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that are no longer referenced, is error prone and leads to common programming errorssuch as memory leaks (garbage objects that are not referred to from anywhere, andhaven't been deleted) and dangling references. While these problems are present intraditional programming languages, the e�ect of a memory leak is limited to individualruns of programs, since all garbage is implicitly collected when the program terminates.The problem becomes more serious in persistent object stores, since objects outlive theprograms that create and access them. Automated garbage collection is essential inan object oriented database to protect from the errors mentioned above. In fact, theSmalltalk binding for the ODMG object database standard requires automated garbagecollection.We model an OODB in the standard way as an object graph, wherein the nodes are theobjects and the arcs are the references between objects. The graph has a persistent root.All objects that are reachable from the persistent root or from the transient programstate of an on-going transaction are live; while the rest are garbage. We often call objectreferences as pointers.There have been two approaches to garbage collection in object oriented databases:Copying Collector based [YNY94] and Mark and Sweep based [AFG95]. The copyingcollector algorithm traverses the entire object graph and copies live objects into a newspace; the entire old space is then reclaimed. In contrast, the Mark and Sweep algorithmmarks all live objects by traversing the object graph and then traverses (sweeps) the entiredatabase and deletes all objects that are unmarked. The copying collector algorithmreclusters objects dynamically; the reclustering can improve locality of reference in somecases, but may destroy programmer speci�ed clustering resulting in worse performancein other cases. The garbage collection algorithms of [YNY94] as well as [AFG95] handleconcurrency control and recovery issues.With both the above algorithms, the cost of traversing the entire object graph can beprohibitively expensive for databases larger than the memory size, particularly if thereare many cross-page references. In the worst case, when the bu�er size is a small fractionof the database size and objects in a page refer to objects in other pages only, theremay be an I/O for every pointer in the database. To alleviate this problem, earlier work[YNY94, AFG95] has attempted to divide the database into partitions consisting of afew pages. Each partition stores inter-partition references, that is references to objectsin the partition from objects in other partitions, in a persistent data structure. Objectsreferred to from other partitions are treated as if they are reachable from the persistentroot, and are not garbage collected even if they are not referred to from within thepartition. Each partition is garbage collected independent of other partitions; referencesto objects in other partitions are not followed. Thus, partitioning makes the traversalmore e�cient; the smaller the partition, the more e�cient the traversal, with maximume�ciency occurring if the whole partition �ts into the bu�er space.Unfortunately, small partitions increase the probability of self-referential cycles of2



garbage that cross partition boundaries; such cyclic garbage is not detected by the par-titioned garbage collection algorithms. Previous work has maintained that such crosscycle structures will be few, and will \probably" not be a problem. However, simulationsby [CWZ94] showed that even small increases in database connectivity can produce sig-ni�cant amounts of such garbage. Therefore, it is not clear that partition sizes can bemade very small without either failing to collect large amounts of garbage or employingspecial (and expensive) techniques to detect such cyclic garbage.A natural alternative is Reference Counting. Reference Counting is based on the ideaof keeping a count of the number of pointers pointing to each object. When the referencecount of the object becomes zero, it is garbage and eligible for collection. Referencecounting has the attractive properties of localized and incremental processing. Unfortu-nately, basic reference counting cannot deal with self-referential cycles of objects; eachobject could have a positive reference count, yet all the objects in the cycle may beunreachable from the persistent root, and therefore be garbage. However, a number ofextensions of the basic referencing counting algorithm to handle cyclic data have beenproposed in the programming language community, including: [Bro85, Bro84, PvEP88].More recent work in this area includes [Lin90, MWL90, JL91].In this paper, we consider a version of reference counting, proposed by Brownbridge[Bro85, Bro84] for functional programming languages, which handles self referential cyclesof garbage. We present an algorithm, called Transactional Cyclic Reference Counting(TCRC), based on Brownbridge's algorithm, which is suitable for garbage collection inan OODB. The salient features of the TCRC algorithm are:� It detects all self referential cycles of garbage unlike basic reference counting, andthe partitioned garbage collection algorithms.� It performs a very localized version of mark-and-sweep to handle cyclic data, witheach mark-and-sweep likely to access far fewer objects than a global mark-and-sweep. Thus it does not have to examine the entire database while collectinggarbage, except in the worst case.� It allows transactions to run concurrently, and does not obtain any long term locks,thereby minimizing interference with transaction processing.� It is integrated with recovery algorithms, and works correctly in spite of systemcrashes. It also uses recovery subsystem logs to detect pointer updates; thus, ex-isting application code need not be rewritten.� It exploits schema information, if available, to reduce costs. In particular, if theschema graph is acyclic, no cyclic references are possible in the database and TCRCbehaves identically to reference counting.3



Designing a cyclic referencing counting algorithm which allows concurrent updates andhandles system crashes is rather non-trivial, and to our knowledge has not been donebefore; we believe this is one of the central contributions of our paper. We also presenta proof of correctness of the TCRC algorithm.A problem often cited against reference counting schemes is the overhead of updatingreference counts. However, each pointer update can only result in at most one referencecount being updated. This overhead will have only a small impact on performance if, aswe expect is true in any realistic scenario, pointer updates are only a small fraction ofthe overall updates. For TCRC, moreover, the overhead is o�set by the reduced cost oftraversals while collecting garbage.The algorithm presented in this paper improves on that presented in an earlier ex-tended abstract of this paper [ARS+97], in the following ways. There is no longer anassumption that transactions follow strict 2PL; in fact the current algorithm makes noassumptions about the locking policies used by the transaction. There is no longer anassumption that transactions follow strict WAL (that is, both the undo and redo val-ues must be logged before actually performing the update); only the normal (non-strict)WAL is assumed to be followed. That is, the current algorithm requires undo values tobe logged before the update, while the redo values may be logged anytime before the endof the transaction (before or after the update). Finally, the current algorithm performsa more restricted local traversal than the earlier algorithm, and is therefore potentiallymore e�cient.For the client-server setting, the current algorithm also relaxes the force requirement;that is, updates made by a transaction running at the client can be re
ected at the serverafter the transaction ends, and are not required to be forced to the server before the endof the transaction.We have implemented a prototype of the TCRC algorithm as well as the partitionedmark and sweep algorithm on a storage manager called Brahm�a developed in IIT Bombay.We present a performance study of TCRC based on the implementation; the study clearlyillustrates the bene�ts of TCRC.2 Brownbridge's Cyclic Reference Counting Algo-rithmOur Transactional Cyclic Reference Counting algorithm is based on the Cyclic ReferenceCounting (CRC) algorithm proposed by Brownbridge [Bro84, Bro85], in the context offunctional programming languages.The basic idea behind the Cyclic Reference Counting (CRC) algorithm of Brownbridge[Bro84, Bro85] is to label edges in the object graph as strong or weak. The labelling isdone such that a cycle in the object graph cannot consist of strong edges alone { it must4



have at least one weak edge. Two separate reference counts for strong and for weak edges(denoted SRefC and WRefC respectively) are maintained per object. It is not possiblein general to cheaply determine whether labelling a new edge as strong creates a cycle ofstrong edges or not. Hence, in the absence of further information, the algorithm takes theconservative view that labelling a new edge strong could create a cycle of strong edges,and labels the new edge weak.The SRefC and WRefC are updated as edges are created and deleted. If for anobject S, the SRefC as well as WRefC is zero, then S is garbage and S and the edgesfrom it are deleted. If the SRefC is zero, but WRefC is non-zero, there is a chancethat S is involved in a self referential cycle of garbage. If the SRefC of an object Sis greater than zero, then S is guaranteed to be reachable from the root (however, ourTCRC algorithm does not guarantee this last property).If the object graph did not have any garbage before the deletion of an edge to S, thenthe only potential candidates for becoming garbage are S and objects reachable from S. IfSRefC of S is zero and WRefC of S is nonzero, a localized mark and sweep algorithmdetects whether S and any of the objects reachable from S are indeed garbage. Thelocalized mark and sweep performs a traversal from S and identi�es all objects reachablefrom S and colours them red. Let us denote the above set by R. It then colours greenevery object in R that has a reference from an object outside R (detected using referencecounts). It also colours green all objects reachable from any green object. During thisgreen marking phase some pointer strengths are updated to ensure that every object hasat least one strong pointer to it. We will describe this pointer strength update in detailin the context of our transactional cyclic reference counting algorithm. At the end, allobjects in R not marked green are garbage and are deleted.However, prior cyclic reference counting algorithms, including Brownbridge's algo-rithm, were designed for a single user system. They cannot be used in a multi-userenvironment with concurrent updates to objects, and do not deal with persistent dataand failures. Our contributions lie in extending Brownbridge's algorithm to (a) use logsof updates to detect changes to object references, (b) to work in an environment withconcurrent updates, (c) to work on persistent data in the presence of system failures andtransaction aborts, (d) handle a batch of updates at a time rather than one update ata time, and (e) optimize the localized mark and sweep signi�cantly by following onlystrong pointers.3 System Model and AssumptionsIn this section, we describe our system model and outline the architectural assumptionson which our garbage collector is based.In our model, transactions log undo and redo information for all updates. Undoand redo records are represented as undo(tid, oid, o�set, old-value), and redo(tid, oid,5



o�set, new-value), where tid denotes a transaction identi�er and oid an object identi�er.Object creation is logged as object-allocation(tid, oid). The commit log is represented ascommit(tid); and the abort log is represented as abort(tid). We require that from the oidwe can identify the type of the object (perhaps by �rst fetching the object), and fromthe o�set we can determine if the value that has been updated is a pointer �eld. Theserequirements are satis�ed by most database systems.As with any other garbage collection scheme, we assume that an object identi�er(oid) is valid only if it either refers to a persistent root, or is present in a pointer �eld ofan object in the database, or is in the transient memory (program variables or registers)of an active transaction that read the oid from an object in the database or createdthe object it refers to. Note that this precludes transactions from passing oids to othertransactions, and from storing oids in external persistent storage.Assumption 3.1 The transactions follow WAL, that is, they log the undo value beforeactually performing the update, but the redo value may be logged anytime (before or afterthe update). 2Assumption 3.2 All logs for a transaction are forced to disk before commit or abort(force-logs-at-abort in addition to force-logs-at-commit). 2The assumptions above are satis�ed by typical storage managers for object-orienteddatabases.4 Transactional Cyclic Reference CountingWe will now describe the Transactional Cyclic Reference Counting (TCRC) algorithm.We �rst describe the data structures needed by the transactional cyclic reference countingalgorithm.4.1 Data StructuresAssociated with each object, we maintain a strong reference count (SRefC) giving thenumber of strong pointers pointing to the object, a weak reference count (WRefC) givingthe number of weak pointers pointing to the object, and a strength bit for the object.Each pointer also has a strength bit. The pointer is strong if the strength bit in the pointerand the strength bit in the object pointed to have the same value; otherwise the pointeris weak. This representation of strength using two bits is an important implementationtrick, from Brownbridge [Bro84, Bro85]. It makes very e�cient the operation of 
ippingthe strength of all pointers to an object, that is making all strong pointers to the objectweak, and all weak pointers to the object strong. All that need be done is to 
ip thevalue of the strength bit in the object. 6



The TCRC algorithm also maintains another table, theWeak Reference Table (WRT),which contains oids for the objects which have a zero SRefC, i.e. no strong pointersincident on them. The persistent root is never put into the WRT.All the above information can be constructed from the object graph after a systemcrash by scanning the entire database. Therefore, it is not necessary to make it persis-tent and incur the overhead of logging updates to these structures. Reconstructing thisinformation at crash will however a�ect the availability of the database. If fast recoveryis required then we could make these structures persistent at the cost of extra logging.The choice of whether or not to make this information persistent can be left to eachinstallation.If the above structures are made persistent, then updates to SRefC and WRefC,update of the strength bit of an object or of a pointer, and the insert or delete of entriesfrom the WRT are logged as part of the transaction whose pointer update caused theinformation to be updated/inserted/deleted. Thus their updates will be undone if thetransaction does not complete, and will be redone (while repeating history) if the systemcrashes.Apart from the above structures, we have the following non-persistent structures {this means that irrespective of whether the above structures are made persistent theseneed not be persistent.There is a non-persistent table which is used during garbage collection: the RedReference Table (RRT); this table associates with (some) objects a strong red referencecount (SRedRefC), a weak red reference count (WRedRefC), and a bit that indicateswhether the colour of the object is red or green. This table is stored on disk since the sizeof this table could be large in the worst case, but updates to this table are not logged.Similar to [AFG95] TCRC also maintains an non-persistent in-memory table calledthe Temporary Reference Table (TRT), which contains all those oids such that a referenceto the object was added or deleted by an active transaction, or the object was createdby the transaction. An oid in TRT is tagged with the tid of the transaction that isreponsible for its insertion into TRT. There may be multiple entries in TRT for the sameoid. An object whose oid is in TRT may not be garbage even if it is unreachable fromany other object, since the transaction may store a reference to the object back in thedatabase. Updates to TRT are also not logged.4.2 The AlgorithmTCRC consists of two distinct algorithms, run by di�erent processes. The �rst is the log-analyzer algorithm (LogAnalyzer). The second algorithm is the actual garbage collectionalgorithm (CollectGarbage). The execution of these is synchronized by two latches: alog analyzer latch that is taken for the duration of LogAnalyzer, and a gc latch that istaken for the duration of CollectGarbage. We describe the two algorithms below.7



4.2.1 Log AnalyzerThe log-analyzer algorithm analyzes log records generated by the transaction, and per-forms various actions based on the log records. We shall assume it is run as part of thetransaction itself, and is invoked each time a log record is appended to the system logtail, and is atomic with respect to the appending of the log record.In the actual implementation, it is possible to run the log-analyzer as a separatethread, and when a transaction appends a log record to the system log, it actually onlydelivers it to the log-analyzer, which then appends the log record to the system log.The log-analyzer makes use of the following procedures. Procedure DeletePointerdecrements the WRefC or SRefC for an object when a pointer to the object is deleted.If the SRefC falls to zero after the decrement then the object's oid is put into WRT.Procedure AddPointer, by default, sets the strength of the pointer to be weak and incre-ments the WRefC of the object pointed to. The strength is set to weak so that cyclesof strong edges are not created; however, we will see in Section 6 that we may be able tomake some new pointers strong.The procedure LogAnalyzer works as follows. First it obtains the log analyzer latch(which is also acquired by the garbage collection thread) to establish a consistent pointin the log. The latch is obtained for the duration of the procedure. The log is analyzed bythe log analyzer and depending on the type of the log record various actions as outlinedbelow are taken.� For undo/redo log records caused by pointer updates, the reference counts for thea�ected objects are updated. This is done by DeletePointer in case of undo logs,and AddPointer in case of redo logs. The oid of the a�ected object is inserted intothe TRT tagged with the tid of the transaction that made the update.� For log records corresponding to the creation of objects, the reference counts forthe new object are initialized to zero, and the oid of the created object is insertedinto the WRT. The oid of the created object is inserted into the TRT tagged withthe tid of the transaction that created the object.� For end-of-transaction (commit or abort) log records, the algorithm �rst tries toget the gc latch. If the latch is obtained immediately, then garbage collection isnot in progress and remove all the oid entries for the terminating transaction fromthe TRT and the gc latch released thereafter (recall that each oid entry in TRT istagged with the tid of the transaction that is responsible for its presence in TRT).However, if the gc latch cannot be obtained immediately then a garbage collection isin progress concurrently. In this case, the oid entries for the terminating transactionare not removed, but instead 
agged for later removal by the garbage collector.All operations on pointer strengths and reference counts are protected by a latch on8



the object pointed to, although not explicitly mentioned in our algorithms. Access toWRT and TRT are also protected by latches.The following properties follow from the above discussion.Property 4.1 The persistent root is never placed in the WRT. It has no references toit. Therefore it never occurs in the TRT or RRT. 2Property 4.2 The objects in TRT corresponding to a transaction are removed onlywhen (a) the transaction has ended and (b) garbage collection is not in progress. 24.2.2 Garbage CollectorThe garbage collection algorithm is activated periodically (possibly depending on avail-ability of free space). The algorithm makes use of the following support functions.Procedure RedTraverse populates the RRT with objects it identi�es as potentialgarbage. The rest of the garbage collection algorithm is restricted to only the objectsin RRT. The pseudocode for RedTraverse appears in Figure 1. RedTraverse performs afuzzy localized traversal of the object graph. It is invoked on all objects in WRT that arenot in TRT. Thereafter, an object is visited by any of the invocations if and only if theobject is not in TRT and all the objects that have a strong pointer to this object havebeen visited earlier. No locks are obtained on the objects being traversed. Short termlatches may be obtained on objects or pages to ensure physical consistency. RedTraversemarks all visited objects red and puts them in RRT.Additionally, RedTraverse caches the reference counts (SRefC and WRefC) of eachobject in RRT at the instant it visits the object. RedTraverse also maintains for eachobject in RRT, two counts: SRedRefC andWRedRefC, giving respectively the numberof strong and weak pointers to the object from all other objects visited. These counts aremaintained on the 
y during the traversal; in order to do so, RedTraverse also maintainsthese counts for objects that are reachable by a single weak edge from objects in RRT,since such objects may be added to RRT later in the traversal. In the pseudocode ofFigure 1, these objects are coloured blue. For the rest of the paper, we ignore the presenceof blue objects in RRT, and assume that they are explicitly removed from RRT after thelast invocation of RedTraverse. The invocations of RedTraverse are collectively termed redtraversal.Procedure GreenTraverse performs a fuzzy traversal with the purpose of marking liveobjects in RRT green and updating some pointer strengths to ensure that every objectit visits has at least one strong pointer referring to the object (this ensures that in theabsence of update transactions during the garbage collection phase, no object will be inWRT thus ensuring that there is no work to be done during the next garbage collectionsphase. See Theorem 5.11 for a formal proof of this statement). In addition, the pointer9



Procedure RedTraverse(oid)Input: oid: (oid of) the object to be traversedf if oid is not in RRTInsertRRT(oid)Traverse(oid)gProcedure Traverse(oid)Input: oid: (oid of) the object to be traversedf if oid is not in TRT fcolour oid redfor each pointer oid! poid fif poid is not in RRTInsertRRT(poid)update SRedRefCpoid and WRedRefCpoiddepending on the strength of oid! poidif SRedRefCpoid == SRefCpoid/* this is the last strong pointer to poid */Traverse(poid)gggProcedure InsertRRT(oid)Input: oid: (oid of) the object to be inserted into RRTf colour oid blueinsert oid into RRTwith SRedRefCoid =WRedRefCoid = 0cache current values of SRefC and WRefC for oidin SRefCoid and WRefCoid respectivelyg Figure 1: Pseudo Code for RedTraverse
10



Procedure GreenTraverse(oid)Input: oid: (oid of) the object to be traversedf colour oid yellowfor all pointers oid! poid fif poid is in RRT and is not yellowGreenTraverse(poid)gfor all pointers oid! poid fif poid is green fif SRefCpoid == 0remove poid from WRTmake oid! poid strong (if weak)get log analyzer latchupdate reference counts of poidrelease log analyzer latchg else fmake oid! poid weak (if strong)get log analyzer latchupdate reference counts of poidrelease log analyzer latchif SRefCpoid == 0insert poid into WRTggcolour oid greeng Figure 2: Pseudocode for GreenTraverse
11



Procedure CollectGarbagef acquire gcLatch/* P0 */RRT = fgfor each oid in WRT but not in TRTRedTraverse(oid)/* also caches the reference countsof visited objects in SRefCoid and WRefCoid*//* P1 */TLIST = list of all transactions active at P1Wait for all transactions in TLIST to end/* P2: instant when all transactions in TLIST end */for each oid in RRT but not in TRT f/* SRefCoid and WRefCoid refer tocached reference counts */L0 : if SRefCoid +WRefCoid >SRedRefCoid +WRedRefCoid fif SRefCoid == 0 /* oid is in WRT */remove oid from WRTget log analyzer latchinvert the strength of all references to oidupdate reference counts of oidrelease log analyzer latchGreenTraverse(oid)gg/* P3 */L1 : for each oid in RRT that is red and is in TRTGreenTraverse(oid)/* P4 */for each oid in RRT that is redCollect(oid)/* P5 */release gcLatchremove all 
agged entries from TRTg Figure 3: Pseudo Code for CollectGarbage12



strength updates have to be done in such a fashion that strong cycles do not remain atthe end of the garbage collection phase. The pseudocode for GreenTraverse appears inFigure 2. Starting from the object Procedure GreenTraverse is invoked on, it visits all theobjects in RRT that are reachable from this object in a depth �rst manner: it backtracksfrom an object after it has visited all objects in RRT reachable from that object. Justbefore backtracking from an object, it colours the object green and updates (if needed)the strengths of the references out of the object. If the reference is to a green object, it ismade strong if it is weak; otherwise if the reference is to any other object (possibly to anobject not in RRT) then it is made weak if it is strong. The invocations of GreenTraverseare collectively termed green traversal.Procedure Collect actually deletes an object; before doing so, it deletes all pointers outof the object, updating the stored reference counts (SrefC and WRefC) of the objectspointed to. It also removes the object from WRT.The garbage collection algorithm is implemented by Procedure CollectGarbage, shownin Figure 3. Below, we present a discussion of the steps involved. Additionally, we pointout instances during the execution (shown in the �gure) that will be referred in the proof.The �rst step is to acquire gc latch. At some point P0 after this, RedTraverse isinvoked on all objects that are in WRT but not in TRT. After the red traversal, we waitfor all transactions that were active at some point P1 after the end of the red traversalto terminate.This wait is necessary for correctness of the algorithm in face of transactions following(non-strict) WAL and arbitrary locking protocols. We present the intuition below; theformal proof appears in Section 5.In case a transaction T does not follow strict-2PL locking, the following scenario canoccur. T takes a lock on some object x, reads the reference to y from some pointer �eldin x, and then releases the lock on x. Next, all the references to y get deleted and all thetransactions that made the deletions commit (this can happen because T has releasedthe lock on x). This makes y unreachable from any live object; but y is not garbagebecause oid of y is cached by T which can insert a pointer to y from some other objectlater. The wait ensures that all transactions such as T end before analysis proceeds.The wait further ensures, in face of (non-strict) WAL, that all the redo logs for pointerinserts that occured during the red traversal are forced to disk in addition to the undo logsfor pointer deletions before analysis proceeds; this is because all the logs for a transactionare (by assumption) necessarily forced before the end of the transaction. This makes theTRT consistent with respect to any insertion or deletion of pointers that might haveoccured during the red traversal.The list of transactions TLIST can be determined fuzzily | that is, we need not takea latch on the transaction table while scanning it. This is safe because only the followingmay happen while the scan is in progress: (a) some transaction that was active at P1ends and does not appear in TLIST | this is acceptable because we were just going to13



wait for it to end anyway; or (b) some some transaction starts after P1 and its entryappears in TLIST | this is acceptable because this can only extend the wait. P2 is theinstant when all the transactions in TLIST terminate.Next, we do green traversal to mark green all the live nodes in RRT. After P2,GreenTraverse is invoked on an object that is in RRT but not in TRT if the total redreference counts (SRedRefC + WRedRefC) for the object computed during the redtraversal is strictly less than its total reference counts (SRefC + WRefC) that arecached during the red traversal (as checked in statement L0). As will be shown in theproof, these objects are live: they are referred from some object not in RRT. But beforethe invocation, the strengths of all references to this object are inverted and the referencecounts updated atomically with respect to the log-analyzer (log analyzer latch is used forthis purpose). The inversion of strengths is necessary to ensure that after this garbagecollection phase is over, there will be at least one strong pointer to the object (notice thatall references to the object from objects not in RRT must be weak). This is necessary toensure that in absence of update transactions no work will be done by the next garbagecollections phase; this is formally proved in Theorem 5.11. This inversion of strengthsmight cause strong cycles to be formed. But, as proved in Lemma 5.8, these will notexist after this garbage collection phase is over.After the above invocations complete at P3, any objects in RRT that are in TRT arealso marked green since their references may still be stored in an ongoing transactionand can potentially be stored back in the database. Objects that are reachable from theabove objects are also marked green, by invoking GreenTraverse. These invocations getover at P4.In the pseudocode, we have left unspeci�ed how (at step L1) the consistent point isobtained such that at this point, no red object in RRT is in TRT. It turns out that thefollowing simple procedure is enough. We make repeated scans of the RRT, invokingGreenTraverse on red objects that have been inserted into TRT since they were checkedin the previous scan; and terminating when we come across no such object in the latestscan. The consistent point corresponds to the instant the last scan starts. This is becauseif some object in RRT is red and is in TRT at the start of the last scan, then during thescan it stays red because of the fact that GreenTraverse is not invoked in the interim; andstays in TRT because of Property 4.2(b). But then, it must be detected to be red andin TRT during the last scan | a contradiction.All objects in RRT that are red at P4 are collected next. The collection gets overat P5. Finally, the gc latch is released and all the entries in TRT that were tagged asremovable by transactions that completed since the garbage collection phase began (thatis, since gc latch was acquired) are removed.
14



4.2.3 Support for Logical Undo by the Recovery ManagerThe TCRC algorithm needs some support from the recovery manager in the form ofsupporting logical undos to ensure correctness. This support is required only if we chooseto maintain the reference counts, pointer strengths and WRT persistent. There are someactions whose undos have to be performed logically and not physically. We discuss thembelow and discuss what the logical undo should do in each case:Pointer Deletion and Strength Update: Undo of a pointer deletion or strengthupdate, if performed naively, may introduce strong cycles in the graph, which can a�ectthe correctness of the algorithm. The right way to undo a pointer deletion is to reinsertthe pointer with the strength set to be weak (even if it was strong earlier). Similarly,the undo of a pointer strength update (done in case of system crash during the garbagecollection phase) is to set the strength of the pointer as weak (irrespective of the originalstrength).Reference Counts Update: The reference counts of an object O can be concur-rently updated by multiple transactions (including the garbage collector) through di�er-ent objects which are locked by the transactions. The object O itself need not be lockedsince only a reference to it is being updated. Only short term latches are necessary formaintaining physical consistency. If a transaction that updated the reference count of anobject aborts, it should be logically undone: the undo of a reference count increment isa decrement of the same reference count, while the undo of a reference count decrementis always an increment of WRefC since a reinserted pointer is always weak.5 Proof of CorrectnessWe formally state the de�nition of a garbage object.De�nition 5.1 (Garbage Object) An object is de�ned to be garbage if it is notreachable from the persistent root or from any object in the TRT or from any objectwhose reference (oid) has been read by any active transaction. 2The above de�nition considers an object as live if it is reachable from TRT, even if itdoes not satisfy the other conditions and therefore is garbage in the conventional sense.Note that eventually an object that is garbage in the conventional sense will leave TRTand any active transaction that read a reference to it will terminate and thus will becomegarbage in the sense of De�nition 5.1. Our lemmas and proofs are simpli�ed by usingthe above de�nition.5.1 Object StatesAt any instant between P1 and P4, an object x in RRT is in one of the following threestates: 15



S1: x is reachable from an object outside RRT but is not reachable, through a pathconsisting only of objects in RRT, from any object that is in RRT and also in TRT.S2: x is reachable, through a path consisting entirely of objects in RRT, from an objectin RRT that is also in TRT.S3: x is neither in state S1 nor in state S2, that is x is neither reachable from any objectoutside RRT nor from any object in RRT that is also in TRT.In the above, an object is assumed to be reachable from itself through a null path.We need to prove that TCRC is safe: it does not collect any live objects; and complete:it eventually collects all garbage objects.A badly designed garbage collection algorithm could create in�nite work for itself, byleaving oids in WRT which will be traversed by another garbage collection phase, whichin turn leaves oids in WRT, ad in�nitum. We guarantee that this does not happen inTCRC; that is, in the absence of update transactions, the system eventually reaches astate where garbage collection thread does no more work.We will make use of the following properties of the algorithm in the proof of theresults that follow.Lemma 5.1 If a transaction not in TLIST active at an instant P strictly between P1and P2 has read a reference to an object that is in state S3 at P , then the object is instate S2 at P2.Proof: Suppose some transaction T not in TLIST is active at P and has read a referenceto some object that is in state S3 at P but not in state S2 at P2. Let x be the �rst suchobject to which a reference is read by T . Also, let P 0 be the instant when T reads the�rst object y that has a reference to x.The reference from y to x was present at P 0. Either of the following two cases arepossible:Case 1: The reference from y to x is present at P .Since x is in state S3 at P , y must also be in state S3 at P . De�nitely, a referenceto y was read by T before the reference to x. Recall that x was the �rst objectthat is in state S3 at P but not in state S2 at P2 a reference to which was read byT . Therefore, y is in state S2 at P2. If the reference from y to x is present at P2,then x is in state S2 at P2. Otherwise, if the reference from y to x has been deletedbetween P and P2, then by Assumption 3.1 and Property 4.2(b) x is in TRT, andhence in state S2, at P2.Case 2: The reference from y to x is not present at P .The reference from y to x has been deleted between P 0 and P . Because of Assump-tion 3.1, the log for the above deletion must have been analyzed between P 0 and16



P . P 0 occured after P1 because T could not have been active at P1. Therefore, byProperty 4.2(b), x must be in TRT, and hence in state S2, at P .The above implies that x must be in state S2 at P2. Proved by contradiction. 2Lemma 5.2 If an object is in state S3 at an instant P between P2 and P4, then notransaction active at P could have read a reference to it.Proof: Suppose some transaction T is active at P and has read a reference to someobject that is in state S3 at P . Let x be the �rst such object to which a reference is readby T . Also, let P 0 be the instant when T reads the �rst object y that has a reference tox. De�nitely, a reference to y was read by T before the reference to x. Recall that xwas the �rst object in state S3 a reference to which was read by T . Therefore, y is notin state S3 at P . Since x is in state S3 at P , the reference from y to x is not present atP . But it was present at P 0.The reference from y to x has been deleted between P 0 and P . Because of Assump-tion 3.1, the log for the above deletion must have been analyzed between P 0 and P .P 0 occured after P1 because T could not have been active at P1. Therefore, by Prop-erty 4.2(b), x must be in TRT at P , and therefore cannot be in state S3 at P . Provedby contradiction. 2Lemma 5.3 If an object v is in RRT but is not in TRT at P2, then (a) no referenceto v is updated (inserted or deleted) between P0 and P1; and (b) all references to v thatexist between P0 and P1 are accounted in the total reference counts of v cached duringred traversal.Proof: No log corresponding to an update of a reference to v that occurs before P1 isanalyzed after P0. This is because the transaction that is responsible for the update mustend before P2. Therefore, by Assumption 3.2, the log must be analyzed before P2. Butthen, by Property 4.2(b), v would be in TRT at P2 | a contradiction.Suppose an update of some reference to v takes place at some instant P between P0and P1, consider the instant when the log for the reference update is analyzed. As shownabove, this must occur before P0. But then, because the transaction is active at P byProperty 4.2(a) v is in TRT at P , and therefore is in TRT at P2 by Property 4.2(b), acontradiction. This proves part (a) of the lemma.All references to v that exist between P0 and P1 are accounted in the total referencecounts of v at P0. This is because otherwise it must be that the log for the insertionof the unaccounted reference is analyzed at some instant after P0, a contradiction. Thetotal reference counts for v must have remained unchanged between P0 and the instantwhen they are cached during the red traversal, again because of the fact that no log isanalyzed in the interim that can cause the change. This implies part (b) of the lemma.2 17



Lemma 5.4 If an object in RRT is in state S1 at P2, then it is reachable from someobject not in RRT at P0.Proof: Suppose that an object x in state S1 at P2 is not reachable from any object notin RRT at P0. Now, consider the instant P when the �rst path to x from some object notin RRT was created. Let the insertion of the reference from object y to object z that is inRRT be responsible for the same. Then, at P , there exists a path from z to x consistingentirely of objects in RRT. This path remains intact till P2 because otherwise x wouldbe in state S2 at P2 by Assumption 3.1 and Property 4.2(b), which is a contradiction.If the transaction T that made the above insertion existed before P1, then it wouldend before P2 and therefore because of Assumption 3.2 and Property 4.2, z would be inTRT at P2. But then x would be in state S2 at P2 leading to a contradiction. Thus, Tstarted after P1.This implies that P occured after P1. At some instant P 0 between P1 and P , T musthave read a reference to z. But since z is unreachable from any object not in RRT orfrom any object in TRT at P 0, it must be in state S3 at P 0. But then, by Lemma 5.1, z(and hence x) must be in state S2 at P2, leading to a contradiction. 2The following result states the restrictions on the state transition of objects duringgarbage collection.Lemma 5.5 If an object in RRT is in state S3 at some instant P between P2 and P4,then it remains in state S3 between P and P4.Proof: Suppose that an object x in state S3 at some instant P between P2 and P4 makesa transition to some other state immediately after P .Let the set A contain all the objects from whom x is reachable at P . By de�nitionof state S3, no object in A lies outside RRT. Moreover, at P no object in A is reachablefrom an object outside RRT or from an object in RRT that is also in TRT | otherwisex would also be reachable from this object at P and therefore not be in state S3. Thisimplies that all objects in A are in state S3 at P .The transition of state must be due to an update of a reference to some object y inA; the instant P corresponds to the occurence of the update itself, or the analysis ofthe log for the update | whichever is earlier. The transaction T that is responsible forthe update must have obtained a reference to y before it is able to make the update orgenerate a log for the same. In other words, T must have obtained a reference to y beforeP . Because of Assumption 3.2, T is active at P . But this contradicts Lemma 5.2 becausey is in state S3 at P as shown above. Proved by contradiction. 2Next, we prove an invariant of the algorithm.Lemma 5.6 At P4, an object in RRT is red i� it is in state S3.18



Proof: (Only if) Suppose that at P4, an object x in RRT is red and is not in state S3.By Lemma 5.5, x is not in state S3 at P2.Consider the instant P when the condition in the statement L1 evaluates to falseleading to termination of the for-loop. At P , therefore, all objects in RRT that are alsoin TRT are green. Two cases are possible.Case 1: x is in state S1 at P2.Then, by Lemma 5.4, it is reachable from some object not in RRT at P0. Let thereference from object u to object v be along the path such that u is not in RRTbut v is in RRT. Now, two subcases are possible.Case 1.1: The path from u to x is intact between P0 and P .By Lemma 5.3(b), the reference from u to v as well as the references that areaccounted in the red reference counts of v are accounted in the cached totalreference counts of v. Since u is not in RRT, the reference from u to v is notaccounted in the red reference counts of v. Thus, the cached total referencecounts of v are strictly greater than the red reference counts of v.Since v is in RRT but not in TRT, statement L0 will be executed for v. Forthe reasons stated above, the condition will be satis�ed and GreenTraverse willbe invoked on v. Since the path from v to x consists of only objects in RRTand is intact at this point, x will be coloured green (if not already so).Case 1.2: The path from u to x is broken between P0 and P .Consider the object y along the path at P0 such that the reference to y alongthe path is deleted between P0 and P , but the path from y to x is intact at P(y might be the same as x). Being in TRT, y must be green at P . But since thepath from y to x is intact between P0 and P , the invocation of GreenTraversethat coloured y green must also have coloured x green (if not already so).Case 2: x is in state S2 at P2.That is, at P2 there existed a path, consisting only of objects in RRT, to x fromsome object in RRT that is also in TRT. The path could have broken between P2and P . The rest of the proof is similar to Case 1.2 above. Consider the object yalong the path at P2 such that the reference to y along the path is deleted betweenP2 and P , but the path from y to x is intact at P (y might be the same as x).Being in TRT, y must be green at P . But since the path from y to x is intactbetween P2 and P , the invocation of GreenTraverse that coloured y green must alsohave coloured x green (if not already so).The above implies that x is green at P , and therefore at P4 | a contradiction. Thisproves that x must be in state S3 at P4. 2Proof: (If) Suppose that a green traversal invoked at some object x was responsible forcolouring green some object y that is in state S3 at P4.19



The path from x to y that existed at the time of the green traversal must be intactat P4 | otherwise y would be in state S2 at P4 by Assumption 3.1 and Property 4.2(b).Therefore, x must also be in state S3 at P4. In particular, x could not have been in TRTat the time of the invocation.But then, the only way green traversal could have been invoked on x is that thecondition in statement L0 must have evaluated to true when it was executed for x. Thatis, the red reference counts for x are strictly less than the cached total reference countsfor x. This can only occur if a reference from some object z to x that existed (as perthe cached total reference counts of x, by Lemma 5.3(b)) between P0 and P1 was nottraversed in the red traversal and therefore is not accounted in the red reference countsof x.By Lemma 5.3(a), no update of any reference to x takes place between P0 and P1.This implies that the reference from z to x existed at P0. Moreover, this reference couldnot have been deleted between P0 and P4, otherwise by Assumption 3.1 and Property 4.2x would be in TRT at P4, a contradiction. This further implies that z must be in RRT,otherwise x would not be in S3 at P4.Now, we know that z was visited by the red traversal between P0 and P1. Also,the reference from z to x existed at P0 and it did not get deleted between P0 and P1.But then, the reference would have been accounted in the red reference counts of v | acontradiction. 2The results stated above are put together in the form of the following theorem.Theorem 5.7 (Safety) Only garbage objects are collected by CollectGarbage.Proof: At P4, all red objects are in state S3 by Lemma 5.6. By de�nition of the state S3,these objects are not reachable from (a) any object not in RRT. This implies that theyare not reachable from the persistent root (which is never in RRT by Property 4.1) orfrom any object in TRT not in RRT; (b) any object in TRT that is in RRT. Therefore,these object are neither reachable from the persistent root nor from any object in TRT.All objects from which an object in state S3 is reachable at P4 are in state S3 at P4.By Lemma 5.2, no reference to any of these objects has been read by any transactionactive at P4.This implies, by de�nition, that all objects that are red at P4 are garbage. Since onlythese objects are collected by CollectGarbage, the theorem is proved. 2Next, we prove that TCRC is complete | that is, it collects all garbage eventually.For this, we further need the following results.Lemma 5.8 A cycle of strong references can exist only between P2 and P5.Proof: CollectGarbage changes the reference strengths only between P2 and P5. Trans-actions can only delete strong references | they never change pointer strengths or insert20



strong pointers. We assume that there exist no cycles of strong references when the ob-jects are loaded. Therefore, it is su�cient to prove that if there exist no cycles of strongreferences at P2 then there exist no cycles of strong references at P5.Only the strengths of references from objects in RRT are changed between P2 andP5. Since there are no cycles of strong references at P2, we cannot have a cycle of strongreferences that does not contain an object in RRT at P5.Consider two green objects x and y such that the green traversal backtracked from xbefore it backtracked from y. Then, all references from y to x are made strong and fromx to y are made weak during the traversal. Thus, at P5 there exist no cycles of strongreferences containing only green objects.Also, the green traversal makes all references from green objects to objects not inRRT weak. This further guarantees that there exist no cycles of strong references at P5must have red objects.But all red objects at P4 are collected as garbage before P5. This proves that thereexist no cycles containing strong references at P5. 2Lemma 5.9 If an object is garbage P0 then it is in state S3 at P4.Proof: Let A be the set of all garbage objects at P0. We �x an order on the objects inA such that an object comes after all objects that have a strong reference to it at P0.This is possible because by Lemma 5.8, cycles of strong references cannot exist at P0.Recall that red traversal puts in RRT all objects in WRT that are not in TRT.Thereafter, it puts an object in RRT if it is not in TRT and all objects which have strongreferences to this object are in RRT.Let x be the �rst object in the above ordering that is not in RRT at P2. There canbe two cases possible.Case 1: There do not exist any strong references to x at P0. But then x is in WRTat P0 and not in TRT because it is garbage. Being garbage, it remains that wayduring the course of the red traversal, and therefore RedTraverse must be have beeninvoked on it. Thus, it must be included in RRT.Case 2: There exist strong references to x at P0. Since x is garbage at P0, all objectsthat have a strong reference to x must be garbage at P0. But then, they must bein A, and must occur before x in the ordering. By the choice of x, all these objectsmust be in RRT at P2. Also, x is not in TRT because it is garbage. Therefore, itmust be included in RRT during the red traversal.The above implies that x must be in RRT at P2 | a contradiction. This proves that allobjects in A are in RRT at P2. Further, none of these objects (which are garbage at P0)are reachable from objects not in RRT at P2 (which are live at P0). Moreover, none of21



these objects, being garbage also at P2, are reachable from objects that are in TRT atP2. Putting the above together, we see that all objects in A are in state S3 at P2.But then, by Lemma 5.5, all objects in A must be in state S3 at P4. This proves thelemma. 2Theorem 5.10 (Completeness) All garbage objects are eventually collected by Col-lectGarbage.Proof: By Lemma 5.9 and Lemma 5.6, a garbage object will be coloured red at P4 inthe �rst CollectGarbage invoked after it became garbage and therefore will be collected.2Theorem 5.11 (Bounded Work) If TRT is empty at P0 then in absence of anyconcurrently executing update transactions, WRT will be empty at P5.Proof: Since there are no transaction updates executing concurrently with the garbagecollection, the strength of all references remains same during the course of garbage col-lection.First, we consider objects not in RRT. If an object x not in RRT that has a strongreference from some object in RRT, then x must have at least one strong reference fromsome object not in RRT | otherwise x would have been included in RRT during redtraversal. Since this strong reference is not traversed by during the green traversal, itis never made weak by the garbage collector. Further, since only objects in RRT getdeleted, the reference never gets deleted either. This implies that any object that is notin RRT is not in WRT at P5.We consider the objects in RRT next. The green traversal makes the references from atraversed object to as yet untraversed objects in RRT strong before traversing the latter.Thus, all green objects except the ones on which the traversal is invoked have at leastone strong reference to them from other green objects at P4.Because no object is in TRT, green traversal is started only on objects which havereferences from outside RRT. By construction, all these references are weak. Therefore,when the strengths of references to an object are inverted before invocation of greentraversal on it, the references to it from objects not in RRT become strong. Becausethese references are never traversed during the green traversal, they are strong at P4.Summarizing, every green object has at least one strong reference to it from anothergreen object or from an object not in RRT at P4. Between P4 and P5, red objects arecollected, resulting in deletion of references from red objects to green objects. But fromthe results proved above, these reference deletions cannot put any green object into WRT.Thus, no green object is in WRT at P5.Thus, no green object or object not in RRT is in WRT at P5. But this accounts forall the objects because there do not exist any red objects at P5. Thus, it is proved thatno object is in WRT at P5 in absence of transaction updates. 222



In particular, if no update transactions exist from the beginning of one invocation ofCollectGarbage to the end of the next, then TRT will be empty at the beginning of thelatter invocation; and therefore by Lemma 5.11 the WRT will be empty at the end ofthe second invocation.6 Using the Schema GraphWe now see how to use information from the database schema to optimize TCRC. Theschema graph is a directed graph in which the the nodes are the classes in the schema.An edge from node i to node j in the schema graph denotes that Class i has an attributethat is a reference to Class j. The pointers in the schema graph thus form a templatefor the pointers between the actual instances of the objects. If an edge E in a schemagraph is not involved in a cycle, then neither can an edge e in the object graph for whichE is the template.We label edges which are not part of a cycle in the schema graph as acyclic andthe others as cyclic. When adding an edge e to the object graph, if its correspondingtemplate edge in the schema graph is acyclic, the strength of e is set to be strong. Duringgarbage collection, in RedTraverse, we do not follow strong edges whose template edge isacyclic. In the extreme case where the schema graph is acyclic, no edges are traversed,and TCRC behaves just like reference counting, reducing the cost signi�cantly.7 Extension to a Client Server EnvironmentIn this section, we outline the set of assumptions required for our algorithm to workcorrectly in a data shipping client server environment.Assumption 7.1 The transactions run only at the clients. The server can determinewhat transactions are are possibly active at the clients at any given instant. 2Assumption 7.2 Cache consistency is guaranteed among the clients. That is, the trans-actions running at any client always see the latest state of the database. 2This allows us to think of the transactions as running on a single client.Assumption 7.3 All undo records are received the server before the update is re
ectedat the server (WAL). 2Assumption 7.4 All logs for a transaction are received at the server before commit orabort (force-logs-at-abort in addition to force-logs-at-commit). 223



Our techniques are not a�ected by the unit of data shipping (such as page or object)and whether or not data is cached at the client. The clients can retain copies of updateddata after it has been sent to the server.To guarantee that the algorithm works correctly in the client-server setting with theabove assumptions, the only change required in the algorithm is the following general-ization of Property 4.2.Property 7.1 The objects in TRT corresponding to a transaction are removed onlywhen (a) the transaction has ended; (b) all updates by the transaction are re
ected atthe server; and (c) garbage collection is not in progress at the server. 2Note that the LogAnalyzer as well as the CollectGarbage algorithms are run at theserver. As such, some extra care has to be taken during traversals of the object graph.Because the database state at the server (where the garbage collector is running) is notcurrent, it might happen that an object may have a reference to some newly createdobject that is not yet present at the server. Such a dangling reference is simply ignoredduring the traversals.We can prove the correctness of the algorithm in the client server setting also andrefer the reader to [RSS+98] for a proof.8 Performance EvaluationWe implemented the TCRC algorithm and the Partitioned Mark and Sweep (PMS)algorithm on an object manager called Brahm�a developed at IIT Bombay. Brahm�asupports concurrent transactions and has a complete implementation of the ARIESrecovery algorithm. It provides extendible hash indices as well as B+-tree indices asadditional access mechanisms.The WRT is implemented as an optionally persistent extendible hash table indexedon the oid while the TRT is an in-memory hash table indexed separately on the oid andthe tid (to allow easy deletion of all entries of a transaction). The reference countsSRefC and WRefC are stored in an optionally persistent on-disk hash table. Theonly persistent structures required by PMS are one Incoming Reference List (IRL) perpartition which is maintained as a persistent B+-tree.Our performance study in this section is based on the standard OO7 benchmark [CDN93].In particular, we worked on the standard small-9 dataset in OO7 which was also usedin [YNY94] for their simulation study. The OO7 parameters and their values for thisdataset are given in Table 1 and are explained below. Figure 4 illustrates the OO7benchmark.The OO7 dataset is composed of a number of modules, speci�ed by NUMMODULES.Each module consists of a tree of objects called assemblies. The tree is a complete treewith a fanout of NUMASSMPERASSM and has NUMASSMLEVELS levels. The last24
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Parameter ValueNUMMODULES 1NUMCOMPPERMODULE 500NUMCONNPERATOMIC 9NUMATOMICPERCOMP 20NUMCOMPPERASSM 3NUMASSMPERASSM 3NUMASSMLEVELS 7Table 1: Parameters for the OO7 benchmarklevel of the tree is called a base assembly while the upper levels are called complexassemblies. In addition, each module consists of NUMCOMPPERMODULE compositeobjects. The base assemblies point to NUMCOMPPERASSM of these composite objects.Many base assemblies may share a composite object.Each composite object points to: (a) a private set of NUMATOMICPERCOMPatomic objects, (b) a distinguished atomic object (called the composite root), and (c)a document object. An atomic object has a �xed number of connections (speci�ed byNUMCONNPERATOMIC) out of it, to other atomic objects in the same set. A connec-tion is itself modeled as an object (called a connection object) pointed to by the source ofthe connection and in turn points to the destination of the connection. The connectionsconnect the atomic objects into a cycle with chords. We will call a composite objectalong with its private set of atomic objects, connection objects and the document objecttogether as an object composite. All object references in the benchmark have inversesand we always insert or delete references in pairs (the reference and its inverse).The dataset consisted of 104280 objects occupying 4.7 megabytes of space. Eachobject composite consisted of 202 objects and had a size of 9160 bytes. During thecourse of experiments, the size was maintained constant by adding and deleting the sameamount of data. The object manager used a bu�er pool consisting of 500 4KB pages.The I/O cost is measured in terms of the number of 4KB pages read from or written tothe disk. All the complex and base assemblies forming the tree structure were clusteredtogether. We also clustered together all the objects created for a composite.The data was divided into 4 partitions; each partition �ts in memory. The inter-partition references were kept very small. All the complex and base assemblies formingthe tree structure were put in the same partition. Approximately one out of every 50composites spanned partitions.As pointed out earlier, the option to have the data structures persistent (updateslogged so that the information does not have to be regenerated at system start at the costof availability) is left with the user. As such, we present the results for TCRC with logging(denoted w/logging) and without logging (denoted w/o logging) of the updates to WRT,26



reference counts and pointer and object strengths. Recall that in PMS. the only datastructures used are an IRL (B+ tree) per partition which store inter-partition referenceinformation. Since the inter-partition references are rare, there is no signi�cant di�erencein the cases when these B+ trees are persistent (updates logged) or not. Therefore, belowwe present only the results for PMS without logging of the updates to the IRLs.We conducted two sets of experiments, the �rst was based on structure modi�cationssuggested in the OO7 benchmark while the second modi�es complex assemblies. Wediscuss each of the experiments in turn.8.1 Structure Modi�cationsThe workload in this experiment consisted of repeatedly inserting �ve object compositesand attaching each composite to a distinct base assembly object, and then pruning thenewly created references to the same �ve object composites { we call this whole setof inserts and deletes an update pass. This corresponds to the structure modi�cationoperations of the OO7 benchmark. This workload represents the case when an applicationcreates a number of temporary objects during execution and disposes them at the end ofthe execution. The results presented are over 90 update passes interspersed with garbagecollection; garbage collection is invoked when the database size crosses 5MB (recall thesteady state database size is 4.7MB).We �rst present the cumulative overheads (cost during during normal processing aswell as the overhead due to the garbage collection thread) for this workload.TCRC TCRC PMSMetric w/logging w/o logging w/o loggingLogs (MB) 150.69 113.44 113.18I/O:Read+Write 2574+55745 2591+44111 31026+45682Although the amount of logs generated by the TCRC algorithm with logging is morethan that of the PMS algorithm, the overall I/O performance (including the I/O's forlogs) of TCRC is better than PMS for this workload. However, if the logging is turnedo� then TCRC performs much better than PMS in terms of I/O and generates slightlymore logs. The additional logs generated by TCRC include those for the extra garbagecollected by TCRC.Three factors contribute to the overall performance: the frequency of invocation ofthe garbage collector, the overhead during a garbage collection pass, and the overheaddue to normal processing. We study these three factors in detail now.
27



8.1.1 Invocation FrequencyWe checked the database size at the end of every update pass and invoked the garbagecollector if the database size exceeded 5 MB. TCRC collects all garbage and thereforethe amount of garbage, which is generated at the rate of 45800 bytes per update pass,exceeded 0.3 MB (and thus the total database size exceeded 5 MB) after seven updatepasses. Thus, garbage collection in case of TCRC is consistently invoked after everyseven update passes.The pattern is more interesting in the case of PMS. Approximately one out of �ftycomposites spanned partitions; such a composite (which is cyclic) is never collected. Thiscaused the database size to increase with time. Since the threshold remained �xed at 5MB, this caused the garbage collection to be invoked more frequently as time progressed.During the course of the 90 update passes, TCRC garbage collector was invoked 12 times,while PMS was invoked 14 times. Initially, the PMS collector was invoked every sevenupdate passes, then every six update passes and by the end of the 90 update passesevery �ve update passes. By the end of the 90 update passes, there were 73280 bytes ofuncollected garbage for PMS.8.1.2 Overhead of a Garbage Collection PassThe table below gives the average I/O overhead and the amount of logs generated byTCRC and PMS for an invocation of the collector. To get the total cost the �gures haveto be multiplied by the number of invocations (which is 14 for PMS and 12 for TCRC).TCRC TCRC PMSMetric w/logging w/o logging w/o loggingLogs (MB) 1.69 1.07 1.07I/O:Read+Write 33+626 12+403 1869+566Since garbage collection was invoked right after the insertions, TCRC found all theobjects that it had to traverse in the cache and incurred no reads. PMS needed to makea reachability scan from the root and therefore had to visit all of the 104280 objects inthe dataset. This accounts for the excessive reads incurred by PMS.The amount of logs generated by PMS, however, are not constant over the 14 invoca-tions. This is again because as cyclic garbage goes on accumulating, garbage collection inPMS gets invoked more and more frequently on less and less garbage. Thus, the amountof garbage collected per collection in PMS decreases with time. This is the only updatethat is logged in PMS (recall that we do not log updates to IRLs). Thus, the amountof logs generated by PMS decreases with time. Thre is a corresponding decrease in thewrite counts too. In the table above, for comparability sake, we have presented the resultfor PMS as the average for the initial invocations of garbage collection which collect all28



the garbage.The log generated by TCRC for logging is however bigger than PMS since the garbageobjects are deleted fromWRT and these deletions have to be logged (recall that all newlycreated objects will be in WRT since all new pointers are weak).8.1.3 Normal Processing OverheadsThe following table shows the amount of I/O performed and the amount of logs generatedduring normal processing (when the collector is not running) over the course of the 90update passes. TCRC TCRC PMSMetric w/logging w/o logging w/o loggingLogs (MB) 130.34 100.61 100.31I/O:Read+Write 2404+48189 2421+39304 3017+38033The algorithms have to maintain the persistent data structures consistent with thedata during normal processing. In the case of PMS, the only persistent data structureis the IRL which is updated quite rarely. On the other hand, in the case of TCRC, thereference counts as well as the WRT may be updated.In case of TCRC without logging, the amount of the logs generated is more or less thesame as PMS. This is expected since exactly the same updates are logged in both cases.The amounts of log generated for TCRC with logging show the additional logging that hasto be performed by TCRC for maintaining the persistent structures. The additional logsaccount for about 7500 extra writes for TCRC. The rest of the extra writes performedby TCRC (about 1500) are due to writing parts of WRT back as a result of normalcache replacement (these are also re
ected in the results for TCRC without logging).The amount of reads performed by TCRC is signi�cantly smaller that PMS because thecache is not disturbed much by the garbage collection thread in the case of TCRC. Inthe case of PMS, at the end of the collection pass the cache could contain (for instance)many objects from the assembly tree that are not required during normal processing.8.2 Updating Complex AssembliesIn this set of experiments, we updated the assembly hierarchy tree by replacing a subtreerooted at a complex assembly by a di�erent one. The lowest level base assemblies in thenew hierarchy tree pointed to the same composite objects.We varied the level of the root of the the subtree that we were replacing. The levelwas varied from two to six (level n corresponds to the level which is the nth level upwardsfrom the base assemblies). Notice that the subtree that was replaced is garbage after thisupdate. After such a update we invoked the garbage collector. The higher the level of the29



root of the subtree being replaced, the more the number of object composites reachable,and therefore the more the number of objects TCRC had to traverse. In this experiment,we report only on the overheads of the garbage collection pass. The normal processingoverheads are very similar to the previous experiment since we are creating some numberof objects and pruning references to others like the previous experiment.The cost of the garbage collection phase for TCRC with logging is tabulated below:Level of Root of SubtreeMetric 2 3 4 5 6Logs (MB) 0.00 0.01 0.02 0.09 0.28I/O:Read 0 1 1 173 943I/O:Write 2 7 9 67 158The results for TCRC without logging are as follows:Level of Root of SubtreeMetric 2 3 4 5 6Logs (MB) 0.00 0.00 0.00 0.02 0.05I/O:Read 0 1 1 173 943I/O:Write 1 2 3 41 76The cost of the garbage collection phase for PMS without logging is tabulated below:Level of Root of SubtreeMetric 2 3 4 5 6Logs(MB) 0.00 0.00 0.01 0.02 0.05I/O:Read 1737 1737 1737 1738 1743I/O:Write 10 12 19 27 31The results show that number of reads by TCRC is much smaller than the numberof reads by PMS, especially for modi�cations at the lower levels. This is expected sinceTCRC performs a local traversal while PMS necessarily traverses the whole database(except the garbage, which is small) for modi�cations at any level.The amount of logs generated by TCRC (a 0.00 for the amount of logs generatedindicates that the amount of logs generated is less than 5KB) grows as the level numbergrows because of larger amount of garbage collected. The growth is more prominent incase of TCRC with logging in comparison to PMS since it also logs changes made to thepointer strengths during the green traversal. The more the objects traversed, the morethe number of pointers whose strengths get changed, and therefore the more the logs.The TCRC algorithm can be optimized by using semantics available from the schemagraph. To illustrate the e�ect of this optimization, we modi�ed the OO7 benchmark byremoving the back pointers to the base assembly objects from the composite objects.30



This provides acyclic data which enables us to test our schema graph optimization. Itlimits the traversal of TCRC: the template for the pointer from a base assembly objectto a composite object becomes acyclic on removal of the back pointer from the compos-ite object to the base assembly object, and therefore need not be traversed during redtraversal | thus preventing TCRC from unnecessarily traversing the object composites.The cost of TCRC with logging when the experiment was repeated with this schema-based optimization is tabulated below. It can be seen that TCRC with the optimizationoutperforms the basic TCRC as well as the PMS algorithm, particularly for updates athigher levels. Level of Root of SubtreeMetric 2 3 4 5 6Logs(MB) 0.00 0.01 0.02 0.06 0.17I/O:Read 0 0 0 0 2I/O:Write 8 9 12 27 679 Conclusions and Future WorkWe have presented a garbage collection algorithm, called TCRC, based on cyclic referencecounting and proved it correct in the face of concurrent updates and system failures. Wehave implemented and tested the algorithm.Our performance results indicate that TCRC can be much cheaper, at least in certaincases, than partitioned mark-and-sweep since it can concentrate on local cycles of garbage.We believe our algorithm will lay the foundation for cyclic reference counting in databasesystems.We plan to explore several optimizations of the TCRC algorithm in the future. Forinstance, we have observed that just after creation of the datasets, garbage collectionhas to perform extra work to convert weak pointers into strong pointers. However, oncethe conversion has been performed, a good set of strong pointers is established, andthe further cost of garbage collection is quite low. It would be interesting to developbulk-loading techniques for reducing the cost of setting up pointer strengths.Finally, another interesting extension of the TCRC algorithm would be to develop apartitioned TCRC algorithm in which during a local mark and sweep only intra-partitionedges are traversed.AcknowledgmentsWe thank Je� Naughton and Jie-bing Yu for giving us a version of their garbage collectioncode which provided us insight into garbage collection implementation. We also thankSandhya Jain for bringing the work by Brownbridge to our notice.31
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