are identical for
forms with only two queries (since there are no intermediate
results for -FM to materialize), and we had only a few forms
with more than two queries in this set of forms.

Figure 2 also shows that the variants of QATP perform
slightly better than all the variants of KATP. The difference
is quite small since most of the forms had only one single
query using only selection, projection, join and aggregation,
and for such forms all the variants of KATP and QATP per-
form exactly the same actions. To highlight the performance
differences between the variants better, in Section 10.6 we
present results using a smaller set of forms with multiple
queries, and discuss the relative performance of the differ-
ent KAT and QAT versions using those results.

The results using hard disk, running on PostgreSQL, are
shown in Figure 3 (a) and (b) for warm cache and cold cache
respectively. For warm cache, there is hardly any difference
in the flash and hard disk timings, since data is memory res-
ident. However, with cold cache all the variants took about 7
to 8 seconds on average, which is significantly more than the
time taken with warm cache, and with cold cache on flash.
We believe the reason is that query execution plans for the
inverted queries usually involve keyword index lookup as
well as indexed nested loops joins, both of which require a
good deal of random IO if the cache is cold; and random IO
on flash is much faster than random IO on hard disk.
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Fig. 4 Scalability of KATP and QATP with number of keywords (with
Flash).

Again, the QAT variants are slightly better than the KAT
variants. Interestingly, Figure 3 shows that for hard disk,
cold cache timing for non-materialization variants (QATP-
NM and KATP-NM) are better than the materialized vari-
ants, which is the opposite of the case with hard disk warm
cache, and with flash warm and cold cache. This result was
surprising, and on investigation we found that the reason be-
hind this was that just creating a materialized table on hard
disk for cold cache in PostgreSQL was around 4 times more
expensive than for warm cache and around 3-4 times more
expensive than flash (for cold and warm cache respectively).
We believe that for a production system, where the cache
will be warm at least for metadata, the materialized variants
are likely to outperform the non-materialized variants.

We also performed the above experiments using SQL
Server to execute the inverted queries. The results are very
similar to those for PostgreSQL on average, although results
did vary for individual queries with SQL Server taking less
time than PostgreSQL for some queries, and more time for
others.

Overall, the results show that keyword search runs with
performance good enough for interactive use with flash disk,
even with cold cache, although performance is not quite as
good on hard disk with cold cache. Given current hardware
trends it is quite reasonable to assume that enterprise appli-
cation data will fit on flash disk for all but the very largest
enterprises; as a result, we believe search performance will
be quite acceptable in such settings.

10.4 Scalability

The next sets of experiments studies the scalability (in terms
of query execution time) of our approach with respect to the
number of keywords, and to the number of forms.

The first set of experiments addresses the issue of scal-
ability with number of keywords. For these experiments we
used the scalability queries described in Section 10.1, with
the number of keywords varying from 1 to 5. This set of

Fig. 5 Scalability with number of keywords on Hard Disk and Flash
(with QATP-IM).

queries is based on a set of 5 keywords, and for eachi,
its size i-subsets together form the set of queries usingi

keywords. We report the average time for each value ofi.
We used the QATP-IM and KATP-IM methods for these
experiments. The results for the case of forms on the aca-
demic database, running on PostgreSQL, using flash disk,
are shown in Figure 4, with separate numbers for cold cache
(CC) and warm cache (WC).

As can also be seen from the Figure 4, both KATP-IM
and QATP-IM scale slightly sub-linearly with the number
of keywords, for both cold and warm cache, and QATP-IM
performs slightly better than KATP-IM. One reason for sub-
linear performance could be that the pruning optimization
described in Section 9.3 eliminates more forms as the num-
ber of keywords increases, as we will see shortly. Another
reason could be that our system has some initialization costs
related to reading and parsing form queries, which are inde-
pendent of the number of keywords.

We also compared the performance on hard disk versus
flash, using the QATP-IM method, with an increasing num-
ber of keywords, using the same scalability query set. The
results are shown in Figure 5. Similar to the results we saw
for the original set of 12 keyword queries, cold cache num-
bers on hard disk are relatively high, but warm cache and
flash (both warm and cold cache) numbers are quite good.
Again the time taken scales sublinearly with number of key-
words, for the same reasons we saw earlier.

Next we studied scalability with an increasing number of
forms. For this experiment we used only the first 80 out of
the 90 forms. For a given number of formsn, we partitioned
the overall set of 80 forms into partitions of sizek, and took
the average execution time across these partitions. We used
the same set of 12 queries described earlier for quality of
ranking experiments, and ran the experiments on flash disk.

Figure 6 shows how the time taken increases with num-
ber of forms. The results for cold cache (bar labeled CC)
and warm cache (bar labeled WC) appear to indicate that
the time taken grows highly sub-linearly with number of
forms, with a 20 fold increase in number of forms result-
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Fig. 6 Scalability with number of forms on Academic database (set of
12 queries, using QATP-IM).

ing in less than 2 fold increase in time. However, there is
a significant fixed overhead for pruning, which checks, for
each keyword, which tables contain the keyword. To quan-
tify this effect we measured the time taken for the pruning
step, shown in bars CC-P and WC-P for the cold cache and
warm cache cases; as can be seen from the figure these num-
bers do not increase with the number of forms. We also mea-
sured the post-pruning time, that is, the time taken after the
pruning step, and show these times in bars CC-PP and WC-
PP (for the cold cache and warm cache cases). It can now
be seen that the growth is no longer as highly sublinear as
earlier, with the post-pruning time increasing by 6-10 fold
(for cold/warm cache resp.) when the number of forms went
up 20 fold from 5 to 80 forms. Thus, the growth remains
sub-linear even in this case, but less remarkably so.

Given that our database has a total size of 1 GB, while
available main memory is significantly larger, warm cache
numbers basically reflect completely in-memory query eval-
uation, while the cold cache numbers do not reflect the po-
tential for repeated fetches of the same data. Thus, another
scalability related issue is: “how will the techniques run if
the database size is larger than memory?”

We could not create a larger dataset, nor could we actu-
ally decrease the memory capacity of the system we used.
Instead, we kept the database size fixed and reduced the
PostgreSQL buffer size. By default, PostgreSQL uses a very
small buffer, leaving the job of buffering primarily to the
OS file system cache, and most PostgreSQL buffer misses
do not result in actual IO. Thus, the buffer misses do not get
reflected in execution time changes. Therefore, instead of
studying the execution time variation, we studied the varia-
tion in the number of buffer misses reported by PostgreSQL,
as the buffer size is varied. In a system where the amount of
real memory corresponds to the PostgreSQL buffer size (or
where file system buffering is turned off) these buffer misses
would corresponding to actual IO operations.

Specifically, we ran the inverted queries on PostgreSQL
with shared buffer size set to 24 MB, 128 MB and 1228
MB respectively. We measured the number of buffer hits and

Fig. 7 Effect of pruning of forms on Academic database with varying
number of keywords (scalability queries, using QATP-IM).

misses (we verified that the total of hits and misses were the
same across all buffer sizes). With cold cache, the number
of buffer misses was the same at 128 MB and 1228 MB for
all the queries. The number of misses was also the same for
buffer sizes of 128 MB and 24 MB for 8 out of 12 of the
keyword queries; the ones where there was a difference were
those that used frequently occurring keywords. The worst
case increase in buffer misses when going from 128 MB to
24 MB buffer size was by a factor of 3, while the average
increase across all keyword queries was by a factor of 2.
We further stressed our system by considering a new set of
9 keyword queries, each of which contained one or more
frequent keywords; even then, the average increase was less
than a factor of 5 when buffer size changed from 128 MB
to 24 MB. Thus, we believe our techniques will work well
even with database sizes that are significantly larger than
memory.

10.5 Effect of Optimizations

Next, we studied the advantage of enabling the pruning opti-
mization described in Section 9.3, using the academic database
on PostgreSQL, using a flash disk, and the QATP-IM method,
using the same set of keywords used earlier for testing scal-
ability with number of keywords.

Figure 7 shows the time for the same keyword queries,
with and without pruning, with different numbers of key-
words. It is clear that pruning has a significant effect both on
cold and on warm cache, reducing the execution time by 20
to 30 % compared to the no-pruning version, with the ben-
efit roughly the same with the number of keywords ranging
from 1 to 5. Figure 8 shows the average number of forms
for which inverted queries had to be executed (i.e. the aver-
age number of forms that were not pruned), with different
numbers of keywords. Although each form takes longer to
process with increasing number of keywords, there are fewer
forms to process.
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Fig. 8 Pruning of forms against number of keywords on Academic
database (scalability queries).

We now consider the effect of subsumption checking,
which we implemented in the QAT approach as described in
Section 7.3. Subsumption can only happen in case of forms
with more than one query, with different sets of parameters,
when more than one keyword is specified. As an anecdo-
tal example of the importance of subsumption, we consid-
ered one of the forms with two queries, withQ1 having pa-
rameters academic year, semester and department code, and
Q2 having parameters academic year, semester, and course
code. With the keywords “CS631” and “database”, the in-
verted query ofQ1 returned 250 results, the inverted query
of Q2 returned 9 results; each of these results have “*” for
one parameter. The logical intersection of the two inverted
queries returned 679 results, but all of these were subsumed
by the original set of 259 results. Thus, far fewer results had
to be returned to the user. Checking subsumption is more
complicated in the KAT approach since it cannot be done
as part of the join condition, and has not been implemented
currently.

10.6 Comparison of KAT and QAT Variants

The earlier experiments did not highlight the difference be-
tween the different KAT and QAT variants since most of
the forms in the IITB academic application had just a single
query. And out of the 22 forms with more than one query,
20 had the same parameters in all queries, and as a result
QATP and QATIN are identical, and KATP and KATIN are
similarly identical, on these forms. The remaining 2 forms
had queries with different parameters, but they both had only
two queries; with only two queries, again QATP and QATIN
are identical.

In particular, there is a potential for poor performance of
the KATIN and QATIN approaches in cases with more than
2 queries, where there is no parameter common across all
the forms. In such cases there would be no join condition
free of theis null disjunct, and as a result the plans could
require nested loops joins.

To study the effect of the variants, we added 4 new forms
each containing 3 queries with different parameters. We used
the original set of 12 keyword queries, augmented with 7
more keyword queries for which the new forms would gen-
erate answers.

Figure 9 (a) and (b) show the performance of all the
materialization variants (-NM, -IM and -FM) of the QATP,
QATIN, KATP and KATIN approaches on cold cache for
flash and hard disk respectively, on the 4 new forms. Fig-
ure 10 (a) and (b) show the same results as Figure 9 (a) and
(b), but using SQL Server instead of PostgreSQL. We omit
warm cache numbers since they are similar to the cold cache
numbers with flash. Although the raw numbers are better
with SQL Server than with PostgreSQL, our goal here is not
to compare results across the two databases, but rather to
compare the alternative techniques on both systems.

Figure 9 shows that with PostgreSQL the QATIN vari-
ants are about 2 times more expensive than the QATP vari-
ants with QATP-IM performing the best overall, and QATIN-
NM performing the worst amongst the QAT alternatives. We
also studied the best case and worst case ratios of QATP ver-
sus QATIN performance across individual keyword queries.
We found that QATP variants were never worse than QATIN
variants, while QATIN variants performed 2.5 to 3 times
worse than QATP-IM on several queries. Figure 10 shows
that the pattern is similar with SQL Server, although the dif-
ferences are more marked with SQL Server on flash.

With both PostgreSQL and SQL Server, the KATIN vari-
ants were also somewhat more expensive than the corre-
sponding KATP variants, with one exception: KATP-NM
performed significantly worse than all other KAT variants.
We believe this is because in KATP the initial inverted queries
get repeated multiple times, and the no-materialization ver-
sion evaluates the same query multiple times leading to poor
performance. In contrast with QATP, the number of rep-
etitions is less, so while QATP-NM performs worse than
the other QATP variants, the difference is not as marked.
Overall, KATP-IM is the best amongst the KAT variants.
Comparing the performance ratios for individual queries, we
found that KATP-IM was never worse than the best KATIN
variants by more than a very small value, whereas in some
cases all the KATIN variants performed 50% worse than
KATP-IM.

Although not explicitly shown in our results, across all
the forms (the original forms as well as the newly added
forms), we found that performance was relatively slow with
PostgreSQL for queries where some keyword was present in
the results of some form for a very large number of different
parameter values, resulting in very large results for some in-
verted queries. How to optimize such queries to avoid com-
puting large intermediate results is an area of future work.
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Fig. 9 Performance with newly added forms on PostgreSQL (a) on Flash and(b) with Hard Disk (with cold cache)

Fig. 10 Performance with newly added forms on SQL Server (a) on Flash and(b) with Hard Disk (with cold cache)

10.7 Comparison with Materializing and Indexing Form
Results

The approach of Duda et al. [7], which is an alternative to
ours, is to materialize form results, and build a text index
on the materialized results. For queries that can be incre-
mentally maintained, we can implement indexing and view
maintenance as described in Section 9.5, by creating a mate-
rialized view for each form query. To test the overheads, we
implemented a simplified form of materialization and view
maintenance, which materializes and maintains inverted form
queries; we also created text indices on the materialized re-
lations. For the academic database, the total size of the re-
sultant materialized views along with indices was 1431 MB,
on a 1GB database.

We measured the view maintenance performance on an
update that added 9 course registrations for one student, mea-
sured on a cold cache. View maintenance took 2.7 seconds
with a hard disk, and 500 milliseconds with a flash disk, for
an update that normally takes a few tens of milliseconds; this
is an unacceptable overhead for the academic application.

We note that the time is actually an underestimate of the
actual cost, since (a) we did not create a merged index across
forms, which would require extra effort to maintain, and (b)
some of the form queries were too complex for the simple
view maintenance algorithm we used, so we did not main-
tain them.

Further, the view maintenance overhead increases with
the number of form queries, and has to be paid for every up-

date even if keyword queries are used only occasionally. It is
also worth noting that some updates may cause a very large
number of form results to be recomputed. Even worse, many
queries cannot even be maintained incrementally (most data-
bases which support view maintenance have significant re-
strictions on the queries supported) and may require full re-
computation.

Thus, we believe our approach is better suited for pro-
duction systems where keyword queries are likely to be less
common than updates, insertions and deletions.

11 Conclusions and Future Work

The problem of keyword search on the results of form inter-
faces is of importance, since such interfaces provide infor-
mation in a form fit for human consumption. We have pre-
sented an approach to keyword search on form results, based
on inverting database queries, to return parameter bindings
for which the form result contains the given keywords. We
have proposed several optimizations of our basic technique
and presented a performance study which shows that the
proposed techniques are effective and practical for gigabyte
sized databases.

As part of future work, we plan to improve the efficiency
of query processing by caching inverted queries, creating a
merged text index which will avoid the need for separate
keyword lookups on each table, and caching mappings of
which keywords are present in which tables. Another im-
portant area of future work lies in dealing with keywords
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that are present in a very large number of form results with
different parameter bindings.

We also plan to extend our implementation to work with
a larger class of SQL queries. In particular we need to gen-
erate rewritings that extend operators to work with multiple
input partitions, each with a different set of parameters with
the “*” value; such an extension would allow us to handle,
for example, outerjoins which are not at the top level of the
query.

We also need to handle complex application code with
conditional execution of queries. A possible approach to han-
dling such forms is to create a separate logical form for each
possible execution path, with associated conditions under
which each of the logical forms will be executed. We also
plan to address the form ranking problem in more detail.
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