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Abstract

Garbage collection is important in object-oriented databases to free the pro-
grammer from explicitly deallocating memory. In this paper, we present a garbage
collection algorithm, called Transactional Cyclic Reference Counting (TCRC), for
object oriented databases. The algorithm is based on a variant of a reference count-
ing algorithm proposed for functional programming languages The algorithm keeps
track of auxiliary reference count information to detect and collect cyclic garbage.
The algorithm works correctly in the presence of concurrently running transactions,
and system failures. It does not obtain any long term locks, thereby minimizing
interference with transaction processing. It uses recovery subsystem logs to detect
pointer updates; thus, existing code need not be rewritten. Finally, it exploits
schema information, if available, to reduce costs. We have implemented the TCRC
algorithm and present results of a performance study of the implementation.

1 Introduction

Object oriented databases (OODBs), unlike relational databases, support the notion of
object identity, and objects can refer to other objects via object identifiers. Requiring
the programmer to write code to track objects and their references, and to delete objects
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that are no longer referenced, is error prone and leads to common programming errors
such as memory leaks (garbage objects that are not referred to from anywhere, and
haven’t been deleted) and dangling references. While these problems are present in
traditional programming languages, the effect of a memory leak is limited to individual
runs of programs, since all garbage is implicitly collected when the program terminates.
The problem becomes more serious in persistent object stores, since objects outlive the
programs that create and access them. Automated garbage collection is essential in
an object oriented database to protect from the errors mentioned above. In fact, the
Smalltalk binding for the ODMG object database standard requires automated garbage
collection.

We model an OODB in the standard way as an object graph, wherein the nodes are the
objects and the arcs are the references between objects. The graph has a persistent root.
All objects that are reachable from the persistent root or from the transient program
state of an on-going transaction are live; while the rest are garbage. We often call object
references as pointers.

There have been two approaches to garbage collection in object oriented databases:
Copying Collector based [YNY94] and Mark and Sweep based [AFG95]. The copying
collector algorithm traverses the entire object graph and copies live objects into a new
space; the entire old space is then reclaimed. In contrast, the Mark and Sweep algorithm
marks all live objects by traversing the object graph and then traverses (sweeps) the entire
database and deletes all objects that are unmarked. The copying collector algorithm
reclusters objects dynamically; the reclustering can improve locality of reference in some
cases, but may destroy programmer specified clustering resulting in worse performance
in other cases. The garbage collection algorithms of [YNY94] as well as [AFG95] handle
concurrency control and recovery issues.

With both the above algorithms, the cost of traversing the entire object graph can be
prohibitively expensive for databases larger than the memory size, particularly if there
are many cross-page references. In the worst case, when the buffer size is a small fraction
of the database size and objects in a page refer to objects in other pages only, there
may be an I/O for every pointer in the database. To alleviate this problem, earlier work
[YNY94, AFG95] has attempted to divide the database into partitions consisting of a
few pages. Each partition stores inter-partition references, that is references to objects
in the partition from objects in other partitions, in a persistent data structure. Objects
referred to from other partitions are treated as if they are reachable from the persistent
root, and are not garbage collected even if they are not referred to from within the
partition. Each partition is garbage collected independent of other partitions; references
to objects in other partitions are not followed. Thus, partitioning makes the traversal
more efficient; the smaller the partition, the more efficient the traversal, with maximum
efficiency occurring if the whole partition fits into the buffer space.

Unfortunately, small partitions increase the probability of self-referential cycles of



garbage that cross partition boundaries; such cyclic garbage is not detected by the par-
titioned garbage collection algorithms. Previous work has maintained that such cross
cycle structures will be few, and will “probably” not be a problem. However, simulations
by [CWZ94] showed that even small increases in database connectivity can produce sig-
nificant amounts of such garbage. Therefore, it is not clear that partition sizes can be
made very small without either failing to collect large amounts of garbage or employing
special (and expensive) techniques to detect such cyclic garbage.

A natural alternative is Reference Counting. Reference Counting is based on the idea
of keeping a count of the number of pointers pointing to each object. When the reference
count of the object becomes zero, it is garbage and eligible for collection. Reference
counting has the attractive properties of localized and incremental processing. Unfortu-
nately, basic reference counting cannot deal with self-referential cycles of objects; each
object could have a positive reference count, yet all the objects in the cycle may be
unreachable from the persistent root, and therefore be garbage. However, a number of
extensions of the basic referencing counting algorithm to handle cyclic data have been
proposed in the programming language community, including: [Bro85, Bro84, PvEPS88|.
More recent work in this area includes [Lin90, MWL90, JLI1].

In this paper, we consider a version of reference counting, proposed by Brownbridge
[Bro85, Bro84] for functional programming languages, which handles self referential cycles
of garbage. We present an algorithm, called Transactional Cyclic Reference Counting
(TCRC), based on Brownbridge’s algorithm, which is suitable for garbage collection in
an OODB. The salient features of the TCRC algorithm are:

e [t detects all self referential cycles of garbage unlike basic reference counting, and
the partitioned garbage collection algorithms.

e [t performs a very localized version of mark-and-sweep to handle cyclic data, with
each mark-and-sweep likely to access far fewer objects than a global mark-and-
sweep. Thus it does not have to examine the entire database while collecting
garbage, except in the worst case.

e [t allows transactions to run concurrently, and does not obtain any long term locks,
thereby minimizing interference with transaction processing.

e [t is integrated with recovery algorithms, and works correctly in spite of system
crashes. It also uses recovery subsystem logs to detect pointer updates; thus, ex-
isting application code need not be rewritten.

e It exploits schema information, if available, to reduce costs. In particular, if the
schema graph is acyclic, no cyclic references are possible in the database and TCRC
behaves identically to reference counting.



Designing a cyclic referencing counting algorithm which allows concurrent updates and
handles system crashes is rather non-trivial, and to our knowledge has not been done
before; we believe this is one of the central contributions of our paper. We also present
a proof of correctness of the TCRC algorithm.

A problem often cited against reference counting schemes is the overhead of updating
reference counts. However, each pointer update can only result in at most one reference
count being updated. This overhead will have only a small impact on performance if, as
we expect is true in any realistic scenario, pointer updates are only a small fraction of
the overall updates. For TCRC, moreover, the overhead is offset by the reduced cost of
traversals while collecting garbage.

The algorithm presented in this paper improves on that presented in an earlier ex-
tended abstract of this paper [ARS"97], in the following ways. There is no longer an
assumption that transactions follow strict 2PL; in fact the current algorithm makes no
assumptions about the locking policies used by the transaction. There is no longer an
assumption that transactions follow strict WAL (that is, both the undo and redo val-
ues must be logged before actually performing the update); only the normal (non-strict)
WAL is assumed to be followed. That is, the current algorithm requires undo values to
be logged before the update, while the redo values may be logged anytime before the end
of the transaction (before or after the update). Finally, the current algorithm performs
a more restricted local traversal than the earlier algorithm, and is therefore potentially
more efficient.

For the client-server setting, the current algorithm also relaxes the force requirement;
that is, updates made by a transaction running at the client can be reflected at the server
after the transaction ends, and are not required to be forced to the server before the end
of the transaction.

We have implemented a prototype of the TCRC algorithm as well as the partitioned
mark and sweep algorithm on a storage manager called Brahma developed in II'T Bombay.
We present a performance study of TCRC based on the implementation; the study clearly
illustrates the benefits of TCRC.

2 Brownbridge’s Cyclic Reference Counting Algo-

rithm

Our Transactional Cyclic Reference Counting algorithm is based on the Cyclic Reference
Counting (CRC) algorithm proposed by Brownbridge [Bro84, Bro85], in the context of
functional programming languages.

The basic idea behind the Cyclic Reference Counting (CRC) algorithm of Brownbridge
[Bro84, Bro85] is to label edges in the object graph as strong or weak. The labelling is
done such that a cycle in the object graph cannot consist of strong edges alone — it must



have at least one weak edge. Two separate reference counts for strong and for weak edges
(denoted SRefC and W Re fC respectively) are maintained per object. It is not possible
in general to cheaply determine whether labelling a new edge as strong creates a cycle of
strong edges or not. Hence, in the absence of further information, the algorithm takes the
conservative view that labelling a new edge strong could create a cycle of strong edges,
and labels the new edge weak.

The SRefC' and W RefC are updated as edges are created and deleted. If for an
object S, the SRefC as well as W RefC'is zero, then S is garbage and S and the edges
from it are deleted. If the SRefC' is zero, but W RefC is non-zero, there is a chance
that S is involved in a self referential cycle of garbage. If the SRefC of an object S
is greater than zero, then S is guaranteed to be reachable from the root (however, our
TCRC algorithm does not guarantee this last property).

If the object graph did not have any garbage before the deletion of an edge to S, then
the only potential candidates for becoming garbage are S and objects reachable from S. If
SRefC of S is zero and W RefC' of S is nonzero, a localized mark and sweep algorithm
detects whether S and any of the objects reachable from S are indeed garbage. The
localized mark and sweep performs a traversal from S and identifies all objects reachable
from S and colours them red. Let us denote the above set by R. It then colours green
every object in R that has a reference from an object outside R (detected using reference
counts). It also colours green all objects reachable from any green object. During this
green marking phase some pointer strengths are updated to ensure that every object has
at least one strong pointer to it. We will describe this pointer strength update in detail
in the context of our transactional cyclic reference counting algorithm. At the end, all
objects in R not marked green are garbage and are deleted.

However, prior cyclic reference counting algorithms, including Brownbridge’s algo-
rithm, were designed for a single user system. They cannot be used in a multi-user
environment with concurrent updates to objects, and do not deal with persistent data
and failures. Our contributions lie in extending Brownbridge’s algorithm to (a) use logs
of updates to detect changes to object references, (b) to work in an environment with
concurrent updates, (c) to work on persistent data in the presence of system failures and
transaction aborts, (d) handle a batch of updates at a time rather than one update at
a time, and (e) optimize the localized mark and sweep significantly by following only
strong pointers.

3 System Model and Assumptions

In this section, we describe our system model and outline the architectural assumptions
on which our garbage collector is based.

In our model, transactions log undo and redo information for all updates. Undo
and redo records are represented as undo(tid, oid, offset, old-value), and redo(tid, oid,
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offset, new-value), where tid denotes a transaction identifier and oid an object identifier.
Object creation is logged as object-allocation(tid, oid). The commit log is represented as
commit(tid); and the abort log is represented as abort(tid). We require that from the oid
we can identify the type of the object (perhaps by first fetching the object), and from
the offset we can determine if the value that has been updated is a pointer field. These
requirements are satisfied by most database systems.

As with any other garbage collection scheme, we assume that an object identifier
(0id) is valid only if it either refers to a persistent root, or is present in a pointer field of
an object in the database, or is in the transient memory (program variables or registers)
of an active transaction that read the oid from an object in the database or created
the object it refers to. Note that this precludes transactions from passing oids to other
transactions, and from storing oids in external persistent storage.

Assumption 3.1 The transactions follow WAL, that is, they log the undo value before
actually performing the update, but the redo value may be logged anytime (before or after
the update). O

Assumption 3.2 All logs for a transaction are forced to disk before commit or abort
(force-logs-at-abort in addition to force-logs-at-commit). O

The assumptions above are satisfied by typical storage managers for object-oriented
databases.

4 Transactional Cyclic Reference Counting

We will now describe the Transactional Cyclic Reference Counting (TCRC) algorithm.
We first describe the data structures needed by the transactional cyclic reference counting
algorithm.

4.1 Data Structures

Associated with each object, we maintain a strong reference count (SRefC') giving the
number of strong pointers pointing to the object, a weak reference count (W RefC') giving
the number of weak pointers pointing to the object, and a strength bit for the object.
Each pointer also has a strength bit. The pointer is strong if the strength bit in the pointer
and the strength bit in the object pointed to have the same value; otherwise the pointer
is weak. This representation of strength using two bits is an important implementation
trick, from Brownbridge [Bro84, Bro85]. It makes very efficient the operation of flipping
the strength of all pointers to an object, that is making all strong pointers to the object
weak, and all weak pointers to the object strong. All that need be done is to flip the
value of the strength bit in the object.



The TCRC algorithm also maintains another table, the Weak Reference Table (WRT),
which contains oids for the objects which have a zero SRefC', i.e. no strong pointers
incident on them. The persistent root is never put into the WRT.

All the above information can be constructed from the object graph after a system
crash by scanning the entire database. Therefore, it is not necessary to make it persis-
tent and incur the overhead of logging updates to these structures. Reconstructing this
information at crash will however affect the availability of the database. If fast recovery
is required then we could make these structures persistent at the cost of extra logging.
The choice of whether or not to make this information persistent can be left to each
installation.

If the above structures are made persistent, then updates to SRefC and W RefC,
update of the strength bit of an object or of a pointer, and the insert or delete of entries
from the WRT are logged as part of the transaction whose pointer update caused the
information to be updated/inserted/deleted. Thus their updates will be undone if the
transaction does not complete, and will be redone (while repeating history) if the system
crashes.

Apart from the above structures, we have the following non-persistent structures —
this means that irrespective of whether the above structures are made persistent these
need not be persistent.

There is a non-persistent table which is used during garbage collection: the Red
Reference Table (RRT); this table associates with (some) objects a strong red reference
count (SRedRefC'), a weak red reference count (W RedRefC), and a bit that indicates
whether the colour of the object is red or green. This table is stored on disk since the size
of this table could be large in the worst case, but updates to this table are not logged.

Similar to [AFG95] TCRC also maintains an non-persistent in-memory table called
the Temporary Reference Table (TRT), which contains all those oids such that a reference
to the object was added or deleted by an active transaction, or the object was created
by the transaction. An oid in TRT is tagged with the tid of the transaction that is
reponsible for its insertion into TRT. There may be multiple entries in TRT for the same
oid. An object whose oid is in TRT may not be garbage even if it is unreachable from
any other object, since the transaction may store a reference to the object back in the
database. Updates to TRT are also not logged.

4.2 The Algorithm

TCRC consists of two distinct algorithms, run by different processes. The first is the log-
analyzer algorithm (LogAnalyzer). The second algorithm is the actual garbage collection
algorithm (CollectGarbage). The execution of these is synchronized by two latches: a
log_analyzer_latch that is taken for the duration of LogAnalyzer, and a gc_latch that is
taken for the duration of CollectGarbage. We describe the two algorithms below.



4.2.1 Log Analyzer

The log-analyzer algorithm analyzes log records generated by the transaction, and per-
forms various actions based on the log records. We shall assume it is run as part of the
transaction itself, and is invoked each time a log record is appended to the system log
tail, and is atomic with respect to the appending of the log record.

In the actual implementation, it is possible to run the log-analyzer as a separate
thread, and when a transaction appends a log record to the system log, it actually only
delivers it to the log-analyzer, which then appends the log record to the system log.

The log-analyzer makes use of the following procedures. Procedure DeletePointer
decrements the W RefC or SRefC' for an object when a pointer to the object is deleted.
If the SRefC falls to zero after the decrement then the object’s oid is put into WRT.
Procedure AddPointer, by default, sets the strength of the pointer to be weak and incre-
ments the W RefC' of the object pointed to. The strength is set to weak so that cycles
of strong edges are not created; however, we will see in Section 6 that we may be able to
make some new pointers strong.

The procedure LogAnalyzer works as follows. First it obtains the log_analyzer_latch
(which is also acquired by the garbage collection thread) to establish a consistent point
in the log. The latch is obtained for the duration of the procedure. The log is analyzed by
the log analyzer and depending on the type of the log record various actions as outlined
below are taken.

e For undo/redo log records caused by pointer updates, the reference counts for the
affected objects are updated. This is done by DeletePointer in case of undo logs,
and AddPointer in case of redo logs. The oid of the affected object is inserted into
the TRT tagged with the tid of the transaction that made the update.

e For log records corresponding to the creation of objects, the reference counts for
the new object are initialized to zero, and the oid of the created object is inserted
into the WRT. The oid of the created object is inserted into the TRT tagged with
the tid of the transaction that created the object.

e For end-of-transaction (commit or abort) log records, the algorithm first tries to
get the gc_latch. If the latch is obtained immediately, then garbage collection is
not in progress and remove all the oid entries for the terminating transaction from
the TRT and the gc_latch released thereafter (recall that each oid entry in TRT is
tagged with the tid of the transaction that is responsible for its presence in TRT).
However, if the gc_latch cannot be obtained immediately then a garbage collection is
in progress concurrently. In this case, the oid entries for the terminating transaction
are not removed, but instead flagged for later removal by the garbage collector.

All operations on pointer strengths and reference counts are protected by a latch on



the object pointed to, although not explicitly mentioned in our algorithms. Access to
WRT and TRT are also protected by latches.
The following properties follow from the above discussion.

Property 4.1 The persistent root is never placed in the WRT. It has no references to
it. Therefore it never occurs in the TRT or RRT. O

Property 4.2 The objects in TRT corresponding to a transaction are removed only
when (a) the transaction has ended and (b) garbage collection is not in progress. O

4.2.2 Garbage Collector

The garbage collection algorithm is activated periodically (possibly depending on avail-
ability of free space). The algorithm makes use of the following support functions.

Procedure RedTraverse populates the RRT with objects it identifies as potential
garbage. The rest of the garbage collection algorithm is restricted to only the objects
in RRT. The pseudocode for RedTraverse appears in Figure 1. RedTraverse performs a
fuzzy localized traversal of the object graph. It is invoked on all objects in WRT that are
not in TRT. Thereafter, an object is visited by any of the invocations if and only if the
object is not in TRT and all the objects that have a strong pointer to this object have
been visited earlier. No locks are obtained on the objects being traversed. Short term
latches may be obtained on objects or pages to ensure physical consistency. RedTraverse
marks all visited objects red and puts them in RRT.

Additionally, RedTraverse caches the reference counts (SRefC and W RefC') of each
object in RRT at the instant it visits the object. RedTraverse also maintains for each
object in RRT, two counts: SRedRefC and W RedRe fC', giving respectively the number
of strong and weak pointers to the object from all other objects visited. These counts are
maintained on the fly during the traversal; in order to do so, RedTraverse also maintains
these counts for objects that are reachable by a single weak edge from objects in RRT,
since such objects may be added to RRT later in the traversal. In the pseudocode of
Figure 1, these objects are coloured blue. For the rest of the paper, we ignore the presence
of blue objects in RRT, and assume that they are explicitly removed from RRT after the
last invocation of Red Traverse. The invocations of RedTraverse are collectively termed red
traversal.

Procedure GreenTraverse performs a fuzzy traversal with the purpose of marking live
objects in RRT green and updating some pointer strengths to ensure that every object
it visits has at least one strong pointer referring to the object (this ensures that in the
absence of update transactions during the garbage collection phase, no object will be in
WRT thus ensuring that there is no work to be done during the next garbage collections
phase. See Theorem 5.11 for a formal proof of this statement). In addition, the pointer



Procedure RedTraverse(oid)
Input: oid: (oid of) the object to be traversed
{
if oid is not in RRT
InsertRRT (0id)
Traverse(oid)

}

Procedure Traverse(oid)
Input: oid: (oid of) the object to be traversed
{
if oid is not in TRT {
colour oid red
for each pointer oid — poid {
if poid is not in RRT
InsertRRT (poid)
update SRedRefC)oiq and W RedRe f Cppiq
depending on the strength of oid — poid
if SRedREproid == SREproid
/* this is the /last strong pointer to poid */
Traverse(poid)

}

Procedure InsertRRT (0id)
Input: oid: (oid of) the object to be inserted into RRT
{
colour oid blue
insert oid into RRT
with SRedRefC,iqg = W RedRefCpiqg =0
cache current values of SRefC' and W RefC' for oid
in SRefCyq and W RefC\;q respectively

Figure 1: Pseudo Code for RedTraverse
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Procedure GreenTraverse(oid)
Input: oid: (oid of) the object to be traversed
{
colour oid yellow
for all pointers oid — poid {
if poid is in RRT and is not yellow
GreenTraverse(poid)
}
for all pointers oid — poid {
if poid is green {
if SRefCpig == 0
remove poid from WRT
make oid — poid strong (if weak)
get log_analyzer_latch
update reference counts of poid
release log_analyzer_latch
} else {
make oid — poid weak (if strong)
get log_analyzer_latch
update reference counts of poid
release log_analyzer_latch
if SRefCpig ==10
insert poid into WRT

}

colour oud green

Figure 2: Pseudocode for GreenTraverse
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Procedure CollectGarbage

{

Lll

acquire gclatch
/* Py */
RRT = {}
for each oitd in WRT but not in TRT
RedTraverse(oid)
/* also caches the reference counts
of visited objects in SRefC,;; and W RefC\iq*/
/* P ¥/
TLIST = list of all transactions active at P,
Wait for all transactions in TLIST to end
/* Py: instant when all transactions in TLIST end */
for each oid in RRT but not in TRT {
/¥ SRefC,q and WRefC,;y refer to
cached reference counts */
if SRefCoig +WRefCoig >
SRGdReme'd + WRGdReme'd {
if SRefCpig ==0 /* oid is in WRT */
remove oid from WRT
get log_analyzer latch
invert the strength of all references to oid
update reference counts of oid
release log_analyzer latch
GreenTraverse(oid)
}
}
/* Ps ¥/
for each oid in RRT that is red and is in TRT
GreenTraverse(oid)
/* Py */
for each oid in RRT that is red
Collect(oid)
/* P */
release gclatch
remove all flagged entries from TRT

Figure 3: Pseudo Code for CollectGarbage

12



strength updates have to be done in such a fashion that strong cycles do not remain at
the end of the garbage collection phase. The pseudocode for GreenTraverse appears in
Figure 2. Starting from the object Procedure GreenTraverse is invoked on, it visits all the
objects in RRT that are reachable from this object in a depth first manner: it backtracks
from an object after it has visited all objects in RRT reachable from that object. Just
before backtracking from an object, it colours the object green and updates (if needed)
the strengths of the references out of the object. If the reference is to a green object, it is
made strong if it is weak; otherwise if the reference is to any other object (possibly to an
object not in RRT) then it is made weak if it is strong. The invocations of GreenTraverse
are collectively termed green traversal.

Procedure Collect actually deletes an object; before doing so, it deletes all pointers out
of the object, updating the stored reference counts (SrefC and W RefC') of the objects
pointed to. It also removes the object from WRT.

The garbage collection algorithm is implemented by Procedure CollectGarbage, shown
in Figure 3. Below, we present a discussion of the steps involved. Additionally, we point
out instances during the execution (shown in the figure) that will be referred in the proof.

The first step is to acquire gc_latch. At some point P, after this, RedTraverse is
invoked on all objects that are in WRT but not in TRT. After the red traversal, we wait
for all transactions that were active at some point P; after the end of the red traversal
to terminate.

This wait is necessary for correctness of the algorithm in face of transactions following
(non-strict) WAL and arbitrary locking protocols. We present the intuition below; the
formal proof appears in Section 5.

In case a transaction 7" does not follow strict-2PL locking, the following scenario can
occur. T takes a lock on some object x, reads the reference to y from some pointer field
in x, and then releases the lock on x. Next, all the references to y get deleted and all the
transactions that made the deletions commit (this can happen because T has released
the lock on x). This makes y unreachable from any live object; but y is not garbage
because oid of y is cached by T which can insert a pointer to y from some other object
later. The wait ensures that all transactions such as T end before analysis proceeds.

The wait further ensures, in face of (non-strict) WAL, that all the redo logs for pointer
inserts that occured during the red traversal are forced to disk in addition to the undo logs
for pointer deletions before analysis proceeds; this is because all the logs for a transaction
are (by assumption) necessarily forced before the end of the transaction. This makes the
TRT consistent with respect to any insertion or deletion of pointers that might have
occured during the red traversal.

The list of transactions TLIST can be determined fuzzily — that is, we need not take
a latch on the transaction table while scanning it. This is safe because only the following
may happen while the scan is in progress: (a) some transaction that was active at P;
ends and does not appear in TLIST — this is acceptable because we were just going to
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wait for it to end anyway; or (b) some some transaction starts after P; and its entry
appears in TLIST — this is acceptable because this can only extend the wait. P, is the
instant when all the transactions in TLIST terminate.

Next, we do green traversal to mark green all the live nodes in RRT. After P,
GreenTraverse is invoked on an object that is in RRT but not in TRT if the total red
reference counts (SRedRefC + W RedRefC') for the object computed during the red
traversal is strictly less than its total reference counts (SRefC + WRefC) that are
cached during the red traversal (as checked in statement Lg). As will be shown in the
proof, these objects are live: they are referred from some object not in RRT. But before
the invocation, the strengths of all references to this object are inverted and the reference
counts updated atomically with respect to the log-analyzer (log_analyzer_latch is used for
this purpose). The inversion of strengths is necessary to ensure that after this garbage
collection phase is over, there will be at least one strong pointer to the object (notice that
all references to the object from objects not in RRT must be weak). This is necessary to
ensure that in absence of update transactions no work will be done by the next garbage
collections phase; this is formally proved in Theorem 5.11. This inversion of strengths
might cause strong cycles to be formed. But, as proved in Lemma 5.8, these will not
exist after this garbage collection phase is over.

After the above invocations complete at Pz, any objects in RRT that are in TRT are
also marked green since their references may still be stored in an ongoing transaction
and can potentially be stored back in the database. Objects that are reachable from the
above objects are also marked green, by invoking GreenTraverse. These invocations get
over at Py.

In the pseudocode, we have left unspecified how (at step L;) the consistent point is
obtained such that at this point, no red object in RRT is in TRT. It turns out that the
following simple procedure is enough. We make repeated scans of the RRT, invoking
GreenTraverse on red objects that have been inserted into TRT since they were checked
in the previous scan; and terminating when we come across no such object in the latest
scan. The consistent point corresponds to the instant the last scan starts. This is because
if some object in RRT is red and is in TRT at the start of the last scan, then during the
scan it stays red because of the fact that GreenTraverse is not invoked in the interim; and
stays in TRT because of Property 4.2(b). But then, it must be detected to be red and
in TRT during the last scan — a contradiction.

All objects in RRT that are red at P; are collected next. The collection gets over
at Ps. Finally, the gc_latch is released and all the entries in TRT that were tagged as
removable by transactions that completed since the garbage collection phase began (that
is, since gc_latch was acquired) are removed.
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4.2.3 Support for Logical Undo by the Recovery Manager

The TCRC algorithm needs some support from the recovery manager in the form of
supporting logical undos to ensure correctness. This support is required only if we choose
to maintain the reference counts, pointer strengths and WRT persistent. There are some
actions whose undos have to be performed logically and not physically. We discuss them
below and discuss what the logical undo should do in each case:

Pointer Deletion and Strength Update: Undo of a pointer deletion or strength
update, if performed naively, may introduce strong cycles in the graph, which can affect
the correctness of the algorithm. The right way to undo a pointer deletion is to reinsert
the pointer with the strength set to be weak (even if it was strong earlier). Similarly,
the undo of a pointer strength update (done in case of system crash during the garbage
collection phase) is to set the strength of the pointer as weak (irrespective of the original
strength).

Reference Counts Update: The reference counts of an object O can be concur-
rently updated by multiple transactions (including the garbage collector) through differ-
ent objects which are locked by the transactions. The object O itself need not be locked
since only a reference to it is being updated. Only short term latches are necessary for
maintaining physical consistency. If a transaction that updated the reference count of an
object aborts, it should be logically undone: the undo of a reference count increment is
a decrement of the same reference count, while the undo of a reference count decrement
is always an increment of W Re fC since a reinserted pointer is always weak.

5 Proof of Correctness

We formally state the definition of a garbage object.

Definition 5.1 (Garbage Object) An object is defined to be garbage if it is not
reachable from the persistent root or from any object in the TRT or from any object
whose reference (oid) has been read by any active transaction. O

The above definition considers an object as live if it is reachable from TRT, even if it
does not satisfy the other conditions and therefore is garbage in the conventional sense.
Note that eventually an object that is garbage in the conventional sense will leave TRT
and any active transaction that read a reference to it will terminate and thus will become
garbage in the sense of Definition 5.1. Our lemmas and proofs are simplified by using
the above definition.

5.1 Object States

At any instant between P; and Py, an object x in RRT is in one of the following three
states:
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Si: x is reachable from an object outside RRT but is not reachable, through a path
consisting only of objects in RRT, from any object that is in RRT and also in TRT.

Sy x is reachable, through a path consisting entirely of objects in RRT, from an object
in RRT that is also in TRT.

S3: x is neither in state Sy nor in state Sy, that is x is neither reachable from any object
outside RRT nor from any object in RRT that is also in TRT.

In the above, an object is assumed to be reachable from itself through a null path.

We need to prove that TCRC is safe: it does not collect any live objects; and complete:
it eventually collects all garbage objects.

A badly designed garbage collection algorithm could create infinite work for itself, by
leaving oids in WRT which will be traversed by another garbage collection phase, which
in turn leaves oids in WRT, ad infinitum. We guarantee that this does not happen in
TCRC; that is, in the absence of update transactions, the system eventually reaches a
state where garbage collection thread does no more work.

We will make use of the following properties of the algorithm in the proof of the
results that follow.

Lemma 5.1 If a transaction not in TLIST active at an instant P strictly between P,
and P, has read a reference to an object that is in state Ss at P, then the object is in
state Sy at Ps.

Proof: Suppose some transaction 7" not in TLIST is active at P and has read a reference
to some object that is in state S3 at P but not in state Sy at P,. Let x be the first such
object to which a reference is read by T'. Also, let P’ be the instant when T reads the
first object y that has a reference to x.

The reference from y to x was present at P’. Either of the following two cases are
possible:

Case 1: The reference from y to z is present at P.

Since x is in state S3 at P, y must also be in state S3 at P. Definitely, a reference
to y was read by T before the reference to x. Recall that x was the first object
that is in state S3 at P but not in state Sy at P, a reference to which was read by
T. Therefore, y is in state Sy at P,. If the reference from y to x is present at P,
then z is in state Sy at P,. Otherwise, if the reference from y to x has been deleted
between P and P, then by Assumption 3.1 and Property 4.2(b) z is in TRT, and
hence in state S,, at Ps.

Case 2: The reference from y to x is not present at P.
The reference from y to x has been deleted between P’ and P. Because of Assump-
tion 3.1, the log for the above deletion must have been analyzed between P’ and
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P. P’ occured after P; because T could not have been active at P;. Therefore, by
Property 4.2(b),  must be in TRT, and hence in state Sy, at P.

The above implies that z must be in state S, at P,. Proved by contradiction. O

Lemma 5.2 If an object is in state S3 at an instant P between P, and P,, then no
transaction active at P could have read a reference to it.

Proof: Suppose some transaction T is active at P and has read a reference to some
object that is in state S3 at P. Let x be the first such object to which a reference is read
by T. Also, let P’ be the instant when T reads the first object y that has a reference to
x.

Definitely, a reference to y was read by T before the reference to x. Recall that x
was the first object in state S; a reference to which was read by 7'. Therefore, y is not
in state S3 at P. Since z is in state S3 at P, the reference from y to x is not present at
P. But it was present at P’.

The reference from y to = has been deleted between P’ and P. Because of Assump-
tion 3.1, the log for the above deletion must have been analyzed between P’ and P.
P’ occured after P; because T could not have been active at P;. Therefore, by Prop-
erty 4.2(b),  must be in TRT at P, and therefore cannot be in state S3 at P. Proved
by contradiction. O

Lemma 5.3 If an object v is in RRT but is not in TRT at P,, then (a) no reference
to v is updated (inserted or deleted) between Py and Py; and (b) all references to v that
exist between Py and P; are accounted in the total reference counts of v cached during
red traversal.

Proof: No log corresponding to an update of a reference to v that occurs before P; is
analyzed after Py. This is because the transaction that is responsible for the update must
end before P,. Therefore, by Assumption 3.2, the log must be analyzed before P,. But
then, by Property 4.2(b), v would be in TRT at P, — a contradiction.

Suppose an update of some reference to v takes place at some instant P between P,
and P;, consider the instant when the log for the reference update is analyzed. As shown
above, this must occur before F,. But then, because the transaction is active at P by
Property 4.2(a) v is in TRT at P, and therefore is in TRT at P, by Property 4.2(b), a
contradiction. This proves part (a) of the lemma.

All references to v that exist between P, and P; are accounted in the total reference
counts of v at Py. This is because otherwise it must be that the log for the insertion
of the unaccounted reference is analyzed at some instant after Py, a contradiction. The
total reference counts for v must have remained unchanged between Py and the instant
when they are cached during the red traversal, again because of the fact that no log is
analyzed in the interim that can cause the change. This implies part (b) of the lemma.
O
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Lemma 5.4 If an object in RRT is in state S; at P, then it is reachable from some
object not in RRT at Fy.

Proof: Suppose that an object x in state Sy at P is not reachable from any object not
in RRT at Py. Now, consider the instant P when the first path to x from some object not
in RRT was created. Let the insertion of the reference from object y to object z that is in
RRT be responsible for the same. Then, at P, there exists a path from z to = consisting
entirely of objects in RRT. This path remains intact till P, because otherwise x would
be in state Sy at P, by Assumption 3.1 and Property 4.2(b), which is a contradiction.

If the transaction 7" that made the above insertion existed before P, then it would
end before P, and therefore because of Assumption 3.2 and Property 4.2, z would be in
TRT at P,. But then x would be in state Sy at P, leading to a contradiction. Thus, T
started after P;.

This implies that P occured after P;. At some instant P’ between P, and P, T must
have read a reference to z. But since z is unreachable from any object not in RRT or
from any object in TRT at P’, it must be in state S; at P'. But then, by Lemma 5.1, z
(and hence ) must be in state Sy at P,, leading to a contradiction. O

The following result states the restrictions on the state transition of objects during
garbage collection.

Lemma 5.5 If an object in RRT 1is in state S3 at some instant P between P, and Py,
then it remains in state Si between P and Py.

Proof: Suppose that an object x in state S3 at some instant P between P, and P, makes
a transition to some other state immediately after P.

Let the set A contain all the objects from whom =z is reachable at P. By definition
of state S3, no object in A lies outside RRT. Moreover, at P no object in A is reachable
from an object outside RRT or from an object in RRT that is also in TRT — otherwise
x would also be reachable from this object at P and therefore not be in state S3. This
implies that all objects in A are in state S3 at P.

The transition of state must be due to an update of a reference to some object y in
A; the instant P corresponds to the occurence of the update itself, or the analysis of
the log for the update — whichever is earlier. The transaction 7' that is responsible for
the update must have obtained a reference to y before it is able to make the update or
generate a log for the same. In other words, 7" must have obtained a reference to y before
P. Because of Assumption 3.2, T'is active at P. But this contradicts Lemma 5.2 because
y is in state S3 at P as shown above. Proved by contradiction. O

Next, we prove an invariant of the algorithm.

Lemma 5.6 At Py, an object in RRT is red iff it is in state Ss.
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Proof: (Only if) Suppose that at P;, an object x in RRT is red and is not in state Ss.
By Lemma 5.5, z is not in state Sz at Ps.

Consider the instant P when the condition in the statement L; evaluates to false
leading to termination of the for-loop. At P, therefore, all objects in RRT that are also
in TRT are green. Two cases are possible.

Case 1: z is in state S| at Ps.
Then, by Lemma 5.4, it is reachable from some object not in RRT at F. Let the
reference from object u to object v be along the path such that u is not in RRT
but v is in RRT. Now, two subcases are possible.

Case 1.1: The path from u to z is intact between Py and P.
By Lemma 5.3(b), the reference from u to v as well as the references that are
accounted in the red reference counts of v are accounted in the cached total
reference counts of v. Since u is not in RRT, the reference from u to v is not
accounted in the red reference counts of v. Thus, the cached total reference
counts of v are strictly greater than the red reference counts of v.

Since v is in RRT but not in TRT, statement Ly will be executed for v. For
the reasons stated above, the condition will be satisfied and GreenTraverse will
be invoked on v. Since the path from v to x consists of only objects in RRT
and is intact at this point, 2 will be coloured green (if not already so).

Case 1.2: The path from u to z is broken between P, and P.
Consider the object y along the path at P, such that the reference to y along
the path is deleted between P, and P, but the path from y to x is intact at P
(y might be the same as x). Being in TRT, y must be green at P. But since the
path from y to x is intact between P, and P, the invocation of GreenTraverse
that coloured y green must also have coloured = green (if not already so).

Case 2: 7z is in state Sy at P.

That is, at P, there existed a path, consisting only of objects in RRT, to x from
some object in RRT that is also in TRT. The path could have broken between P,
and P. The rest of the proof is similar to Case 1.2 above. Consider the object y
along the path at P, such that the reference to y along the path is deleted between
P, and P, but the path from y to x is intact at P (y might be the same as x).
Being in TRT, y must be green at P. But since the path from y to z is intact
between P, and P, the invocation of GreenTraverse that coloured y green must also
have coloured z green (if not already so).

The above implies that x is green at P, and therefore at P, — a contradiction. This
proves that x must be in state S3 at Py. O

Proof: (If) Suppose that a green traversal invoked at some object & was responsible for
colouring green some object y that is in state S3 at P;.
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The path from x to y that existed at the time of the green traversal must be intact
at P, — otherwise y would be in state Sy at P, by Assumption 3.1 and Property 4.2(b).
Therefore, x must also be in state S3 at P,. In particular, x could not have been in TRT
at the time of the invocation.

But then, the only way green traversal could have been invoked on z is that the
condition in statement L, must have evaluated to true when it was executed for z. That
is, the red reference counts for x are strictly less than the cached total reference counts
for x. This can only occur if a reference from some object z to x that existed (as per
the cached total reference counts of z, by Lemma 5.3(b)) between Py and P; was not
traversed in the red traversal and therefore is not accounted in the red reference counts
of x.

By Lemma 5.3(a), no update of any reference to x takes place between Py and P;.
This implies that the reference from z to x existed at F,. Moreover, this reference could
not have been deleted between Py and P, otherwise by Assumption 3.1 and Property 4.2
x would be in TRT at P,, a contradiction. This further implies that z must be in RRT,
otherwise x would not be in S5 at P;.

Now, we know that z was visited by the red traversal between Py and P;. Also,
the reference from z to x existed at Py and it did not get deleted between P, and P;.
But then, the reference would have been accounted in the red reference counts of v — a
contradiction. O

The results stated above are put together in the form of the following theorem.

Theorem 5.7 (Safety) Only garbage objects are collected by CollectGarbage.

Proof: At P,, all red objects are in state S3 by Lemma 5.6. By definition of the state Sj,
these objects are not reachable from (a) any object not in RRT. This implies that they
are not reachable from the persistent root (which is never in RRT by Property 4.1) or
from any object in TRT not in RRT; (b) any object in TRT that is in RRT. Therefore,
these object are neither reachable from the persistent root nor from any object in TRT.

All objects from which an object in state S3 is reachable at P, are in state S3 at Pj.
By Lemma 5.2, no reference to any of these objects has been read by any transaction
active at Pj.

This implies, by definition, that all objects that are red at P, are garbage. Since only
these objects are collected by CollectGarbage, the theorem is proved. O

Next, we prove that TCRC is complete — that is, it collects all garbage eventually.
For this, we further need the following results.

Lemma 5.8 A cycle of strong references can exist only between P, and Ps.

Proof: CollectGarbage changes the reference strengths only between P, and Ps. Trans-
actions can only delete strong references — they never change pointer strengths or insert
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strong pointers. We assume that there exist no cycles of strong references when the ob-
jects are loaded. Therefore, it is sufficient to prove that if there exist no cycles of strong
references at P, then there exist no cycles of strong references at Ps.

Only the strengths of references from objects in RRT are changed between P, and
Ps. Since there are no cycles of strong references at P, we cannot have a cycle of strong
references that does not contain an object in RRT at Ps.

Consider two green objects x and y such that the green traversal backtracked from x
before it backtracked from y. Then, all references from y to x are made strong and from
x to y are made weak during the traversal. Thus, at Ps there exist no cycles of strong
references containing only green objects.

Also, the green traversal makes all references from green objects to objects not in
RRT weak. This further guarantees that there exist no cycles of strong references at Ps
must have red objects.

But all red objects at P, are collected as garbage before Ps. This proves that there
exist no cycles containing strong references at Ps. O

Lemma 5.9 If an object is garbage Py then it is in state S35 at Pj.

Proof: Let A be the set of all garbage objects at . We fix an order on the objects in
A such that an object comes after all objects that have a strong reference to it at Fp.
This is possible because by Lemma 5.8, cycles of strong references cannot exist at F.

Recall that red traversal puts in RRT all objects in WRT that are not in TRT.
Thereafter, it puts an object in RRT if it is not in TRT and all objects which have strong
references to this object are in RRT.

Let = be the first object in the above ordering that is not in RRT at P,. There can
be two cases possible.

Case 1: There do not exist any strong references to =z at F;. But then x is in WRT
at Py and not in TRT because it is garbage. Being garbage, it remains that way
during the course of the red traversal, and therefore RedTraverse must be have been
invoked on it. Thus, it must be included in RRT.

Case 2: There exist strong references to x at Py. Since x is garbage at Py, all objects
that have a strong reference to x must be garbage at F,. But then, they must be
in A, and must occur before x in the ordering. By the choice of x, all these objects
must be in RRT at P,. Also, = is not in TRT because it is garbage. Therefore, it
must be included in RRT during the red traversal.

The above implies that  must be in RRT at P, — a contradiction. This proves that all
objects in A are in RRT at P,. Further, none of these objects (which are garbage at Fp)
are reachable from objects not in RRT at P, (which are live at P). Moreover, none of
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these objects, being garbage also at P,, are reachable from objects that are in TRT at
P,. Putting the above together, we see that all objects in A are in state S5 at Ps.

But then, by Lemma 5.5, all objects in A must be in state S3 at P,. This proves the
lemma. O

Theorem 5.10 (Completeness) All garbage objects are eventually collected by Col-
lectGarbage.

Proof: By Lemma 5.9 and Lemma 5.6, a garbage object will be coloured red at P, in
the first CollectGarbage invoked after it became garbage and therefore will be collected.
O

Theorem 5.11 (Bounded Work) If TRT is empty at Py then in absence of any
concurrently executing update transactions, WRT will be empty at Ps.

Proof: Since there are no transaction updates executing concurrently with the garbage
collection, the strength of all references remains same during the course of garbage col-
lection.

First, we consider objects not in RRT. If an object x not in RRT that has a strong
reference from some object in RRT, then x must have at least one strong reference from
some object not in RRT — otherwise z would have been included in RRT during red
traversal. Since this strong reference is not traversed by during the green traversal, it
is never made weak by the garbage collector. Further, since only objects in RRT get
deleted, the reference never gets deleted either. This implies that any object that is not
in RRT is not in WRT at Ps.

We consider the objects in RRT next. The green traversal makes the references from a
traversed object to as yet untraversed objects in RRT strong before traversing the latter.
Thus, all green objects except the ones on which the traversal is invoked have at least
one strong reference to them from other green objects at P;.

Because no object is in TRT, green traversal is started only on objects which have
references from outside RRT. By construction, all these references are weak. Therefore,
when the strengths of references to an object are inverted before invocation of green
traversal on it, the references to it from objects not in RRT become strong. Because
these references are never traversed during the green traversal, they are strong at Pj.

Summarizing, every green object has at least one strong reference to it from another
green object or from an object not in RRT at P;. Between P, and P;, red objects are
collected, resulting in deletion of references from red objects to green objects. But from
the results proved above, these reference deletions cannot put any green object into WRT.
Thus, no green object is in WRT at Ps.

Thus, no green object or object not in RRT is in WRT at Ps;. But this accounts for
all the objects because there do not exist any red objects at Ps. Thus, it is proved that
no object is in WRT at P;s in absence of transaction updates. O
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In particular, if no update transactions exist from the beginning of one invocation of
CollectGarbage to the end of the next, then TRT will be empty at the beginning of the
latter invocation; and therefore by Lemma 5.11 the WRT will be empty at the end of
the second invocation.

6 Using the Schema Graph

We now see how to use information from the database schema to optimize TCRC. The
schema graph is a directed graph in which the the nodes are the classes in the schema.
An edge from node 7 to node j in the schema graph denotes that Class ¢ has an attribute
that is a reference to Class j. The pointers in the schema graph thus form a template
for the pointers between the actual instances of the objects. If an edge E in a schema
graph is not involved in a cycle, then neither can an edge e in the object graph for which
FE is the template.

We label edges which are not part of a cycle in the schema graph as acyclic and
the others as cyclic. When adding an edge e to the object graph, if its corresponding
template edge in the schema graph is acyclic, the strength of e is set to be strong. During
garbage collection, in RedTraverse, we do not follow strong edges whose template edge is
acyclic. In the extreme case where the schema graph is acyclic, no edges are traversed,
and TCRC behaves just like reference counting, reducing the cost significantly.

7 Extension to a Client Server Environment

In this section, we outline the set of assumptions required for our algorithm to work
correctly in a data shipping client server environment.

Assumption 7.1 The transactions run only at the clients. The server can determine
what transactions are are possibly active at the clients at any given instant. O

Assumption 7.2 Cache consistency is guaranteed among the clients. That is, the trans-
actions running at any client always see the latest state of the database. O

This allows us to think of the transactions as running on a single client.

Assumption 7.3 All undo records are received the server before the update is reflected
at the server (WAL). O

Assumption 7.4 All logs for a transaction are received at the server before commit or
abort (force-logs-at-abort in addition to force-logs-at-commit). O
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Our techniques are not affected by the unit of data shipping (such as page or object)
and whether or not data is cached at the client. The clients can retain copies of updated
data after it has been sent to the server.

To guarantee that the algorithm works correctly in the client-server setting with the
above assumptions, the only change required in the algorithm is the following general-
ization of Property 4.2.

Property 7.1 The objects in TRT corresponding to a transaction are removed only
when (a) the transaction has ended; (b) all updates by the transaction are reflected at
the server; and (c) garbage collection is not in progress at the server. O

Note that the LogAnalyzer as well as the CollectGarbage algorithms are run at the
server. As such, some extra care has to be taken during traversals of the object graph.
Because the database state at the server (where the garbage collector is running) is not
current, it might happen that an object may have a reference to some newly created
object that is not yet present at the server. Such a dangling reference is simply ignored
during the traversals.

We can prove the correctness of the algorithm in the client server setting also and
refer the reader to [RSST98] for a proof.

8 Performance Evaluation

We implemented the TCRC algorithm and the Partitioned Mark and Sweep (PMS)
algorithm on an object manager called Brahma developed at IIT Bombay. Brahma
supports concurrent transactions and has a complete implementation of the ARIES
recovery algorithm. It provides extendible hash indices as well as BT-tree indices as
additional access mechanisms.

The WRT is implemented as an optionally persistent extendible hash table indexed
on the oid while the TRT is an in-memory hash table indexed separately on the oid and
the tid (to allow easy deletion of all entries of a transaction). The reference counts
SRefC and W RefC' are stored in an optionally persistent on-disk hash table. The
only persistent structures required by PMS are one Incoming Reference List (IRL) per
partition which is maintained as a persistent BT -tree.

Our performance study in this section is based on the standard OO7 benchmark [CDN93].
In particular, we worked on the standard small-9 dataset in OO7 which was also used
in [YNY94] for their simulation study. The OO7 parameters and their values for this
dataset are given in Table 1 and are explained below. Figure 4 illustrates the OO7
benchmark.

The OOT7 dataset is composed of a number of modules, specified by NUMMODULES.
Each module consists of a tree of objects called assemblies. The tree is a complete tree
with a fanout of NUMASSMPERASSM and has NUMASSMLEVELS levels. The last
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Figure 4: The OO7 Benchmark
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Parameter ‘ Value ‘

NUMMODULES 1
NUMCOMPPERMODULE 500
NUMCONNPERATOMIC 9
NUMATOMICPERCOMP 20
NUMCOMPPERASSM 3
NUMASSMPERASSM 3
NUMASSMLEVELS 7

Table 1: Parameters for the OO7 benchmark

level of the tree is called a base assembly while the upper levels are called complex
assemblies. In addition, each module consists of NUMCOMPPERMODULE composite
objects. The base assemblies point to NUMCOMPPERASSM of these composite objects.
Many base assemblies may share a composite object.

Each composite object points to: (a) a private set of NUMATOMICPERCOMP
atomic objects, (b) a distinguished atomic object (called the composite root), and (c)
a document object. An atomic object has a fixed number of connections (specified by
NUMCONNPERATOMIC) out of it, to other atomic objects in the same set. A connec-
tion is itself modeled as an object (called a connection object) pointed to by the source of
the connection and in turn points to the destination of the connection. The connections
connect the atomic objects into a cycle with chords. We will call a composite object
along with its private set of atomic objects, connection objects and the document object
together as an object composite. All object references in the benchmark have inverses
and we always insert or delete references in pairs (the reference and its inverse).

The dataset consisted of 104280 objects occupying 4.7 megabytes of space. Each
object composite consisted of 202 objects and had a size of 9160 bytes. During the
course of experiments, the size was maintained constant by adding and deleting the same
amount of data. The object manager used a buffer pool consisting of 500 4KB pages.
The I/O cost is measured in terms of the number of 4KB pages read from or written to
the disk. All the complex and base assemblies forming the tree structure were clustered
together. We also clustered together all the objects created for a composite.

The data was divided into 4 partitions; each partition fits in memory. The inter-
partition references were kept very small. All the complex and base assemblies forming
the tree structure were put in the same partition. Approximately one out of every 50
composites spanned partitions.

As pointed out earlier, the option to have the data structures persistent (updates
logged so that the information does not have to be regenerated at system start at the cost
of availability) is left with the user. As such, we present the results for TCRC with logging
(denoted w/logging) and without logging (denoted w/o logging) of the updates to WRT,
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reference counts and pointer and object strengths. Recall that in PMS. the only data
structures used are an IRL (B tree) per partition which store inter-partition reference
information. Since the inter-partition references are rare, there is no significant difference
in the cases when these BT trees are persistent (updates logged) or not. Therefore, below
we present only the results for PMS without logging of the updates to the IRLs.

We conducted two sets of experiments, the first was based on structure modifications
suggested in the OO7 benchmark while the second modifies complex assemblies. We
discuss each of the experiments in turn.

8.1 Structure Modifications

The workload in this experiment consisted of repeatedly inserting five object composites
and attaching each composite to a distinct base assembly object, and then pruning the
newly created references to the same five object composites — we call this whole set
of inserts and deletes an update pass. This corresponds to the structure modification
operations of the OO7 benchmark. This workload represents the case when an application
creates a number of temporary objects during execution and disposes them at the end of
the execution. The results presented are over 90 update passes interspersed with garbage
collection; garbage collection is invoked when the database size crosses 5SMB (recall the
steady state database size is 4.7MB).

We first present the cumulative overheads (cost during during normal processing as
well as the overhead due to the garbage collection thread) for this workload.

TCRC TCRC PMS
Metric w/logging w/o logging | w/o logging
Logs (MB) 150.69 113.44 113.18
I/O:Read+Write | 2574455745 | 2591+44111 | 31026445682

Although the amount of logs generated by the TCRC algorithm with logging is more
than that of the PMS algorithm, the overall I/O performance (including the I/O’s for
logs) of TCRC is better than PMS for this workload. However, if the logging is turned
off then TCRC performs much better than PMS in terms of I/O and generates slightly
more logs. The additional logs generated by TCRC include those for the extra garbage
collected by TCRC.

Three factors contribute to the overall performance: the frequency of invocation of
the garbage collector, the overhead during a garbage collection pass, and the overhead
due to normal processing. We study these three factors in detail now.
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8.1.1 Invocation Frequency

We checked the database size at the end of every update pass and invoked the garbage
collector if the database size exceeded 5 MB. TCRC collects all garbage and therefore
the amount of garbage, which is generated at the rate of 45800 bytes per update pass,
exceeded 0.3 MB (and thus the total database size exceeded 5 MB) after seven update
passes. Thus, garbage collection in case of TCRC is consistently invoked after every
seven update passes.

The pattern is more interesting in the case of PMS. Approximately one out of fifty
composites spanned partitions; such a composite (which is cyclic) is never collected. This
caused the database size to increase with time. Since the threshold remained fixed at 5
MB, this caused the garbage collection to be invoked more frequently as time progressed.
During the course of the 90 update passes, TCRC garbage collector was invoked 12 times,
while PMS was invoked 14 times. Initially, the PMS collector was invoked every seven
update passes, then every six update passes and by the end of the 90 update passes
every five update passes. By the end of the 90 update passes, there were 73280 bytes of
uncollected garbage for PMS.

8.1.2 Overhead of a Garbage Collection Pass

The table below gives the average I/O overhead and the amount of logs generated by
TCRC and PMS for an invocation of the collector. To get the total cost the figures have
to be multiplied by the number of invocations (which is 14 for PMS and 12 for TCRC).

TCRC TCRC PMS
Metric w/logging | w/o logging | w/o logging
Logs (MB) 1.69 1.07 1.07
I/O:Read+Write | 33+626 12+403 1869-+566

Since garbage collection was invoked right after the insertions, TCRC found all the
objects that it had to traverse in the cache and incurred no reads. PMS needed to make
a reachability scan from the root and therefore had to visit all of the 104280 objects in
the dataset. This accounts for the excessive reads incurred by PMS.

The amount of logs generated by PMS, however, are not constant over the 14 invoca-
tions. This is again because as cyclic garbage goes on accumulating, garbage collection in
PMS gets invoked more and more frequently on less and less garbage. Thus, the amount
of garbage collected per collection in PMS decreases with time. This is the only update
that is logged in PMS (recall that we do not log updates to IRLs). Thus, the amount
of logs generated by PMS decreases with time. Thre is a corresponding decrease in the
write counts too. In the table above, for comparability sake, we have presented the result
for PMS as the average for the initial invocations of garbage collection which collect all
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the garbage.

The log generated by TCRC for logging is however bigger than PMS since the garbage
objects are deleted from WRT and these deletions have to be logged (recall that all newly
created objects will be in WRT since all new pointers are weak).

8.1.3 Normal Processing Overheads

The following table shows the amount of I/O performed and the amount of logs generated
during normal processing (when the collector is not running) over the course of the 90
update passes.

TCRC TCRC PMS
Metric w/logging w/o logging | w/o logging
Logs (MB) 130.34 100.61 100.31
[/O:Read+Write | 2404+48189 | 2421+39304 | 3017+38033

The algorithms have to maintain the persistent data structures consistent with the
data during normal processing. In the case of PMS, the only persistent data structure
is the IRL which is updated quite rarely. On the other hand, in the case of TCRC, the
reference counts as well as the WRT may be updated.

In case of TCRC without logging, the amount of the logs generated is more or less the
same as PMS. This is expected since exactly the same updates are logged in both cases.
The amounts of log generated for TCRC with logging show the additional logging that has
to be performed by TCRC for maintaining the persistent structures. The additional logs
account for about 7500 extra writes for TCRC. The rest of the extra writes performed
by TCRC (about 1500) are due to writing parts of WRT back as a result of normal
cache replacement (these are also reflected in the results for TCRC without logging).
The amount of reads performed by TCRC is significantly smaller that PMS because the
cache is not disturbed much by the garbage collection thread in the case of TCRC. In
the case of PMS, at the end of the collection pass the cache could contain (for instance)
many objects from the assembly tree that are not required during normal processing.

8.2 Updating Complex Assemblies

In this set of experiments, we updated the assembly hierarchy tree by replacing a subtree
rooted at a complex assembly by a different one. The lowest level base assemblies in the
new hierarchy tree pointed to the same composite objects.

We varied the level of the root of the the subtree that we were replacing. The level
was varied from two to six (level n corresponds to the level which is the n'* level upwards
from the base assemblies). Notice that the subtree that was replaced is garbage after this
update. After such a update we invoked the garbage collector. The higher the level of the
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root of the subtree being replaced, the more the number of object composites reachable,
and therefore the more the number of objects TCRC had to traverse. In this experiment,
we report only on the overheads of the garbage collection pass. The normal processing
overheads are very similar to the previous experiment since we are creating some number
of objects and pruning references to others like the previous experiment.

The cost of the garbage collection phase for TCRC with logging is tabulated below:

Level of Root of Subtree

Metric 2] 3] 4] 5] 6
Logs (MB) | 0.00 | 0.01 | 0.02 | 0.09 | 0.28
I/O:Read O 1] 1] 173| 943
I/0:Write 2| 7| 9] 67| 158

The results for TCRC without logging are as follows:

Level of Root of Subtree

Metric 2] 3] 4] 5] 6
Logs (MB) | 0.00 | 0.00 | 0.00 | 0.02 | 0.05
I/O:Read 0 1| 1| 173| 943
I/O:Write 1 2 3] 41| 76

The cost of the garbage collection phase for PMS without logging is tabulated below:

Level of Root of Subtree

Metric 2| 3] 4] 5] 6
Logs(MB) | 0.00 | 0.00 | 0.01 | 0.02 | 0.05
I/O:Read | 1737 | 1737 | 1737 | 1738 | 1743
[/O:Write 10 12 19 27 31

The results show that number of reads by TCRC is much smaller than the number
of reads by PMS, especially for modifications at the lower levels. This is expected since
TCRC performs a local traversal while PMS necessarily traverses the whole database
(except the garbage, which is small) for modifications at any level.

The amount of logs generated by TCRC (a 0.00 for the amount of logs generated
indicates that the amount of logs generated is less than 5KB) grows as the level number
grows because of larger amount of garbage collected. The growth is more prominent in
case of TCRC with logging in comparison to PMS since it also logs changes made to the
pointer strengths during the green traversal. The more the objects traversed, the more
the number of pointers whose strengths get changed, and therefore the more the logs.

The TCRC algorithm can be optimized by using semantics available from the schema
graph. To illustrate the effect of this optimization, we modified the OO7 benchmark by
removing the back pointers to the base assembly objects from the composite objects.
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This provides acyclic data which enables us to test our schema graph optimization. It
limits the traversal of TCRC: the template for the pointer from a base assembly object
to a composite object becomes acyclic on removal of the back pointer from the compos-
ite object to the base assembly object, and therefore need not be traversed during red
traversal — thus preventing TCRC from unnecessarily traversing the object composites.
The cost of TCRC with logging when the experiment was repeated with this schema-
based optimization is tabulated below. It can be seen that TCRC with the optimization
outperforms the basic TCRC as well as the PMS algorithm, particularly for updates at
higher levels.

Level of Root of Subtree

Metric 2| 3] 4] 5] 6
Logs(MB) | 0.00 | 0.01 | 0.02 | 0.06 | 0.17
I/O:Read 0 0 0 0 2
I/O:Write 8 9 12 27 67

9 Conclusions and Future Work

We have presented a garbage collection algorithm, called TCRC, based on cyclic reference
counting and proved it correct in the face of concurrent updates and system failures. We
have implemented and tested the algorithm.

Our performance results indicate that TCRC can be much cheaper, at least in certain
cases, than partitioned mark-and-sweep since it can concentrate on local cycles of garbage.
We believe our algorithm will lay the foundation for cyclic reference counting in database
systems.

We plan to explore several optimizations of the TCRC algorithm in the future. For
instance, we have observed that just after creation of the datasets, garbage collection
has to perform extra work to convert weak pointers into strong pointers. However, once
the conversion has been performed, a good set of strong pointers is established, and
the further cost of garbage collection is quite low. It would be interesting to develop
bulk-loading techniques for reducing the cost of setting up pointer strengths.

Finally, another interesting extension of the TCRC algorithm would be to develop a
partitioned TCRC algorithm in which during a local mark and sweep only intra-partition
edges are traversed.
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