
Garbage Collection in Object Oriented Databases UsingTransactional Cyclic Reference CountingS. Ashwin1� Prasan Roy1 S. Seshadri1 Avi Silberschatz2S. Sudarshan11Indian Institute of Technology,Mumbai 400 076, Indiasashwin@cs.wisc.edufprasan,seshadri,sudarshag@cse.iitb.ernet.in 2Bell LaboratoriesMurray Hill, NJ 07974avi@bell-labs.comAbstractGarbage collection is important in object-oriented databases to free the programmerfrom explicitly deallocating memory. In thispaper, we present a garbage collection al-gorithm, called Transactional Cyclic Refer-ence Counting (TCRC), for object orienteddatabases. The algorithm is based on a vari-ant of a reference counting algorithm pro-posed for functional programming languagesThe algorithm keeps track of auxiliary refer-ence count information to detect and collectcyclic garbage. The algorithm works correctlyin the presence of concurrently running trans-actions, and system failures. It does not ob-tain any long term locks, thereby minimizinginterference with transaction processing. Ituses recovery subsystem logs to detect pointerupdates; thus, existing code need not be re-written. Finally, it exploits schema informa-tion, if available, to reduce costs. We have im-plemented the TCRC algorithm and presentresults of a performance study of the imple-mentation.�Currently at the University of Wisconsin, MadisonPermission to copy without fee all or part of this material isgranted provided that the copies are not made or distributed fordirect commercial advantage, the VLDB copyright notice andthe title of the publication and its date appear, and notice isgiven that copying is by permission of the Very Large Data BaseEndowment. To copy otherwise, or to republish, requires a feeand/or special permission from the Endowment.Proceedings of the 23rd VLDB ConferenceAthens, Greece, 1997

1 IntroductionObject oriented databases (OODBs), unlike relationaldatabases, support the notion of object identity, andobjects can refer to other objects via object identi�-ers. Requiring the programmer to write code to trackobjects and their references, and to delete objects thatare no longer referenced, is error prone and leads tocommon programming errors such as memory leaks(garbage objects that are not referred to from any-where, and haven't been deleted) and dangling ref-erences. While these problems are present in tradi-tional programming languages, the e�ect of a memoryleak is limited to individual runs of programs, sinceall garbage is implicitly collected when the programterminates. The problem becomes more serious in per-sistent object stores, since objects outlive the programsthat create and access them. Automated garbage col-lection is essential in an object oriented database toprotect from the errors mentioned above. In fact,the Smalltalk binding for the ODMG object databasestandard requires automated garbage collection.We model an OODB in the standard way as an ob-ject graph, wherein the nodes are the objects and thearcs are the references between objects. The graph hasa persistent root. All objects that are reachable fromthe persistent root or from the transient program stateof an on-going transaction are live; while the rest aregarbage. We often call object references as pointers.There have been two approaches to garbage collec-tion in object oriented databases: Copying Collectorbased [YNY94] and Mark and Sweep based [AFG95].The copying collector algorithm traverses the entire ob-ject graph and copies live objects into a new space; theentire old space is then reclaimed. In contrast, theMark and Sweep algorithm marks all live objects bytraversing the object graph and then traverses (sweeps)the entire database and deletes all objects that are un-



marked. The copying collector algorithm reclusters ob-jects dynamically; the reclustering can improve localityof reference in some cases, but may destroy program-mer speci�ed clustering resulting in worse performancein other cases. The garbage collection algorithms of[YNY94] as well as [AFG95] handle concurrency con-trol and recovery issues.With both the above algorithms, the cost of tra-versing the entire object graph can be prohibitivelyexpensive for databases larger than the memory size,particularly if there are many cross-page references.In the worst case, when the bu�er size is a small frac-tion of the database size and objects in a page refer toobjects in other pages only, there may be an I/O forevery pointer in the database. To alleviate this prob-lem, earlier work [YNY94, AFG95] has attempted todivide the database into partitions consisting of a fewpages. Each partition stores inter-partition references,that is references to objects in the partition from ob-jects in other partitions, in a persistent data structure.Objects referred to from other partitions are treatedas if they are reachable from the persistent root, andare not garbage collected even if they are not referredto from within the partition. Each partition is garbagecollected independent of other partitions; references toobjects in other partitions are not followed. Thus, par-titioning makes the traversal more e�cient; the smal-ler the partition, the more e�cient the traversal, withmaximume�ciency occurring if the whole partition �tsinto the bu�er space.Unfortunately, small partitions increase the probab-ility of self-referential cycles of garbage that cross par-tition boundaries; such cyclic garbage is not detectedby the partitioned garbage collection algorithms. Pre-vious work has maintained that such cross cycle struc-tures will be few, and will \probably" not be a prob-lem. However, simulations by [CWZ94] showed thateven small increases in database connectivity can pro-duce signi�cant amounts of such garbage. Therefore,it is not clear that partition sizes can be made verysmall without either failing to collect large amountsof garbage or employing special (and expensive) tech-niques to detect such cyclic garbage.A natural alternative is Reference Counting. Refer-ence Counting is based on the idea of keeping a count ofthe number of pointers pointing to each object. Whenthe reference count of the object becomes zero, it isgarbage and eligible for collection. Reference count-ing has the attractive properties of localized and in-cremental processing. Unfortunately, basic referencecounting cannot deal with self-referential cycles of ob-jects; each object could have a positive reference count,yet all the objects in the cycle may be unreachable fromthe persistent root, and therefore be garbage. However,a number of extensions of the basic referencing count-

ing algorithm to handle cyclic data have been proposedin the programming language community, including:[Bro85, Bro84, PvEP88]. More recent work in thisarea includes [Lin90, MWL90, JL91].In this paper, we consider a version of referencecounting, proposed by Brownbridge [Bro85, Bro84]for functional programming languages, which handlesself referential cycles of garbage. We present an al-gorithm, called Transactional Cyclic Reference Count-ing (TCRC), based on Brownbridge's algorithm,whichis suitable for garbage collection in an OODB. The sa-lient features of the TCRC algorithm are:� It detects all self referential cycles of garbage un-like basic reference counting, and the partitionedgarbage collection algorithms.� It performs a very localized version of mark-and-sweep to handle cyclic data, with each mark-and-sweep likely to access far fewer objects than aglobal mark-and-sweep. Thus it does not haveto examine the entire database while collectinggarbage, except in the worst case.� It allows transactions to run concurrently, anddoes not obtain any long term locks, thereby min-imizing interference with transaction processing.� It is integrated with recovery algorithms, andworks correctly in spite of system crashes. It alsouses recovery subsystem logs to detect pointer up-dates; thus, existing application code need not berewritten.� It exploits schema information, if available, to re-duce costs. In particular, if the schema graph isacyclic, no cyclic references are possible in thedatabase and TCRC behaves identically to refer-ence counting.A proof of correctness of the TCRC algorithm ispresented in [ARS+97]. Designing a cyclic referencingcounting algorithm which allows concurrent updatesand handles system crashes is rather non-trivial, andto our knowledge has not been done before; we believethis is one of the central contributions of our paper.A problem often cited against reference countingschemes is the overhead of updating reference counts.However, each pointer update can only result in atmost one reference count being updated. This over-head will have only a small impact on performance if,as we expect is true in any realistic scenario, pointerupdates are only a small fraction of the overall up-dates. For TCRC, moreover, the overhead is o�set bythe reduced cost of traversals while collecting garbage.We have implemented a prototype of the TCRC al-gorithm as well as the partitioned mark and sweep



algorithm on a storage manager called Brahm�a de-veloped in IIT Bombay. We present a performancestudy of TCRC based on the implementation; the studyclearly illustrates the bene�ts of TCRC.2 Brownbridge's Cyclic ReferenceCounting AlgorithmOur Transactional Cyclic Reference Counting al-gorithm is based on the Cyclic Reference Counting(CRC) algorithm proposed by Brownbridge [Bro84,Bro85], in the context of functional programming lan-guages.The basic idea behind the Cyclic Reference Count-ing (CRC) algorithm of Brownbridge [Bro84, Bro85] isto label edges in the object graph as strong or weak.The labelling is done such that a cycle in the objectgraph cannot consist of strong edges alone { it musthave at least one weak edge. Two separate referencecounts for strong and for weak edges (denoted SRefCand WRefC respectively) are maintained per object. Itis not possible in general to cheaply determine whetherlabelling a new edge as strong creates a cycle of strongedges or not. Hence, in the absence of further informa-tion, the algorithm takes the conservative view that la-belling a new edge strong could create a cycle of strongedges, and labels the new edge weak.The SRefC and WRefC are updated as edges arecreated and deleted. If for an object S, the SrefC aswell as WrefC is zero, then S is garbage and S andthe edges from it are deleted. If the SrefC is zero, butWrefC is non-zero, there is a chance that S is involvedin a self referential cycle of garbage. If the SrefC ofan object S is greater than zero, then S is guaranteedto be reachable from the root (however, our TCRCalgorithm does not guarantee this last property).If the object graph did not have any garbage be-fore the deletion of an edge to S, then the only poten-tial candidates for becoming garbage are S and objectsreachable from S. If SrefC of S is zero and WrefC ofS is nonzero, a localized mark and sweep algorithmdetects whether S and any of the objects reachablefrom S are indeed garbage. The localized mark andsweep performs a traversal from S and identi�es allobjects reachable from S and colours them red. Letus denote the above set by R. It then colours greenevery object in R that has a reference from an objectoutside R (detected using reference counts). It alsocolours green all objects reachable from any green ob-ject. During this green marking phase some pointerstrengths are updated to ensure that every object hasat least one strong pointer to it. We will describe thispointer strength update in detail in the context of ourtransactional cyclic reference counting algorithm. Atthe end, all objects in R not marked green are garbage

and are deleted.However, prior cyclic reference counting algorithms,including Brownbridge's algorithm, were designed fora single user system. They cannot be used in a multi-user environment with concurrent updates to objects,and do not deal with persistent data and failures. Ourcontributions lie in extending Brownbridge's algorithmto (a) use logs of updates to detect changes to objectreferences, (b) to work in an environment with con-current updates, (c) to work on persistent data in thepresence of system failures and transaction aborts, (d)handle a batch of updates at a time rather than one up-date at a time, and (e) optimize the localized mark andsweep signi�cantly by following only strong pointers.3 System Model and AssumptionsIn this section, we describe our system model andoutline the architectural assumptions on which ourgarbage collector is based, which is very similar to themodel and assumptions in [AFG95].In our model, transactions log undo and redo in-formation for all updates. Undo and redo recordsare represented as undo(tid, oid, o�set, old-value), andredo(tid, oid, o�set, new-value), where tid denotes atransaction identi�er and oid an object identi�er. Ob-ject creation is logged as object-allocation(tid, oid). Thecommit log is represented as commit(tid); and theabort log is represented as abort(tid). We require thatfrom the oid we can identify the type of the object (per-haps by �rst fetching the object), and from the o�setwe can determine if the value that has been updatedis a pointer �eld. These requirements are satis�ed bymost database systems.We make the following important assumption abouttransactions:Assumption 3.1 Transactions follow strict two-phase locking on objects. That is, transactions acquireread or write locks on objects as appropriate, and holdread as well as write locks until end of transaction. 2As with any other garbage collection scheme, we as-sume that an object identi�er is valid only if it is eithera persistent root, or is present in a pointer �eld of anobject in the database, or is in the transient memory(program variables or registers) of an active transac-tion that read the value from an object in the database.Note that this precludes transactions from passing oidsto other transactions, and from storing oids in externalpersistent storage.Our algorithms can be used in centralized as wellas client-server settings. Let us consider �rst the cent-ralized setting.Assumption 3.2 In the centralized setting we as-sume that transactions follow strict WAL, that is,



they log both the undo and the redo value before actu-ally performing the update. 2Our algorithms also work in a data-shipping client-server environment, under the following assumptionsAssumption 3.3 In the client-server setting we as-sume that clients follow:1. strict WAL with respect to the server. That is,before any data is received by the server, the undoas well as redo information for the data must havealready been received by the server.2. force with respect to the server. That is, be-fore the transaction commits, all the updated datamust have been received by the server. 2These assumptions make the client transaction be-have, as far as the server is concerned, just like a localtransaction that follows strict WAL.Our techniques are not a�ected by the unit of datashipping (such as page or object) and whether or notdata is cached at the client. The clients can retaincopies of updated data after it has been sent to theserver.Most of the assumptions above are satis�ed by typ-ical storage managers for object-oriented databases.Our client server assumptions are also very similar tothose of [AFG95].4 Transactional Cyclic ReferenceCountingWe will now describe the Transactional Cyclic Refer-ence Counting (TCRC) algorithm. We �rst describethe data structures needed by the transactional cyclicreference counting algorithm.4.1 Data StructuresAssociated with each object, we persistently maintaina strong reference count (SRefC) giving the number ofstrong pointers pointing to the object, a weak refer-ence count (WRefC) giving the number of weak point-ers pointing to the object, and a strength bit for theobject. Each pointer also has a strength bit. Bothstrength bits are persistent. The pointer is strong ifthe strength bit in the pointer and the strength bit inthe object pointed to have the same value; otherwisethe pointer is weak. This representation of strengthusing two bits is an important implementation trick,from Brownbridge [Bro85, Bro84]. It makes very e�-cient the operation of 
ipping the strength of all point-ers to an object, that is making all strong pointers tothe object weak, and all weak pointers to the objectstrong. All that need be done is to 
ip the value of thestrength bit in the object.

The TCRC algorithm also maintains a persistenttable, the Weak Reference Table (WRT), which con-tains oids for the objects which have a zero SRefC, i.e.no strong pointers incident on them. The persistentroot is never put into the WRT.All the above information can be constructed fromthe object graph and therefore it could be made tran-sient. However, we would then have to reconstruct theinformation after a system crash by scanning the entiredatabase, which would be expensive. Hence we makeit persistent. Updates to SRefC and WRefC, updateof the strength bit of an object or of a pointer, and theinsert or delete of entries from the WRT are logged aspart of the transaction whose pointer update causedthe information to be updated/inserted/deleted.There is also a non-persistent table which is usedduring garbage collection: the Red Reference Table(RRT); this table associates with (some) objects astrong red reference count (SRedRefC), a weak red ref-erence count (WRedRefC), and a bit that indicateswhether the colour of the object is red or green. Thistable is stored on disk since the size of this table couldbe large in the worst case, but updates to this table arenot logged.Finally, similar to [AFG95] TCRC maintains annon-persistent in-memory table called the TemporaryReference Table (TRT), which contains all those oidssuch that a reference to the object was added or de-leted by an active transaction, or the object was cre-ated by the transaction. Such an oid may be stored inthe transient memory of an active transaction althoughthe object may not be referenced by any other objectin the database. An object whose oid is in TRT maynot be garbage even if it is unreachable from any otherobject, since the transaction may store a reference tothe object back in the database. Updates to TRT arealso not logged. The TRT also provides a simple wayof handling the persistent root | its oid is entered inthe TRT at system start up, and is never removed.This prevents the garbage collector from collecting thepersistent root.4.2 The AlgorithmTCRC consists of two distinct algorithms, run bydi�erent processes. The �rst is the log-analyzer al-gorithm. The second algorithm is the actual garbagecollection algorithm. We describe them below.4.2.1 Log analyzerThe log-analyzer algorithm analyzes log records gener-ated by the transaction, and performs various actionsbased on the log records. As part of its actions, it mayalso insert records into the log. We shall assume it isrun as part of the transaction itself, is invoked each



time a log record is appended to the system log tail,and is atomic with respect to the appending of the logrecord.In the actual implementation, it is possible to runthe log-analyzer as a separate thread, and when atransaction appends a log record to the system log, itactually only delivers it to the log-analyzer, which thenappends the log record to the system log. In particu-lar, in the client-server implementation the log-analyzerprocess is run at the server end, not at the client.The log-analyzer makes use of the following proced-ures. Procedure DeletePointer decrements the WRefCor SRefC for an object when a pointer to the objectis deleted. If the SRefC falls to zero after the decre-ment then the object's oid is put into WRT. ProcedureAddPointer, by default, sets the strength of the pointerto be weak and increments the WRefC of the objectpointed to. The strength is set to weak so that cyclesof strong edges are not created; however, we will seein Section 5 that we may be able to make some newpointers strong.The procedure LogAnalyzer works as follows. Firstit obtains the log analyzer latch (which is also acquiredby the garbage collection thread) to establish a con-sistent point in the log. The latch is obtained for theduration of the procedure. The log is analyzed by thelog analyzer and depending on the type of the log re-cord various actions as outlined below are taken. Forundo/redo log records caused by pointer updates, thereference counts for the a�ected objects are updated.This is done by DeletePointer in case of undo logs, andAddPointer in case of redo logs. For log records cor-responding to the allocation of objects, the referencecounts for the new object are initialized to zero, andthe oid of the object is inserted into the WRT. In allthe above cases (i.e., for pointer updates and object al-location), the oid of the a�ected object is inserted intothe TRT with the tid of the transaction that generatedthe record.For end-of-transaction (commit or abort) log re-cords, the algorithm �rst tries to get the gcLatch. If thelatch is obtained immediately, then garbage collectionis not in progress and all the oid entries for the termin-ating transaction from the TRT are removed and thegcLatch released thereafter. However, if the gcLatchcannot be obtained immediately then a garbage col-lection is in progress concurrently. In this case, theoid entries for the terminating transaction are not re-moved, but instead 
agged for later removal by thegarbage collector.All operations on pointer strengths and referencecounts are protected by a latch on the object poin-ted to, although not explicitly mentioned in our al-gorithms. Access to WRT and TRT are also protectedby latches.

Procedure CollectGarbage facquire gcLatchRRT = fgS1: for each oid in WRT that is not in TRTRedTraverse(oid)S2: for each oid 2 RRTlatch the reference count entry of oidif SRefCoid +WRefCoid >SRedRefCoid +WRedRefCoidmark oid as green;unlatch reference count entry of oidfor each oid 2 RRT that is marked greenif SRefCoid == SRedRefCoid/* all external pointersto the object are weak */if SRefCoid == 0 /* oid is in WRT */remove oid from WRT
ip the strength of all pointers to oidswap SRefCoid and WRefCoidGreenTraverse(oid)done = FALSES3: while done == FALSEdone = TRUEacquire log analyzer latchS4: for each oid 2 RRT that is marked redif oid 2 TRTrelease log analyzer latchGreenTraverse(oid)done = FALSEacquire log analyzer latchrelease log analyzer latchS5: for each oid 2 RRT that is marked redCollect(oid)release gcLatchremove all 
agged entries from TRTgProcedure GreenTraverse(oid) fstarting with oid as the root do adepth-�rst traversal restricted tothe objects marked red in RRTwhen visiting an object during the traversal :mark the object greenmake strong all pointers from the objectto any red object (not yet visited)make weak all pointer from the object toany green object (already visited)g Figure 1: Pseudo Code for Garbage Collector



4.2.2 Garbage CollectorThe garbage collection algorithm is activated periodic-ally (possibly depending on availability of free space).The algorithmmakes use of the following support func-tions. Procedure Collect actually deletes an object;before doing so, it deletes all pointers out of the ob-ject, updating the stored reference counts of the ob-jects pointed to. It also deletes the object from RRTand WRT.Procedure RedTraverse performs a reachability scanfrom the speci�ed object, following only strong point-ers, and marks all reachable objects red and putsthem in RRT. RedTraverse also maintains for eachobject present in RRT, two counts: SRedRefC andWRedRefC, giving respectively the number of strongand weak pointers to the object from all other objectspresent in RRT. These counts are maintained on the
y during the traversal; in order to do so, RedTraversealso maintains these counts for objects that are reach-able by a single weak edge from objects in RRT, sincesuch objects may be added to RRT later in the scan.The garbage collection algorithm is implemented byProcedure CollectGarbage, shown in Figure 1. Initially,all nodes reachable from objects in WRTusing only thestrong pointers are coloured red and put in RRT bycalling RedTraverse. This function performs a fuzzylocalized traversal of the object graph during whichno locks are obtained on the objects being traversed.Short term latches may be obtained on objects or pagesto ensure physical consistency.After this, in Step S2 some nodes are marked greenbased on the values of their WRefC+SRefC and WRe-dRefC+SRedRefC. WRedRefC is the number of weakpointers pointing to an object amongst pointers fromobjects in RRT. Similarly, SRedRefC is the number ofstrong pointers pointing to an object amongst point-ers from objects in RRT. The expression WRedRefC+ SRedRefC counts how many pointers to a node sare from nodes in RRT. If this count is less than thetotal number of pointers to node s, there must be anexternal (to objects in RRT) pointer to s, and s isnot garbage. Such objects are marked green in StepS2. The Procedure GreenTraverse called in ProcedureCollectGarbage can be found in Figure 1.Next, in Step S4, any objects in RRT that are inTRT are also marked green since their references maystill be stored in an ongoing transaction and storedback in the database. Objects that are reachable fromthe above objects are also marked green, by invokingGreenTraverse. The reason for performing Step S4 re-peatedly (in the while loop at Step S3) is to establisha consistent point in the log at which no object in theRRT is in TRT; this helps simplify the proof of correct-ness. Let us denote the time instant when we acquire

the log analyzer latch for the last time in the while loopat step S3 as T5. This guarantees that all objects inRRT that are marked red at step S5 are not in TRTaccording to log at T5.4.2.3 Support for Logical Undo by the Recov-ery ManagerThe TCRC algorithm needs some support from the re-covery manger in the form of supporting logical undosto ensure correctness. There are some actions whoseundos have to be performed logically and not phys-ically. We discuss them below and discuss what thelogical undo should do in each case:Pointer Deletion and Strength Update: Undoof a pointer deletion or strength update, if performednaively, may introduce strong cycles in the graph,which can a�ect the correctness of the algorithm. Theright way to undo a pointer deletion is to reinsert thepointer with the strength set to be weak (even if itwas strong earlier). Similarly, the undo of a pointerstrength update (done in case of system crash duringthe garbage collection phase) is to set the strengthof the pointer as weak (irrespective of the originalstrength).Reference Counts Update: The reference countsof an object O can be concurrently updated by multipletransactions (including the garbage collector) throughdi�erent objects which are locked by the transactions.The object O itself need not be locked since only a ref-erence to it is being updated. Only short term latchesare necessary for maintaining physical consistency. If atransaction that updated the reference count of an ob-ject aborts, it should be logically undone: the undo ofa reference count increment is a decrement of the samereference count, while the undo of a reference countdecrement is always an increment of WRefC since areinserted pointer is always weak.4.3 CorrectnessTheorem 4.1 The TCRC algorithm1. eventually collects any object that is garbage.2. does not incorrectly reclaim live objects asgarbage. 2The above theorem establishes the correctness of theTCRC algorithm; a proof is presented in [ARS+97].The theorem holds in the presence of concurrent trans-actions and system failures.An interesting point to note is that RedTraverse fol-lows only strong pointers, and not weak pointers, incontrast to Mark-and-Sweep. Our proof of correctnessshows that every garbage object is either in WRT oris reachable by a sequence of strong edges from an



object in WRT, and thus RedTraverse �nds all garbageobjects. We also show that all non-garbage objects col-oured red are later coloured green by a call on Green-Traverse, even though GreenTraverse only follows edgesthrough red objects.Another interesting point is that although ourtraversals (both RedTraverse and GreenTraverse) arefuzzy, that is they do not acquire any long term locks,the algorithms are still correct. The TRT (also usedby [AFG95]) plays an important role here, since anypointers that are added or deleted during the traversalare inserted into the TRT. Objects reachable fromTRT are not garbage collected.A badly designed garbage collection algorithm couldcreate in�nite work for itself, by leaving oids in WRTwhich will be traversed by another garbage collectionphase, which in turn leaves oids in WRT, ad in�nitum.We now state a theorem which guarantees that thisdoes not happen; that is, in the absence of updates,the system eventually reaches a state where garbagecollection thread does no more work.Theorem 4.2 If there are no updates from the begin-ning of one garbage collection phase to the end of thenext garbage collection phase no object will be in WRTat the end of the second garbage collection phase. 2The proof is presented in [ARS+97].5 Using the Schema GraphWe now see how to use information from the data-base schema to optimize TCRC. The schema graph isa directed graph in which the the nodes are the classesin the schema. An edge from node i to node j in theschema graph denotes that Class i has an attribute thatis a reference to Class j. The pointers in the schemagraph thus form a template for the pointers betweenthe actual instances of the objects. If an edge E ina schema graph is not involved in a cycle, then neithercan an edge e in the object graph for which E is thetemplate.We label edges which are not part of a cycle in theschema graph as acyclic and the others as cyclic. Whenadding an edge e to the object graph, if its correspond-ing template edge in the schema graph is acyclic, thestrength of e is set to be strong. During garbage col-lection, in RedTraverse, we do not follow strong edgeswhose template edge is acyclic. In the extreme casewhere the schema graph is acyclic, no edges are tra-versed, and TCRC behaves just like reference counting,reducing the cost signi�cantly.6 Performance EvaluationWe implemented the TCRC algorithm and the Parti-tioned Mark and Sweep (PMS) algorithm on an ob-

ject manager called Brahm�a developed at IIT Bom-bay. Brahm�a supports concurrent transactions usingtwo phase locking and a complete implementation ofthe ARIES recovery algorithm. It provides extend-ible hash indices as well as B+-tree indices as addi-tional access mechanisms.The WRT is implemented as a persistent extendiblehash table indexed on the oid while the TRT is anin-memory hash table indexed separately on the oidand the transaction id (to allow easy deletion of allentries of a transaction). The reference counts SRefCand WRefC are stored with the object itself. Theonly persistent structures required by PMS are oneIncoming Reference List (IRL) per partition which ismaintained as a persistent B+-tree.Our performance study in this section is based onthe standard OO7 benchmark [CDN93]. In particular,we worked on the standard small-9 dataset in OO7which was also used in [YNY94] for their simulationstudy. The OO7 parameters and their values for thisdataset are given in Table 1 and are explained below.The OO7 dataset is composed of a number of mod-ules, speci�ed by NUMMODULES. Each module con-sists of a tree of objects called assemblies. The treeis a complete tree with a fanout of NUMASSMPER-ASSM and has NUMASSMLEVELS levels. The lastlevel of the tree is called a base assembly while theupper levels are called complex assemblies. In addi-tion, each module consists of NUMCOMPPERMOD-ULE composite objects. The base assemblies pointto NUMCOMPPERASSM of these composite objects.Many base assemblies may share a composite object.Each composite object points to: (a) a private set ofNUMATOMICPERCOMP atomic objects, (b) a dis-tinguished atomic object (called the composite root),and (c) a document object. An atomic object has a�xed number of connections (speci�ed by NUMCON-NPERATOMIC) out of it, to other atomic objects inthe same set. A connection is itself modeled as anobject (called a connection object) pointed to by thesource of the connection and in turn points to the des-tination of the connection. The connections connectthe atomic objects into a cycle with chords. We willcall a composite object along with its private set ofatomic objects, connection objects and the documentobject together as an object composite. All object ref-erences in the benchmark have inverses and we alwaysinsert or delete references in pairs (the reference andits inverse).The dataset consisted of 104280 objects occupying4.7 megabytes of space. Each object composite con-sisted of 202 objects and had a size of 9160 bytes. Dur-ing the course of experiments, the size was maintainedconstant by adding and deleting the same amount ofdata. The object manager used a bu�er pool consisting



Parameter ValueNUMMODULES 1NUMCOMPPERMODULE 500NUMCONNPERATOMIC 9NUMATOMICPERCOMP 20NUMCOMPPERASSM 3NUMASSMPERASSM 3NUMASSMLEVELS 7Table 1: Parameters for the OO7 benchmarkof 500 4KB pages. The I/O cost is measured in termsof the number of 4KB pages read from or written tothe disk. All the complex and base assemblies form-ing the tree structure were clustered together. We alsoclustered together all the objects created for a compos-ite.For PMS, the data was divided into 4 partitions;each partition �ts in memory. The inter-partition ref-erences were kept very small. All the complex andbase assemblies forming the tree structure were put inthe same partition. Approximately one out of every 50composites spanned partitions.We conducted two sets of experiments, the �rst wasbased on structure modi�cations suggested in the OO7benchmark while the second modi�es complex assem-blies. We discuss each in turn.6.1 Structure Modi�cationsThe workload in this experiment consisted of re-peatedly inserting �ve object composites and attachingeach composite to a distinct base assembly object, andthen pruning the newly created references to the same�ve object composites { we call this whole set of in-serts and deletes an update pass. This correspondsto the structure modi�cation operations of the OO7benchmark. This workload represents the case whenan application creates a number of temporary objectsduring execution and disposes them at the end of theexecution. The results presented are over 90 updatepasses interspersed with garbage collection; garbagecollection is invoked when the database size crosses5MB (recall the steady state database size is 4.7MB).We �rst present the cumulative overheads (cost dur-ing during normal processing as well as the overheaddue to the garbage collection thread) for this workload.Metric TCRC PMSLogs (MB) 143.97 110.52I/O:Read+Write 355+53701 31033+44833Although the amount of logs generated by theTCRC algorithm is more than that of the PMS al-gorithm, the overall I/O performance (including theI/O's for logs) of TCRC is about 50% better than

PMS for this workload. Three factors contribute tothe overall performance: the frequency of invocationof the garbage collector, the overhead during a garbagecollection pass, and the overhead due to normal pro-cessing. We study these three factors in detail now.6.1.1 Invocation FrequencyWe checked the database size at the end of every updatepass and invoked the garbage collector if the databasesize exceeded 5 MB. TCRC collects all garbage andtherefore the amount of garbage, which is generated atthe rate of 45800 bytes per update pass, exceeded 0.3MB (and thus the total database size exceeded 5 MB)after seven update passes. Thus, garbage collection incase of TCRC is consistently invoked after every sevenupdate passes.The pattern is more interesting in the case of PMS.Approximately one out of �fty composites spanned par-titions; such a composite (which is cyclic) is never col-lected. This caused the database size to increase withtime. Since the threshold remained �xed at 5 MB, thiscaused the garbage collection to be invoked more fre-quently as time progressed. During the course of the 90update passes, TCRC garbage collector was invoked 12times, while PMS was invoked 14 times. Initially, thePMS collector was invoked every seven update passes,then every six update passes and by the end of the 90update passes every �ve update passes. By the end ofthe 90 update passes, there were 73280 bytes of uncol-lected garbage for PMS.6.1.2 Overhead of a Garbage Collection PassThe table below gives the average I/O overhead andthe amount of logs generated by TCRC and PMS foran invocation of the collector. To get the total cost the�gures have to be multiplied by the number of invoca-tions (which is 14 for PMS and 12 for TCRC).Metric TCRC PMSLogs (MB) 1.40 1.07I/O:Read+Write 0+514 2007+568Since garbage collection was invoked right after theinsertions, TCRC found all the objects that it had totraverse in the cache and incurred no reads. PMSneeded to make a reachability scan from the root andtherefore had to visit all of the 104280 objects in thedataset. This accounts for the excessive reads incurredby PMS. The logs generated by TCRC is however big-ger than PMS since (i) the size of an object is bigger(due to the presence of reference counts) and thereforethe logs corresponding to the deletion of garbage ob-jects are larger and (ii) the garbage objects are deleted



from WRT and these deletions have to be logged (re-call that all newly created objects will be in WRT sinceall new pointers are weak).6.1.3 Normal Processing OverheadsThe following table shows the amount of I/O performedand the amount of logs generated during normal pro-cessing (when the collector is not running) over thecourse of the 90 update passes.Metric TCRC PMSLogs (MB) 127.17 97.33I/O:Read+Write 355+47533 2941+37274The algorithms have to maintain the persistent datastructures consistent with the data during normal pro-cessing. In the case of PMS, the only persistent datastructure is the IRL which is updated quite rarely. Onthe other hand, in the case of TCRC, the referencecounts as well as the WRT may be updated. Theamounts of log generated show the additional loggingthat has to be performed by TCRC for maintainingthese persistent structures. The additional logs ac-count for about 8000 extra writes for TCRC. The restof the extra writes performed by TCRC (about 2000)are due to writing parts of WRT back as a result ofnormal cache replacement. The amount of reads per-formed by TCRC is signi�cantly smaller that PMS be-cause the cache is not disturbed much by the garbagecollection thread in the case of TCRC. In the case ofPMS, at the end of the collection pass the cache couldcontain many objects from the assembly tree which arenot required during normal processing.6.2 Updating Complex AssembliesIn this set of experiments, we updated the assemblyhierarchy tree by replacing a subtree rooted at a com-plex assembly by a di�erent one. The lowest level baseassemblies in the new hierarchy tree pointed to thesame composite objects. In this experiment, we modi-�ed the OO7 benchmark by removing the back pointersto the base assembly objects from the composite ob-jects. This provides acyclic data which enables us totest our schema graph optimization. It also limits thetraversal of TCRC.We varied the level of the root of the the subtreethat we were replacing. The level was varied from twoto six (level n corresponds to the level which is the nthlevel upwards from the base assemblies). Notice thatthe subtree that was replaced is garbage after this up-date. After such a update we invoked the garbage col-lector. The higher the level of the root of the subtreebeing replaced, the more the number of object com-posites reachable, and therefore the more the number

of objects TCRC had to traverse. In this experiment,we report only on the overheads of the garbage collec-tion pass. The normal processing overheads are verysimilar to the previous experiment since we are creat-ing some number of objects and pruning references toothers like the previous experiment. The cost of thegarbage collection phase for TCRC is tabulated below:Metric Level of Root of Subtree2 3 4 5 6Logs (MB) 0.00 0.01 0.05 0.16 0.49I/O:Read 77 356 10291 21209 32388I/O:Write 8 35 177 376 1309The cost of the garbage collection phase for PMS istabulated below:Metric Level of Root of Subtree2 3 4 5 6Logs(MB) 0.00 0.00 0.00 0.02 0.05I/O:Read 1736 1736 1736 1737 1742I/O:Write 10 13 18 27 31The results show that number of reads by TCRC issmaller than the number of reads by PMS for modi�ca-tions at the lower levels but degrades for modi�cationshigher up the hierarchy. This is expected since TCRCperforms a local traversal. The number of reads forPMS is the same for modi�cations at all levels. No-tice however that even though PMS traverses the en-tire graph, the cost of TCRC is signi�cantly higherthan PMS for modi�cations higher up the hierarchy.There are two reasons for this. The �rst is that TCRCreads all objects as it encounters their references dur-ing the traversals unlike PMS which follows only intra-partition references. This results in excessive readoverhead since there is a lot of cache con
icts for ob-jects on di�erent pages. Secondly, the RRT is disk res-ident and as its size grows, there is extra I/O overheadfor accessing RRT. In contrast, our implementation ofPMS assumes information about which objects in apartition have been marked during the mark phase canbe maintained in memory itself.The amount of logs generated by TCRC (a 0.00 forthe amount of logs generated indicates that the amountof logs generated is less than 10KB) grows in compar-ison to the logs generated by PMS as the level numbergrows since GreenTraverse updates pointer strengthsof objects, which are also logged. The more the ob-jects traversed, the more the number of pointers whosestrengths get changed. In fact, most of the informa-tion in the logs generated by the TCRC is very small(either a pointer strength update, an update to WRTor an update to the reference count). However, eachof these logs has a signi�cant log header overhead in



the Brahm�a system. In a system which can club allthese logs under a single log header along with the logfor the actual pointer update, the overheads will comedown drastically. We are currently modifying the logsubsystem in Brahm�a to do this.The TCRC algorithm can be optimized by using se-mantics available from the schema graph. Notice thatthe template for the pointer from a complex assemblyto a base assembly is acyclic and therefore need notbe traversed by the RedTraverse algorithm thus pre-venting TCRC from unnecessarily traversing the ob-ject composites. The cost of the TCRC garbage collec-tion pass when the experiment was repeated with thisschema-based optimization are tabulated below. It canbe seen that TCRC with the optimization outperformsthe basic TCRC as well as the PMS algorithm.Metric Level of Root of Subtree2 3 4 5 6Logs(MB) 0.00 0.01 0.02 0.06 0.17I/O:Read 0 0 0 0 2I/O:Write 8 9 12 27 677 Conclusions and Future WorkWe have presented a garbage collection algorithm,called TCRC, based on cyclic reference counting andproved it correct in the face of concurrent updates andsystem failures. We have implemented and tested thealgorithm.Our performance results indicate that TCRC canbe much cheaper, at least in certain cases, than par-titioned mark-and-sweep since it can concentrate onlocal cycles of garbage. We believe our algorithm willlay the foundation for cyclic reference counting in data-base systems.We plan to explore several optimizations of theTCRC algorithm in the future. For instance, wehave observed that just after creation of the datasets,garbage collection has to perform extra work to convertweak pointers into strong pointers. However, once theconversion has been performed, a good set of strongpointers is established, and the further cost of garbagecollection is quite low. It would be interesting to de-velop bulk-loading techniques for reducing the cost ofsetting up pointer strengths.We plan to optimize RedTraverse by only followinga strong pointer into an object if all other strong point-ers into that object have been already encountered.This will greatly reduce the number of objects tra-versed and may lead to signi�cant performance be-ne�ts. Finally, another interesting extension of theTCRC algorithm would be to develop a partitionedTCRC algorithm in which during a local mark andsweep only intra-partition edges are traversed.

AcknowledgmentsWe thank Je� Naughton and Jie-bing Yu for givingus a version of their garbage collection code whichprovided us insight into garbage collection implement-ation. We also thank Sandhya Jain for bringing thework by Brownbridge to our notice.References[AFG95] L. Amsaleg, M. Franklin, and O. Gruber. Ef-�cient Incremental Garbage Collection for Client-Server Object Database Systems. In Procs. of the In-ternational Conf. on Very Large Databases, Septem-ber 1995.[ARS+97] S. Ashwin, Prasan Roy, S. Seshadri, Avi Silber-schatz, and S. Sudarshan. Garbage Collection in Ob-ject Oriented Databases Using Transactional CyclicReference Counting. Technical report, Indian Insti-tute of Technology, Mumbai, India, June 1997.[Bro84] D.R. Brownbridge. Recursive Structures in Com-puter Systems. PhD thesis, University of Newcastleupon Tyne, United Kingdom, September 1984.[Bro85] D.R. Brownbridge. Cyclic Reference Counting forCombinator Machines. In Jean-Pierre Jouannaud,editor, ACM Conf. on Functional Programming Lan-guages and Computer Architecture, pages 273{288.Springer-Verlag, 1985.[CDN93] M. Carey, D. DeWitt, and J. Naughton. TheOO7 Benchmark. In Proc. of the ACM SIGMODInt. Conf., Washington D.C., May 1993.[CWZ94] J. Cook, A. Wolf, and B. Zorn. Partition Selec-tion Policies in Object Database Garbage Collection.In Procs. of the ACM SIGMOD Conf. on Manage-ment of Data, pages 371{382, May 1994.[JL91] Richard E. Jones and Rafael D. Lins. Cyclicweighted reference counting. Technical report 95,University of Kent, Canterbury, United Kingdom,December 1991.[Lin90] Rafael D. Lins. Cyclic reference counting with lazymark-scan. Technical report 75, University of Kent,Canterbury, United Kingdom, June 1990.[MWL90] A.D. Martinez, R. Wachenchauzer, and Ra-fael D. Lins. Cyclic reference counting with localmark-scan. Information Processing Letters, 34:31{35, 1990.[PvEP88] E.J.H. Pepels, M.C.J.D. van Eekelen, and M.J.Plasmeijer. A cyclic reference counting algorithm andits proof. Internal Report 88-10, University of Nijme-gen, Nijmegen, 1988.[YNY94] V. Yong, J. Naughton, and J. Yu. Storage Re-clamation and Reorganization in Client-Server Per-sistent Object Stores. In Proc. of the Data Engineer-ing Int. Conf., pages 120{133, February 1994.


